1
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Zhang W, Wu C, Geng S, Wang J, Yan C, Zhang X, Zhang JJ, Wu F, Pang Y, Zhong Y, Wang J, Fu W, Huang X, Wang W, Lyu X, Huang Y, Jing H. FAM46C-mediated tumor heterogeneity predicts extramedullary metastasis and poorer survival in multiple myeloma. Aging (Albany NY) 2023; 15:3644-3677. [PMID: 37155154 PMCID: PMC10449297 DOI: 10.18632/aging.204697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Cancers originate from a single cell according to Nowell's theory of clonal evolution. The enrichment of the most aggressive clones has been developed and the heterogeneity arises for genomic instability and environmental selection. Multiple myeloma (MM) is a multiple relapse plasma cell cancer generated from bone marrow. Although there were accumulating researches in multiple myeloma pathogenesis, the heterogeneity remains poorly understood. The participants enrolled in this study were 4 EMP+ (EMP, Extramedullary plasmacytoma) and 2 EMP- primarily untreated MM patients. Single cell RNA sequencing and analysis were conducted for the single cell suspension, which was sorted by flow cytometry from peripheral blood mononuclear cells or bone marrow cells. In our research, the results of single cell RNA sequencing show that FAM46C determines MM tumor heterogeneity predicting extramedullary metastasis by influencing RNA stability. Further, we integrated and analyzed 2280 multiple myeloma samples from 7 independent datasets, which uncover that FAM46C mediated tumor heterogeneity predicts poorer survival in multiple myeloma.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Chaoling Wu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Shuang Geng
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Jing Wang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Changjian Yan
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Xiannian Zhang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Jia-jia Zhang
- Department of Hematology, Beijing Chaoyang Hospital West, Capital Medical University, Beijing 100054, China
| | - Fan Wu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Yuhong Pang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Yuping Zhong
- Department of Hematology, Beijing Chaoyang Hospital West, Capital Medical University, Beijing 100054, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100190, China
| | - Wei Fu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Xin Huang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Wenming Wang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| | - Xiaoqing Lyu
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Yanyi Huang
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
- Beijing Advanced Innovation Center for Genomics (ICG), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
| | - Hongmei Jing
- Department of Hematology, Biodynamic Optical Imaging Center (BIOPIC) and Lymphoma Research Center, Third Hospital, Peking University, Beijing 100084, China
| |
Collapse
|
3
|
Ri M, Suzuki K, Ishida T, Kuroda J, Tsukamoto T, Teshima T, Goto H, Jackson CC, Sun H, Pacaud L, Fujikawa E, Yeh TM, Hatayama T, Aida K, Sunagawa Y, Iida S. Ciltacabtagene autoleucel in patients with relapsed/refractory multiple myeloma: CARTITUDE-1 (phase 2) Japanese cohort. Cancer Sci 2022; 113:4267-4276. [PMID: 36052883 DOI: 10.1111/cas.15556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen have shown positive responses in patients with multiple myeloma (MM). The phase 2 portion of the CARTITUDE-1 study of ciltacabtagene autoleucel (cilta-cel) included a cohort of Japanese patients with relapsed/refractory MM. Following a conditioning regimen of cyclophosphamide (300 mg/m2 ) and fludarabine (30 mg/m2 ), patients received a single cilta-cel infusion at a target dose of 0.75 × 106 (range, 0.5-1.0 × 106 CAR-positive viable T cells/kg). The primary endpoint was overall response rate (ORR; defined as partial response or better) by International Myeloma Working Group criteria. A key secondary endpoint was the rate of very good partial response (VGPR) or better (defined as VGPR, complete response, stringent complete response). This first analysis was performed at 6 months after the last patient received cilta-cel. Thirteen patients underwent apheresis, nine of whom received cilta-cel infusion. Eight patients who received cilta-cel at the target dose responded, yielding an ORR of 100%. Seven of eight (87.5%) patients achieved a VGPR or better. One additional patient who received a below-target dose of cilta-cel also achieved a best response of VGPR. MRD negativity (10-5 threshold) was achieved in all six evaluable patients. Eight of nine (88.9%) patients who received cilta-cel infusion experienced a grade 3 or 4 adverse event, and eight (88.9%) patients experienced cytokine release syndrome (all grade 1 or 2). No CAR-T cell neurotoxicity was reported. A positive benefit/risk profile for cilta-cel was established for heavily pretreated Japanese patients with relapsed or refractory MM.
Collapse
Affiliation(s)
- Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tadao Ishida
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Hospital, Sapporo, Japan
| | | | - Huabin Sun
- Janssen Research & Development, LLC; Bridgewater, New Jersey, USA
| | | | | | - Tzu-Min Yeh
- Janssen Research & Development, LLC; Bridgewater, New Jersey, USA
| | | | | | | | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya, Japan
| |
Collapse
|
4
|
García-Guerrero E, Rodríguez-Lobato LG, Sierro-Martínez B, Danhof S, Bates S, Frenz S, Haertle L, Götz R, Sauer M, Rasche L, Kortüm KM, Pérez-Simón JA, Einsele H, Hudecek M, Prommersberger SR. All-trans retinoic acid works synergistically with the γ-secretase inhibitor crenigacestat to augment BCMA on multiple myeloma and the efficacy of BCMA-CAR T cells. Haematologica 2022; 108:568-580. [PMID: 36722406 PMCID: PMC9890012 DOI: 10.3324/haematol.2022.281339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
B-cell maturation antigen (BCMA) is the lead antigen for chimeric antigen receptor (CAR) T-cell therapy in multiple myeloma (MM). A challenge is inter- and intra-patient heterogeneity in BCMA expression on MM cells and BCMA downmodulation under therapeutic pressure. Accordingly, there is a desire to augment and sustain BCMA expression on MM cells in patients that receive BCMA-CAR T-cell therapy. We used all-trans retinoic acid (ATRA) to augment BCMA expression on MM cells and to increase the efficacy of BCMA-CAR T cells in pre-clinical models. We show that ATRA treatment leads to an increase in BCMA transcripts by quantitative reverse transcription polymerase chain reaction and an increase in BCMA protein expression by flow cytometry in MM cell lines and primary MM cells. Analyses with super-resolution microscopy confirmed increased BCMA protein expression and revealed an even distribution of non-clustered BCMA molecules on the MM cell membrane after ATRA treatment. The enhanced BCMA expression on MM cells after ATRA treatment led to enhanced cytolysis, cytokine secretion and proliferation of BCMA-CAR T cells in vitro, and increased efficacy of BCMA-CAR T-cell therapy in a murine xenograft model of MM in vivo (NSG/MM.1S). Combination treatment of MM cells with ATRA and the γ- secretase inhibitor crenigacestat further enhanced BCMA expression and the efficacy of BCMA-CAR T-cell therapy in vitro and in vivo. Taken together, the data show that ATRA treatment leads to enhanced BCMA expression on MM cells and consecutively, enhanced reactivity of BCMA-CAR T cells. The data support the clinical evaluation of ATRA in combination with BCMA-CAR T-cell therapy and potentially, other BCMA-directed immunotherapies.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Luis G. Rodríguez-Lobato
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,Amyloidosis and Multiple Myeloma Unit, Department of Hematology, Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Sophia Danhof
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Stephan Bates
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Silke Frenz
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Larissa Haertle
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ralph Götz
- Lehrstuhl für Biotechnologie und Biophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Markus Sauer
- Lehrstuhl für Biotechnologie und Biophysik, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Leo Rasche
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - K. Martin Kortüm
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose A. Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBIS/CSIC), Department of Hematology, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Sevilla, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Sabrina R. Prommersberger
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany,S. Prommersberger
| |
Collapse
|
5
|
Xu M, Meng Y, Li Q, Charwudzi A, Qin H, Xiong S. Identification of biomarkers for early diagnosis of multiple myeloma by weighted gene co-expression network analysis and their clinical relevance. Hematology 2022; 27:322-331. [PMID: 35231203 DOI: 10.1080/16078454.2022.2046326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Multiple myeloma is an incurable hematologic malignancy, its early diagnosis is important. However, the biomarker for early diagnosis is limited; hence more need to be identified. The present study aimed to explore the easily tested new biomarker in multiple myeloma by weighted gene co-expression network analysis (WGCNA). METHODS Differentially expressed genes (DEGs) were screened using GSE47552. WGCNA was used to screen hub genes. Subsequently. Hub genes of multiple myeloma were obtained by intersection of DEGs and WGCNA. We used the T-test to screen highly expressed genes. Then, the diagnostic value of key genes was evaluated by the receiver operating characteristic (ROC) curve. Finally, expression levels of key genes were tested and proved by RT-PCR. RESULTS 278 DEGs were screened by Limma package. Three modules were most significantly correlated with multiple myeloma. 238 key genes were screened after the intersection of WGCNA with DEGs. In addition, SNORNA is rarely studied in multiple myeloma, and ROC curve analysis in our prediction model showed that SNORA71A had a good prediction effect (p = 0.07). The expression of SNORA71A was increased in samples of multiple myeloma (P = 0.05). RT-PCR results showed that SNORA71A was upregulated in 51 patient specimens compared to the healthy group (P < 0.05). Linear correlation analysis showed that creatinine was positively correlated with SNORA71A (r = 0.49 P = 0.0002). CONCLUSIONS This study found that SNORA71A was up-regulated and associated with the clinical stages in multiple myeloma; it suggests that SNORA71A could be used as a novel biomarker for early diagnosis and a potential therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- Mengling Xu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Qian Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hui Qin
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
6
|
Allogeneic Stem Cell Transplantation in Multiple Myeloma. Cancers (Basel) 2021; 14:cancers14010055. [PMID: 35008228 PMCID: PMC8750583 DOI: 10.3390/cancers14010055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
The development of new inhibitory and immunological agents and combination therapies significantly improved response rates and survival of patients diagnosed with multiple myeloma (MM) in the last decade, but the disease is still considered to be incurable by current standards and the prognosis is dismal especially in high-risk groups and in relapsed and/or refractory patients. Allogeneic hematopoietic stem cell transplantation (allo-SCT) may enable long-term survival and even cure for individual patients via an immune-mediated graft-versus-myeloma (GvM) effect, but remains controversial due to relevant transplant-related risks, particularly immunosuppression and graft-versus-host disease, and a substantial non-relapse mortality. The decreased risk of disease progression may outweigh this treatment-related toxicity for young, fit patients in high-risk constellations with otherwise often poor long-term prognosis. Here, allo-SCT should be considered within clinical trials in first-line as part of a tandem approach to separate myeloablation achieved by high-dose chemotherapy with autologous SCT, and following allo-SCT with a reduced-intensity conditioning to minimize treatment-related organ toxicities but allow GvM effect. Our review aims to better define the role of allo-SCT in myeloma treatment particularly in the context of new immunomodulatory approaches.
Collapse
|
7
|
Yang P, Jiang PW, Li C, Gao MX, Sun YS, Zhang DY, Du WQ, Zhao J, Shi ST, Li Y, Yang T, Cheng L, Li MH. Cdc25C/cdc2/cyclin B, raf/MEK/ERK and PERK/eIF2α/CHOP pathways are involved in forskolin-induced growth inhibition of MM.1S cells by G2/M arrest and mitochondrion-dependent apoptosis. Cell Cycle 2021; 20:2402-2412. [PMID: 34606419 PMCID: PMC8794531 DOI: 10.1080/15384101.2021.1983280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/14/2021] [Indexed: 10/20/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy characterized by proliferation and accumulation of plasma cells in the bone marrow. Innovative and effective therapeutic approaches that are able to improve the outcome and the survival of MM sufferers, especially the identification of novel natural compounds and investigation of their anti-MM mechanisms, are needed. Here, we investigated the effects and the potential mechanisms against MM of forskolin, a diterpene derived from the medicinal plant Coleus forskohlii, in MM cell line MM.1S. CCK-8 assay showed that forskolin significantly inhibited MM.1S cells viability in a time- and dose-dependent manner. Furthermore, we demonstrated that forskolin induced G2/M phase arrest with a remarkable increase of p-cdc25c, p-cdc2, and a decrease of cyclin B1, indicating the suppression of cdc25C/cdc2/cyclin B pathway. Moreover, we found that forskolin induced mitochondrion-dependent apoptosis which was accompanied by the increase of pro-apoptotic proteins Bax, Bad, Bim and Bid, the decrease of anti-apoptotic proteins Bcl-2 and Bcl-xl, the changes of the mitochondrial membrane potential (MMP) and increase of cleaved caspase-9, cleaved caspase-3 and cleaved PARP. Of note, we demonstrated that forskolin induced a decrease of p-C-Raf, p-MEK, p-ERK1/2 and p-p90Rsk, and an increase of p-PERK, p-eIF2α and CHOP, which indicated that the inhibition of Raf/MEK/ERK pathway and activation of PERK/eIF2α/CHOP pathway were involved, at least partially, in forskolin-induced MM.1S cells apoptosis. These findings confirm the anti-MM action of forskolin and extend the understanding of its anti-MM mechanism in MM.1S cells, as well as reinforcing the evidence for forskolin as a natural chemotherapeutic compound against MM.
Collapse
Affiliation(s)
| | - Pei-Wen Jiang
- School of Basic Medicine
- Center of Science and Research
| | - Chen Li
- School of Basic Medicine
- School of Bioscience and Technology
| | - Ming-Xiang Gao
- Center of Science and Research
- School of Clinical Medicine
| | | | | | | | | | - Song-Ting Shi
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Yan Li
- School of Basic Medicine
- School of Bioscience and Technology
| | | | | | - Min-Hui Li
- School of Basic Medicine
- Center of Science and Research
| |
Collapse
|
8
|
Rasche L, Wäsch R, Munder M, Goldschmidt H, Raab MS. Novel immunotherapies in multiple myeloma - chances and challenges. Haematologica 2021; 106:2555-2565. [PMID: 34196164 PMCID: PMC8485654 DOI: 10.3324/haematol.2020.266858] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
In this review article, we summarize the latest data on antibody-drug conjugates, bispecific T-cell-engaging antibodies, and chimeric antigen receptor T cells in the treatment of multiple myeloma. We discuss the pivotal questions to be addressed as these new immunotherapies become standard agents in the management of multiple myeloma. We also focus on the selection of patients for these therapies and speculate as to how best to individualize treatment approaches. We see these novel immunotherapies as representing a paradigm shift. However, despite the promising preliminary data, many open issues remain to be evaluated in future trials.
Collapse
Affiliation(s)
- Leo Rasche
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg; Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg
| | - Ralph Wäsch
- Department of Internal Medicine I, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg
| | - Markus Munder
- Third Department of Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg; National Center of Tumor Diseases (NCT), Heidelberg and
| | - Marc S Raab
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg; CCU Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Zahran AM, Zahran ZAM, Rayan A. Microparticles and PD1 interplay added a prognostic impact in treatment outcomes of patients with multiple myeloma. Sci Rep 2021; 11:17681. [PMID: 34480060 PMCID: PMC8417279 DOI: 10.1038/s41598-021-96975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
Although multiple myeloma (MM) is still considered as an incurable disease by current standards, the development of several combination therapies, and immunotherapy approaches has raised the hope towards transforming MM into an indolent, chronic disease, and possibly achieving a cure. We tried to shed light on the expression of PD1 and different Microparticles (MPs) in MM and their interplay as a mechanism of resistance to standardized treatments, in addition, find their associations with prognostic factors of symptomatic MM. Thirty patients with newly diagnosed and chemotherapy naïve active MM, along with 19 healthy participants of comparable age and sex were recruited, after diagnosis of MM; blood samples were collected from both patients and controls for flow cytometric detection of CD4+, CD8+, CD4+PD1+, and CD8+PD1+T cells, total MPs, CD138+ MPs, and platelet MPs. MM patients had statistically significant higher levels of TMPs, CD138+ MPs compared to their controls, while PMPs exhibited no significant difference between both groups. Statistically significant higher percentages of CD8+, PD1CD8+, PD1CD4+T cells were detected in patients compared to controls, while the latter group had a significantly higher percentage of CD4+T cells than MM patients, patients who did not achieve complete response, had significantly higher percentages of PMPs, CD138+MPs, PD1+CD8+, PD1+CD4+, and CD8+T cells (cutoff values = 61, 10.6, 13.5, 11.3 and 20.1 respectively), (p-values = 0.002, 0.003, 0.017, 0.001 and 0.008 respectively). Microparticles and PD1 expressions were associated with proliferative potential and resistance to Bortezomib-based treatments, our results suggested that they played a crucial role in myeloma progression.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | | | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
10
|
Gengenbach L, Graziani G, Reinhardt H, Rösner A, Braun M, Möller MD, Greil C, Wäsch R, Engelhardt M. Choosing the Right Therapy for Patients with Relapsed/Refractory Multiple Myeloma (RRMM) in Consideration of Patient-, Disease- and Treatment-Related Factors. Cancers (Basel) 2021; 13:4320. [PMID: 34503130 PMCID: PMC8430818 DOI: 10.3390/cancers13174320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023] Open
Abstract
Treatment of relapsed/refractory multiple myeloma (RRMM) is more complex today due to the availability of novel therapeutic options, mostly applied as combination regimens. immunotherapy options have especially increased substantially, likewise the understanding that patient-, disease- and treatment-related factors should be considered at all stages of the disease. RRMM is based on definitions of the international myeloma working group (IMWG) and includes biochemical progression, such as paraprotein increase, or symptomatic relapse with CRAB criteria (hypercalcemia, renal impairment, anemia, bone lesions). When choosing RRMM-treatment, the biochemical markers for progression and severity of the disease, dynamic of disease relapse, type and number of prior therapy lines, including toxicity and underlying health status, need to be considered, and shared decision making should be pursued. Objectively characterizing health status via geriatric assessment (GA) at each multiple myeloma (MM) treatment decision point has been shown to be a better estimate than via age and comorbidities alone. The well-established national comprehensive cancer network, IMWG, European myeloma network and other national treatment algorithms consider these issues. Ideally, GA-based clinical trials should be supported in the future to choose wisely and efficaciously from available intervention and treatment options in often-older MM adults in order to further improve morbidity and mortality.
Collapse
|
11
|
Gu W, Qu R, Meng F, Cornelissen JJLM, Zhong Z. Polymeric nanomedicines targeting hematological malignancies. J Control Release 2021; 337:571-588. [PMID: 34364920 DOI: 10.1016/j.jconrel.2021.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Hematological malignancies (HMs) typically persisting in the blood, lymphoma, and/or bone marrow invalidate surgery and local treatments clinically used for solid tumors. The presence and drug resistance nature of cancer stem cells (CSCs) further lends HMs hard to cure. The development of new treatments like molecular targeted drugs and antibodies has improved the clinical outcomes for HMs but only to a certain extent, due to issues of low bioavailability, moderate response, occurrence of drug resistance, and/or dose-limiting toxicities. In the past years, polymeric nanomedicines targeting HMs including refractory and relapsed lymphoma, leukemia and multiple myeloma have emerged as a promising chemotherapeutic approach that is shown capable of overcoming drug resistance, delivering drugs not only to cancer cells but also CSCs, and increasing therapeutic index by lessening drug-associated adverse effects. In addition, polymeric nanomedicines have shown to potentiate next-generation anticancer modalities such as therapeutic proteins and nucleic acids in effectively treating HMs. In this review, we highlight recent advance in targeted polymeric nanoformulations that are coated with varying ligands (e.g. cancer cell membrane proteins, antibodies, transferrin, hyaluronic acid, aptamer, peptide, and folate) and loaded with different therapeutic agents (e.g. chemotherapeutics, molecular targeted drugs, therapeutic antibodies, nucleic acid drugs, and apoptotic proteins) for directing to distinct targets (e.g. CD19, CD20, CD22, CD30, CD38, CD44, CD64, CXCR, FLT3, VLA-4, and bone marrow microenvironment) in HMs. The advantages and potential challenges of different designs are discussed.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
12
|
Venezian Povoa L, Ribeiro CHC, da Silva IT. Machine learning predicts treatment sensitivity in multiple myeloma based on molecular and clinical information coupled with drug response. PLoS One 2021; 16:e0254596. [PMID: 34320000 PMCID: PMC8318243 DOI: 10.1371/journal.pone.0254596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
Providing treatment sensitivity stratification at the time of cancer diagnosis allows better allocation of patients to alternative treatment options. Despite many clinical and biological risk markers having been associated with variable survival in cancer, assessing the interplay of these markers through Machine Learning (ML) algorithms still remains to be fully explored. Here, we present a Multi Learning Training approach (MuLT) combining supervised, unsupervised and self-supervised learning algorithms, to examine the predictive value of heterogeneous treatment outcomes for Multiple Myeloma (MM). We show that gene expression values improve the treatment sensitivity prediction and recapitulates genetic abnormalities detected by Fluorescence in situ hybridization (FISH) testing. MuLT performance was assessed by cross-validation experiments, in which it predicted treatment sensitivity with 68.70% of AUC. Finally, simulations showed numerical evidences that in average 17.07% of patients could get better response to a different treatment at the first line.
Collapse
Affiliation(s)
- Lucas Venezian Povoa
- Aeronautics Institute of Technology (ITA), Bioengineering Lab, São José dos Campos, Brazil
- Aeronautics Institute of Technology (ITA), Computer Science Division, São José dos Campos, Brazil
- AC Camargo Cancer Center (ACCCC), International Research and Educational Center, São Paulo, Brazil
- Federal Institute for Education, Science, and Technology of São Paulo (IFPS), Jacarei, Brazil
| | - Carlos Henrique Costa Ribeiro
- Aeronautics Institute of Technology (ITA), Bioengineering Lab, São José dos Campos, Brazil
- Aeronautics Institute of Technology (ITA), Computer Science Division, São José dos Campos, Brazil
| | - Israel Tojal da Silva
- AC Camargo Cancer Center (ACCCC), International Research and Educational Center, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
Zheleznyak A, Mixdorf M, Marsala L, Prior J, Yang X, Cui G, Xu B, Fletcher S, Fontana F, Lanza G, Achilefu S. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics 2021; 11:7735-7754. [PMID: 34335961 PMCID: PMC8315072 DOI: 10.7150/thno.60757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Multiple myeloma (MM) is a multifocal malignancy of bone marrow plasma cells, characterized by vicious cycles of remission and relapse that eventually culminate in death. The disease remains mostly incurable largely due to the complex interactions between the bone microenvironment (BME) and MM cells (MMC). In the “vicious cycle” of bone disease, abnormal activation of osteoclasts (OCs) by MMC causes severe osteolysis, promotes immune evasion, and stimulates the growth of MMC. Disrupting these cancer-stroma interactions would enhance treatment response. Methods: To disrupt this cycle, we orthogonally targeted nanomicelles (NM) loaded with non-therapeutic doses of a photosensitizer, titanocene (TC), to VLA-4 (α4ß1, CD49d/CD29) expressing MMC (MM1.S) and αvß3 (CD51/CD61) expressing OC. Concurrently, a non-lethal dose of a radiopharmaceutical, 18F-fluorodeoxyglucose ([18F]FDG) administered systemically interacted with TC (radionuclide stimulated therapy, RaST) to generate cytotoxic reactive oxygen species (ROS). The in vitro and in vivo effects of RaST were characterized in MM1.S cell line, as well as in xenograft and isograft MM animal models. Results: Our data revealed that RaST induced non-enzymatic hydroperoxidation of cellular lipids culminating in mitochondrial dysfunction, DNA fragmentation, and caspase-dependent apoptosis of MMC using VLA-4 avid TC-NMs. RaST upregulated the expression of BAX, Bcl-2, and p53, highlighting the induction of apoptosis via the BAK-independent pathway. The enhancement of multicopper oxidase enzyme F5 expression, which inhibits lipid hydroperoxidation and Fenton reaction, was not sufficient to overcome RaST-induced increase in the accumulation of irreversible function-perturbing α,ß-aldehydes that exerted significant and long-lasting damage to both DNA and proteins. In vivo, either VLA-4-TC-NM or αvß3-TC-NMs RaST induced a significant therapeutic effect on immunocompromised but not immunocompetent MM-bearing mouse models. Combined treatment with both VLA-4-TC-NM and αvß3-TC-NMs synergistically inhibited osteolysis, reduced tumor burden, and prevented rapid relapse in both in vivo models of MM. Conclusions: By targeting MM and bone cells simultaneously, combination RaST suppressed MM disease progression through a multi-prong action on the vicious cycle of bone cancer. Instead of using the standard multidrug approach, our work reveals a unique photophysical treatment paradigm that uses nontoxic doses of a single light-sensitive drug directed orthogonally to cancer and bone cells, followed by radionuclide-stimulated generation of ROS to inhibit tumor progression and minimize osteolysis in both immunocompetent murine and immunocompromised human MM models.
Collapse
|
14
|
Dai H, Ma B, Dai X, Pang J, Wang J, Zhao Y, Wang M, Zhang H, Gao H, Qian S, Tian F, Sun X. Shengma Biejia Decoction Inhibits Cell Growth in Multiple Myeloma by Inducing Autophagy-Mediated Apoptosis Through the ERK/mTOR Pathway. Front Pharmacol 2021; 12:585286. [PMID: 33854428 PMCID: PMC8039907 DOI: 10.3389/fphar.2021.585286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Shengma Biejia decoction (SMBJD), a traditional Chinese formula recorded in the Golden Chamber, has been widely used for the treatment of malignant tumors. However, its underlying molecular targets and mechanisms are still unclear. This study showed that SMBJD inhibited tumor growth and stimulated hemogram recovery significantly in a multiple myeloma xenograft model. Western blot and immunohistochemistry assays of tumor tissues showed that SMBJD reduced the ratio of autophagy-related proteins LC3-II/LC3-I, while P62 and apoptosis-related proteins cleaved caspase-3/caspase-3 and Bax/Bcl-2 were upregulated. In vitro experiments demonstrated the time-dependent and dose-dependent cytotoxicity of SMBJD on multiple myeloma cell lines H929 and U266 through MTT assays. The LC3-II/LC3-I ratio and number of GFP-LC3 puncta showed that SMBJD inhibited the autophagy process of H929 and U266 cells. Moreover, both SMBJD and 3-methyladenine (3-MA) caused a decrease in LC3-II/LC3-I, and SMBJD could not reverse the upregulation of LC3-II/LC3-I caused by bafilomycin A1 (Baf-A1). Furthermore, the results of annexin V-FITC and propidium iodide double staining demonstrated that SMBJD treatment induced the apoptosis of H929 and U266 cells. These data prove that SMBJD inhibits autophagy and promotes apoptosis in H929 and U266 cells. The results also show that rapamycin could reduce the rate of SMBJD-induced apoptosis in H929 and U266 cells, at a concentration which had no effect on apoptosis but activated autophagy. In addition, analysis of the mechanism indicated that levels of phosphorylated ERK and phosphorylated mTOR were increased by treatment with SMBJD in vivo and in vitro. These results indicate that SMBJD, an old and effective herbal compound, could inhibit the viability of H929 and U266 cells and induce autophagy-mediated apoptosis through the ERK/mTOR pathway. Thus, it represents a potential therapy strategy for multiple myeloma.
Collapse
Affiliation(s)
- Huibo Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bangyun Ma
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingbin Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Pang
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyu Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yandong Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengya Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoran Gao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shushu Qian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fang Tian
- Research Center of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuemei Sun
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Hwa YL, Lacy MQ, Gertz MA, Kumar SK, Muchtar E, Buadi FK, Dingli D, Leung N, Kapoor P, Go RS, Hobbs MA, Fonder AL, Gonsalves WI, Warsame R, Kourelis TV, Hayman SR, Siddiqui MA, Rajkumar SV, Dispenzieri A. Use of beta blockers is associated with survival outcome of multiple myeloma patients treated with pomalidomide. Eur J Haematol 2021; 106:433-436. [PMID: 33259093 DOI: 10.1111/ejh.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Yi L Hwa
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Martha Q Lacy
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Morie A Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Shaji K Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Amie L Fonder
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Rahma Warsame
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
16
|
Herget GW, Kälberer F, Ihorst G, Graziani G, Klein L, Rassner M, Gehler C, Jung J, Schmal H, Wäsch R, Engelhardt M. Interdisciplinary approach to multiple myeloma - time to diagnosis and warning signs. Leuk Lymphoma 2020; 62:891-898. [PMID: 33225781 DOI: 10.1080/10428194.2020.1849681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Delayed diagnosis is a common challenge in the management of multiple myeloma (MM). This prospective interdisciplinary study evaluated symptoms and time to diagnosis (TTD) in 81/295 screened patients at our tertiary center, who were examined by an orthopedist prior to the MM diagnosis. The most frequent complaint was back pain (81%), mainly localized thoracic and/or lumbar. Pain was independent of movement in 85%, occurred at night in 69%, and at multiple localizations in 30% of patients. Notably, 63% patients with an orthopedic disease noticed substantial symptom change before the MM diagnosis was made. The median TTD was 7 months and did not differ significantly between patients with or without a preexisting skeletal disease. To avoid delayed diagnosis, physicians should consider MM as a differential diagnosis, whenever warning signs such as skeletal pain independent from movement, at night, at various localizations, and change in pain characteristics accompanied by fatigue, are reported.
Collapse
Affiliation(s)
- Georg W Herget
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Felix Kälberer
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Clinic, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Giulia Graziani
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Medicine, Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lukas Klein
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Michael Rassner
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Medicine, Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Gehler
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Johannes Jung
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Medicine, Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Hagen Schmal
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ralph Wäsch
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Medicine, Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Medicine, Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Möller MD, Ihorst G, Pahl A, Scheubeck S, Barsch F, Dold SM, Bertz H, Arends J, Wäsch R, Engelhardt M. Physical activity is associated with less comorbidity, better treatment tolerance and improved response in patients with multiple myeloma undergoing stem cell transplantation. J Geriatr Oncol 2020; 12:521-530. [PMID: 33223484 DOI: 10.1016/j.jgo.2020.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Multiple myeloma (MM) is the second most common hematological malignancy. Progression free survival (PFS) and overall survival (OS) have substantially improved, nonetheless MM usually remains incurable. Patients with active disease may be affected by numerous comorbidities, including fatigue, depression and osteolytic lesions, which influence their quality of life (QoL). Albeit, it is known that exercising is beneficial for patients' QoL, few clinical trials are available in patients with MM. We therefore aimed to compare comorbidities and clinical outcome in physically active and inactive patients with MM. MATERIAL AND METHODS We defined physical activity according to WHO criteria (150 min of moderate activity and two sessions of resistance training/week). We matched 53 physically active patients with 53 controls (for age, gender, cytogenetics, disease stage, and therapy) and compared the cohorts for incidence of comorbidities/MM symptoms (osteolytic lesions, anemia, infections, fatigue, depression, Revised-Myeloma Comorbidity Index [R-MCI]) and clinical outcome (treatment tolerance, responses to therapy, PFS and OS) in a retrospective audit. All patients were newly diagnosed with MM and received autologous stem cell transplantations (ASCT) between 2001 and 2017. RESULTS Physically active patients showed superior outcomes in R-MCI (p = 0.0005), fatigue (p = 0.0063), treatment tolerance (p = 0.0258) and hospital stays (p = 0.0072). Furthermore, they showed better treatment responses (p = 0.0366), especially complete remission (CR; p = 0.0018) as well as better OS and PFS. CONCLUSION Physical activity in patients with MM undergoing ASCT seemed associated with better overall clinical outcome. Randomized clinical trials are required to understand the benefits and devise strategies for improving exercising among patients with MM.
Collapse
Affiliation(s)
- Mandy-Deborah Möller
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine, University of Freiburg, Germany
| | - Antonia Pahl
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophia Scheubeck
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedrich Barsch
- Institute for Movement and Occupational Medicine, Faculty of Medicine, University of Freiburg, Germany
| | - Sandra Maria Dold
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jann Arends
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Globerson Levin A, Rawet Slobodkin M, Waks T, Horn G, Ninio-Many L, Deshet Unger N, Ohayon Y, Suliman S, Cohen Y, Tartakovsky B, Naparstek E, Avivi I, Eshhar Z. Treatment of Multiple Myeloma Using Chimeric Antigen Receptor T Cells with Dual Specificity. Cancer Immunol Res 2020; 8:1485-1495. [PMID: 33008840 DOI: 10.1158/2326-6066.cir-20-0118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/04/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable successes in fighting B-cell leukemias/lymphomas. Promising response rates are reported in patients treated with B-cell maturation antigen (BCMA) CAR T cells for multiple myeloma. However, responses appear to be nondurable, highlighting the need to expand the repertoire of multiple myeloma-specific targets for immunotherapy and to generate new CAR T cells. Here, we developed a "dual-CAR" targeting two multiple myeloma-associated antigens and explored its safety and efficacy. To reduce the "off-target" toxicity, we used the recognition of paired antigens that were coexpressed by the tumor to induce efficient CAR T-cell activation. The dual-CAR construct presented here was carefully designed to target the multiple myeloma-associated antigens, taking into consideration the distribution of both antigens on normal human tissues. Our results showed that the CD138/CD38-targeted dual CAR (dCAR138-38) elicited a potent anti-multiple myeloma response both in vitro and in vivo NSG mice transplanted with a multiple myeloma cell line and treated with dCAR138-38 showed median survival of 97 days compared with 31 days in the control group treated with mock-lymphocytes. The dCAR138-38 showed increased specificity toward cells expressing both targeted antigens compared with single-antigen-expressing cells and low activity toward primary cells from healthy tissues. Our findings indicated that the dCAR138-38 may provide a potent and safe alternative therapy for patients with multiple myeloma.
Collapse
Affiliation(s)
- Anat Globerson Levin
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel. .,Weizmann Institute of Science, Rehovot, Israel
| | | | - Tova Waks
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Weizmann Institute of Science, Rehovot, Israel
| | - Galit Horn
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | | | | | - Yaara Ohayon
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | | | - Yael Cohen
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ella Naparstek
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Irit Avivi
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zelig Eshhar
- Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel.,Weizmann Institute of Science, Rehovot, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
19
|
Wang C, Li M, Wang S, Jiang Z, Liu Y. LINC00665 Promotes the Progression of Multiple Myeloma by Adsorbing miR-214-3p and Positively Regulating the Expression of PSMD10 and ASF1B. Onco Targets Ther 2020; 13:6511-6522. [PMID: 32764956 PMCID: PMC7368456 DOI: 10.2147/ott.s241627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background Although assertion that long non-coding RNA (lncRNA) exerts crucial functions in the progression of multiple myeloma (MM) is well documented, few studies investigate function and underlying mechanism of long intergenic non-protein coding RNA 665 (LINC00665) in MM. Patients and Methods A total of 25 MM patient samples and 15 healthy volunteer samples were collected, and quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expressions of LINC00665. PSMD10 and ASF1B expressions were determined by qRT-PCR and Western blot assays. U266 cell and H929 cell were used in functional experiments. Besides, CCK-8 assay and flow cytometry analysis were utilized to determine cell proliferation and apoptosis. Bioinformatics analysis and dual-luciferase reporter assays were used to predict and verify the targeting relationships between LINC00665 and miR-214-3p, PSMD10 and miR-214-3p, as well as ASF1B and miR-214-3p. Moreover, the regulatory function of LINC00665 on the expression of PSMD10 and ASF1B was detected by Western blot. Results The expression of LINC00665 was up-regulated in MM samples and cell lines. In vitro functional assays indicated that LINC00665 enhanced MM cell proliferation and inhibited its apoptosis. PSMD10 and ASF1B were identified as target genes of miR-214-3p. Additionally, LINC00665 negatively regulated miR-214-3p expression through sponging miR-214-3p and positively regulated PSMD10 and ASF1B. Conclusion LINC00665 can promote the expression of PSMD10 and ASF1B by inhibiting the expression of miR-214-3p, thus facilitating the proliferation and inhibiting apoptosis of MM cells.
Collapse
Affiliation(s)
- Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Mengya Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, People's Republic of China
| |
Collapse
|
20
|
Chu TH, Vo MC, Park HS, Lakshmi TJ, Jung SH, Kim HJ, Lee JJ. Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma. Cancer Immunol Immunother 2020; 70:31-45. [PMID: 32623477 DOI: 10.1007/s00262-020-02654-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023]
Abstract
Dendritic cell (DC)-based vaccines are recognized as a promising immunotherapeutic strategy against cancer; however, the efficacy of immunotherapy with DCs is controlled via immune checkpoints, such as programmed death-ligand 1 (PD-L1). PD-L1 expressed on DC and tumor cells binds to programmed death-1 (PD-1) receptors on the activated T cells, which leads to the inhibition of cytotoxic T cells. Blocking of PD-L1 on DC may lead to improve the efficacy of DC therapy for cancer. Here we demonstrated that DC vaccination in combination with pomalidomide and programmed death-ligand 1 (PD-L1) blockade inhibited tumor growth of a multiple myeloma (MM) mouse model. DCs + pomalidomide with dexamethasone + PD-L1 blockade significantly inhibited immune immunosuppressive factors and promoted proportions of immune effector cells in the spleen and tumor microenvironment. Additionally, functional activities of cytotoxic T lymphocytes and NK cells in spleen were enhanced by DCs + pomalidomide with dexamethasone + PD-L1 blockade. Taken together, this study identifies a potential new therapeutic approach for the treatment of MM. These results also provide a foundation for the future development of immunotherapeutic modalities to inhibit tumor growth and restore immune function in MM.
Collapse
Affiliation(s)
- Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea. .,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea.
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea. .,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea. .,Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea.
| |
Collapse
|
21
|
García-Guerrero E, Sierro-Martínez B, Pérez-Simón JA. Overcoming Chimeric Antigen Receptor (CAR) Modified T-Cell Therapy Limitations in Multiple Myeloma. Front Immunol 2020; 11:1128. [PMID: 32582204 PMCID: PMC7290012 DOI: 10.3389/fimmu.2020.01128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease regardless of recent advances in the field. Therefore, a substantial unmet need exists to treat patients with relapsed/refractory myeloma. The use of novel agents such as daratumumab, elotuzumab, carfilzomib, or pomalidomide, among others, usually cannot completely eradicate myeloma cells. Although these new drugs have had a significant impact on the prognosis of MM patients, the vast majority ultimately become refractory or can no longer be treated due to toxicity of prior treatment, and thus succumb to the disease. Cellular therapies represent a novel approach with a unique mechanism of action against myeloma with the potential to defeat drug resistance and achieve long-term remissions. Genetic modification of cells to express a novel receptor with tumor antigen specificity is currently being explored in myeloma. Chimeric antigen receptor gene-modified T-cells (CAR T-cells) have shown to be the most promising approach so far. CAR T-cells have shown to induce durable complete remissions in other advanced hematologic malignancies like acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). With this background, significant efforts are underway to develop CAR-based therapies for MM. Currently, several antigen targets, including CD138, CD19, immunoglobulin kappa (Ig-Kappa) and B-cell maturation antigen (BCMA), are being used in clinical trials to treat myeloma patients. Some of these trials have shown promising results, especially in terms of response rates. However, the absence of a plateau is observed in most studies which correlates with the absence of durable remissions. Therefore, several potential limitations such as lack of effectiveness, off-tumor toxicities, and antigen loss or interference with soluble proteins could hamper the efficacy of CAR T-cells in myeloma. In this review, we will focus on clinical outcomes reported with CAR T-cells in myeloma, as well as on CAR T-cell limitations and how to overcome them with next generation of CAR T-cells.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
22
|
Schinke M, Ihorst G, Duyster J, Wäsch R, Schumacher M, Engelhardt M. Risk of disease recurrence and survival in patients with multiple myeloma: A German Study Group analysis using a conditional survival approach with long-term follow-up of 815 patients. Cancer 2020; 126:3504-3515. [PMID: 32459378 DOI: 10.1002/cncr.32978] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Unlike the traditional method of overall survival prediction in patients with cancer, conditional survival predicts the survival of patients dynamically throughout the course of disease, identifying how a prognosis evolves over time. METHODS The authors assessed 815 consecutive patients with multiple myeloma through the German Study Group on Multiple Myeloma (Deutsche Studiengruppe Multiples Myelom; DSMM) incentive. Over 10 variables, including patient-specific and multiple myeloma-specific parameters, were analyzed at the time of initial diagnosis and repeatedly during follow-up. The probability of survival for another 5 years was calculated according to disease-related and host-related risks. Multivariate Cox models were used to determine baseline and updated prognostic factors for survival. RESULTS The median follow-up and overall survival were 10.3 years and 5.1 years, respectively. When comparing 5-year conditional survival probabilities from the data derived at the time of initial diagnosis with those updated over time, substantially differing prognoses were observed when follow-up data were used. Multivariate Cox regression models for cohorts surviving 0 to 5 years demonstrated hazard ratios (HRs) for patients aged <60 years, 60 to 69 years, and >70 years of 1, 1.68, and 3.17, respectively. These HRs for age were found to decline for patients surviving 5 years, as well as for those with advanced stages of disease (II/III) and unfavorable cytogenetics, whereas progressive disease remained an important factor in patients surviving 1 year, 3 years, and 5 years, with HRs of 1.85, 2.11, and 2.14, respectively. CONCLUSIONS To the authors' knowledge, the current study is the first analysis of conditional survival in patients with multiple myeloma using both baseline and follow-up risk parameters, demonstrating that regular risk assessment throughout the course of disease and complete follow-up provide a more reliable conditional survival estimation than baseline assessment alone.
Collapse
Affiliation(s)
- Maximilian Schinke
- Department of Medicine I, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, University of Freiburg Medical Center, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Medicine I, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schumacher
- Center for Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Medicine I, University of Freiburg Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Markus Munder
- Department of Hematology, Oncology, and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Reinhard Marks
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| |
Collapse
|
24
|
Chen R, Rajan S, Overstreet MG, Hurt EM, Thomas SB, Muniz-Medina V, Ward C, Sadowska A, Fleming R, Karanth S, Breen S, Zheng B, Wu Y, Iverson WO, Novick S, O'Day T, Shah DP, Dimasi N, Tiberghien AC, Osbourn J, Walker J. Preclinical Characterization of an Antibody-Drug Conjugate Targeting CS-1 and the Identification of Uncharacterized Populations of CS-1-Positive Cells. Mol Cancer Ther 2020; 19:1649-1659. [PMID: 32404408 DOI: 10.1158/1535-7163.mct-19-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/21/2019] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a hematologic cancer that disrupts normal bone marrow function and has multiple lines of therapeutic options, but is incurable as patients ultimately relapse. We developed a novel antibody-drug conjugate (ADC) targeting CS-1, a protein that is highly expressed on multiple myeloma tumor cells. The anti-CS-1 mAb specifically bound to cells expressing CS-1 and, when conjugated to a cytotoxic pyrrolobenzodiazepine payload, reduced the viability of multiple myeloma cell lines in vitro In mouse models of multiple myeloma, a single administration of the CS-1 ADC caused durable regressions in disseminated models and complete regression in a subcutaneous model. In an exploratory study in cynomolgus monkeys, the CS-1 ADC demonstrated a half-life of 3 to 6 days; however, no highest nonseverely toxic dose was achieved, as bone marrow toxicity was dose limiting. Bone marrow from dosed monkeys showed reductions in progenitor cells as compared with normal marrow. In vitro cell killing assays demonstrated that the CS-1 ADC substantially reduced the number of progenitor cells in healthy bone marrow, leading us to identify previously unreported CS-1 expression on a small population of progenitor cells in the myeloid-erythroid lineage. This finding suggests that bone marrow toxicity is the result of both on-target and off-target killing by the ADC.
Collapse
Affiliation(s)
- Ruoyan Chen
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Saravanan Rajan
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | - Elaine M Hurt
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | | | | | | | - Ryan Fleming
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | - Shannon Breen
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Bo Zheng
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Yuling Wu
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | - Steven Novick
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Terrence O'Day
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | - Dipesha P Shah
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| | | | | | - Jane Osbourn
- Research and Development, AstraZeneca, Cambridge, United Kingdom
| | - Jill Walker
- Research and Development, AstraZeneca, Gaithersburg, Maryland
| |
Collapse
|
25
|
"Direct to Drug" screening as a precision medicine tool in multiple myeloma. Blood Cancer J 2020; 10:54. [PMID: 32393731 PMCID: PMC7214452 DOI: 10.1038/s41408-020-0320-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Seventy-six FDA-approved oncology drugs and emerging therapeutics were evaluated in 25 multiple myeloma (MM) and 15 non-Hodgkin’s lymphoma cell lines and in 113 primary MM samples. Ex vivo drug sensitivities were mined for associations with clinical phenotype, cytogenetic, genetic mutation, and transcriptional profiles. In primary MM samples, proteasome inhibitors, dinaciclib, selinexor, venetoclax, auranofin, and histone deacetylating agents had the broadest cytotoxicity. Of interest, newly diagnosed patient samples were globally less sensitive especially to bromodomain inhibitors, inhibitors of receptor tyrosine kinases or non-receptor kinases, and DNA synthesis inhibitors. Clustering demonstrated six broad groupings of drug sensitivity linked with genomic biomarkers and clinical outcomes. For example, our findings mimic clinical observations of increased venetoclax responsiveness in t(11;14) patients but also identify an increased sensitivity profile in untreated patients, standard genetic risk, low plasma cell S-Phase, and in the absence of Gain(1q) and t(4;14). In contrast, increased ex vivo responsiveness to selinexor was associated with biomarkers of poor prognosis and later relapse patients. This “direct to drug” screening resource, paired with functional genomics, has the potential to successfully direct appropriate individualized therapeutic approaches in MM and to enrich clinical trials for likely responders.
Collapse
|
26
|
Leblay N, Maity R, Hasan F, Neri P. Deregulation of Adaptive T Cell Immunity in Multiple Myeloma: Insights Into Mechanisms and Therapeutic Opportunities. Front Oncol 2020; 10:636. [PMID: 32432039 PMCID: PMC7214816 DOI: 10.3389/fonc.2020.00636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has recently emerged as a promising treatment option for multiple myeloma (MM) patients. Profound immune dysfunction and evasion of immune surveillance are known to characterize MM evolution and disease progression. Along with genomic changes observed in malignant plasma cells, the bone marrow (BM) milieu creates a protective environment sustained by the complex interaction of BM stromal cells (BMSCs) and malignant cells that using bidirectional connections and cytokines released stimulate disease progression, drug resistance and enable immune escape. Local immune suppression and T-cell exhaustion are important mediating factors of clinical outcomes and responses to immune-based approaches. Thus, further characterization of the defects present in the immune system of MM patients is essential to develop novel therapies and to repurpose the existing ones. This review seeks to provide insights into the mechanisms that promote tumor escape, cause inadequate T-cell stimulation and impaired cytotoxicity in MM. Furthermore, it highlights current immunotherapies being used to restore adaptive T-cell immune responses in MM and describes strategies created to escape these multiple immune evasion mechanisms.
Collapse
Affiliation(s)
- Noémie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Fajer Hasan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Guo S, Xiao P, Li B, Wang W, Wang S, Lv T, Xu X, Chen C, Huang L, Li Z, Tang L, Peng L, Wang H. Co-immunizing with PD-L1 induces CD8 + DCs-mediated anti-tumor immunity in multiple myeloma. Int Immunopharmacol 2020; 84:106516. [PMID: 32334387 DOI: 10.1016/j.intimp.2020.106516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/24/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic vaccines have faced a challenge for effective protection against malignant tumors by inducing tumor-specific CD8+ T cell responses. Here, we designed a DNA vaccine containing a tumor-specific antigen of Dickkopf-1 (DKK-1) and an immune checkpoint of programmed death ligand 1 (PD-L1) delivered by PLGA/PEI nanoparticle-mediated delivery system for multiple myeloma therapy. Murine subcutaneous tumor model established with human DKK1 (hDKK-1)-SP2/0 cells were intramuscularly immunized with PLGA/PEI-pPD-L1/pDDK-1 vaccine and equal amount of control 3 times at 10 day-intervals. Compared with PLGA/PEI-pDKK1 immunization group, PLGA/PEI-pPD-L1/pDKK-1 co-immunization enhanced the induction and mature of CD11c+ DCs and CD8+CD11c+ DCs, and promoted antigen-specific Th1 responses and cytotoxic T lymphocyte (CTL) responses. The reduced tumor volume and weight as well as increased tumor inhibition rate were observed in PLGA/PEI-pPD-L1/pDKK-1 vaccine co-immunization group, indicated that the vaccine could effectively inhibit the tumor growth of multiple myeloma. The anti-tumor activity of PLGA/PEI-pPD-L1/pDKK-1 vaccine was abrogated by CD8 cell depletion accompanied with the reduced percentages of CD8+CD11c+ DCs and CD8+ T cells in the spleen and TILs. These results indicated that the anti-tumor efficacy of PLGA/PEI-pPD-L1/pDKK-1 vaccine was required for CD8+CD11c+ DCs-mediated CD8+ T cell immunity responses. This vaccine strategy may represent a potential and promising approach for hematological malignancy treatment.
Collapse
Affiliation(s)
- Shuli Guo
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Pengli Xiao
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Bo Li
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Wanli Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Songyun Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Tao Lv
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Xiaoyan Xu
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Cong Chen
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Lei Huang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Zhi Li
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Li Tang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Liang Peng
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Huirui Wang
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China.
| |
Collapse
|
28
|
Musto P, La Rocca F. Monoclonal antibodies in newly diagnosed and smoldering multiple myeloma: an updated review of current clinical evidence. Expert Rev Hematol 2020; 13:501-517. [PMID: 32290723 DOI: 10.1080/17474086.2020.1753502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Monoclonal antibodies (MoAbs) are rapidly changing the therapeutic scenario of multiple myeloma. Most of the available data, however, come from studies performed in patients with relapsed or refractory disease.Area covered: Here, the most recent results from clinical trials that have investigated (or are investigating) efficacy and safety of MoAbs as front-line treatments in both transplant-eligible and not-eligible patients with newly diagnosed multiple myeloma, as well as in smoldering myeloma, are reviewed. PubMed reported articles before 28 March 2020, and abstracts presented at the last ASCO, ASH, EHA, and IMW meetings were considered. Among others, pertinent data regarding daratumumab, isatuximab, elotuzumab, and pembrolizumab will be analyzed.Expert opinion: Introduction of MoAbs as first-line therapy will likely provide a significant improvement in the clinical outcome of patients with multiple myeloma. This will also require an appropriate re-positioning of salvage therapies. The role of MoAbs in smoldering myeloma appears to be promising, but adequate follow-up is needed.
Collapse
Affiliation(s)
- Pellegrino Musto
- Chair of Hematology and Unit of Hematology and Stem Cell Transplantation, "Aldo Moro" University School of Medicine, AOU Consorziale Policlinico, Bari, Italy
| | - Francesco La Rocca
- Laboratory of Advanced Diagnostics and Clinical Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture (Pz), Italy
| |
Collapse
|
29
|
Engelhardt M, Ihorst G, Duque-Afonso J, Wedding U, Spät-Schwalbe E, Goede V, Kolb G, Stauder R, Wäsch R. Structured assessment of frailty in multiple myeloma as a paradigm of individualized treatment algorithms in cancer patients at advanced age. Haematologica 2020; 105:1183-1188. [PMID: 32241848 PMCID: PMC7193478 DOI: 10.3324/haematol.2019.242958] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Monika Engelhardt
- Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jesus Duque-Afonso
- Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Ernst Spät-Schwalbe
- Vivantes Klinikum Spandau, Innere Medizin, Hämatologie, Onkologie, Palliativmedizin, Berlin, Germany
| | | | - Gerald Kolb
- Bonifatius Hospital Lingen, Medizinische Klinik, Fachbereich Geriatrie, Akademisches Lehrkrankenhaus der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | - Reinhard Stauder
- Universitätsklinik für Innere Medizin V (Hämatologie und Onkologie), Medizinische Universität Innsbruck, Innsbruck, Austria
| | - Ralph Wäsch
- Department of Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Ramakrishna R, Diamond TH, Alexander W, Manoharan A, Golombick T. Use of Curcumin in Multiple Myeloma patients intolerant of steroid therapy. Clin Case Rep 2020; 8:739-744. [PMID: 32274049 PMCID: PMC7141712 DOI: 10.1002/ccr3.2735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/03/2022] Open
Abstract
Curcumin, when used in a combination regimen in multiple myeloma patients, has comparable progression-free survival without the adverse effects of steroid-based combination therapies that is curcumin may be a viable alternative to corticosteroids in combination with an immunomodulatory drug or proteasome inhibitor.
Collapse
Affiliation(s)
| | | | - William Alexander
- Southern Sydney HaematologyUniversity of WollongongSydneyNSWAustralia
| | | | - Terry Golombick
- Department of EndocrinologySt George HospitalKogarahNSWAustralia
| |
Collapse
|
31
|
Zhang W, Lai R, He X, Liu X, Zhang Y, Yang Z, Yang P, Wang J, Hu K, Yuan X, Zhang X, Liu W, Jing H. Clinical prognostic implications of EPB41L4A expression in multiple myeloma. J Cancer 2020; 11:619-629. [PMID: 31942185 PMCID: PMC6959044 DOI: 10.7150/jca.33805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Multiple myeloma (MM) is one of the most common incurable malignancies in malignant plasma cell disease. EPB41L4A is a target gene for the Wnt/β-catenin pathway, which is closely related to the survival of multiple myeloma cells. However, there is currently no research report on the prognostic significance of the EPB41L4A gene in MM. Methods: We studied the biological significance and prognostic significance of EPB41L4A expression in MM by integrating 1956 MM samples from 7 datasets, and explored the relationship between EPB41L4A expression and MM ISS stage, molecular type, therapeutic response and survival. Results: We found that the expression level of EPB41L4A is inversely proportional to the copy number of 1q21 (P = 3.4e-13). EPB41L4A was low expressed in MAF, MMSET and proliferating molecular typing patients (P <= 0.001). High expression of EPB41L4A can predict good survival in MM (EFS: P < 0.0001; OS: P < 0.0001). We found that patients with relapsed MM had lower expression levels of EPB41L4A than those without recurrence (P = 0.0039). We also found that EPB41L4A can predict the prognosis of MM patients may be related to DNA replication. These results indicate that the initial expression level of EPB41L4A can predict the prognosis of MM patients. Conclusions: We found that the high expression of EPB41L4A predicts good survival level in MM.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Lai
- Department of the Respiratory medicine, The People's Hospital of Ruijin City, Ruijin, 342500, China
- Department of Respiratory Medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoni Liu
- Department of Respiratory Medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Ye Zhang
- Melbourne School of Population and Global Health, The University of Melbourne, Victoria, 3010, Australia
| | - Zuozhen Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Kai Hu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Weiyou Liu
- Department of Respiratory Medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
32
|
D’Agostino M, Gazzera G, Cetani G, Bringhen S, Boccadoro M, Gay F. Clinical and Pharmacologic Features of Monoclonal Antibodies and Checkpoint Blockade Therapy in Multiple Myeloma. Curr Med Chem 2019; 26:5968-5981. [DOI: 10.2174/0929867325666180514114806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/06/2018] [Accepted: 05/03/2018] [Indexed: 01/05/2023]
Abstract
Background:
Survival of multiple myeloma patients has considerably improved in
the last decades thanks to the introduction of many new drugs, including immunomodulatory
agents, proteasome inhibitors and, more recently, monoclonal antibodies.
Methods:
We analyzed the most recent literature focusing on the clinical and pharmacologic
aspects of monoclonal antibody-based therapies in multiple myeloma, including monoclonal
antibodies directed against plasma cell antigens, as well as checkpoint blockade therapy directed
against immune inhibitory molecules, used as single agents or in combination therapy.
Results:
Anti-CD38 monoclonal antibodies including daratumumab, isatuximab and
MOR202 have shown outstanding results in relapsed and/or refractory multiple myeloma patients.
The addition of daratumumab to bortezomib-dexamethasone or lenalidomidedexamethasone
substantially improved patients’ outcome in this patient population. The anti-
SLAMF7 molecule elotuzumab in combination with lenalidomide-dexamethasone showed to
be superior to lenalidomide-dexamethasone alone, without adding meaningful toxicity.
Checkpoint blockade therapy in combination with immunomodulatory agents produced objective
responses in more than 50% of treated patients. However, this combination was also associated
with an increase in toxicity and a thorough safety evaluation is currently ongoing.
Conclusion:
Monoclonal antibodies are reshaping the standard of care for multiple myeloma
and ongoing trials will help physicians to optimize their use in order to further improve patients’
outcome.
Collapse
Affiliation(s)
- Mattia D’Agostino
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giulia Gazzera
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Giusy Cetani
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Sara Bringhen
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Mario Boccadoro
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Francesca Gay
- Myeloma Unit, Division of Hematology, University of Torino, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| |
Collapse
|
33
|
Engelhardt M, Yong K, Bringhen S, Wäsch R. Carfilzomib combination treatment as first-line therapy in multiple myeloma: where do we go from the Carthadex (KTd)-trial update? Haematologica 2019; 104:2128-2131. [PMID: 31666342 DOI: 10.3324/haematol.2019.228684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Monika Engelhardt
- Hematology and Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany .,Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
| | - Kwee Yong
- University College London, London, UK
| | - Sara Bringhen
- UNITO Dipartimento di Oncologia, University of Turin, Turin, Italy
| | - Ralph Wäsch
- Hematology and Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
| |
Collapse
|
34
|
Gu W, An J, Meng H, Yu N, Zhong Y, Meng F, Xu Y, Cornelissen JJLM, Zhong Z. CD44-Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904742. [PMID: 31560141 DOI: 10.1002/adma.201904742] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Chemotherapy is widely used in the clinic though its benefits are controversial owing to low cancer specificity. Nanovehicles capable of selectively transporting drugs to cancer cells have been energetically pursued to remodel cancer treatment. However, no active targeting nanomedicines have succeeded in clinical translation to date, partly due to either modest targetability or complex fabrication. CD44-specific A6 short peptide (KPSSPPEE) functionalized polymersomal epirubicin (A6-PS-EPI), which boosts targetability and anticancer efficacy toward human multiple myeloma (MM) in vivo, is described. A6-PS-EPI encapsulating 11 wt% EPI is small (≈55 nm), robust, reduction-responsive, and easy to fabricate. Of note, A6 decoration markedly augments the uptake and anticancer activity of PS-EPI in CD44-overexpressing LP-1 MM cells. A6-PS-EPI displays remarkable targeting ability to orthotopic LP-1 MM, causing depleted bone damage and striking survival benefits compared to nontargeted PS-EPI. Overall, A6-PS-EPI, as a simple and intelligent nanotherapeutic, demonstrates high potential for clinical translation.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jingnan An
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Na Yu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
35
|
Skorda A, Sklirou AD, Sakellaropoulos T, Gianniou DD, Kastritis E, Terpos E, Tsitsilonis OE, Florea BI, Overkleeft HS, Dimopoulos MA, Alexopoulos LG, Trougakos IP. Non-lethal proteasome inhibition activates pro-tumorigenic pathways in multiple myeloma cells. J Cell Mol Med 2019; 23:8010-8018. [PMID: 31568628 PMCID: PMC6850931 DOI: 10.1111/jcmm.14653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a haematological malignancy being characterized by clonal plasma cell proliferation in the bone marrow. Targeting the proteasome with specific inhibitors (PIs) has been proven a promising therapeutic strategy and PIs have been approved for the treatment of MM and mantle‐cell lymphoma; yet, while outcome has improved, most patients inevitably relapse. As relapse refers to MM cells that survive therapy, we sought to identify the molecular responses induced in MM cells after non‐lethal proteasome inhibition. By using bortezomib (BTZ), epoxomicin (EPOX; a carfilzomib‐like PI) and three PIs, namely Rub999, PR671A and Rub1024 that target each of the three proteasome peptidases, we found that only BTZ and EPOX are toxic in MM cells at low concentrations. Phosphoproteomic profiling after treatment of MM cells with non‐lethal (IC10) doses of the PIs revealed inhibitor‐ and cell type‐specific readouts, being marked by the activation of tumorigenic STAT3 and STAT6. Consistently, cytokine/chemokine profiling revealed the increased secretion of immunosuppressive pro‐tumorigenic cytokines (IL6 and IL8), along with the inhibition of potent T cell chemoattractant chemokines (CXCL10). These findings indicate that MM cells that survive treatment with therapeutic PIs shape a pro‐tumorigenic immunosuppressive cellular and secretory bone marrow microenvironment that enables malignancy to relapse.
Collapse
Affiliation(s)
- Aikaterini Skorda
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Liu Y, Yang N, Peng X, Liu G, Zhong H, Liu L. One-lincRNA and five-mRNA based signature for prognosis of multiple myeloma patients undergoing proteasome inhibitors therapy. Biomed Pharmacother 2019; 118:109254. [PMID: 31357080 DOI: 10.1016/j.biopha.2019.109254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is the second largest malignant tumor of the blood system. Proteasome inhibitors (PIs) currently are effective drugs for some myeloma patients, but their prognosis varies. We extracted the transcriptome expression data and clinical information of myeloma patients from MMRF CoMMpass database, and used the Random Survival Forest Variable Hunting (RSF-VH) algorithm to select 6 highly prognosis-related genes and to develop a 6-genes scoring model, by which the risk score predicted were significantly associated with the progress-free survival (PFS, P<0.001). The median PFS of the high-risk group is 21 months, while it is 29 months in the low-risk group. The scoring model was further validated in the testing cohort. Furthermore, Analysis revealed that the risk score performed better in predicting the multiple myeloma patients' prognosis than the existed staging system, including R-ISS. The risk score is independent with the most existed clinical risk indicators, and the prognostic effectiveness of 6-genes scoring model is homogenous in patients with different clinical observations. Further bioinformatic analysis revealed that the risk score is not only significantly associated with multiple myeloma-related pathways, including immune response, but also with the infiltration of many kinds of immune cells that associated with clinical malignancy. Collectively, the model we developed using one lincRNA and five mRNAs is a robust and effective indicator for myeloma patients' prognosis undergoing proteasome inhibitors therapy.
Collapse
Affiliation(s)
- Yunhe Liu
- Institute of Biomedical Sciences, Fudan University, PR China
| | - Ning Yang
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PR China
| | - Xueqing Peng
- Institute of Biomedical Sciences, Fudan University, PR China
| | - Gang Liu
- Institute of Biomedical Sciences, Fudan University, PR China.
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, PR China.
| | - Lei Liu
- Institute of Biomedical Sciences, Fudan University, PR China.
| |
Collapse
|
37
|
Guillerey C, Nakamura K, Pichler AC, Barkauskas D, Krumeich S, Stannard K, Miles K, Harjunpää H, Yu Y, Casey M, Doban AI, Lazar M, Hartel G, Smith D, Vuckovic S, Teng MW, Bergsagel PL, Chesi M, Hill GR, Martinet L, Smyth MJ. Chemotherapy followed by anti-CD137 mAb immunotherapy improves disease control in a mouse myeloma model. JCI Insight 2019; 5:125932. [PMID: 31194697 DOI: 10.1172/jci.insight.125932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge. The quality of CD8+ T cell response to CD137 stimulation was not altered by the presence of MM, but CD8+ T cell numbers were profoundly reduced at the time of treatment. Our data suggest that an insufficient ratio of CD8+ T cells over MM cells (CD8/MM) accounts for the loss of anti-CD137 mAb efficacy. We established serum M-protein levels prior to therapy as a predictive factor of response. Moreover, we developed an in silico model to capture the dynamic interactions between CD8+ T cells and MM cells. Finally, we explored two methods to improve the CD8/MM ratio: anti-CD137 mAb immunotherapy combined with Treg-depletion or administered after chemotherapy treatment with cyclophosphamide or melphalan efficiently reduced MM burden and prolonged survival. Altogether, our data indicate that consolidation treatment with anti-CD137 mAbs might prevent MM relapse.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andrea C Pichler
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Deborah Barkauskas
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sophie Krumeich
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kim Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Heidi Harjunpää
- School of Medicine, The University of Queensland, Herston, Queensland, Australia.,Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Yuan Yu
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mircea Lazar
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | | | - Slavica Vuckovic
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michele Wl Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM UMR 1037, Toulouse, France
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, The University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
38
|
Kint N, Vlayen S, Delforge M. The treatment of multiple myeloma in an era of precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1606672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nicolas Kint
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Sophie Vlayen
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
- Stem Cell Institute Leuven, KU Leuven, Leuven, Belgium
| | - Michel Delforge
- Department of Internal Medicine, Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Bae J, Samur M, Richardson P, Munshi NC, Anderson KC. Selective targeting of multiple myeloma by B cell maturation antigen (BCMA)-specific central memory CD8 + cytotoxic T lymphocytes: immunotherapeutic application in vaccination and adoptive immunotherapy. Leukemia 2019; 33:2208-2226. [PMID: 30872779 DOI: 10.1038/s41375-019-0414-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
To expand the breadth and extent of current multiple myeloma (MM)-specific immunotherapy, we have identified various antigens on CD138+ tumor cells from newly diagnosed MM patients (n = 616) and confirmed B-cell maturation antigen (BCMA) as a key myeloma-associated antigen. The aim of this study is to target the BCMA, which promotes MM cell growth and survival, by generating BCMA-specific memory CD8+ CTL that mediate effective and long-lasting immunity against MM. Here we report the identification of novel engineered peptides specific to BCMA, BCMA72-80 (YLMFLLRKI), and BCMA54-62 (YILWTCLGL), which display improved affinity/stability to HLA-A2 compared to their native peptides and induce highly functional BCMA-specific CTL with increased activation (CD38, CD69) and co-stimulatory (CD40L, OX40, GITR) molecule expression. Importantly, the heteroclitic BCMA72-80 specific CTL demonstrated poly-functional Th1-specific immune activities [IFN-γ/IL-2/TNF-α production, proliferation, cytotoxicity] against MM, which were correlated with expansion of Tetramer+ and memory CD8+ CTL. Additionally, heteroclitic BCMA72-80 specific CTL treated with anti-OX40 (immune agonist) or anti-LAG-3 (checkpoint inhibitor) display increased immune function, mainly by central memory CTL. These results provide the framework for clinical application of heteroclitic BCMA72-80 peptide, alone and in combination with anti-LAG3 and/or anti-OX40 therapy, in vaccination and/or adoptive immunotherapeutic strategies to generate long-lasting anti-tumor immunity in patients with MM or other BCMA expressing tumors.
Collapse
Affiliation(s)
- Jooeun Bae
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Mehmet Samur
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Paul Richardson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,VA Boston Healthcare System, Boston, MA, USA
| | - Kenneth C Anderson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev 2019; 34:56-66. [DOI: 10.1016/j.blre.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
|
41
|
Chimeric antigen receptor T cell targeting B cell maturation antigen immunotherapy is promising for multiple myeloma. Ann Hematol 2019; 98:813-822. [PMID: 30693373 PMCID: PMC6423312 DOI: 10.1007/s00277-018-03592-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/31/2018] [Indexed: 01/06/2023]
Abstract
Multiple myeloma (MM) remains an incurable plasma cells malignancy because of its complex genetic heterogeneity and high relapse rate post immunotherapy. The encouraging results of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) immunotherapy clinical trials have shed light on curing MM in recent years. However, many therapeutic side effects limit the promotion and clinical use of this novel effective approach such as cytokine release syndrome, antigen escape, and neurotoxicity. We should make every effort to do further study about this immunotherapy to make it safer and effective. This review focusing on this topic clarifies the following contents: present status of MM treatment, effectiveness of CAR-T cells, features of BCMA, preclinical and clinical trials of BCMA CAR-T cells therapy, and existing problems and strategies. Hoping to provide a reference for the subsequent correlative clinical and research.
Collapse
|
42
|
Evolution of monoclonal antibodies in multiple myeloma. Lancet Oncol 2018; 19:1554-1555. [DOI: 10.1016/s1470-2045(18)30647-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023]
|
43
|
Castella B, Melaccio A, Foglietta M, Riganti C, Massaia M. Vγ9Vδ2 T Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma. Front Oncol 2018; 8:508. [PMID: 30460198 PMCID: PMC6232124 DOI: 10.3389/fonc.2018.00508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
The advent of immune checkpoint (ICP) blockade has introduced an unprecedented paradigm shift in the treatment of cancer. Though very promising, there is still a substantial proportion of patients who do not respond or develop resistance to ICP blockade. In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the immune potency of ICP blockade and overcome primary and acquired resistance to ICP blockade. Vγ9Vδ2 T cells isolated from the bone marrow (BM) from multiple myeloma (MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade and to decipher the network of mutual interactions between PD-1 and the immune suppressive tumor microenvironment (TME). Vγ9Vδ2 T cells can easily be interrogated to dissect the progressive immune competence impairment generated in the TME by the long-lasting exposure to myeloma cellss. BM MM Vγ9Vδ2 T cells are PD-1+ and anergic to phosphoantigen (pAg) stimulation; notably, single agent PD-1 blockade is insufficient to fully recover their anti-tumor activity in vitro indicating that additional players are involved in the anergy of Vγ9Vδ2 T cells. In this mini-review we will discuss the value of Vγ9Vδ2 T cells as investigational tools to improve the potency of ICP blockade and immune interventions in MM.
Collapse
Affiliation(s)
- Barbara Castella
- Laboratorio di Immunologia dei Tumori del Sangue, Centro Interdipartimentale di Ricerca in Biologia Molecolare, Università degli Studi di Torino, Turin, Italy
| | - Assunta Melaccio
- Dipartimento di Scienze Biomediche ed Oncologia Umana, Sezione di Medicina Interna ed Oncologia, Università degli studi di Bari "A. Moro", Bari, Italy
| | - Myriam Foglietta
- Laboratorio di Immunologia dei Tumori del Sangue, Centro Interdipartimentale di Ricerca in Biologia Molecolare, Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S.Croce e Carle, Cuneo, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università degli Studi di Torino, Turin, Italy
| | - Massimo Massaia
- Laboratorio di Immunologia dei Tumori del Sangue, Centro Interdipartimentale di Ricerca in Biologia Molecolare, Università degli Studi di Torino, Turin, Italy.,SC Ematologia, AO S.Croce e Carle, Cuneo, Italy
| |
Collapse
|
44
|
Zheleznyak A, Shokeen M, Achilefu S. Nanotherapeutics for multiple myeloma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1526. [PMID: 29701006 PMCID: PMC6185771 DOI: 10.1002/wnan.1526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 01/11/2023]
Abstract
Multiple myeloma (MM) is an age-related hematological malignancy with an estimated 30,000 new cases and 13,000 deaths per year. A disease of antibody-secreting malignant plasma B-cells that grow primarily in the bone marrow (BM), MM causes debilitating fractures, anemia, renal failure, and hypercalcemia. In addition to the abnormal genetic profile of MM cells, the permissive BM microenvironment (BMM) supports MM pathogenesis. Although advances in treatment options have significantly enhanced survival in MM patients, transient perfusion of small-molecule drugs in the BM does not provide sufficient residence to enhance MM cell-drug interaction, thus allowing some myeloma cells to escape the first line of treatment. As such, there remains a crucial need to develop advanced drug delivery systems that can navigate the complex BMM and effectively reach the myeloma cells. The high vascular density and spongy nature of bone structure suggest that nanoparticles (NPs) can serve as smart drug-delivery systems capable of extravasation and retention in various BM compartments to exert a durable therapeutic effect. In this focus article, we first summarize the pathophysiology of MM, emphasizing how the BM niche presents serious challenges for effective treatment of MM with small-molecule drugs. We then pivot to current efforts to develop NP-based drug carriers and intrinsically therapeutic nanotherapeutics. The article concludes with a brief perspective on the opportunities and challenges in developing and translating nanotherapeutics to improve the treatment outcomes of MM patients. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
| | - Monica Shokeen
- Departments of Radiology, and Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Samuel Achilefu
- Departments of Radiology, Biomedical Engineering, and Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, USA
| |
Collapse
|
45
|
Greil C, Engelhardt M, Ihorst G, Schoeller K, Bertz H, Marks R, Zeiser R, Duyster J, Einsele H, Finke J, Wäsch R. Allogeneic transplantation of multiple myeloma patients may allow long-term survival in carefully selected patients with acceptable toxicity and preserved quality of life. Haematologica 2018; 104:370-379. [PMID: 30237266 PMCID: PMC6355495 DOI: 10.3324/haematol.2018.200881] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 01/10/2023] Open
Abstract
Despite significantly improved survival and response rates in patients diagnosed with multiple myeloma, it still remains an incurable disease with a poor outcome, especially in high-risk groups. Allogeneic stem cell transplantation offers a potentially curative option but remains controversial due to considerable treatment-related toxicity. We analyzed 109 consecutive myeloma patients who had received reduced-intensity conditioning allogeneic transplantation at the Freiburg University Medical Center between 2000 and 2016. Although most patients were heavily pre-treated in high-risk constellations, the overall response rate was high with 70%, the median overall survival (OS) 39.2%, and the median progression-free survival (PFS) 14.2 months, with a median follow up of 71.5 months. Survival was significantly better in patients with response to previous therapies than in those with progressive disease (median OS 65 vs. 11.5 months, P=0.003; median PFS 18.4 vs. 5.1 months, P=0.001). Moreover, survival of patients transplanted in first-line was significantly prolonged compared to relapsed/refractory disease (median OS not reached vs. 21.6 months, P<0.001; median PFS 47.7 vs. 9.6 months, P<0.001). The non-relapse mortality was relatively low with a cumulative incidence of 12.4% at ten years. Acute graft-versus-host disease (GvHD) grade II-IV was observed in 25%, and moderate or severe chronic GvHD in 24%. Quality of life (QoL) assessed with the revised Myeloma Comorbidity Index before and after transplantation remained unchanged. Our data suggest that allogeneic transplantation in the context of novel immunotherapeutic approaches may enable long-term survival and even a potential cure in a carefully selected subgroup of high-risk multiple myeloma patients with acceptable toxicity and preserved QoL.
Collapse
Affiliation(s)
- Christine Greil
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine, University of Freiburg
| | - Katja Schoeller
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Hartmut Bertz
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Reinhard Marks
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Germany
| | - Jürgen Finke
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center-University of Freiburg, Faculty of Medicine
| |
Collapse
|
46
|
Caracciolo D, Montesano M, Altomare E, Scionti F, Di Martino MT, Tagliaferri P, Tassone P. The potential role of miRNAs in multiple myeloma therapy. Expert Rev Hematol 2018; 11:793-803. [DOI: 10.1080/17474086.2018.1517041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| |
Collapse
|
47
|
Towards Molecular Profiling in Multiple Myeloma: A Literature Review and Early Indications of Its Efficacy for Informing Treatment Strategies. Int J Mol Sci 2018; 19:ijms19072087. [PMID: 30021955 PMCID: PMC6073692 DOI: 10.3390/ijms19072087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple myeloma (MM), the second most common hematologic malignancy, is characterized by the clonal expansion of plasma cells. Despite dramatic improvements in patients′ survival over the past decade due to advances in therapy exploiting novel molecular targets (immunomodulatory drugs, proteasome inhibitors and monoclonal antibodies), the treatment of relapsed and refractory disease remains challenging. Recent studies confirmed complex, dynamic, and heterogeneous genomic alterations without unifying gene mutations in MM patients. In the current review, we survey recent therapeutic strategies, as well as molecular profiling data on MM, with emphasis on relapsed and refractory cases. A critical appraisal of novel findings and of their potential therapeutic implications will be discussed in detail, along with the author’s own experiences/views.
Collapse
|