1
|
Kohama SG, Urbanski HF. The aged female rhesus macaque as a translational model for human menopause and hormone therapy. Horm Behav 2024; 166:105658. [PMID: 39531811 PMCID: PMC11602343 DOI: 10.1016/j.yhbeh.2024.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Progress in understanding the causes of physiological and behavioral changes in post-menopausal women is hampered by the paucity of animal models that accurately recapitulate these age-associated changes. Here we evaluate the translational potential of female rhesus macaques (Macaca mulatta). Like women, these long-lived diurnal primates show marked neuroendocrine changes during aging, as well as perturbed sleep-wake cycles and cognitive decline. Furthermore, the brains of old rhesus macaques show some of the same pathological hallmarks of Alzheimer's disease as do humans, including amyloidosis and tauopathology. Importantly, unlike humans, rhesus macaques can be maintained under tightly controlled environmental conditions, such as photoperiod, temperature and diet, and tissues can be collected with zero postmortem interval; this makes them especially suitable for studies aimed at elucidating underlying molecular mechanisms. Recent findings from female macaques are helping to elucidate how sex-steroids influence gene expression within the brain and contribute to the maintenance of cognitive function and amelioration of age-associated pathologies. Taken together, these findings emphasize the translational value of female rhesus macaques as a model for elucidating causal mechanisms that underlie normative and pathological changes in post-menopausal women. They also provide a pragmatic platform upon which to develop safe and effective therapies.
Collapse
Affiliation(s)
- Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
2
|
Ovariectomy reduces cholinergic modulation of excitatory synaptic transmission in the rat entorhinal cortex. PLoS One 2022; 17:e0271131. [PMID: 35939438 PMCID: PMC9359571 DOI: 10.1371/journal.pone.0271131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Estrogens are thought to contribute to cognitive function in part by promoting the function of basal forebrain cholinergic neurons that project to the hippocampus and cortical regions including the entorhinal cortex. Reductions in estrogens may alter cognition by reducing the function of cholinergic inputs to both the hippocampus and entorhinal cortex. In the present study, we assessed the effects of ovariectomy on proteins associated with cholinergic synapses in the entorhinal cortex. Ovariectomy was conducted at PD63, and tissue was obtained on PD84 to 89 to quantify changes in the degradative enzyme acetylcholinesterase, the vesicular acetylcholine transporter, and muscarinic M1 receptor protein. Although the vesicular acetylcholine transporter was unaffected, ovariectomy reduced both acetylcholinesterase and M1 receptor protein, and these reductions were prevented by chronic replacement of 17β-estradiol following ovariectomy. We also assessed the effects of ovariectomy on the cholinergic modulation of excitatory transmission, by comparing the effects of the acetylcholinesterase inhibitor eserine on evoked excitatory synaptic field potentials in brain slices obtained from intact rats, and from ovariectomized rats with or without 17β-estradiol replacement. Eserine is known to prolong the effects of endogenously released acetylcholine, resulting in an M1-like mediated reduction of glutamate release at excitatory synapses. The reduction in excitatory synaptic potentials in layer II of the entorhinal cortex induced by 15-min application of 10 μM eserine was greatly reduced in slices from ovariectomized rats as compared to intact rats and ovariectomized rats with replacement of 17β-estradiol. The reduced modulatory effect of eserine is consistent with the observed changes in cholinergic proteins, and suggests that reductions in 17β-estradiol following ovariectomy lead to impaired cholinergic function within the entorhinal cortex.
Collapse
|
3
|
Zare Z, Zarbakhsh S, Tehrani M, Mohammadi M. Neuroprotective Effects of Treadmill Exercise in Hippocampus of Ovariectomized and Diabetic Rats. Neuroscience 2022; 496:64-72. [PMID: 35700817 DOI: 10.1016/j.neuroscience.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
To determine detrimental effects of estrogen and insulin deficiencies on hippocampus, we examined apoptosis-induced neuronal damage and cholinergic system in ovariectomized and/or diabetic rat hippocampus. Possible neuroprotective effects of treadmill exercise were also investigated. Adult female Wistar rats were randomly divided into four groups (n = 5 rats/group) as follows: control, ovariectomized (Ovx), diabetic (Dia, streptozotocin (STZ) 60 mg/kg; i.p.), and Ovx + Dia groups. Each group was further subdivided into exercise and non-exercise groups. Animals in exercise groups were subjected to treadmill training, while those in non-exercise groups were placed on the stationary treadmill for 4 weeks (5 days/week). Apoptosis-related protein levels (i.e. Bax, Bcl-2, and caspase-3), number of survived neurons, and acetylcholinesterase (AChE) activity in the hippocampus were measured using Western blotting, Cresyl Violet staining, and Ellman assay, respectively. Both ovariectomy and diabetes increased expression of Bax and caspase-3 and decreased expression of Bcl-2 at protein levels. In addition, a significant decrease in the number of survived neurons was observed in both Ovx and Dia groups, while AChE activity was lower only in the Dia group. The Ovx + Dia group showed stronger apoptosis-induced neuropathology and inhibition of AChE activity. Treadmill exercise attenuated apoptosis-induced neuropathology in the Ovx and Dia groups and recovered AChE activity in the Dia group. Neuroprotective effects of treadmill exercise were mediated by inhibition of apoptosis. Moderate exercise protocol had no beneficial anti-apoptotic and neuroprotective effects in ovariectomized-diabetic rats.
Collapse
Affiliation(s)
- Zohreh Zare
- Department of Anatomical Sciences, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Tehrani
- Department of Immunology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Moslem Mohammadi
- Department of Physiology, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Hjelmervik H, Hausmann M, Craven AR, Hirnstein M, Hugdahl K, Specht K. Sex- and sex hormone-related variations in energy-metabolic frontal brain asymmetries: A magnetic resonance spectroscopy study. Neuroimage 2018; 172:817-825. [DOI: 10.1016/j.neuroimage.2018.01.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
|
5
|
Kohama SG, Renner L, Landauer N, Weiss AR, Urbanski HF, Park B, Voytko ML, Neuringer M. Effect of Ovarian Hormone Therapy on Cognition in the Aged Female Rhesus Macaque. J Neurosci 2016; 36:10416-10424. [PMID: 27707975 PMCID: PMC5050333 DOI: 10.1523/jneurosci.0909-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/14/2016] [Accepted: 08/20/2016] [Indexed: 01/18/2023] Open
Abstract
Studies of the effect of hormone therapy on cognitive function in menopausal women have been equivocal, in part due to differences in the type and timing of hormone treatment. Here we cognitively tested aged female rhesus macaques on (1) the delayed response task of spatial working memory, (2) a visuospatial attention task that measured spatially and temporally cued reaction times, and (3) a simple reaction time task as a control for motor speed. After task acquisition, animals were ovariectomized (OVX). Their performance was compared with intact controls for 2 months, at which time no group differences were found. The OVX animals were then assigned to treatment with either a subcutaneous sham implant (OVX), 17-β estradiol (E) implant (OVX+E) or E implant plus cyclic oral progesterone (OVX+EP). All groups were then tested repeatedly over 12 months. The OVX+E animals performed significantly better on the delayed response task than all of the other groups for much of the 12 month testing period. The OVX+EP animals also showed improved performance in the delayed response task, but only at 30 s delays and with performance levels below that of OVX+E animals. The OVX+E animals also performed significantly better in the visuospatial attention task, particularly in the most challenging invalid cue condition; this difference also was maintained across the 12 month testing period. Simple reaction time was not affected by hormonal manipulation. These data demonstrate that chronic, continuous administration of E can exert multiple beneficial cognitive effects in aged, OVX rhesus macaque females. SIGNIFICANCE STATEMENT Hormone therapy after menopause is controversial. We tested the effects of hormone replacement in aged rhesus macaques, soon after surgically-induced menopause [ovariectomy (OVX)], on tests of memory and attention. Untreated ovarian-intact and OVX animals were compared with OVX animals receiving estradiol (E) alone or E with progesterone (P). E was administered in a continuous fashion via subcutaneous implant, whereas P was administered orally in a cyclic fashion. On both tests, E-treated animals performed better than the other 3 experimental groups across 1 year of treatment. Thus, in this monkey model, chronic E administered soon after the loss of ovarian hormones had long-term benefits for cognitive function.
Collapse
Affiliation(s)
- Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448
| | - Noelle Landauer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448
| | - Alison R Weiss
- Department of Psychology, Emory University, Atlanta, Georgia 30322
| | - Henryk F Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448, Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Byung Park
- School of Public Health, Oregon Health and Science University and Portland State University, Portland, Oregon 97239-3098, and
| | - Mary Lou Voytko
- Department of Neurobiology and Anatomy and the Interdisciplinary Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006-3448,
| |
Collapse
|
6
|
Kaller CP, Debelak R, Köstering L, Egle J, Rahm B, Wild PS, Blettner M, Beutel ME, Unterrainer JM. Assessing Planning Ability Across the Adult Life Span: Population-Representative and Age-Adjusted Reliability Estimates for the Tower of London (TOL-F). Arch Clin Neuropsychol 2015; 31:148-64. [PMID: 26715472 DOI: 10.1093/arclin/acv088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
Planning ahead the consequences of future actions is a prototypical executive function. In clinical and experimental neuropsychology, disc-transfer tasks like the Tower of London (TOL) are commonly used for the assessment of planning ability. Previous psychometric evaluations have, however, yielded a poor reliability of measuring planning performance with the TOL. Based on theory-grounded task analyses and a systematic problem selection, the computerized TOL-Freiburg version (TOL-F) was developed to improve the task's psychometric properties for diagnostic applications. Here, we report reliability estimates for the TOL-F from two large samples collected in Mainz, Germany (n = 3,770; 40-80 years) and in Vienna, Austria (n = 830; 16-84 years). Results show that planning accuracy on the TOL-F possesses an adequate internal consistency and split-half reliability (>0.7) that are stable across the adult life span while the TOL-F covers a broad range of graded difficulty even in healthy adults, making it suitable for both research and clinical application.
Collapse
Affiliation(s)
- Christoph P Kaller
- Department of Neurology, University Medical Center Freiburg, Freiburg, Germany Freiburg Brain Imaging Center, University of Freiburg, Freiburg, Germany BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | | | - Lena Köstering
- Department of Neurology, University Medical Center Freiburg, Freiburg, Germany Freiburg Brain Imaging Center, University of Freiburg, Freiburg, Germany BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany Biological and Personality Psychology, Department of Psychology, University of Freiburg, Freiburg, Germany
| | | | - Benjamin Rahm
- Medical Psychology and Medical Sociology, University Medical Center Mainz, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Medicine II, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany German Center for Cardiovascular Research (DZHK), partner site RhineMain, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manfred E Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Josef M Unterrainer
- Medical Psychology and Medical Sociology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
7
|
Lacreuse A, Mong JA, Hara Y. Neurocognitive effects of estrogens across the adult lifespan in nonhuman primates: State of knowledge and new perspectives. Horm Behav 2015; 74:157-66. [PMID: 25762288 DOI: 10.1016/j.yhbeh.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/29/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". This review discusses the unique contribution of nonhuman primate research to our understanding of the neurocognitive effects of estrogens throughout the adult lifespan in females. Mounting evidence indicates that estrogens affect many aspects of hippocampal, prefrontal and cholinergic function in the primate brain and the underlying mechanisms are beginning to be elucidated. In addition, estrogens may also influence cognitive function indirectly, via the modulation of other systems that impact cognition. We will focus on the effects of estrogens on sleep and emphasize the need for primate models to better understand these complex interactions. Continued research with nonhuman primates is essential for the development of therapies that are optimal for the maintenance of women's cognitive health throughout the lifespan.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts at Amherst, MA, USA.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Yuko Hara
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
8
|
Milne MR, Haug CA, Ábrahám IM, Kwakowsky A. Estradiol modulation of neurotrophin receptor expression in female mouse basal forebrain cholinergic neurons in vivo. Endocrinology 2015; 156:613-26. [PMID: 25415243 DOI: 10.1210/en.2014-1669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuroprotective effect of estradiol (E2) on basal forebrain cholinergic neurons (BFCNs) has been suggested to occur as a result of E2 modulation of the neurotrophin system on these neurons. The present study provides a comprehensive examination of the relationship between E2 and neurotrophin signaling on BFCNs by investigating the effect of E2 deficiency on the expression levels of neurotrophin receptors (NRs), TrkA, TrkB, and p75 on BFCNs. The number of TrkA receptor-expressing choline acetyltransferase-positive neurons was significantly reduced in the medial septum (MS) in the absence of E2. A significant reduction in TrkB-expressing choline acetyltransferase-positive cells was also observed in ovariectomized mice in the MS and nucleus basalis magnocellularis (NBM). p75 receptor expression was reduced in the NBM and striatum but not in the MS. We also showed that estrogen receptor (ER)-α was expressed by a small percentage of TrkA- and TrkB-positive neurons in the MS (12%) and NBM (19%) and by a high percentage of TrkB-positive neurons in the striatum (69%). Similarly, ERα was expressed at low levels by p75 neurons in the MS (6%) and NBM (9%) but was not expressed on striatal neurons. Finally, ERα knockout using neuron-specific estrogen receptor-α knockout transgenic mice abolished all E2-mediated changes in the NR expression on BFCNs. These results indicate that E2 differentially regulates NR expression on BFCNs, with effects depending on the NR type and neuroanatomical location, and also provide some evidence that alterations in the NR expression are, at least in part, mediated via ERα.
Collapse
Affiliation(s)
- Michael R Milne
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
9
|
Sex differences on prefrontally-dependent cognitive tasks. Brain Cogn 2015; 93:42-53. [DOI: 10.1016/j.bandc.2014.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/20/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022]
|
10
|
Comasco E, Frokjaer VG, Sundström-Poromaa I. Functional and molecular neuroimaging of menopause and hormone replacement therapy. Front Neurosci 2014; 8:388. [PMID: 25538545 PMCID: PMC4259109 DOI: 10.3389/fnins.2014.00388] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2014] [Indexed: 01/30/2023] Open
Abstract
The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women's brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the left inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in several cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal variations on the brain.
Collapse
Affiliation(s)
- Erika Comasco
- Department of Neuroscience, Uppsala University Uppsala, Sweden ; Department of Women's and Children's Health, Uppsala University Uppsala, Sweden
| | - Vibe G Frokjaer
- Department of Neurology, Center for Integrated Molecular Brain Imaging and Neurobiology Research Unit 6931, Copenhagen University Hospital Copenhagen, Denmark
| | | |
Collapse
|
11
|
Fischer B, Gleason C, Asthana S. Effects of hormone therapy on cognition and mood. Fertil Steril 2014; 101:898-904. [PMID: 24680649 DOI: 10.1016/j.fertnstert.2014.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Results of the Women's Health Initiative (WHI) and Women's Health Initiative Memory Study (WHIMS) suggested that hormone therapy (HT) may be detrimental to cognitive health. This article reviews clinical studies that address issues relevant to those results. DESIGN Literature review. INTERVENTION(S) A search of Pubmed and Web of Science was conducted using the search terms HT and cognition, HT and mood. Clinical and observational studies were selected if they were published after the year 2000. Theories of HT mechanisms of action, pharmacology, biology, and observational and clinical trials are discussed. RESULT(S) Although observational and clinical trials show conflicting findings, methodologic considerations must be acknowledged. HT formulation and dose, route of administration, timing of initiation, length of treatment, and health of participants all contribute to inconsistencies in results. Transdermal estradiol and micronized progesterone administered at time of menopause are generally associated with cognitive and affective benefit. CONCLUSION(S) At the present time, results from existing studies are equivocal regarding the benefits of HT on cognition and affect. Future studies, such as the Kronos Early Estrogen Prevention Study (KEEPS), should address methodologic inconsistencies to provide clearer answers to this important question.
Collapse
Affiliation(s)
- Barbara Fischer
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wisconsin.
| | - Carey Gleason
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wisconsin; Wisconsin Alzheimer's Disease Research Center (ADRC), Madison, Wisconsin; Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Sanjay Asthana
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Affairs Hospital, Madison, Wisconsin; Wisconsin Alzheimer's Disease Research Center (ADRC), Madison, Wisconsin; Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
12
|
Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp 2012; 35:847-65. [PMID: 23238908 DOI: 10.1002/hbm.22218] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023] Open
Abstract
Midlife decline in cognition, specifically in areas of executive functioning, is a frequent concern for which menopausal women seek clinical intervention. The dependence of executive processes on prefrontal cortex function suggests estrogen effects on this brain region may be key in identifying the sources of this decline. Recent evidence from rodent, nonhuman primate, and human subject studies indicates the importance of considering interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events when determining the cognitive effects of menopause and estrogen therapy.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
13
|
Hammond R, Nelson D, Kline E, Gibbs RB. Chronic treatment with a GPR30 antagonist impairs acquisition of a spatial learning task in young female rats. Horm Behav 2012; 62:367-74. [PMID: 22828404 PMCID: PMC3477261 DOI: 10.1016/j.yhbeh.2012.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/29/2012] [Accepted: 07/03/2012] [Indexed: 01/18/2023]
Abstract
We hypothesize that the beneficial effects of estradiol on cognitive performance may be mediated through GPR30, a putative membrane target of estrogens. Recently we showed that administration of a selective GPR30 agonist (G-1) to ovariectomized rats enhanced acquisition of a delayed matching-to-position (DMP) T-maze task and increased potassium-stimulated acetylcholine release in the hippocampus, similar to estradiol (E2) (Hammond et al., 2009). The present study tested whether treating with a selective GPR30 antagonist (G-15) would impair spatial learning in gonadally intact rats and in ovariectomized (OVX) rats treated with E2. As predicted, G-15 dose-dependently impaired DMP acquisition both in gonadally intact rats and in OVX rats treated with E2. G-15 specifically reduced the rate of acquisition, and this effect was associated with an increased predisposition to adopt a persistent turn. In contrast, G-15 alone at the highest dose had no significant effect on DMP acquisition in OVX controls. The effects were task dependent, as similar effects of G-15 were not observed in gonadally intact rats tested on an operant discrimination/reversal learning task motivated by the same food reward. This suggests that the effects on DMP acquisition were not due to effects on motivation for food. Effects of G-15 on DMP acquisition were similar to previously published work showing significant impairment produced by selective cholinergic denervation of the hippocampus. These data suggest that GPR30 can play an important role in mediating the effects of estradiol on spatial learning, possibly by mediating estradiol effects on basal forebrain cholinergic function.
Collapse
Affiliation(s)
- R Hammond
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
14
|
Pompili A, Arnone B, Gasbarri A. Estrogens and memory in physiological and neuropathological conditions. Psychoneuroendocrinology 2012; 37:1379-96. [PMID: 22309827 DOI: 10.1016/j.psyneuen.2012.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/22/2022]
Abstract
Ovarian hormones can influence brain regions crucial to higher cognitive functions, such as learning and memory, acting at structural, cellular and functional levels, and modulating neurotransmitter systems. Among the main effects of estrogens, the protective role that they may play against the deterioration of cognitive functions occurring with normal aging is of essential importance. In fact, during the last century, there has been a 30 years increase in female life expectancy, from 50 to 83 years; however, the mean age of spontaneous menopause remains stable, 50-51 years, with variability related to race and ethnicity. Therefore, women are now spending a greater fraction of their lives in a hypoestrogenic state. Although many cognitive functions seem to be unaffected by normal aging, age-related impairments are particularly evident in tasks involving working memory (WM), whose deficits are a recognized feature of Alzheimer's disease (AD). Many studies conducted over the past two decades showed that the female gonadal hormone estradiol can influence performance of learning and memory tasks, both in animal and humans. There is a great deal of evidence, mostly from animal models, that estrogens can facilitate or enhance performance on WM tasks; therefore, it is very important to clarify their role on this type of memory. To this aim, in this review we briefly describe the most relevant neurobiological bases of estrogens, that can explain their effects on cognitive functioning, and then we summarize the results of works conducted in our laboratory, both on animals and humans, utilizing the menstrual/estrous cycle as a useful noninvasive model. Finally, we review the possible role of estrogens in neuropathological conditions, such as AD and schizophrenia.
Collapse
Affiliation(s)
- Assunta Pompili
- Department of Biomedical Sciences and Technologies, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|
15
|
Dumas JA, Kutz AM, Naylor MR, Johnson JV, Newhouse PA. Estradiol treatment altered anticholinergic-related brain activation during working memory in postmenopausal women. Neuroimage 2012; 60:1394-403. [PMID: 22266175 DOI: 10.1016/j.neuroimage.2012.01.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 12/22/2011] [Accepted: 01/05/2012] [Indexed: 01/12/2023] Open
Abstract
Estradiol has been shown to affect cholinergic modulation of cognition in human and nonhuman animal models. This study examined the brain-based interaction of estradiol treatment and anticholinergic challenge in postmenopausal women during the performance of a working memory task and functional MRI. Twenty-four postmenopausal women were randomly and blindly placed on 1mg oral 17-β estradiol or matching placebo pills for three months after which they participated in three anticholinergic challenge sessions. During the challenge sessions, subjects were administered the antimuscarinic drug scopolamine, the antinicotinic drug mecamylamine, or placebo. After drug administration, subjects completed an fMRI session during which time they performed a visual verbal N-back test of working memory. Results showed that scopolamine increased activation in the left medial frontal gyrus (BA 10) and mecamylamine increased activation in the left inferior frontal gyrus (BA 46). Estradiol treatment compared to placebo treatment significantly reduced the activation in this left medial frontal region during scopolamine challenge. Estradiol treatment also increased activation in the precuneus (BA 31) during mecamylamine challenge. These data are the first to show that estradiol modulated antimuscarinic- and anitnicotinic-induced brain activity and suggest that estradiol affected cholinergic system regulation of cognition-related brain activation in humans.
Collapse
Affiliation(s)
- Julie A Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, 1 South Prospect St., Burlington, VT 05401, USA.
| | | | | | | | | |
Collapse
|
16
|
Smith YR, Bowen L, Love TM, Berent-Spillson A, Frey KA, Persad CC, Reame NK, Koeppe RA, Zubieta JK. Early initiation of hormone therapy in menopausal women is associated with increased hippocampal and posterior cingulate cholinergic activity. J Clin Endocrinol Metab 2011; 96:E1761-70. [PMID: 21865354 PMCID: PMC3205894 DOI: 10.1210/jc.2011-0351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT The role of ovarian hormones in maintaining neuronal integrity and cognitive function is still debated. This study was undertaken to clarify the potential relationship between postmenopausal hormone use and the cholinergic system. OBJECTIVE We hypothesized that early initiated hormone therapy (HT) preserves the cholinergic system and that estrogen therapy (ET) would be associated with higher levels of acetylcholinesterase activity in the posterior cingulate cortex and hippocampus compared to estrogen plus progestin therapy (EPT) or no HT. DESIGN AND SETTING We conducted a cross-sectional study at a university teaching hospital. PATIENTS Fifty postmenopausal women (age, 65.2 ± 0.7 yr) with early long-term HT (n = 34; 13 ET and 21 EPT) or no HT (n = 16) participated in the study. INTERVENTIONS There were no interventions. MAIN OUTCOME MEASURE We measured cholinergic activity (acetylcholinesterase) in the hippocampus and posterior cingulate brain regions as measured by N-[(11)C]methylpiperidin-4-yl propionate and positron emission tomography as a marker of cholinergic function. RESULTS Significant effects of treatment on cholinergic activity measures were obtained in the left hippocampus (F = 3.56; P = 0.04), right hippocampus (F = 3.42; P = 0.04), and posterior cingulate (F = 3.76; P = 0.03). No significant effects were observed in a cortical control region. Post hoc testing identified greater cholinergic activity in the EPT group compared to the no-HT group in the left hippocampus (P = 0.048) and posterior cingulate (P = 0.045), with a nonstatistically significant trend in the right hippocampus (P = 0.073). CONCLUSIONS A differential effect of postmenopausal ET and EPT on cholinergic neuronal integrity was identified in postmenopausal women. The findings are consistent with a preservation of cholinergic neuronal integrity in the EPT group.
Collapse
Affiliation(s)
- Yolanda R Smith
- Department of Obstetrics and Gynecology, University of Michigan Health Systems, 1500 East Medical Center Drive, Room L4224 Women's Hospital, Ann Arbor, Michigan 48109-0276, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Short- and long-term treatment with estradiol or progesterone modifies the expression of GFAP, MAP2 and Tau in prefrontal cortex and hippocampus. Life Sci 2011; 89:123-8. [PMID: 21683086 DOI: 10.1016/j.lfs.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/16/2011] [Accepted: 05/25/2011] [Indexed: 11/21/2022]
Abstract
AIMS We analyzed the effects of the short- and long-term administration of estradiol (E2) or progesterone (P4) after ovariectomy on the expression of MAP2, Tau and GFAP in prefrontal cortex and hippocampus. MAIN METHODS Sprague Dawley rats were ovariectomized and immediately treated with E2 or P4 for 2 or 18 weeks. At the end of treatments, hippocampus and prefrontal cortex were excised, proteins were extracted and MAP2, Tau and GFAP were analyzed by Western blot. KEY FINDINGS MAP2 and Tau content was not modified by E2 in the prefrontal cortex. On the contrary, P4 decreased MAP2 content after a short-term treatment, while it increased that of MAP2 and TAU in this brain region after a long-term treatment. E2 increased MAP2 content in hippocampus. In this region, short-term administration of P4 increased that of MAP2. GFAP content was diminished after a long-term administration of P4 in hippocampus. SIGNIFICANCE Current data emphasize the importance of short- and long-term sex steroid treatment on neuronal and glial cytoskeletal proteins expression.
Collapse
|
18
|
Hammond R, Gibbs RB. GPR30 is positioned to mediate estrogen effects on basal forebrain cholinergic neurons and cognitive performance. Brain Res 2010; 1379:53-60. [PMID: 21138734 DOI: 10.1016/j.brainres.2010.11.098] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 01/22/2023]
Abstract
Beneficial effects of estrogen therapy on cognitive performance diminish with age and time following the loss of ovarian function. This has led to the 'Window of Opportunity' hypothesis, which states that estrogen therapy must be administered within a limited period of time following menopause in order to be effective. Effects of estrogen therapy on cognitive performance are due, at least in part, to the effects on cholinergic afferents innervating the hippocampus and cortex, and it has been suggested that the loss of estrogen effect with age and time following menopause is due to a substantial reduction in the function of these projections. The mechanisms that underlie the effects are not clear. GPR30 is a novel G-protein coupled estrogen receptor that is expressed in the brain and other tissues. Our recent studies show that GPR30 is expressed in areas of the brain important for spatial learning, memory, and attention. In addition, GPR30 in expressed by the vast majority of cholinergic neurons in the basal forebrain, and appears to be an important regulator of basal forebrain cholinergic function. We hypothesize that GPR30 plays an important role in mediating direct effects of estradiol on basal forebrain cholinergic neurons, with corresponding effects on cognitive performance. Hence, GPR30 may be an important target for developing new therapies that can enhance or restore estrogen effects on cognitive performance in older women. Here we briefly review the cholinergic hypothesis and summarize our findings to date showing effects of a GPR30 agonist and antagonist on basal forebrain cholinergic function and cognitive performance.
Collapse
Affiliation(s)
- R Hammond
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
| | | |
Collapse
|
19
|
Bimonte-Nelson HA, Acosta JI, Talboom JS. Neuroscientists as cartographers: mapping the crossroads of gonadal hormones, memory and age using animal models. Molecules 2010; 15:6050-105. [PMID: 20877209 PMCID: PMC3126862 DOI: 10.3390/molecules15096050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 11/17/2022] Open
Abstract
Cognitive function is multidimensional and complex, and research in multiple species indicates it is considerably impacted by age and gonadal hormone milieu. One domain of cognitive function particularly susceptible to age-related decrements is spatial memory. Gonadal hormones can alter spatial memory, and they are potent modulators of brain microstructure and function in many of the same brain areas affected by aging. In this paper, we review decades of animal and human literature to support a tertiary model representing interactions between gonadal hormones, spatial cognition and age given that: 1) gonadal hormones change with age, 2) age impacts spatial learning and memory, and 3) gonadal hormones impact spatial learning and memory. While much has been discovered regarding these individual tenets, the compass for future aging research points toward clarifying the interactions that exist between these three points, and understanding mediating variables. Indeed, identifying and aligning the various components of the complex interactions between these tenets, including evaluations using basic science, systems, and clinical perspectives, is the optimal approach to attempt to converge the many findings that may currently appear contradictory. In fact, as discoveries are being made it is becoming clear that the findings across studies that appear contradictory are not contradictory at all. Rather, there are mediating variables that are influencing outcome and affecting the extent, and even the direction, of the effects that gonadal hormones have on cognition during aging. These mediating variables are just starting to be understood. By aligning basic scientific discoveries with clinical interpretations, we can maximize the opportunities for discoveries and subsequent interventions to allow individuals to "optimize their aging" and find their own map to cognitive health as aging ensues.
Collapse
Affiliation(s)
- Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| | - Jazmin I. Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| | - Joshua S. Talboom
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| |
Collapse
|
20
|
Abstract
The pros and cons of estrogen therapy for use in postmenopausal women continue to be a major topic of debate in women's health. Much of this debate focuses on the potential benefits vs. harm of estrogen therapy on the brain and the risks for cognitive impairment associated with aging and Alzheimer's disease. Many animal and human studies suggest that estrogens can have significant beneficial effects on brain aging and cognition and reduce the risk of Alzheimer's-related dementia; however, others disagree. Important discoveries have been made, and hypotheses have emerged that may explain some of the inconsistencies. This review focuses on the cholinergic hypothesis, specifically on evidence that beneficial effects of estrogens on brain aging and cognition are related to interactions with cholinergic projections emanating from the basal forebrain. These cholinergic projections play an important role in learning and attentional processes, and their function is known to decline with advanced age and in association with Alzheimer's disease. Evidence suggests that many of the effects of estrogens on neuronal plasticity and function and cognitive performance are related to or rely upon interactions with these cholinergic projections; however, studies also suggest that the effectiveness of estrogen therapy decreases with age and time after loss of ovarian function. We propose a model in which deficits in basal forebrain cholinergic function contribute to age-related changes in the response to estrogen therapy. Based on this model, we propose that cholinergic-enhancing drugs, used in combination with an appropriate estrogen-containing drug regimen, may be a viable therapeutic strategy for use in older postmenopausal women with early evidence of mild cognitive decline.
Collapse
Affiliation(s)
- Robert B Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|
21
|
Voytko ML, Tinkler GP, Browne C, Tobin JR. Neuroprotective effects of estrogen therapy for cognitive and neurobiological profiles of monkey models of menopause. Am J Primatol 2009; 71:794-801. [PMID: 19475542 DOI: 10.1002/ajp.20705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many postmenopausal women question whether to start or continue hormone therapy because of recent clinical trial negative results. However, evidence from other studies of postmenopausal women, and from studies in menopausal monkeys, indicate that estrogen has neurocognitive protective effects, particularly when therapy is initiated close to the time of menopause before neural systems become increasingly compromised with age. In this review, we present studies of menopausal women and female monkeys that support the concept that estrogen therapies protect both cognitive function and neurobiological processes.
Collapse
Affiliation(s)
- Mary Lou Voytko
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
22
|
Executive function and attention are preserved in older surgically menopausal monkeys receiving estrogen or estrogen plus progesterone. J Neurosci 2009; 29:10362-70. [PMID: 19692611 DOI: 10.1523/jneurosci.1591-09.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal models of menopause have been used to further define the cognitive processes that respond to hormone therapy and to investigate parameters that may influence the cognitive effects of estrogen. Many investigations in animals have focused on memory; however, the effects of hormone therapy on executive function and attention processes have not been well studied. Thus, the purpose of this set of investigations was to assess the effects of estrogen therapy alone or with progesterone on executive and attention processes in middle-aged ovariectomized monkeys. Monkeys were preoperatively trained on a modified version of the Wisconsin card sort task and on a visual cued reaction time task. Hormone therapy was initiated at the time of ovariectomy and cognitive function was reassessed at 2, 12, and 24 weeks postoperatively. Relative to monkeys receiving either of the estrogen therapies, monkeys receiving placebo were impaired in their ability to shift a cognitive set in the Wisconsin card sort task and were impaired in shifting visuospatial attention in the visual cued reaction time task. Our findings are consistent with clinical studies that indicate that hormone therapy can improve executive function and attention processes in postmenopausal women.
Collapse
|
23
|
Asthana S, Brinton RD, Henderson VW, McEwen BS, Morrison JH, Schmidt PJ. Frontiers proposal. National Institute on Aging "bench to bedside: estrogen as a case study". AGE (DORDRECHT, NETHERLANDS) 2009; 31:199-210. [PMID: 19277902 PMCID: PMC2734241 DOI: 10.1007/s11357-009-9087-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 01/22/2009] [Indexed: 05/27/2023]
Abstract
On 28-29 September 2004, the National Institute on Aging (NIA) convened scientists for a workshop on the aging female brain focused on translating into clinical practice discoveries concerning estrogens and progestogens. Workshop objectives were to examine effects of estrogen and progestogen on brain and cognitive function in relation to aging, to examine consistencies and apparent discrepancies between Women's Health Initiative Memory Study findings and other research on cognitive function, to determine whether additional hormone interventions could be developed in this area, and to offer advice on design of clinical trials for other interventions that might ameliorate cognitive aging. Following the workshop, participants joined by other interested scientists organized into regional work groups to continue the dialogue begun in Bethesda and to propose recommendations for NIA. The resulting recommendations, referred to as the "Frontiers Proposal for Estrogen and Cognitive Aging", acknowledge the persistence of critical gaps in our understanding of how decline in ovarian steroid secretion during reproductive aging and use of ovarian steroid hormone therapy affect normal brain function and risk for late-life neurodegenerative disorders such as Alzheimer's disease. There is a pressing need for preclinical, human, and integrated studies on the relationship between the menopausal transition and midlife exposures to estrogens, progestogens and related compounds, and risks for age-associated cognitive disorders. Research is also needed on better predictors of adverse cognitive outcomes, valid biomarkers for risks associated with hormone therapy use, enhanced tools for monitoring brain function and disease progression, and novel forms of therapy for improving long-term cognitive outcomes.
Collapse
Affiliation(s)
- Sanjay Asthana
- Department of Medicine and Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033 USA
| | - Victor W. Henderson
- Departments of Health Research and Policy (Epidemiology) and of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305-5405 USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10021 USA
| | - John H. Morrison
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1276 USA
| | | |
Collapse
|
24
|
Gibbs R, Mauk R, Nelson D, Johnson D. Donepezil treatment restores the ability of estradiol to enhance cognitive performance in aged rats: evidence for the cholinergic basis of the critical period hypothesis. Horm Behav 2009; 56:73-83. [PMID: 19303882 PMCID: PMC2737520 DOI: 10.1016/j.yhbeh.2009.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/27/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022]
Abstract
Recent studies suggest that the ability of estradiol to enhance cognitive performance diminishes with age and/or time following loss of ovarian function. We hypothesize that this is due, in part, to a decrease in basal forebrain cholinergic function. This study tested whether donepezil, a cholinesterase inhibitor, could restore estradiol effects on cognitive performance in aged rats that had been ovariectomized as young adults. Rats were ovariectomized at 3 months of age, and then trained on a delayed matching to position (DMP) T-maze task, followed by a configural association (CA) operant condition task, beginning at 12-17 or 22-27 months of age. Three weeks prior to testing, rats started to receive either donepezil or vehicle. After one week, half of each group also began receiving estradiol. Acclimation and testing began seven days later and treatment continued throughout testing. Estradiol alone significantly enhanced DMP acquisition in middle-aged rats, but not in aged rats. Donepezil alone had no effect on DMP acquisition in either age group; however, donepezil treatment restored the ability of estradiol to enhance DMP acquisition in aged rats. This effect was due largely to a reduction in the predisposition to adopt a persistent turn strategy during acquisition. These same treatments did not affect acquisition of the CA task in middle-aged rats, but did have small but significant effects on response time in aged rats. The data are consistent with the idea that estrogen effects on cognitive performance are task specific, and that deficits in basal forebrain cholinergic function are responsible for the loss of estradiol effect on DMP acquisition in aged ovariectomized rats. In addition, the data suggest that enhancing cholinergic function pharmacologically can restore the ability of estradiol to enhance acquisition of the DMP task in very old rats following long periods of hormone deprivation. Whether donepezil has similar restorative effects on other estrogen-sensitive tasks needs to be explored.
Collapse
Affiliation(s)
- R.B. Gibbs
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
- Correspondence: Robert Gibbs, Ph.D., University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261. TEL: 412-624-8185, FAX: 412-383-7436,
| | - R. Mauk
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
| | - D. Nelson
- University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, TEL: 412-624-8185, Fax: 412-624-1850,
| | - D.A. Johnson
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
25
|
Maki PM, Dumas J. Mechanisms of action of estrogen in the brain: insights from human neuroimaging and psychopharmacologic studies. Semin Reprod Med 2009; 27:250-9. [PMID: 19401956 DOI: 10.1055/s-0029-1216278] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Use of estrogen therapy in the perimenopausal and postmenopausal periods has been shown in several clinical trials to help women maintain a premenopausal level of cognitive function. What is not yet fully understood is how the neurobiological effects of estrogen contribute to these cognitive effects. This review explores data from two related bodies of human literature that provide compelling evidence in support of the biological plausibility that estrogen treatment can benefit cognition. The first half of the literature review focuses on studies from the estrogen neuroimaging literature, and the second half focuses on pharmacologic challenge studies assessing estrogen-neurotransmitter interactions. We integrate these two bodies of literature by focusing on the neurophysiologic underpinnings of estrogen effects on cognition and linking these clinical studies to preclinical studies. The focus on verbal memory is important because it is a cognitive function that has been shown to change with estrogen treatment and predict Alzheimer's disease risk but is not addressed by preclinical studies. Overall, we conclude that estrogen interacts with cholinergic and serotonergic systems to affect hippocampal and frontal cortical brain areas and thereby enhance memory, particularly at the retrieval stage.
Collapse
Affiliation(s)
- Pauline M Maki
- Departments of Psychiatry and Psychology, Center for Cognitive Medicine, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
26
|
Browne C, Tobin JR, Voytko ML. Effects of two years of conjugated equine estrogens on cholinergic neurons in young and middle-aged ovariectomized monkeys. Brain Res 2009; 1264:13-23. [PMID: 19401167 DOI: 10.1016/j.brainres.2009.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 01/09/2009] [Accepted: 01/11/2009] [Indexed: 01/13/2023]
Abstract
The effect of estrogen on the number and size of cholinergic neurons in the basal forebrain was examined in surgically menopausal young and middle-aged cynomolgus monkeys. Young and middle-aged female monkeys were ovariectomized and treated with conjugated equine estrogens (Premarin) at doses that are equivalent to those currently prescribed to postmenopausal women. In the medial septum/diagonal band (MS/DB), no effect of treatment with Premarin was observed in the cholinergic neurons in either ovariectomized young or middle-aged monkeys. However, the number and size of cholinergic neurons in the MS/DB of middle-aged monkeys was greater than that in the young monkeys. In the nucleus basalis of Meynert (NBM) of middle-aged monkeys, the number of cholinergic neurons in the intermediate region (Ch4i) was greater in Premarin-treated monkeys as compared to controls and numbers of neurons in this region were greater at higher levels of estrogen. No effects of estrogen were observed in other NBM regions in the middle-aged monkeys and the size of cholinergic neurons was unaffected by Premarin. These findings suggest that treatment with Premarin has selective beneficial effects on cholinergic neurons in the basal forebrain but that these effects are both age and region specific.
Collapse
Affiliation(s)
- Carole Browne
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA
| | | | | |
Collapse
|
27
|
Frick KM. Estrogens and age-related memory decline in rodents: what have we learned and where do we go from here? Horm Behav 2009; 55:2-23. [PMID: 18835561 PMCID: PMC2664384 DOI: 10.1016/j.yhbeh.2008.08.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 08/28/2008] [Accepted: 08/29/2008] [Indexed: 01/20/2023]
Abstract
The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Bohacek J, Bearl AM, Daniel JM. Long-term ovarian hormone deprivation alters the ability of subsequent oestradiol replacement to regulate choline acetyltransferase protein levels in the hippocampus and prefrontal cortex of middle-aged rats. J Neuroendocrinol 2008; 20:1023-7. [PMID: 18540996 DOI: 10.1111/j.1365-2826.2008.01752.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of oestrogen replacement therapy in preventing or delaying age-associated cognitive decline is controversial. Therapy success may critically depend on the time of treatment initiation following cessation of ovarian function. The present study aimed to assess, in middle-aged rats, whether the ability of oestradiol to modulate the cholinergic system depends on the timing of treatment initiation following ovariectomy. Using western blotting, protein levels of choline acetyltransferase (ChAT) were measured in the hippocampus and prefrontal cortex (PFC), which are both important areas with respect to cognitive function. In an initial experiment, we established the effects of oestradiol delivered via implanted capsules on ChAT levels in the hippocampus and PFC of young adult animals. In a second experiment, we tested the ability of the same oestradiol treatment paradigm to affect ChAT protein in 15-month-old middle-aged rats that had been ovariectomised either at the age of 10 months or at 15 months. In both experiments, rats were sacrificed 10 days after receiving implants and ChAT protein levels were measured. In both young adult and middle-aged animals, oestradiol treatment initiated immediately after ovariectomy significantly increased ChAT levels in the hippocampus but not in the PFC compared to cholesterol control treatment. However, when oestradiol treatment was initiated 5 months after ovariectomy, it failed to significantly increase ChAT levels in the hippocampus, but did so in the PFC. These data indicate that, after prolonged ovarian hormone deprivation, the ability of subsequent oestradiol treatment to modulate ChAT protein levels is altered in a site-specific manner.
Collapse
Affiliation(s)
- J Bohacek
- Program in Neuroscience, Tulane University, New Orleans, LA 70118, USA
| | | | | |
Collapse
|
29
|
Furey ML, Pietrini P, Haxby JV, Drevets WC. Selective effects of cholinergic modulation on task performance during selective attention. Neuropsychopharmacology 2008; 33:913-23. [PMID: 17534379 PMCID: PMC3250310 DOI: 10.1038/sj.npp.1301461] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cholinergic neurotransmitter system is critically linked to cognitive functions including attention. The current studies were designed to evaluate the effect of a cholinergic agonist and an antagonist on performance during a selective visual attention task where the inherent salience of attended/unattended stimuli was modulated. Two randomized, placebo-controlled, crossover studies were performed, one (n=9) with the anticholinesterase physostigmine (1.0 mg/h), and the other (n=30) with the anticholinergic scopolamine (0.4 mc/kg). During the task, two double-exposure pictures of faces and houses were presented side by side. Subjects were cued to attend to either the face or the house component of the stimuli, and were instructed to perform a matching task with the two exemplars from the attended category. The cue changed every 4-7 trials to instruct subjects to shift attention from one stimulus component to the other. During placebo in both studies, reaction time (RT) associated with the first trial following a cued shift in attention was longer than RT associated with later trials (p<0.05); RT also was significantly longer when attending to houses than to faces (p<0.05). Physostigmine decreased RT relative to placebo preferentially during trials greater than one (p<0.05), with no change during trial one; and decreased RT preferentially during the attention to houses condition (p<0.05) vs attention to faces. Scopolamine increased RT relative to placebo selectively during trials greater than one (p<0.05), and preferentially increased RT during the attention to faces condition (p<0.05). The results suggest that enhancement or impairment of cholinergic activity preferentially influences the maintenance of selective attention (ie trials greater than 1). Moreover, effects of cholinergic manipulation depend on the selective attention condition (ie faces vs houses), which may suggest that cholinergic activity interacts with stimulus salience. The findings are discussed within the context of the role of acetylcholine both in stimulus processing and stimulus salience, and in establishing attention biases through top-down and bottom-up mechanisms of attention.
Collapse
Affiliation(s)
- Maura L Furey
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
30
|
Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology 2008; 33:3-17. [PMID: 18063486 DOI: 10.1016/j.psyneuen.2007.10.006] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/28/2007] [Accepted: 10/17/2007] [Indexed: 02/03/2023]
Abstract
Epidemiologic data consistently report an elevated prevalence of major depressive disorder (MDD) in women. This increase begins during adolescence and continues through the menopausal transition. Population-based clinical studies report an increase in the incidence of MDD during perimenopause compared to either the premenopausal or postmenopausal period. Evidence suggests that fluctuations and decline of hormonal levels are correlated with this observed increase in risk for MDD. A strong predictor of depression in the perimenopausal period is a previous history of MDD. However, recent studies revealed an increased risk of new onset depression in perimenopausal women without a history of MDD. Additionally, recent reports have indicated that the presence of vasomotor symptoms may be associated with an increased the risk for MDD. The objective of this paper is to review evidence that would support our hypothesis that neurotransmitter systems are affected by changes in hormonal status over the course of a woman's life, leading to increase vulnerability to perimenopausal depression. Relevant data from nonclinical experiments will be discussed in the context of observed clinical evidence of the risk for MDD before, during, and after the menopausal transition. A testable hypothesis will be proposed to advance our understanding of hormonal effects on mood.
Collapse
Affiliation(s)
- Darlene Deecher
- Wyeth Research, 500 Arcola Rd, RN3164, Collegeville, PA 19426, USA.
| | | | | | | |
Collapse
|
31
|
Gibbs RB. Estradiol enhances DMP acquisition via a mechanism not mediated by turning strategy but which requires intact basal forebrain cholinergic projections. Horm Behav 2007; 52:352-9. [PMID: 17583704 DOI: 10.1016/j.yhbeh.2007.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/14/2007] [Accepted: 05/19/2007] [Indexed: 11/30/2022]
Abstract
This study examined whether effects on turning strategy, use of an allocentric strategy, and/or short-term spatial memory account for the effects of estradiol treatment on acquisition of a delayed matching-to-position (DMP) T-maze task, in rats with and without basal forebrain cholinergic lesions. Ovariectomized rats received either 192IgG saporin (SAP) or saline injected into the medial septum. Two weeks later, half of each group received either continuous estradiol treatment (5-mm silastic capsule containing 17-beta-estradiol implanted s.c.) or implantation of an empty capsule. All rats were trained on the DMP task. Results show that estradiol enhanced, and SAP lesions impaired, learning on the DMP task. SAP lesions impaired learning primarily by increasing the use of a persistent turning strategy early on during training. In contrast, estradiol had no apparent effect on turning strategy, and enhanced learning only in non-lesioned rats. There was no evidence that any of these effects were due primarily to an effect on ultimate strategy selection (e.g., allocentric vs. egocentric, evaluated with a probe trial in which the maze was rotated 180 degrees), or on short-term spatial memory (evaluated by increasing the intertrial delay). We conclude that estradiol enhances DMP acquisition via a mechanism independent of effects on turning strategy and short-term memory, but nevertheless dependent on cholinergic neurons in the MS and VDB. We hypothesize that estradiol may affect the facility with which female rats are able to extract and incorporate extramaze information into an effective navigational strategy, and that this may be mediated by effects in prefrontal cortex.
Collapse
Affiliation(s)
- Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
32
|
Hao J, Rapp PR, Janssen WGM, Lou W, Lasley BL, Hof PR, Morrison JH. Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci U S A 2007; 104:11465-70. [PMID: 17592140 PMCID: PMC2040921 DOI: 10.1073/pnas.0704757104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that long-term cyclic estrogen (E) treatment reverses age-related impairment of cognitive function mediated by the dorsolateral prefrontal cortex (dlPFC) in ovariectomized (OVX) female rhesus monkeys, and that E induces a corresponding increase in spine density in layer III dlPFC pyramidal neurons. We have now investigated the effects of the same E treatment in young adult females. In contrast to the results for aged monkeys, E treatment failed to enhance dlPFC-dependent task performance relative to vehicle control values (group young OVX+Veh) but nonetheless led to a robust increase in spine density. This response was accompanied by a decline in dendritic length, however, such that the total number of spines per neuron was equivalent in young OVX+Veh and OVX+E groups. Robust effects of chronological age, independent of ovarian hormone status, were also observed, comprising significant age-related declines in dendritic length and spine density, with a preferential decrease in small spines in the aged groups. Notably, the spine effects were partially reversed by cyclic E administration, although young OVX+Veh monkeys still had a higher complement of small spines than did aged E treated monkeys. In summary, layer III pyramidal neurons in the dlPFC are sensitive to ovarian hormone status in both young and aged monkeys, but these effects are not entirely equivalent across age groups. The results also suggest that the cognitive benefit of E treatment in aged monkeys is mediated by enabling synaptic plasticity through a cyclical increase in small, highly plastic dendritic spines in the primate dlPFC.
Collapse
Affiliation(s)
- Jiandong Hao
- *Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
| | - Peter R. Rapp
- *Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Department of Geriatrics and Adult Development, and
| | | | - Wendy Lou
- Department of Public Health Sciences, University of Toronto, Toronto, ON, Canada M5T 3M7; and
| | - Bill L. Lasley
- Center for Health and the Environment and
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Patrick R. Hof
- *Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Department of Geriatrics and Adult Development, and
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, NY 10029
| | - John H. Morrison
- *Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories
- Department of Geriatrics and Adult Development, and
- **To whom correspondence may be addressed at:
Department of Neuroscience, Box 1065, Mount Sinai School of Medicine, New York, NY 10029. E-mail:
| |
Collapse
|
33
|
|
34
|
Smith YR, Love T, Persad CC, Tkaczyk A, Nichols TE, Zubieta JK. Impact of combined estradiol and norethindrone therapy on visuospatial working memory assessed by functional magnetic resonance imaging. J Clin Endocrinol Metab 2006; 91:4476-81. [PMID: 16912129 PMCID: PMC1861832 DOI: 10.1210/jc.2006-0907] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Hormones regulate neuronal function in brain regions critical to cognition; however, the cognitive effects of postmenopausal hormone therapy are controversial. OBJECTIVE The goal was to evaluate the effect of postmenopausal hormone therapy on neural circuitry involved in spatial working memory. DESIGN A randomized, double-blind, placebo-controlled crossover study was performed. SETTING The study was performed in a tertiary care university medical center. PARTICIPANTS Ten healthy postmenopausal women of average age 56.9 yr were recruited. INTERVENTIONS Volunteers were randomized to the order they received hormone therapy (5 microg ethinyl estradiol and 1 mg norethindrone acetate). Subjects received hormone therapy or placebo for 4 wk, followed by a 1-month washout period with no medications, and then received the other treatment for 4 wk. At the end of each 4-wk treatment period, a functional magnetic resonance imaging study was performed using a nonverbal (spatial) working memory task, the Visual Delayed Matching to Sample task. MAIN OUTCOME MEASURE The effects of hormone therapy on brain activation patterns were compared with placebo. RESULTS Compared with the placebo condition, hormone therapy was associated with a more pronounced activation in the prefrontal cortex (BA 44 and 45), bilaterally (P < 0.001). CONCLUSIONS Hormone therapy was associated with more effective activation of a brain region critical in primary visual working memory tasks. The data suggest a functional plasticity of memory systems in older women that can be altered by hormones.
Collapse
Affiliation(s)
- Yolanda R Smith
- Department of Obstetrics and Gynecology, School of Public Health, University of Michigan Health Systems, Women's Hospital, Ann Arbor, Michigan 48109-0276, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Morrison JH, Brinton RD, Schmidt PJ, Gore AC. Estrogen, menopause, and the aging brain: how basic neuroscience can inform hormone therapy in women. J Neurosci 2006; 26:10332-48. [PMID: 17035515 PMCID: PMC6674699 DOI: 10.1523/jneurosci.3369-06.2006] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 08/31/2006] [Accepted: 09/04/2006] [Indexed: 12/30/2022] Open
Affiliation(s)
- John H Morrison
- Fishberg Department of Neuroscience, Kastor Neurobiology of Aging Laboratories, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
36
|
Gibbs RB, Edwards D, Lazar N, Nelson D, Talameh J. Effects of long-term hormone treatment and of tibolone on monoamines and monoamine metabolites in the brains of ovariectomised, Cynomologous monkeys. J Neuroendocrinol 2006; 18:643-54. [PMID: 16879163 DOI: 10.1111/j.1365-2826.2006.01463.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of long-term hormone treatment on monoamines and monoamine metabolites in different regions of the primate brain were examined and compared. Ovariectomised Cynomologous monkeys received daily oral administration of either conjugated equine oestrogens (CEE), CEE + medroxyprogesterone acetate (MPA), or a low or high dose of tibolone, for a period of 2 years. Tissue punches collected from frozen sections through various regions of the forebrain, midbrain, and hindbrain were assayed for levels of dopamine, dihydroxyphenylacetic acid (DOPAC), serotonin, 5-hydroxyindole acetic acid (5-HIAA), and norepinephrine by high-performance liquid chromatography. Few differences between hormone-treated animals and ovariectomised controls were observed. No statistically significant effects of CEE relative to controls were detected in any of the seven brain regions analysed. Animals treated with CEE + MPA showed significant reductions in 5-HIAA in the dorsal raphe nucleus, a significant reduction in dopamine in the hypothalamus, and a significant reduction in serotonin (5-HT) levels in area 8AD of the frontal cortex. Similar to CEE, no significant effects of tibolone relative to controls were detected; however, animals treated with high-dose tibolone showed a decrease in 5-HT levels in the frontal cortex that approached significance and was similar to the effect of CEE + MPA. Collectively, the findings suggest that long-term oral administration of these compounds has relatively few effects on the levels of dopamine, serotonin, and their primary metabolites in the primate brain. This differs from the significant effects on serotonergic and dopaminergic systems detected following parenteral treatment with oestradiol and progesterone, and likely reflects differences between the effects of treating with CEE + MPA versus oestradiol and progesterone on brain monoaminergic systems.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, PA 15261, USA.
| | | | | | | | | |
Collapse
|
37
|
Dumas J, Hancur-Bucci C, Naylor M, Sites C, Newhouse P. Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women. Neuropsychopharmacology 2006; 31:2065-78. [PMID: 16482084 DOI: 10.1038/sj.npp.1301042] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Estrogen has been shown to interact with the cholinergic system and influence cognition in animal models. This study investigated the interaction of estrogen and cholinergic system functioning and the effects of this interaction on cognitive task performance in healthy older women. Fifteen post-menopausal women were randomly and blindly placed on 1 mg of 17-beta estradiol or placebo for 3 months after which they participated in five anticholinergic challenge sessions, where they were administered one of two doses of the antimuscarinic drug scopolamine (SCOP) or the antinicotinic drug mecamylamine (MECA) or placebo. After the first challenge phase, they were crossed over to the other hormone treatment for another 3 months and repeated the challenges. Performance in multiple domains of cognition was assessed during anticholinergic drug challenge, including attention and verbal and nonverbal learning and memory. Results showed that estrogen pretreatment attenuated the anticholinergic drug-induced impairments on tests of attention and tasks with speed components. This study is the first to demonstrate the interaction of estrogen and the cholinergic system and the effects on cognitive performance in humans. The results suggest that estrogen status may affect cholinergic system tone and may be important for cholinergic system integrity.
Collapse
Affiliation(s)
- Julie Dumas
- Clinical Neuroscience Research Unit, Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | | | | | | | | |
Collapse
|
38
|
Hao J, Rapp PR, Leffler AE, Leffler SR, Janssen WGM, Lou W, McKay H, Roberts JA, Wearne SL, Hof PR, Morrison JH. Estrogen alters spine number and morphology in prefrontal cortex of aged female rhesus monkeys. J Neurosci 2006; 26:2571-8. [PMID: 16510735 PMCID: PMC6793646 DOI: 10.1523/jneurosci.3440-05.2006] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term cyclic treatment with 17beta-estradiol reverses age-related impairment in ovariectomized rhesus monkeys on a test of cognitive function mediated by the prefrontal cortex (PFC). Here, we examined potential neurobiological substrates of this effect using intracellular loading and morphometric analyses to test the possibility that the cognitive benefits of hormone treatment are associated with structural plasticity in layer III pyramidal cells in PFC area 46. 17beta-Estradiol did not affect several parameters such as total dendritic length and branching. In contrast, 17beta-estradiol administration increased apical and basal dendritic spine density, and induced a shift toward smaller spines, a response linked to increased spine motility, NMDA receptor-mediated activity, and learning. These results document that, although the aged primate PFC is vulnerable in the absence of factors such as circulating estrogens, it remains responsive to long-term cyclic 17beta-estradiol treatment, and that increased dendritic spine density and altered spine morphology may contribute to the cognitive benefits of such treatment.
Collapse
|
39
|
Abstract
Behavioral responses to sociosexual signals often depend on gonadal steroid hormones, which are thought to modulate behavior by acting on motivational systems in the brain. There is mounting evidence that sex steroids may also modulate perception of sociosexual signals by affecting sensory processing. In seasonally breeding songbirds such as the white-throated sparrow (Zonotrichia albicollis), the female's behavioral response to hearing male song depends on her plasma levels of estradiol (E2). Here, we examined whether plasma E2 also affects the selectivity of the song-induced zenk (egr-1) response in the auditory forebrain, which is known to vary according to the behavioral relevance of song stimuli. Non-breeding females were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. E2-treated birds hearing 42 min of conspecific song had more cells immunoreactive for the protein product of zenk in the auditory forebrain than did those hearing frequency-matched synthetic tones. In birds not treated with E2, however, the zenk response to song did not differ from that to tones. We found similar effects in the avian homolog of the inferior colliculus, indicating that E2 may affect the processing of auditory information upstream of the forebrain. Our data suggest that in females, zenk induction in the auditory system is selective for song only when plasma E2 exceeds non-breeding levels. E2-dependent plasticity of auditory pathways and processing centres may promote recognition of and attention to conspecific song during the breeding season.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 532 Kilgo Circle, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
40
|
Miettinen R, Riedel A, Kalesnykas G, Kettunen HP, Puoliväli J, Soininen H, Arendt T. Reelin-immunoreactivity in the hippocampal formation of 9-month-old wildtype mouse: effects of APP/PS1 genotype and ovariectomy. J Chem Neuroanat 2006; 30:105-18. [PMID: 16081247 DOI: 10.1016/j.jchemneu.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/01/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
Reelin, an extracellular matrix protein has an important role in the migration, correct positioning and maturation of neurons during development. Though it is generally down-regulated in the postnatal period, expression of this large glycoprotein continues in the adult brain in some cell populations. In the present study, we examined the distribution of reelin-immunoreactivity (-ir) in the hippocampal formation of 9-month-old wildtype mice (WT). Then, reelin-ir in normal mice was compared to that of transgenic mice (APP/PS1) carrying mutated human APP and PS1 genes, which are linked to the familial form of Alzheimer's disease (AD). The APP/PS1 mice were additionally burdened with a second risk factor for AD, namely depletion of circulating gonadal hormones by ovariectomy (APP/PS1 + OVX). The analyses revealed that in adult WT reelin-ir is expressed by Cajal-Retzius cells and a subgroup of interneurons throughout the hippocampal formation. In addition, layer II projection neurons in the lateral entorhinal subfields are reelin-ir. Interestingly, ovariectomy decreases the number of reelin-ir cells in the hilus in WT mice, whereas AD-related genotype alone induces only a non-significant reduction. Unexpectedly, additional stress, e.g., depletion of gonadal hormones, does not aggravate the slight reduction in the reelin cell number in the APP/PS1 mice. We propose that the changes in normal reelin-ir are linked to disturbances in repair mechanisms in which APP/PS1 and gonadal hormones are involved and which are perturbed in neurodegenerative conditions, namely AD.
Collapse
Affiliation(s)
- Riitta Miettinen
- Department of Neuroscience and Neurology, University of Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
41
|
Howell N, Dykens J, Moos WH. Alzheimer's disease, estrogens, and clinical trials: a case study in drug development for complex disorders. Drug Dev Res 2006. [DOI: 10.1002/ddr.20046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Lacreuse A. Effects of ovarian hormones on cognitive function in nonhuman primates. Neuroscience 2005; 138:859-67. [PMID: 16310311 DOI: 10.1016/j.neuroscience.2005.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/22/2005] [Accepted: 09/08/2005] [Indexed: 11/25/2022]
Abstract
Several studies have suggested that estrogen benefits verbal memory and lowers the risk of Alzheimer's disease in women, and improves cognitive function in animal models. However, the negative outcome of the Women's Health Initiative Memory Study has challenged the rationale for using estrogen as a protective agent against age-related cognitive decline. In view of the limitations of the Women's Health Initiative Memory Study, it is clear that our understanding of estrogen effects would greatly benefit from further interactions between clinical and basic science. Animal models of menopause can provide crucial information regarding the consequences of estrogen loss and replacement on several systems, including cognition. In this paper, I review the evidence that nonhuman primates, who share numerous cognitive and physiological characteristics with humans, can substantially contribute to our understanding of estrogen influences on the brain and cognition. Studies in young adult females suggest that some aspects of cognition fluctuate with the menstrual cycle, but that ovariectomy and estrogen replacement have only modest effects on cognitive function. In contrast, data in aged, naturally or surgically menopausal monkeys indicate that estrogen modulates a broad range of cognitive domains. Neurobiological data are consistent with the cognitive findings and demonstrate an array of morphological and physiological changes in brain areas important for cognition following ovariectomy and/or estrogen replacement. It is concluded that nonhuman primates, by providing a bridge between rodent and human data, constitute invaluable models to further our understanding of hormonal actions on the brain and cognition and to develop effective hormonal interventions against brain and cognitive aging.
Collapse
Affiliation(s)
- A Lacreuse
- Division of Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Tinkler GP, Voytko ML. Estrogen modulates cognitive and cholinergic processes in surgically menopausal monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:423-31. [PMID: 15795051 DOI: 10.1016/j.pnpbp.2004.12.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2004] [Indexed: 11/22/2022]
Abstract
Estrogen deficiency in postmenopausal women is associated with changes in physiological processes. The extent to which estrogen loss is associated with cognitive changes noted by postmenopausal women has been more difficult to determine for a variety of reasons. Primate models of menopause are now being used to determine the effects of estrogen loss and replacement on cognitive abilities and to investigate the neural mechanisms by which estrogen may influence cognitive function. The present report presents data from cognitive and neurobiological studies in surgically menopausal monkeys that have examined how estrogen loss and replacement may be affecting cognitive abilities and the cholinergic system; a neural system that is known to influence memory and attention function. These studies are indicating that visuospatial attention function is especially sensitive to estrogen states in young monkeys, but that multiple cognitive domains are sensitive to estrogen states in middle-aged monkeys. In addition, anatomical and functional imaging studies indicate that the primate cholinergic system is modulated by estrogen, and pharmacological studies demonstrate that estrogen uses cholinergic muscarinic receptors to influence visuospatial attention. These studies demonstrate that estrogen influences cognitive abilities in monkey models of menopause and the cholinergic system may be one of the mechanisms by which estrogen modulates cognitive function. Given the current unknowns and concerns regarding the use of hormone replacement therapy in postmenopausal women, continued studies in monkey models of menopause are especially needed to further elucidate the effects of estrogen on cognitive and neurobiological processes, with particular emphasis on studies in middle-aged monkeys, determining the optimal aspects of ERT regimens, and identifying the relationships between estrogen effects on cognitive and neurobiological function.
Collapse
Affiliation(s)
- Gregory Paul Tinkler
- Interdisciplinary Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
44
|
Erickson KI, Colcombe SJ, Raz N, Korol DL, Scalf P, Webb A, Cohen NJ, McAuley E, Kramer AF. Selective sparing of brain tissue in postmenopausal women receiving hormone replacement therapy. Neurobiol Aging 2005; 26:1205-13. [PMID: 15917105 DOI: 10.1016/j.neurobiolaging.2004.11.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 10/26/2004] [Accepted: 11/01/2004] [Indexed: 11/17/2022]
Abstract
Determining the benefits and/or drawbacks of hormone replacement therapy (HRT) on women's health is an imperative public health goal. Research in rodents suggests benefits of estrogen on neuronal growth and function. However, little research has investigated the effects of HRT on brain tissue in humans. We used high-resolution magnetic resonance imaging and an optimized voxel-based morphometric technique to examine the effects of HRT on brain volume in postmenopausal women. We report two main results: (a) HRT is associated with the sparing of grey matter in prefrontal, parietal, and temporal brain regions and white matter in medial temporal lobe regions, and (b) longer durations of therapy are associated with greater sparing of grey matter tissue. HRT should be considered a possible mediator of age-related neural decline in both grey and white matter tissues.
Collapse
Affiliation(s)
- Kirk I Erickson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hof PR, Morrison JH. The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci 2004; 27:607-13. [PMID: 15374672 DOI: 10.1016/j.tins.2004.07.013] [Citation(s) in RCA: 283] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|