1
|
Chacon C, Nwachukwu CV, Shahsavani N, Cowley KC, Chopek JW. Lumbar V3 interneurons provide direct excitatory synaptic input onto thoracic sympathetic preganglionic neurons, linking locomotor, and autonomic spinal systems. Front Neural Circuits 2023; 17:1235181. [PMID: 37701071 PMCID: PMC10493276 DOI: 10.3389/fncir.2023.1235181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Although sympathetic autonomic systems are activated in parallel with locomotion, the neural mechanisms mediating this coordination are incompletely understood. Sympathetic preganglionic neurons (SPNs), primarily located in the intermediate laminae of thoracic and upper lumbar segments (T1-L2), increase activation of tissues and organs that provide homeostatic and metabolic support during movement and exercise. Recent evidence suggests integration between locomotor and autonomic nuclei occurs within the brainstem, initiating both descending locomotor and sympathetic activation commands. However, both locomotor and sympathetic autonomic spinal systems can be activated independent of supraspinal input, in part due to a distributed network involving propriospinal neurons. Whether an intraspinal mechanism exists to coordinate activation of these systems is unknown. We hypothesized that ascending spinal neurons located in the lumbar region provide synaptic input to thoracic SPNs. Here, we demonstrate that synaptic contacts from locomotor-related V3 interneurons (INs) are present in all thoracic laminae. Injection of an anterograde tracer into lumbar segments demonstrated that 8-20% of glutamatergic input onto SPNs originated from lumbar V3 INs and displayed a somatotopographical organization of synaptic input. Whole cell patch clamp recording in SPNs demonstrated prolonged depolarizations or action potentials in response to optical activation of either lumbar V3 INs in spinal cord preparations or in response to optical activation of V3 terminals in thoracic slice preparations. This work demonstrates a direct intraspinal connection between lumbar locomotor and thoracic sympathetic networks and suggests communication between motor and autonomic systems may be a general function of the spinal cord.
Collapse
|
2
|
Lai BQ, Wu RJ, Han WT, Bai YR, Liu JL, Yu HY, Yang SB, Wang LJ, Ren JL, Ding Y, Li G, Zeng X, Ma YH, Quan Q, Xing LY, Jiang B, Wang YQ, Zhang L, Chen ZH, Zhang HB, Chen YF, Zheng QJ, Zeng YS. Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury. Biomaterials 2023; 297:122103. [PMID: 37028111 DOI: 10.1016/j.biomaterials.2023.122103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong-Jie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China; Shantou University Medical College, Shantou, 515041, China
| | - Wei-Tao Han
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu-Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jia-Lin Liu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Hai-Yang Yu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China
| | - Shang-Bin Yang
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
| | - Lai-Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Le Ren
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Medical Research Center, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou, 510100, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Huan Ma
- Guangzhou Institute of Clinical Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Qi Quan
- Department of Orthopedic Surgery, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing Key Lab of Regenerative Medicine in Orthopedics, the 4th Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China
| | - Ling-Yan Xing
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ling Zhang
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zheng-Hong Chen
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Bo Zhang
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yuan-Feng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Qiu-Jian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510800, China.
| |
Collapse
|
3
|
Regional Targeting of Bladder and Urethra Afferents in the Lumbosacral Spinal Cord of Male and Female Rats: A Multiscale Analysis. eNeuro 2021; 8:ENEURO.0364-21.2021. [PMID: 34772694 PMCID: PMC8690816 DOI: 10.1523/eneuro.0364-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor circuits of the lumbosacral spinal cord are required for lower urinary tract (LUT) regulation as well as being engaged in pelvic pain states. To date, no molecular markers have been identified to enable specific visualization of LUT afferents, which are embedded within spinal cord segments that also subserve somatic functions. Moreover, previous studies have not fully investigated the patterning within or across spinal segments, compared afferent innervation of the bladder and urethra, or explored possible structural sex differences in these pathways. We have addressed these questions in adult Sprague Dawley rats, using intramural microinjection of the tract tracer, B subunit of cholera toxin (CTB). Afferent distribution was analyzed within individual sections and 3D reconstructions from sections across four spinal cord segments (L5-S2), and in cleared intact spinal cord viewed with light sheet microscopy. Simultaneous mapping of preganglionic neurons showed their location throughout S1 but restricted to the caudal half of L6. Afferents from both LUT regions extended from L5 to S2, even where preganglionic motor pathways were absent. In L6 and S1, most afferents were associated with the sacral preganglionic nucleus (SPN) and sacral dorsal commissural nucleus (SDCom), with very few in the superficial laminae of the dorsal horn. Spinal innervation patterns by bladder and urethra afferents were remarkably similar, likewise the patterning in male and female rats. In conclusion, microscale to macroscale mapping has identified distinct features of LUT afferent projections to the lumbosacral cord and provided a new anatomic approach for future studies on plasticity, injury responses, and modeling of these pathways.
Collapse
|
4
|
Leiguarda C, McCarthy CJ, Casadei M, Lundgren KH, Coronel MF, Trigosso-Venario H, Seal RP, Seroogy KB, Brumovsky PR. Transcript Expression of Vesicular Glutamate Transporters in Rat Dorsal Root Ganglion and Spinal Cord Neurons: Impact of Spinal Blockade during Hindpaw Inflammation. ACS Chem Neurosci 2020; 11:2602-2614. [PMID: 32697906 DOI: 10.1021/acschemneuro.0c00272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Studies in mouse, and to a lesser extent in rat, have revealed the neuroanatomical distribution of vesicular glutamate transporters (VGLUTs) and begun exposing the critical role of VGLUT2 and VGLUT3 in pain transmission. In the present study in rat, we used specific riboprobes to characterize the transcript expression of all three VGLUTs in lumbar dorsal root ganglia (DRGs) and in the thoracolumbar, lumbar, and sacral spinal cord. We show for the first time in rat a very discrete VGLUT3 expression in DRGs and in deep layers of the dorsal horn. We confirm the abundant expression of VGLUT2, in both DRGs and the spinal cord, including presumable motorneurons in the latter. As expected, VGLUT1 was present in many DRG neuron profiles, and in the spinal cord it was mostly localized to neurons in the dorsal nucleus of Clarke. In rats with a 10 day long hindpaw inflammation, increased spinal expression of VGLUT2 transcript was detected by qRT-PCR, and intrathecal administration of the nonselective VGLUT inhibitor Chicago Sky Blue 6B resulted in reduced mechanical and thermal allodynia for up to 24 h. In conclusion, our results provide a collective characterization of VGLUTs in rat DRGs and the spinal cord, demonstrate increased spinal expression of VGLUT2 during chronic peripheral inflammation, and support the use of spinal VGLUT blockade as a strategy for attenuating inflammatory pain.
Collapse
Affiliation(s)
- Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Carly J. McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Mailin Casadei
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - María Florencia Coronel
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Harry Trigosso-Venario
- Hospital Universitario Austral, Austral University, Pilar B1629AHJ, Buenos Aires, Argentina
| | - Rebecca P. Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Pablo R. Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Austral, Derqui, Pilar B1629AHJ, Buenos Aires, Argentina
| |
Collapse
|
5
|
Shahbazian S, Bokiniec P, Berning BA, McMullan S, Goodchild AK. Polysialic acid in the rat brainstem and thoracolumbar spinal cord: Distribution, cellular location, and comparison with mouse. J Comp Neurol 2020; 529:811-827. [PMID: 32656805 DOI: 10.1002/cne.24982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/30/2020] [Indexed: 11/08/2022]
Abstract
Polysialic acid (polySia), a homopolymer of α2,8-linked glycans, is a posttranslational modification on a few glycoproteins, most commonly in the brain, on the neural cell adhesion molecule. Most research in the adult central nervous system has focused on its expression in higher brain regions, where its distribution coincides with regions known to exhibit high levels of synaptic plasticity. In contrast, scant attention has been paid to the expression of polySia in the hindbrain. The main aims of the study were to examine the distribution of polySia immunoreactivity in the brainstem and thoracolumbar spinal cord, to compare the distribution of polySia revealed by two commercial antibodies commonly used for its investigation, and to compare labeling in the rat and mouse. We present a comprehensive atlas of polySia immunoreactivity: we report that polySia labeling is particularly dense in the dorsal tegmentum, medial vestibular nuclei and lateral parabrachial nucleus, and in brainstem regions associated with autonomic function, including the dorsal vagal complex, A5, rostral ventral medulla, A1, and midline raphe, as well as sympathetic preganglionic neurons in the spinal cord and central targets of primary sensory afferents (nucleus of the solitary tract, spinal trigeminal nucleus, and dorsal horn [DH]). Ultrastructural examination showed labeling was present predominantly on the plasma membrane/within the extracellular space/in or on astrocytes. Labeling throughout the brainstem and spinal cord were very similar for the two antibodies and was eliminated by the polySia-specific sialidase, Endo-NF. Similar patterns of distribution were found in rat and mouse brainstem with differences evident in DH.
Collapse
Affiliation(s)
- Shila Shahbazian
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Phillip Bokiniec
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Britt A Berning
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Mueller PJ, Fyk-Kolodziej BE, Azar TA, Llewellyn-Smith IJ. Subregional differences in GABA A receptor subunit expression in the rostral ventrolateral medulla of sedentary versus physically active rats. J Comp Neurol 2020; 528:1053-1075. [PMID: 31642070 PMCID: PMC7046220 DOI: 10.1002/cne.24798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
Abstract
Neurons in the rostral ventrolateral medulla (RVLM) regulate blood pressure through direct projections to spinal sympathetic preganglionic neurons. Only some RVLM neurons are active under resting conditions due to significant, tonic inhibition by gamma-aminobutyric acid (GABA). Withdrawal of GABAA receptor-mediated inhibition of the RVLM increases sympathetic outflow and blood pressure substantially, providing a mechanism by which the RVLM could contribute chronically to cardiovascular disease (CVD). Here, we tested the hypothesis that sedentary conditions, a major risk factor for CVD, increase GABAA receptors in RVLM, including its rostral extension (RVLMRE ), both of which contain bulbospinal catecholamine (C1) and non-C1 neurons. We examined GABAA receptor subunits GABAAα1 and GABAAα2 in the RVLM/RVLMRE of sedentary or physically active (10-12 weeks of wheel running) rats. Western blot analyses indicated that sedentary rats had lower expression of GABAAα1 and GABAAα2 subunits in RVLM but only GABAAα2 was lower in the RVLMRE of sedentary rats. Sedentary rats had significantly reduced expression of the chloride transporter, KCC2, suggesting less effective GABA-mediated inhibition compared to active rats. Retrograde tracing plus triple-label immunofluorescence identified fewer bulbospinal non-C1 neurons immunoreactive for GABAAα1 but a higher percentage of bulbospinal C1 neurons immunoreactive for GABAAα1 in sedentary animals. Sedentary conditions did not significantly affect the number of bulbospinal C1 or non-C1 neurons immunoreactive for GABAAα2 . These results suggest a complex interplay between GABAA receptor expression by spinally projecting C1 and non-C1 neurons and sedentary versus physically active conditions. They also provide plausible mechanisms for both enhanced sympathoexcitatory and sympathoinhibitory responses following sedentary conditions.
Collapse
Affiliation(s)
- Patrick J. Mueller
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
| | | | - Toni A. Azar
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
| | - Ida J. Llewellyn-Smith
- Department of Physiology, Wayne State University School of
Medicine, Detroit MI
- Cardiovascular Medicine, Human Physiology and Centre for
Neuroscience, College of Medicine and Public Health, Flinders University, Bedford
Park SA, AUSTRALIA
| |
Collapse
|
7
|
Eldahan KC, Williams HC, Cox DH, Gollihue JL, Patel SP, Rabchevsky AG. Paradoxical effects of continuous high dose gabapentin treatment on autonomic dysreflexia after complete spinal cord injury. Exp Neurol 2020; 323:113083. [DOI: 10.1016/j.expneurol.2019.113083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/23/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
|
8
|
Chung J, Franklin JF, Lee HJ. Central expression of synaptophysin and synaptoporin in nociceptive afferent subtypes in the dorsal horn. Sci Rep 2019; 9:4273. [PMID: 30862809 PMCID: PMC6414693 DOI: 10.1038/s41598-019-40967-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/20/2019] [Indexed: 11/09/2022] Open
Abstract
Central sprouting of nociceptive afferents in response to neural injury enhances excitability of nociceptive pathways in the central nervous system, often causing pain. A reliable quantification of central projections of afferent subtypes and their synaptic terminations is essential for understanding neural plasticity in any pathological condition. We previously characterized central projections of cutaneous nociceptive A and C fibers, selectively labeled with cholera toxin subunit B (CTB) and Isolectin B4 (IB4) respectively, and found that they expressed a general synaptic molecule, synaptophysin, largely depending on afferent subtypes (A vs. C fibers) across thoracic dorsal horns. The current studies extended the central termination profiles of nociceptive afferents with synaptoporin, an isoform of synaptophysin, known to be preferentially expressed in C fibers in lumbar dorsal root ganglions. Our findings demonstrated that synaptophysin was predominantly expressed in both peptidergic and IB4-binding C fiber populations in superficial laminae of the thoracic dorsal horn. Cutaneous IB4-labeled C fibers showed comparable expression levels of both isoforms, while cutaneous CTB-labeled A fibers exclusively expressed synaptophysin. These data suggest that central expression of synaptophysin consistently represents synaptic terminations of projecting afferents, at least in part, including nociceptive A-delta and C fibers in the dorsal horn.
Collapse
Affiliation(s)
- Jumi Chung
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA.,Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, 39216, USA
| | - John F Franklin
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Hyun Joon Lee
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA. .,Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
9
|
Senthilkumaran M, Bobrovskaya L, Verberne AJM, Llewellyn-Smith IJ. Insulin-responsive autonomic neurons in rat medulla oblongata. J Comp Neurol 2018; 526:2665-2682. [PMID: 30136719 DOI: 10.1002/cne.24523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022]
Abstract
Low blood glucose activates brainstem adrenergic and cholinergic neurons, driving adrenaline secretion from the adrenal medulla and glucagon release from the pancreas. Despite their roles in maintaining glucose homeostasis, the distributions of insulin-responsive adrenergic and cholinergic neurons in the medulla are unknown. We fasted rats overnight and gave them insulin (10 U/kg i.p.) or saline after 2 weeks of handling. Blood samples were collected before injection and before perfusion at 90 min. We immunoperoxidase-stained transverse sections of perfused medulla to show Fos plus either phenylethanolamine N-methyltransferase (PNMT) or choline acetyltransferase (ChAT). Insulin injection lowered blood glucose from 4.9 ± 0.3 mmol/L to 1.7 ± 0.2 mmol/L (mean ± SEM; n = 6); saline injection had no effect. In insulin-treated rats, many PNMT-immunoreactive C1 neurons had Fos-immunoreactive nuclei, with the proportion of activated neurons being highest in the caudal part of the C1 column. In the rostral ventrolateral medulla, 33.3% ± 1.4% (n = 8) of C1 neurons were Fos-positive. Insulin also induced Fos in 47.2% ± 2.0% (n = 5) of dorsal medullary C3 neurons and in some C2 neurons. In the dorsal motor nucleus of the vagus (DMV), insulin evoked Fos in many ChAT-positive neurons. Activated neurons were concentrated in the medial and middle regions of the DMV beneath and just rostral to the area postrema. In control rats, very few C1, C2, or C3 neurons and no DMV neurons were Fos-positive. The high numbers of PNMT-immunoreactive and ChAT-immunoreactive neurons that express Fos after insulin treatment reinforce the importance of these neurons in the central response to a decrease in glucose bioavailability.
Collapse
Affiliation(s)
- M Senthilkumaran
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - L Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - A J M Verberne
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine-Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - I J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
10
|
Lujan HL, Tonson A, Wiseman RW, DiCarlo SE. Chronic, complete cervical 6-7 cord transection: distinct autonomic and cardiac deficits. J Appl Physiol (1985) 2018; 124:1471-1482. [PMID: 29470149 DOI: 10.1152/japplphysiol.01104.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) resulting in tetraplegia is a devastating, life-changing insult causing paralysis and sensory impairment as well as distinct autonomic dysfunction that triggers compromised cardiovascular, bowel, bladder, and sexual activity. Life becomes a battle for independence as even routine bodily functions and the smallest activity of daily living become major challenges. Accordingly, there is a critical need for a chronic preclinical model of tetraplegia. This report addresses this critical need by comparing, for the first time, resting-, reflex-, and stress-induced cardiovascular, autonomic, and hormonal responses each week for 4 wk in 12 sham-operated intact rats and 12 rats with chronic, complete C6-7 spinal cord transection. Loss of supraspinal control to all sympathetic preganglionic neurons projecting to the heart and vasculature resulted in a profound bradycardia and hypotension, reduced cardiac sympathetic and parasympathetic tonus, reduced reflex- and stress-induced sympathetic responses, and reduced sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Histological examination of the nucleus ambiguus and stellate ganglia supports the profound and distinct autonomic and cardiac deficits and reliance on angiotensin to maintain cardiovascular stability following chronic, complete cervical6-7 cord transection. NEW & NOTEWORTHY For the first time, resting-, reflex-, and stress-induced cardiovascular, autonomic, and hormonal responses were studied in rats with chronic, complete C6-7 cord transection. Loss of supraspinal control of all sympathetic preganglionic neurons reduced cardiac sympathetic and parasympathetic tonus, reflex and stress-induced sympathetic responses, and sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Histological examination supports the distinct deficits associated with cervical cord injury.
Collapse
Affiliation(s)
- Heidi L Lujan
- Department of Physiology, Michigan State University College of Osteopathic Medicine , East Lansing, Michigan
| | - Anne Tonson
- Department of Physiology, Michigan State University College of Osteopathic Medicine , East Lansing, Michigan
| | - Robert W Wiseman
- Department of Physiology, Michigan State University College of Osteopathic Medicine , East Lansing, Michigan
| | - Stephen E DiCarlo
- Department of Physiology, Michigan State University College of Osteopathic Medicine , East Lansing, Michigan
| |
Collapse
|
11
|
Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018; 38:2505-2518. [PMID: 29431649 DOI: 10.1523/jneurosci.2179-17.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Glutamate transporter 1 (GLT1) is the main astrocytic transporter that shapes glutamatergic transmission in the brain. However, whether this transporter modulates sleep-wake regulatory neurons is unknown. Using quantitative immunohistochemical analysis, we assessed perisomatic GLT1 apposition with sleep-wake neurons in the male rat following 6 h sleep deprivation (SD) or following 6 h undisturbed conditions when animals were mostly asleep (Rest). We found that SD decreased perisomatic GLT1 apposition with wake-promoting orexin neurons in the lateral hypothalamus compared with Rest. Reduced GLT1 apposition was associated with tonic presynaptic inhibition of excitatory transmission to these neurons due to the activation of Group III metabotropic glutamate receptors, an effect mimicked by a GLT1 inhibitor in the Rest condition. In contrast, SD resulted in increased GLT1 apposition with sleep-promoting melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus. Functionally, this decreased the postsynaptic response of MCH neurons to high-frequency synaptic activation without changing presynaptic glutamate release. The changes in GLT1 apposition with orexin and MCH neurons were reversed after 3 h of sleep opportunity following 6 h SD. These SD effects were specific to orexin and MCH neurons, as no change in GLT1 apposition was seen in basal forebrain cholinergic or parvalbumin-positive GABA neurons. Thus, within a single hypothalamic area, GLT1 differentially regulates excitatory transmission to wake- and sleep-promoting neurons depending on sleep history. These processes may constitute novel astrocyte-mediated homeostatic mechanisms controlling sleep-wake behavior.SIGNIFICANCE STATEMENT Sleep-wake cycles are regulated by the alternate activation of sleep- and wake-promoting neurons. Whether and how astrocytes can regulate this reciprocal neuronal activity are unclear. Here we report that, within the lateral hypothalamus, where functionally opposite wake-promoting orexin neurons and sleep-promoting melanin-concentrating hormone neurons codistribute, the glutamate transporter GLT1, mainly present on astrocytes, distinctly modulates excitatory transmission in a cell-type-specific manner and according to sleep history. Specifically, GLT1 is reduced around the somata of orexin neurons while increased around melanin-concentrating hormone neurons following sleep deprivation, resulting in different forms of synaptic plasticity. Thus, astrocytes can fine-tune the excitability of functionally discrete neurons via glutamate transport, which may represent novel regulatory mechanisms for sleep.
Collapse
|
12
|
Horváth HR, Fazekas CL, Balázsfi D, Jain SK, Haller J, Zelena D. Contribution of Vesicular Glutamate Transporters to Stress Response and Related Psychopathologies: Studies in VGluT3 Knockout Mice. Cell Mol Neurobiol 2018; 38:37-52. [PMID: 28776199 PMCID: PMC11482036 DOI: 10.1007/s10571-017-0528-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Maintenance of the homeostasis in a constantly changing environment is a fundamental process of life. Disturbances of the homeostatic balance is defined as stress response and is induced by wide variety of challenges called stressors. Being the main excitatory neurotransmitter of the central nervous system glutamate is important in the adaptation process of stress regulating both the catecholaminergic system and the hypothalamic-pituitary-adrenocortical axis. Data are accumulating about the role of different glutamatergic receptors at all levels of these axes, but little is known about the contribution of different vesicular glutamate transporters (VGluT1-3) characterizing the glutamatergic neurons. Here we summarize basic knowledge about VGluTs, their role in physiological regulation of stress adaptation, as well as their contribution to stress-related psychopathology. Most of our knowledge comes from the VGluT3 knockout mice, as VGluT1 and 2 knockouts are not viable. VGluT3 was discovered later than, and is not as widespread as the VGluT1 and 2. It may co-localize with other transmitters, and participate in retrograde signaling; as such its role might be unique. Previous reports using VGluT3 knockout mice showed enhanced anxiety and innate fear compared to wild type. Moreover, these knockout animals had enhanced resting corticotropin-releasing hormone mRNA levels in the hypothalamus and disturbed glucocorticoid stress responses. In conclusion, VGluT3 participates in stress adaptation regulation. The neuroendocrine changes observed in VGluT3 knockout mice may contribute to their anxious, fearful phenotype.
Collapse
Affiliation(s)
- Hanga Réka Horváth
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Csilla Lea Fazekas
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Diána Balázsfi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 26, Üllői út, 1085, Budapest, Hungary
| | | | - József Haller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary
| | - Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 43, Szigony utca, Szigony 43, 1083, Budapest, Hungary.
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
13
|
The p53 Pathway Controls SOX2-Mediated Reprogramming in the Adult Mouse Spinal Cord. Cell Rep 2017; 17:891-903. [PMID: 27732862 DOI: 10.1016/j.celrep.2016.09.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Although the adult mammalian spinal cord lacks intrinsic neurogenic capacity, glial cells can be reprogrammed in vivo to generate neurons after spinal cord injury (SCI). How this reprogramming process is molecularly regulated, however, is not clear. Through a series of in vivo screens, we show here that the p53-dependent pathway constitutes a critical checkpoint for SOX2-mediated reprogramming of resident glial cells in the adult mouse spinal cord. While it has no effect on the reprogramming efficiency, the p53 pathway promotes cell-cycle exit of SOX2-induced adult neuroblasts (iANBs). As such, silencing of either p53 or p21 markedly boosts the overall production of iANBs. A neurotrophic milieu supported by BDNF and NOG can robustly enhance maturation of these iANBs into diverse but predominantly glutamatergic neurons. Together, these findings have uncovered critical molecular and cellular checkpoints that may be manipulated to boost neuron regeneration after SCI.
Collapse
|
14
|
Llewellyn-Smith IJ, Basbaum AI, Bráz JM. Long-term, dynamic synaptic reorganization after GABAergic precursor cell transplantation into adult mouse spinal cord. J Comp Neurol 2017; 526:480-495. [PMID: 29134656 DOI: 10.1002/cne.24346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE-derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP-expressing MGE-derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short- (5-6 weeks) or long-term (4-6 months) transplants. We detected GFP with pre-embedding avidin-biotin-peroxidase and GABA with post-embedding immunogold labeling. At short and long times post-transplant, we found host-derived synapses on GFP-immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE-derived terminals formed synapses with GFP-negative (host) cell bodies and dendrites and, unexpectedly, with some GFP-positive (i.e., MGE-derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host-transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Human Physiology and Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia.,Department of Anatomy, University of California San Francisco, San Francisco, California
| | - Allan I Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California
| | - João M Bráz
- Department of Anatomy, University of California San Francisco, San Francisco, California
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW This review assembles recent understanding of the profound loss of muscle and bone in spinal cord injury (SCI). It is important to try to understand these changes, and the context in which they occur, because of their impact on the wellbeing of SC-injured individuals, and the urgent need for viable preventative therapies. RECENT FINDINGS Recent research provides new understanding of the effects of age and systemic factors on the response of bone to loading, of relevance to attempts to provide load therapy for bone in SCI. The rapidly growing dataset describing the biochemical crosstalk between bone and muscle, and the cell and molecular biology of myokines signalling to bone and osteokines regulating muscle metabolism and mass, is reviewed. The ways in which this crosstalk may be altered in SCI is summarised. Therapeutic approaches to the catabolic changes in muscle and bone in SCI require a holistic understanding of their unique mechanical and biochemical context.
Collapse
Affiliation(s)
- Jillian M Clark
- Discipline of Orthopaedics and Trauma, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - David M Findlay
- Discipline of Orthopaedics and Trauma, The University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
16
|
Lai HC, Seal RP, Johnson JE. Making sense out of spinal cord somatosensory development. Development 2017; 143:3434-3448. [PMID: 27702783 DOI: 10.1242/dev.139592] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The spinal cord integrates and relays somatosensory input, leading to complex motor responses. Research over the past couple of decades has identified transcription factor networks that function during development to define and instruct the generation of diverse neuronal populations within the spinal cord. A number of studies have now started to connect these developmentally defined populations with their roles in somatosensory circuits. Here, we review our current understanding of how neuronal diversity in the dorsal spinal cord is generated and we discuss the logic underlying how these neurons form the basis of somatosensory circuits.
Collapse
Affiliation(s)
- Helen C Lai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Bigbee AJ, Akhavan M, Havton LA. Plasticity of Select Primary Afferent Projections to the Dorsal Horn after a Lumbosacral Ventral Root Avulsion Injury and Root Replantation in Rats. Front Neurol 2017; 8:291. [PMID: 28824522 PMCID: PMC5534445 DOI: 10.3389/fneur.2017.00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
Injuries to the conus medullaris and cauda equina portions of the spinal cord result in neurological impairments, including paralysis, autonomic dysfunction, and pain. In experimental studies, earlier investigations have shown that a lumbosacral ventral root avulsion (VRA) injury results in allodynia, which may be ameliorated by surgical replantation of the avulsed ventral roots. Here, we investigated the long-term effects of an L6 + S1 VRA injury on the plasticity of three populations of afferent projections to the dorsal horn in rats. At 8 weeks after a unilateral L6 + S1 VRA injury, quantitative morphological studies of the adjacent L5 dorsal horn showed reduced immunoreactivity (IR) for the vesicular glutamate transporter, VGLUT1 and isolectin B4 (IB4) binding, whereas IR for calcitonin gene-related peptide (CGRP) was unchanged. The IR for VGLUT1 and CGRP as well as IB4 binding was at control levels in the L5 dorsal horn at 8 weeks following an acute surgical replantation of the avulsed L6 + S1 ventral roots. Quantitative morphological studies of the L5 dorsal root ganglia (DRGs) showed unchanged neuronal numbers for both the VRA and replanted series compared to shams. The portions of L5 DRG neurons expressing IR for VGLUT1 and CGRP, and IB4 binding were also the same between the VRA, replanted, and sham-operated groups. We conclude that the L5 dorsal horn shows selective plasticity for VGLUT1 and IB4 primary afferent projections after an L6 + S1 VRA injury and surgical repair.
Collapse
Affiliation(s)
- Allison J Bigbee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mahnaz Akhavan
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
18
|
Functional Synaptic Integration of Forebrain GABAergic Precursors into the Adult Spinal Cord. J Neurosci 2017; 36:11634-11645. [PMID: 27852772 DOI: 10.1523/jneurosci.2301-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 01/17/2023] Open
Abstract
Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.
Collapse
|
19
|
Lee HJ, White JM, Chung J, Tansey KE. Peripheral and central anatomical organization of cutaneous afferent subtypes in a rat nociceptive intersegmental spinal reflex. J Comp Neurol 2017; 525:2216-2234. [DOI: 10.1002/cne.24201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Hyun Joon Lee
- Departments of Neurology and PhysiologyEmory University School of MedicineAtlanta Georgia
| | - Jason M. White
- Biomedical EngineeringGeorgia Institute of Technology/Emory UniversityAtlanta Georgia
| | - Jumi Chung
- Departments of Neurology and PhysiologyEmory University School of MedicineAtlanta Georgia
| | - Keith E. Tansey
- Departments of Neurology and PhysiologyEmory University School of MedicineAtlanta Georgia
- Spinal Cord Injury Clinic, Atlanta Veterans Administration Medical CenterAtlanta Georgia
| |
Collapse
|
20
|
Holstein GR, Friedrich VLJ, Martinelli GP. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. Front Neuroanat 2016; 10:7. [PMID: 26903817 PMCID: PMC4744852 DOI: 10.3389/fnana.2016.00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.
Collapse
Affiliation(s)
- Gay R. Holstein
- Department of Neurology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Anatomy/Functional Morphology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | | | | |
Collapse
|
21
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
22
|
Origin of a Non-Clarke's Column Division of the Dorsal Spinocerebellar Tract and the Role of Caudal Proprioceptive Neurons in Motor Function. Cell Rep 2015; 13:1258-1271. [PMID: 26527010 DOI: 10.1016/j.celrep.2015.09.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/24/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
Proprioception, the sense of limb and body position, is essential for generating proper movement. Unconscious proprioceptive information travels through cerebellar-projecting neurons in the spinal cord and medulla. The progenitor domain defined by the basic-helix-loop-helix (bHLH) transcription factor, ATOH1, has been implicated in forming these cerebellar-projecting neurons; however, their precise contribution to proprioceptive tracts and motor behavior is unknown. Significantly, we demonstrate that Atoh1-lineage neurons in the spinal cord reside outside Clarke's column (CC), a main contributor of neurons relaying hindlimb proprioception, despite giving rise to the anatomical and functional correlate of CC in the medulla, the external cuneate nucleus (ECu), which mediates forelimb proprioception. Elimination of caudal Atoh1-lineages results in mice with relatively normal locomotion but unable to perform coordinated motor tasks. Altogether, we reveal that proprioceptive nuclei in the spinal cord and medulla develop from more than one progenitor source, suggesting an avenue to uncover distinct proprioceptive functions.
Collapse
|
23
|
Llewellyn-Smith IJ, Marina N, Manton RN, Reimann F, Gribble FM, Trapp S. Spinally projecting preproglucagon axons preferentially innervate sympathetic preganglionic neurons. Neuroscience 2014; 284:872-887. [PMID: 25450967 PMCID: PMC4300405 DOI: 10.1016/j.neuroscience.2014.10.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 12/29/2022]
Abstract
Spinal GLP-1 axons target primarily sympathetic preganglionic neurons. Spinal GLP-1 axons innervate interneurons that may regulate sympathetic outflow. Many GLP-1 neurons in the medulla are spinally-projecting. The lumbar cord contains YFP-expressing neurons that do not innervate the brain.
Glucagon-like peptide-1 (GLP-1) affects central autonomic neurons, including those controlling the cardiovascular system, thermogenesis, and energy balance. Preproglucagon (PPG) neurons, located mainly in the nucleus tractus solitarius (NTS) and medullary reticular formation, produce GLP-1. In transgenic mice expressing glucagon promoter-driven yellow fluorescent protein (YFP), these brainstem PPG neurons project to many central autonomic regions where GLP-1 receptors are expressed. The spinal cord also contains GLP-1 receptor mRNA but the distribution of spinal PPG axons is unknown. Here, we used two-color immunoperoxidase labeling to examine PPG innervation of spinal segments T1–S4 in YFP-PPG mice. Immunoreactivity for YFP identified spinal PPG axons and perikarya. We classified spinal neurons receiving PPG input by immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS) and/or Fluorogold (FG) retrogradely transported from the peritoneal cavity. FG microinjected at T9 defined cell bodies that supplied spinal PPG innervation. The deep dorsal horn of lower lumbar cord contained YFP-immunoreactive neurons. Non-varicose, YFP-immunoreactive axons were prominent in the lateral funiculus, ventral white commissure and around the ventral median fissure. In T1–L2, varicose, YFP-containing axons closely apposed many ChAT-immunoreactive sympathetic preganglionic neurons (SPN) in the intermediolateral cell column (IML) and dorsal lamina X. In the sacral parasympathetic nucleus, about 10% of ChAT-immunoreactive preganglionic neurons received YFP appositions, as did occasional ChAT-positive motor neurons throughout the rostrocaudal extent of the ventral horn. YFP appositions also occurred on NOS-immunoreactive spinal interneurons and on spinal YFP-immunoreactive neurons. Injecting FG at T9 retrogradely labeled many YFP-PPG cell bodies in the medulla but none of the spinal YFP-immunoreactive neurons. These results show that brainstem PPG neurons innervate spinal autonomic and somatic motor neurons. The distributions of spinal PPG axons and spinal GLP-1 receptors correlate well. SPN receive the densest PPG innervation. Brainstem PPG neurons could directly modulate sympathetic outflow through their spinal inputs to SPN or interneurons.
Collapse
Affiliation(s)
- I J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia
| | - N Marina
- Department of Metabolism and Experimental Therapeutics, University College London, London WC1E, UK
| | - R N Manton
- Department of Surgery and Cancer & Cell Biology Section, South Kensington Campus, Imperial College, London SW7 2AZ, UK
| | - F Reimann
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - F M Gribble
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - S Trapp
- Department of Surgery and Cancer & Cell Biology Section, South Kensington Campus, Imperial College, London SW7 2AZ, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
24
|
Hermes SM, Colbert JF, Aicher SA. Differential content of vesicular glutamate transporters in subsets of vagal afferents projecting to the nucleus tractus solitarii in the rat. J Comp Neurol 2014; 522:642-53. [PMID: 23897509 DOI: 10.1002/cne.23438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/15/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
The vagus nerve contains primary visceral afferents that convey sensory information from cardiovascular, pulmonary, and gastrointestinal tissues to the nucleus tractus solitarii (NTS). The heterogeneity of vagal afferents and their central terminals within the NTS is a common obstacle for evaluating functional groups of afferents. To determine whether different anterograde tracers can be used to identify distinct subpopulations of vagal afferents within NTS, we injected cholera toxin B subunit (CTb) and isolectin B4 (IB4) into the vagus nerve. Confocal analyses of medial NTS following injections of both CTb and IB4 into the same vagus nerve resulted in labeling of two exclusive populations of fibers. The ultrastructural patterns were also distinct. CTb was found in both myelinated and unmyelinated vagal axons and terminals in medial NTS, whereas IB4 was found only in unmyelinated afferents. Both tracers were observed in terminals with asymmetric synapses, suggesting excitatory transmission. Because glutamate is thought to be the neurotransmitter at this first primary afferent synapse in NTS, we determined whether vesicular glutamate transporters (VGLUTs) were differentially distributed among the two distinct populations of vagal afferents. Anterograde tracing from the vagus with CTb or IB4 was combined with immunohistochemistry for VGLUT1 or VGLUT2 in medial NTS and evaluated with confocal microscopy. CTb-labeled afferents contained primarily VGLUT2 (83%), whereas IB4-labeled afferents had low levels of vesicular transporters, VGLUT1 (5%) or VGLUT2 (21%). These findings suggest the possibility that glutamate release from unmyelinated vagal afferents may be regulated by a distinct, non-VGLUT, mechanism.
Collapse
Affiliation(s)
- Sam M Hermes
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, 97239-3098
| | | | | |
Collapse
|
25
|
Time-specific microRNA changes during spinal motoneuron degeneration in adult rats following unilateral brachial plexus root avulsion: ipsilateral vs. contralateral changes. BMC Neurosci 2014; 15:92. [PMID: 25055855 PMCID: PMC4121484 DOI: 10.1186/1471-2202-15-92] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Spinal root avulsion induces multiple pathophysiological events consisting of altered levels of specific genes and proteins related to inflammation, apoptosis, and oxidative stress, which collectively result in the death of the affected motoneurons. Recent studies have demonstrated that the gene changes involved in spinal cord injury can be regulated by microRNAs, which are a class of short non-coding RNA molecules that repress target mRNAs post-transcriptionally. With consideration for the time course of the avulsion-induced gene expression patterns within dying motoneurons, we employed microarray analysis to determine whether and how microRNAs are involved in the changes of gene expression induced by pathophysiological events in spinal cord motoneurons. Results The expression of a total of 3,361 miRNAs in the spinal cord of adult rats was identified. Unilateral root-avulsion resulted in significant alterations in miRNA expression. In the ipsilateral half compared to the contralateral half of the spinal cord, on the 3rd day after the injury, 55 miRNAs were upregulated, and 24 were downregulated, and on the 14th day after the injury, 36 miRNAs were upregulated, and 23 were downregulated. The upregulation of miR-146b-5p and miR-31a-3p and the downregulation of miR-324-3p and miR-484 were observed. Eleven of the miRNAs, including miR-21-5p, demonstrated a sustained increase; however, only miR-466c-3p presented a sustained decrease 3 and 14 days after the injury. More interestingly, 4 of the miRNAs, including miR-18a, were upregulated on the 3rd day but were downregulated on the 14th day after injury. Some of these miRNAs target inflammatory-response genes in the early stage of injury, and others target neurotransmitter transport genes in the intermediate stages of injury. The altered miRNA expression pattern suggests that the MAPK and calcium signaling pathways are consistently involved in the injury response. Conclusions This analysis may facilitate the understanding of the time-specific altered expression of a large set of microRNAs in the spinal cord after brachial root avulsion. Electronic supplementary material The online version of this article (doi:10.1186/1471-2202-15-92) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Richards DS, Griffith RW, Romer SH, Alvarez FJ. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate. PLoS One 2014; 9:e97240. [PMID: 24816812 PMCID: PMC4016288 DOI: 10.1371/journal.pone.0097240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Abstract
Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.
Collapse
Affiliation(s)
- Dannette S. Richards
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, United States of America
| | - Ronald W. Griffith
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
| | - Shannon H. Romer
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, United States of America
| | - Francisco J. Alvarez
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, United States of America
- Department of Physiology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lujan HL, Janbaih H, DiCarlo SE. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection. J Appl Physiol (1985) 2014; 116:1148-55. [PMID: 24610530 PMCID: PMC4097824 DOI: 10.1152/japplphysiol.01285.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/28/2014] [Indexed: 12/24/2022] Open
Abstract
Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation.
Collapse
Affiliation(s)
- Heidi L Lujan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
28
|
Buijs FN, Cazarez F, Basualdo MC, Scheer FAJL, Perusquía M, Centurion D, Buijs RM. The suprachiasmatic nucleus is part of a neural feedback circuit adapting blood pressure response. Neuroscience 2014; 266:197-207. [PMID: 24583038 DOI: 10.1016/j.neuroscience.2014.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/16/2022]
Abstract
The suprachiasmatic nucleus (SCN) is typically considered our autonomous clock synchronizing behavior with physiological parameters such as blood pressure (BP), just transmitting time independent of physiology. Yet several studies show that the SCN is involved in the etiology of hypertension. Here, we demonstrate that the SCN is incorporated in a neuronal feedback circuit arising from the nucleus tractus solitarius (NTS), modulating cardiovascular reactivity. Tracer injections into the SCN of male Wistar rats revealed retrogradely filled neurons in the caudal NTS, where BP information is integrated. These NTS projections to the SCN were shown to be glutamatergic and to terminate in the ventrolateral part of the SCN where light information also enters. BP elevations not only induced increased neuronal activity as measured by c-Fos in the NTS but also in the SCN. Lesioning the caudal NTS prevented this activation. The increase of SCN neuronal activity by hypertensive stimuli suggested involvement of the SCN in counteracting BP elevations. Examining this possibility we observed that elevation of BP, induced by α1-agonist infusion, was more than twice the magnitude in SCN-lesioned animals as compared to in controls, indicating indeed an active involvement of the SCN in short-term BP regulation. We propose that the SCN receives BP information directly from the NTS enabling it to react to hemodynamic perturbations, suggesting the SCN to be part of a homeostatic circuit adapting BP response. We discuss how these findings could explain why lifestyle conditions violating signals of the biological clock may, in the long-term, result in cardiovascular disease.
Collapse
Affiliation(s)
- F N Buijs
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - F Cazarez
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - M C Basualdo
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - F A J L Scheer
- Division of Sleep Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, United States
| | - M Perusquía
- Instituto de Investigaciones Biomedicas, UNAM, Mexico
| | - D Centurion
- Department Farmacobiologia, CINVESTAV, México, DF, Mexico
| | - R M Buijs
- Instituto de Investigaciones Biomedicas, UNAM, Mexico.
| |
Collapse
|
29
|
Mischel NA, Llewellyn-Smith IJ, Mueller PJ. Physical (in)activity-dependent structural plasticity in bulbospinal catecholaminergic neurons of rat rostral ventrolateral medulla. J Comp Neurol 2014; 522:499-513. [PMID: 24114875 PMCID: PMC5828158 DOI: 10.1002/cne.23464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/22/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023]
Abstract
Increased activity of the sympathetic nervous system is thought to play a role in the development and progression of cardiovascular disease. Recent work has shown that physical inactivity versus activity alters neuronal structure in brain regions associated with cardiovascular regulation. Our physiological studies suggest that neurons in the rostral ventrolateral medulla (RVLM) are more responsive to excitation in sedentary versus physically active animals. We hypothesized that enhanced functional responses in the RVLM may be due, in part, to changes in the structure of RVLM neurons that control sympathetic activity. We used retrograde tracing and immunohistochemistry for tyrosine hydroxylase (TH) to identify bulbospinal catecholaminergic (C1) neurons in sedentary and active rats after chronic voluntary wheel-running exercise. We then digitally reconstructed their cell bodies and dendrites at different rostrocaudal levels. The dendritic arbors of spinally projecting TH neurons from sedentary rats were more branched than those of physically active rats (P < 0.05). In sedentary rats, dendritic branching was greater in more rostral versus more caudal bulbospinal C1 neurons, whereas, in physically active rats, dendritic branching was consistent throughout the RVLM. In contrast, cell body size and the number of primary dendrites did not differ between active and inactive animals. We suggest that these structural changes provide an anatomical underpinning for the functional differences observed in our in vivo studies. These inactivity-related structural and functional changes may enhance the overall sensitivity of RVLM neurons to excitatory stimuli and contribute to an increased risk of cardiovascular disease in sedentary individuals.
Collapse
Affiliation(s)
- Nicholas A. Mischel
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Ida J. Llewellyn-Smith
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, South Australia 5042 Australia
| | - Patrick J. Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
30
|
Ziemlińska E, Kügler S, Schachner M, Wewiór I, Czarkowska-Bauch J, Skup M. Overexpression of BDNF increases excitability of the lumbar spinal network and leads to robust early locomotor recovery in completely spinalized rats. PLoS One 2014; 9:e88833. [PMID: 24551172 PMCID: PMC3925164 DOI: 10.1371/journal.pone.0088833] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/16/2014] [Indexed: 02/05/2023] Open
Abstract
Strategies to induce recovery from lesions of the spinal cord have not fully resulted in clinical applications. This is a consequence of a number of impediments that axons encounter when trying to regrow beyond the lesion site, and that intraspinal rearrangements are subjected to. In the present study we evaluated (1) the possibility to improve locomotor recovery after complete transection of the spinal cord by means of an adeno-associated (AAV) viral vector expressing the neurotrophin brain-derived neurotrophic factor (BDNF) in lumbar spinal neurons caudal to the lesion site and (2) how the spinal cord transection and BDNF treatment affected neurotransmission in the segments caudal to the lesion site. BDNF overexpression resulted in clear increases in expression levels of molecules involved in glutamatergic (VGluT2) and GABAergic (GABA, GAD65, GAD67) neurotransmission in parallel with a reduction of the potassium-chloride co-transporter (KCC2) which contributes to an inhibitory neurotransmission. BDNF treated animals showed significant improvements in assisted locomotor performance, and performed locomotor movements with body weight support and plantar foot placement on a moving treadmill. These positive effects of BDNF local overexpression were detectable as early as two weeks after spinal cord transection and viral vector application and lasted for at least 7 weeks. Gradually increasing frequencies of clonic movements at the end of the experiment attenuated the quality of treadmill walking. These data indicate that BDNF has the potential to enhance the functionality of isolated lumbar circuits, but also that BDNF levels have to be tightly controlled to prevent hyperexcitability.
Collapse
Affiliation(s)
| | - Sebastian Kügler
- Center of Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
| | - Iwona Wewiór
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
31
|
Yasaka T, Tiong SY, Polgár E, Watanabe M, Kumamoto E, Riddell JS, Todd AJ. A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn. Mol Pain 2014; 10:3. [PMID: 24433581 PMCID: PMC3897975 DOI: 10.1186/1744-8069-10-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 12/01/2022] Open
Abstract
Background Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia.
Collapse
Affiliation(s)
- Toshiharu Yasaka
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
33
|
Malet M, Vieytes CA, Lundgren KH, Seal RP, Tomasella E, Seroogy KB, Hökfelt T, Gebhart GF, Brumovsky PR. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice - effects of peripheral axotomy or hindpaw inflammation. Neuroscience 2013; 248:95-111. [PMID: 23727452 PMCID: PMC3800240 DOI: 10.1016/j.neuroscience.2013.05.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
Abstract
Using specific riboprobes, we characterized the expression of vesicular glutamate transporter (VGLUT)₁-VGLUT₃ transcripts in lumbar 4-5 (L4-5) dorsal root ganglions (DRGs) and the thoracolumbar to lumbosacral spinal cord in male BALB/c mice after a 1- or 3-day hindpaw inflammation, or a 7-day sciatic nerve axotomy. Sham animals were also included. In sham and contralateral L4-5 DRGs of injured mice, VGLUT₁-, VGLUT₂- and VGLUT₃ mRNAs were expressed in ∼45%, ∼69% or ∼17% of neuron profiles (NPs), respectively. VGLUT₁ was expressed in large and medium-sized NPs, VGLUT₂ in NPs of all sizes, and VGLUT₃ in small and medium-sized NPs. In the spinal cord, VGLUT₁ was restricted to a number of NPs at thoracolumbar and lumbar segments, in what appears to be the dorsal nucleus of Clarke, and in mid laminae III-IV. In contrast, VGLUT₂ was present in numerous NPs at all analyzed spinal segments, except the lateral aspects of the ventral horns, especially at the lumbar enlargement, where it was virtually absent. VGLUT₃ was detected in a discrete number of NPs in laminae III-IV of the dorsal horn. Axotomy resulted in a moderate decrease in the number of DRG NPs expressing VGLUT₃, whereas VGLUT₁ and VGLUT₂ were unaffected. Likewise, the percentage of NPs expressing VGLUT transcripts remained unaltered after hindpaw inflammation, both in DRGs and the spinal cord. Altogether, these results confirm previous descriptions on VGLUTs expression in adult mice DRGs, with the exception of VGLUT₁, whose protein expression was detected in a lower percentage of mouse DRG NPs. A detailed account on the location of neurons expressing VGLUTs transcripts in the adult mouse spinal cord is also presented. Finally, the lack of change in the number of neurons expressing VGLUT₁ and VGLUT₂ transcripts after axotomy, as compared to data on protein expression, suggests translational rather than transcriptional regulation of VGLUTs after injury.
Collapse
Affiliation(s)
- M Malet
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C A Vieytes
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina
| | - K H Lundgren
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - R P Seal
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Tomasella
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - K B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - T Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - G F Gebhart
- Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - P R Brumovsky
- Faculty of Biomedical Sciences, Austral University, Buenos Aires, Argentina; CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina; Pittsburgh Center for Pain Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Weaver LC, Fleming JC, Mathias CJ, Krassioukov AV. Disordered cardiovascular control after spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2013; 109:213-33. [PMID: 23098715 DOI: 10.1016/b978-0-444-52137-8.00013-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Damage to the spinal cord disrupts autonomic pathways, perturbing cardiovascular homeostasis. Cardiovascular dysfunction increases with higher levels of injury and greater severity. Disordered blood pressure control after spinal cord injury (SCI) has significant ramifications as cord-injured people have an increased risk of developing heart disease and stroke; cardiovascular dysfunction is currently a leading cause of death among those with SCI. Despite the clinical significance of abnormal cardiovascular control following SCI, this problem has been generally neglected by both the clinical and research community. Both autonomic dysreflexia and orthostatic hypotension are known to prevent and delay rehabilitation, and significantly impair the overall quality of life after SCI. Starting with neurogenic shock immediately after a higher SCI, ensuing cardiovascular dysfunctions include orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. Disordered temperature regulation accompanies these autonomic dysfunctions. This chapter reviews the human and animal studies that have furthered our understanding of the pathophysiology and mechanisms of orthostatic hypotension, autonomic dysreflexia and cardiac arrhythmias. The cardiovascular dysfunction that occurs during sexual function and exercise is elaborated. New awareness of cardiovascular dysfunction after SCI has led to progress toward inclusion of this important autonomic problem in the overall assessment of the neurological condition of cord-injured people.
Collapse
|
35
|
Parker LM, Kumar NN, Lonergan T, Goodchild AK. Neurochemical codes of sympathetic preganglionic neurons activated by glucoprivation. J Comp Neurol 2013; 521:2703-18. [DOI: 10.1002/cne.23310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/10/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Lindsay M. Parker
- The Australian School of Advanced Medicine; Macquarie University; Macquarie Park; 2109 New South Wales; Australia
| | - Natasha N. Kumar
- The Australian School of Advanced Medicine; Macquarie University; Macquarie Park; 2109 New South Wales; Australia
| | - Tina Lonergan
- The Australian School of Advanced Medicine; Macquarie University; Macquarie Park; 2109 New South Wales; Australia
| | - Ann K. Goodchild
- The Australian School of Advanced Medicine; Macquarie University; Macquarie Park; 2109 New South Wales; Australia
| |
Collapse
|
36
|
Llewellyn-Smith IJ, Mueller PJ. Immunoreactivity for the NMDA NR1 subunit in bulbospinal catecholamine and serotonin neurons of rat ventral medulla. Auton Neurosci 2013; 177:114-22. [PMID: 23562375 DOI: 10.1016/j.autneu.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/11/2013] [Accepted: 02/28/2013] [Indexed: 02/02/2023]
Abstract
Bulbospinal neurons in the ventral medulla play important roles in the regulation of sympathetic outflow. Physiological evidence suggests that these neurons are activated by N-methyl-D-aspartate (NMDA) and non-NMDA subtypes of glutamate receptors. In this study, we examined bulbospinal neurons in the ventral medulla for the presence of immunoreactivity for the NMDA NR1 subunit, which is essential for NMDA receptor function. Rats received bilateral injections of cholera toxin B into the tenth thoracic spinal segment to label bulbospinal neurons. Triple immunofluorescent labeling was used to detect cholera toxin B with a blue fluorophore, NR1 with a red fluorophore, and either tyrosine hydroxylase or tryptophan hydroxylase with a green fluorophore. In the rostral ventrolateral medulla, NR1 occurred in all bulbospinal tyrosine hydroxylase-positive neurons and 96% of bulbospinal tyrosine hydroxylase-negative neurons, which were more common in sections containing the facial nucleus. In the raphe pallidus, the parapyramidal region, and the marginal layer, 98% of bulbospinal tryptophan hydroxylase-positive neurons contained NR1 immunoreactivity. NR1 was also present in all of the bulbospinal tryptophan hydroxylase-negative neurons, which comprised 20% of bulbospinal neurons in raphe pallidus and the parapyramidal region. These results show that virtually all bulbospinal tyrosine hydroxylase and non-tyrosine hydroxylase neurons in the rostral ventrolateral medulla and virtually all bulbospinal serotonin and non-serotonin neurons in raphe pallidus and the parapyramidal region express NR1, the obligatory subunit of the NMDA receptor. NMDA receptors on bulbospinal neurons in the rostral ventral medulla likely influence sympathoexcitation in normal and pathological conditions.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
37
|
Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J Neurosci 2012; 32:11854-63. [PMID: 22915126 DOI: 10.1523/jneurosci.2707-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Large projection neurons in lamina III of the rat spinal cord that express the neurokinin 1 receptor are densely innervated by peptidergic primary afferent nociceptors and more sparsely by low-threshold myelinated afferents. However, we know little about their input from other glutamatergic neurons. Here we show that these cells receive numerous contacts from nonprimary boutons that express the vesicular glutamate transporter 2 (VGLUT2), and form asymmetrical synapses on their dendrites and cell bodies. These synapses are significantly smaller than those formed by peptidergic afferents, but provide a substantial proportion of the glutamatergic synapses that the cells receive (over a third of those in laminae I-II and half of those in deeper laminae). Surprisingly, although the dynorphin precursor preprodynorphin (PPD) was only present in 4-7% of VGLUT2 boutons in laminae I-IV, it was found in 58% of the VGLUT2 boutons that contacted these cells. This indicates a highly selective targeting of the lamina III projection cells by glutamatergic neurons that express PPD, and these are likely to correspond to local neurons (interneurons and possibly projection cells). Since many PPD-expressing dorsal horn neurons respond to noxious stimulation, this suggests that the lamina III projection cells receive powerful monosynaptic and polysynaptic nociceptive input. Excitatory interneurons in the dorsal horn have been shown to possess I(A) currents, which limit their excitability and can underlie a form of activity-dependent intrinsic plasticity. It is therefore likely that polysynaptic inputs to the lamina III projection neurons are recruited during the development of chronic pain states.
Collapse
|
38
|
Veitenheimer B, Osborn JW. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats. Am J Physiol Heart Circ Physiol 2012; 304:H303-10. [PMID: 23161878 DOI: 10.1152/ajpheart.00629.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ~15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension.
Collapse
Affiliation(s)
- Britta Veitenheimer
- The Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
39
|
Wu L, Chang HH, Havton LA. The soma and proximal dendrites of sympathetic preganglionic neurons innervating the major pelvic ganglion in female rats receive predominantly inhibitory inputs. Neuroscience 2012; 217:32-45. [PMID: 22583797 DOI: 10.1016/j.neuroscience.2012.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/20/2023]
Abstract
Sympathetic preganglionic neurons (SPNs) in the intermediolateral (IML) and dorsal commissural nucleus (DCN) of the thoracolumbar segments of the spinal cord contribute to the autonomic control of the pelvic visceral organs. We examined the morphology of these neurons at the light and electron microscopic level and quantified the boutons apposing the soma and proximal dendrites of the SPNs innervating the major pelvic ganglion (MPG) in female rats. The majority of these cells resided in the DCN (61.6±6.2%) and IML (33.2±4.4%) nuclei. Measurements of cell volume and shape revealed no differences between SPNs sampled from the DCN and IML populations. Ultrastructural studies of DCN and IML SPNs revealed that coverage of SPNs by synaptic inputs is sparse, with an average of 11.60±2.41% of the soma membrane and 16.33±6.18% of proximal dendrites apposed by boutons, though some somata exhibited no synaptic coverage. Three distinct types of boutons were found to appose the SPN somata and dendrites. The putatively inhibitory F-type bouton covered a significantly greater percentage of membrane on the soma (8.48±2.12%) and dendrites (12.65±4.34%), than the S-type bouton, a putatively excitatory bouton, which only covered 2.94±0.70% of the somatic and 3.68±2.98% of the dendritic membranes. Boutons with dense-core vesicles were rare. Our results demonstrate that SPNs of the DCN and IML of female rats are similar morphologically, and that synaptic input on these cells, though sparse, is predominantly inhibitory.
Collapse
Affiliation(s)
- L Wu
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
40
|
Llewellyn-Smith IJ, Kellett DO, Jordan D, Browning KN, Travagli RA. Oxytocin-immunoreactive innervation of identified neurons in the rat dorsal vagal complex. Neurogastroenterol Motil 2012; 24:e136-46. [PMID: 22188490 PMCID: PMC3276745 DOI: 10.1111/j.1365-2982.2011.01851.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxytocin (OXT) has been implicated in reproduction and social interactions and in the control of digestion and blood pressure. OXT-immunoreactive axons occur in the dorsal vagal complex (DVC; nucleus tractus solitarius, NTS, dorsal motor nucleus of the vagus, DMV, and area postrema, AP), which contains neurons that regulate autonomic homeostasis. The aim of the present work is to provide a systematic investigation of the OXT-immunoreactive innervation of dorsal motor nucleus of the vagus (DMV) neurons involved in the control of gastrointestinal (GI) function. METHODS We studied DMV neurons identified by (i) prior injection of retrograde tracers in the stomach, ileum, or cervical vagus or (ii) induction of c-fos expression by glucoprivation with 2-deoxyglucose. Another subgroup of DMV neurons was identified electrophysiologically by stimulation of the cervical vagus and then juxtacellularly labeled with biotinamide. We used two- or three-color immunoperoxidase labeling for studies at the light microscopic level. KEY RESULTS Close appositions from OXT-immunoreactive varicosities were found on the cell bodies, dendrites, and axons of DMV neurons that projected to the GI tract and that responded to 2-deoxyglucose and juxtacellularly labeled DMV neurons. Double staining for OXT and choline acetyltransferase revealed that OXT innervation was heavier in the caudal and lateral DMV than in other regions. OXT-immunoreactive varicosities also closely apposed a small subset of tyrosine hydroxylase-immunoreactive NTS and DMV neurons. CONCLUSIONS & INFERENCES Our results provide the first anatomical evidence for direct OXT-immunoreactive innervation of GI-related neurons in the DMV.
Collapse
Affiliation(s)
- Ida J. Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042 AUSTRALIA
| | - Daniel O. Kellett
- Physiology Department, UCL, Royal Free Campus, Rowland Hill Street, London NW3 3PF UK
| | - David Jordan
- Physiology Department, UCL, Royal Free Campus, Rowland Hill Street, London NW3 3PF UK
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033 USA
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033 USA
| |
Collapse
|
41
|
Wu L, Wu J, Chang HH, Havton LA. Selective plasticity of primary afferent innervation to the dorsal horn and autonomic nuclei following lumbosacral ventral root avulsion and reimplantation in long term studies. Exp Neurol 2011; 233:758-66. [PMID: 22178333 DOI: 10.1016/j.expneurol.2011.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/13/2011] [Accepted: 11/25/2011] [Indexed: 12/25/2022]
Abstract
Previous studies involving injuries to the nerves of the cauda equina and the conus medullaris have shown that lumbosacral ventral root avulsion in rat models results in denervation and dysfunction of the lower urinary tract, retrograde and progressive cell death of the axotomized motor and parasympathetic neurons, as well as the emergence of neuropathic pain. Root reimplantation has also been shown to ameliorate several of these responses, but experiments thus far have been limited to studying the effects of lesion and reimplantation local to the lumbosacral region. Here, we have expanded the region of investigation after lumbosacral ventral root avulsion and reimplantation to include the thoracolumbar sympathetic region of the spinal cord. Using a retrograde tracer injected into the major pelvic ganglion, we were able to define the levels of the spinal cord that contain sympathetic preganglionic neurons innervating the lower urinary tract. We have conducted studies on the effects of the lumbosacral ventral root avulsion and reimplantation models on the afferent innervation of the dorsal horn and autonomic nuclei at both thoracolumbar and lumbosacral levels through immunohistochemistry for the markers calcitonin gene-related peptide (CGRP) and vesicular glutamate transporter 1 (VGLUT1). Surprisingly, our experiments reveal a selective and significant decrease of CGRP-positive innervation in the dorsal horn at thoracolumbar levels that is partially restored with root reimplantation. However, no similar changes were detected at the lumbosacral levels despite the injury and repair targeting efferent neurons, and being performed at the lumbosacral levels. Despite the changes evident in the thoracolumbar dorsal horn, we find no changes in afferent innervation of the autonomic nuclei at either sympathetic or parasympathetic segmental levels by CGRP or VGLUT1. We conclude that even remote, efferent root injuries and repair procedures can have an effect on remote and non-lesioned sensory systems sharing common peripheral ganglia.
Collapse
Affiliation(s)
- Lisa Wu
- Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
42
|
Alvarez FJ, Titus-Mitchell HE, Bullinger KL, Kraszpulski M, Nardelli P, Cope TC. Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. I. Loss of VGLUT1/IA synapses on motoneurons. J Neurophysiol 2011; 106:2450-70. [PMID: 21832035 DOI: 10.1152/jn.01095.2010] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor and sensory proprioceptive axons reinnervate muscles after peripheral nerve transections followed by microsurgical reattachment; nevertheless, motor coordination remains abnormal and stretch reflexes absent. We analyzed the possibility that permanent losses of central IA afferent synapses, as a consequence of peripheral nerve injury, are responsible for this deficit. VGLUT1 was used as a marker of proprioceptive synapses on rat motoneurons. After nerve injuries synapses are stripped from motoneurons, but while other excitatory and inhibitory inputs eventually recover, VGLUT1 synapses are permanently lost on the cell body (75-95% synaptic losses) and on the proximal 100 μm of dendrite (50% loss). Lost VGLUT1 synapses did not recover, even many months after muscle reinnervation. Interestingly, VGLUT1 density in more distal dendrites did not change. To investigate whether losses are due to VGLUT1 downregulation in injured IA afferents or to complete synaptic disassembly and regression of IA ventral projections, we studied the central trajectories and synaptic varicosities of axon collaterals from control and regenerated afferents with IA-like responses to stretch that were intracellularly filled with neurobiotin. VGLUT1 was present in all synaptic varicosities, identified with the synaptic marker SV2, of control and regenerated afferents. However, regenerated afferents lacked axon collaterals and synapses in lamina IX. In conjunction with the companion electrophysiological study [Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC. J Neurophysiol (August 10, 2011). doi:10.1152/jn.01097.2010], we conclude that peripheral nerve injuries cause a permanent retraction of IA afferent synaptic varicosities from lamina IX and disconnection with motoneurons that is not recovered after peripheral regeneration and reinnervation of muscle by sensory and motor axons.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Sardella T, Polgár E, Watanabe M, Todd A. A quantitative study of neuronal nitric oxide synthase expression in laminae I-III of the rat spinal dorsal horn. Neuroscience 2011; 192:708-20. [PMID: 21763759 PMCID: PMC3183229 DOI: 10.1016/j.neuroscience.2011.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 02/02/2023]
Abstract
Nitric oxide produced by neuronal nitric oxide synthase (nNOS) in the spinal cord is required for development of hyperalgesia in inflammatory and neuropathic pain states. nNOS is expressed by some dorsal horn neurons, and an early study that used a histochemical method to identify these cells suggested that they were mainly inhibitory interneurons. We have carried out a quantitative analysis of nNOS-immunoreactivity in laminae I-III of the rat dorsal horn, to determine the proportion of inhibitory and excitatory neurons and axonal boutons that express the protein. nNOS was present in ∼5% of neurons in laminae I and III, and 18% of those in lamina II. Although most cells with strong nNOS immunostaining were GABA-immunoreactive, two-thirds of the nNOS-positive cells in lamina II and half of those in lamina III were not GABAergic, and some of these expressed protein kinase Cγ (PKCγ). We estimate that nNOS is present in 17-19% of the inhibitory interneurons in laminae I-II, and 6% of those in lamina III. However, our results suggest that nNOS is also expressed at a relatively low level by a significant proportion (∼17%) of excitatory interneurons in lamina II. nNOS was seldom seen in boutons that contained vesicular glutamate transporter 2, which is expressed by excitatory interneurons, but was co-localised with the vesicular GABA transporter (VGAT, a marker for GABAergic and glycinergic axons). nNOS was detected in 13% of VGAT boutons in lamina I and in 7-8% of those in laminae II-III. However, it was only found in 2-4% of the VGAT boutons that were presynaptic to PKCγ-expressing interneurons in this region. These results indicate that nNOS is more widely expressed than previously thought, being present in both inhibitory and excitatory neurons. They provide further evidence that axons of neurochemically defined populations of inhibitory interneuron are selective in their post-synaptic targets.
Collapse
Affiliation(s)
- T.C.P. Sardella
- Institute of Neuroscience and Psychology, West Medical Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
| | - E. Polgár
- Institute of Neuroscience and Psychology, West Medical Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
| | - M. Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - A.J. Todd
- Institute of Neuroscience and Psychology, West Medical Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
- Corresponding author. Tel: +44-141-330-5868; fax: +44-141-330-2868
| |
Collapse
|
44
|
Gnanamanickam GJE, Llewellyn-Smith IJ. Innervation of the rat uterus at estrus: a study in full-thickness, immunoperoxidase-stained whole-mount preparations. J Comp Neurol 2011; 519:621-43. [PMID: 21246547 DOI: 10.1002/cne.22515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The innervation of the nonpregnant rat uterus has been studied in histological sections, which contain only small samples of nerves and are unlikely to afford a complete picture of uterine innervation. Here we used whole-mount preparations of entire full-thickness uterine horns from nonpregnant rats in estrus to visualize autonomic or sensory nerves with peroxidase immunohistochemistry. Immunoreactivity was studied for tyrosine hydroxylase (TH)-labeled sympathetic nerves; vesicular acetylcholine transporter (VAChT), parasympathetic nerves; and substance P (SP) and calcitonin gene-related peptide (CGRP), sensory nerves. Neuropeptide Y (NPY) and nitric oxide synthase (NOS) identified more than one of these functionally distinct nerve types. Axons of all neurochemical classes entered the uterus at the mesometrium and innervated the uterine smooth muscle. The linea uteri, a dense band of longitudinal muscle opposite the mesometrium, contained more TH-, NPY-, CGRP-, and VAChT-immunoreactive axons than the remaining smooth muscle. Axons immunoreactive for NPY, SP, NOS, and VAChT formed a plexus near the circular muscle-endometrium interface. Rare TH- and NPY-immunoreactive axons and occasional CGRP-immunoreactive axons occurred close to uterine glands. Blood vessels had dense perivascular plexuses of TH- and NPY-containing axons and less dense NOS-, SP-, CGRP-, and VAChT-positive plexuses. The circular muscle plexus and glands were absent opposite the mesometrium. Uterine arterioles formed an interconnected network throughout the uterus. This article provides the first comprehensive description of the autonomic and sensory innervation of the nonpregnant rat uterus and will be a foundation for future studies on changes in uterine innervation caused by normal physiological or pathophysiological challenges.
Collapse
Affiliation(s)
- Greta J E Gnanamanickam
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
45
|
Abstract
The lower urinary tract (LUT) has two functions: (1) the storage of waste products in the form of urine and (2) the elimination of those wastes through micturition. The LUT operates in a simple "on-off" fashion, either storing urine or releasing it during voiding. While this activity may seem simple, micturition is controlled by a complex set of peripheral neurons that are, in turn, coordinated by cell groups in the spinal cord, brainstem, and brain. When this careful coordination is interrupted, the control of the bladder is lost, resulting in incontinence or retention of urine. The purpose of this chapter is to review how the neural systems coordinating the activity of the lower urinary tract form neural circuits that are responsible for either maintaining continence (the storage reflex) or inducing micturition (the voiding reflex). We will also discuss the brain centers that enable higher organisms to voluntarily choose the time and place for voiding. Finally, we will discuss how defects in the pathways controlling micturition can lead to urinary incontinence and which treatments may normalize LUT function.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.
| | | |
Collapse
|
46
|
Densmore VS, Kalous A, Keast JR, Osborne PB. Above-level mechanical hyperalgesia in rats develops after incomplete spinal cord injury but not after cord transection, and is reversed by amitriptyline, morphine and gabapentin. Pain 2010; 151:184-193. [DOI: 10.1016/j.pain.2010.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/23/2010] [Accepted: 07/10/2010] [Indexed: 12/22/2022]
|
47
|
Keast JR, Forrest SL, Osborne PB. Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors. J Comp Neurol 2010; 518:3024-45. [PMID: 20533358 DOI: 10.1002/cne.22378] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most small unmyelinated neurons in adult rat dorsal root ganglia (DRG) express one or more of the coreceptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin, and artemin (GFRalpha1, GFRalpha2, and GFRalpha3, respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitization. In this study we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found that the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord there was a widespread increase in neuronal GFRalpha1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRalpha3-IR also increased but in a more restricted area. In contrast, GFRalpha2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabeled L5 DRG sections suggested the main effect of injury on GFRalpha1- and GFRalpha3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRalpha2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRalpha2-IR neurons. Our results suggest that the DRG neuronal populations targeted by GDNF, neurturin, or artemin and the effect of exogenous GFLs could change significantly after a peripheral nerve injury.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | | | | |
Collapse
|
48
|
Llewellyn-Smith IJ. Anatomy of synaptic circuits controlling the activity of sympathetic preganglionic neurons. J Chem Neuroanat 2009; 38:231-9. [DOI: 10.1016/j.jchemneu.2009.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/17/2023]
|
49
|
Krassioukov A. Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 2009; 169:157-64. [PMID: 19682607 DOI: 10.1016/j.resp.2009.08.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/14/2009] [Accepted: 08/05/2009] [Indexed: 12/30/2022]
Abstract
Spinal cord injury (SCI) is commonly associated with devastating paralysis. However, this condition also results in a variety of autonomic dysfunctions, primarily: cardiovascular, broncho-pulmonary, urinary, gastrointestinal, sexual, and thermoregulatory. SCI and the resultant unstable autonomic control are responsible for increased mortality from cardiovascular and respiratory disease among individuals with SCI. Injury level and severity directly correlate to the severity of autonomic dysfunctions following SCI. Following high cervical SCI, parasympathetic (vagal) control will remain intact, while the spinal sympathetic circuits will lose their tonic supraspinal autonomic control. On the other hand, in individuals with injury below the 5th thoracic segment, both the sympathetic and parasympathetic control of the heart and broncho-pulmonary tree are intact. As a result of injury level, individuals with quadriplegia versus those with paraplegia will have very different cardiovascular and respiratory responses. Furthermore, similar relationships can exist between the level of SCI and function of other organs that are under autonomic control (bladder, bowel, sweat glands, etc.). It is also important to appreciate that high cervical injuries result in significant respiratory dysfunctions due to the involvement of the diaphragm and a larger portion of the accessory respiratory muscles. Early recognition and timely management of autonomic dysfunctions in individuals with SCI are crucial for the long term health outcomes in this population.
Collapse
Affiliation(s)
- Andrei Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver Health Authority, Vancouver V5Z 1M9, BC, Canada.
| |
Collapse
|
50
|
Hinrichs JM, Llewellyn-Smith IJ. Variability in the occurrence of nitric oxide synthase immunoreactivity in different populations of rat sympathetic preganglionic neurons. J Comp Neurol 2009; 514:492-506. [DOI: 10.1002/cne.22015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|