1
|
Shi Y, Qin L, Wu M, Zheng J, Xie T, Shao Z. Gut neuroendocrine signaling regulates synaptic assembly in C. elegans. EMBO Rep 2022; 23:e53267. [PMID: 35748387 DOI: 10.15252/embr.202153267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Synaptic connections are essential to build a functional brain. How synapses are formed during development is a fundamental question in neuroscience. Recent studies provided evidence that the gut plays an important role in neuronal development through processing signals derived from gut microbes or nutrients. Defects in gut-brain communication can lead to various neurological disorders. Although the roles of the gut in communicating signals from its internal environment to the brain are well known, it remains unclear whether the gut plays a genetically encoded role in neuronal development. Using C. elegans as a model, we uncover that a Wnt-endocrine signaling pathway in the gut regulates synaptic development in the brain. A canonical Wnt signaling pathway promotes synapse formation through regulating the expression of the neuropeptides encoding gene nlp-40 in the gut, which functions through the neuronally expressed GPCR/AEX-2 receptor during development. Wnt-NLP-40-AEX-2 signaling likely acts to modulate neuronal activity. Our study reveals a genetic role of the gut in synaptic development and identifies a novel contribution of the gut-brain axis.
Collapse
Affiliation(s)
- Yanjun Shi
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Qin
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengting Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junyu Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Xie
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Shao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Grégoire A, Deggouj N, Dricot L, Decat M, Kupers R. Brain Morphological Modifications in Congenital and Acquired Auditory Deprivation: A Systematic Review and Coordinate-Based Meta-Analysis. Front Neurosci 2022; 16:850245. [PMID: 35418829 PMCID: PMC8995770 DOI: 10.3389/fnins.2022.850245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Neuroplasticity following deafness has been widely demonstrated in both humans and animals, but the anatomical substrate of these changes is not yet clear in human brain. However, it is of high importance since hearing loss is a growing problem due to aging population. Moreover, knowing these brain changes could help to understand some disappointing results with cochlear implant, and therefore could improve hearing rehabilitation. A systematic review and a coordinate-based meta-analysis were realized about the morphological brain changes highlighted by MRI in severe to profound hearing loss, congenital and acquired before or after language onset. 25 papers were included in our review, concerning more than 400 deaf subjects, most of them presenting prelingual deafness. The most consistent finding is a volumetric decrease in gray matter around bilateral auditory cortex. This change was confirmed by the coordinate-based meta-analysis which shows three converging clusters in this region. The visual areas of deaf children is also significantly impacted, with a decrease of the volume of both gray and white matters. Finally, deafness is responsible of a gray matter increase within the cerebellum, especially at the right side. These results are largely discussed and compared with those from deaf animal models and blind humans, which demonstrate for example a much more consistent gray matter decrease along their respective primary sensory pathway. In human deafness, a lot of other factors than deafness could interact on the brain plasticity. One of the most important is the use of sign language and its age of acquisition, which induce among others changes within the hand motor region and the visual cortex. But other confounding factors exist which have been too little considered in the current literature, such as the etiology of the hearing impairment, the speech-reading ability, the hearing aid use, the frequent associated vestibular dysfunction or neurocognitive impairment. Another important weakness highlighted by this review concern the lack of papers about postlingual deafness, whereas it represents most of the deaf population. Further studies are needed to better understand these issues, and finally try to improve deafness rehabilitation.
Collapse
Affiliation(s)
- Anaïs Grégoire
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Naïma Deggouj
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Monique Decat
- Department of ENT, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Ron Kupers
- Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Ecole d’Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Lee HJ, Smieja D, Polonenko MJ, Cushing SL, Papsin BC, Gordon KA. Consistent and chronic cochlear implant use partially reverses cortical effects of single sided deafness in children. Sci Rep 2020; 10:21526. [PMID: 33298987 PMCID: PMC7726152 DOI: 10.1038/s41598-020-78371-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023] Open
Abstract
Potentially neuroprotective effects of CI use were studied in 22 children with single sided deafness (SSD). Auditory-evoked EEG confirmed strengthened representation of the intact ear in the ipsilateral auditory cortex at initial CI activation in children with early-onset SSD (n = 15) and late-onset SSD occurring suddenly in later childhood/adolescence (n = 7). In early-onset SSD, representation of the hearing ear decreased with chronic CI experience and expected lateralization to the contralateral auditory cortex from the CI increased with longer daily CI use. In late-onset SSD, abnormally high activity from the intact ear in the ipsilateral cortex reduced, but responses from the deaf ear weakened despite CI use. Results suggest that: (1) cortical reorganization driven by unilateral hearing can occur throughout childhood; (2) chronic and consistent CI use can partially reverse these effects; and (3) CI use may not protect children with late-onset SSD from ongoing deterioration of pathways from the deaf ear.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Daniel Smieja
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada
| | - Melissa Jane Polonenko
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada
| | - Sharon Lynn Cushing
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Blake Croll Papsin
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Karen Ann Gordon
- Archie's Cochlear Implant Laboratory, Hospital for Sick Children, Rm 6D08, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Communication Disorders, Hospital for Sick Children, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Pan Y, Monje M. Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J Neurosci 2020; 40:944-954. [PMID: 31996470 PMCID: PMC6988998 DOI: 10.1523/jneurosci.0740-19.2019] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The brilliant and often prescient hypotheses of Ramon y Cajal have proven foundational for modern neuroscience, but his statement that "In adult centers the nerve paths are something fixed, ended, immutable … " is an exception that did not stand the test of empirical study. Mechanisms of cellular and circuit-level plasticity continue to shape and reshape many regions of the adult nervous system long after the neurodevelopmental period. Initially focused on neurons alone, the field has followed a meteoric trajectory in understanding of activity-regulated neurodevelopment and ongoing neuroplasticity with an arc toward appreciating neuron-glial interactions and the role that each neural cell type plays in shaping adaptable neural circuity. In this review, as part of a celebration of the 50th anniversary of Society for Neuroscience, we provide a historical perspective, following this arc of inquiry from neuronal to neuron-glial mechanisms by which activity and experience modulate circuit structure and function. The scope of this consideration is broad, and it will not be possible to cover the wealth of knowledge about all aspects of activity-dependent circuit development and plasticity in depth.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
5
|
Gordon K, Kral A. Animal and human studies on developmental monaural hearing loss. Hear Res 2019; 380:60-74. [DOI: 10.1016/j.heares.2019.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/26/2022]
|
6
|
Graña GD, Hutson KA, Badea A, Pappa A, Scott W, Fitzpatrick DC. The organization of frequency and binaural cues in the gerbil inferior colliculus. J Comp Neurol 2017; 525:2050-2074. [PMID: 27997696 PMCID: PMC5473171 DOI: 10.1002/cne.24155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/12/2022]
Abstract
The inferior colliculus (IC) is the common target of separate pathways that transmit different types of auditory information. Beyond tonotopy, little is known about the organization of response properties within the 3-dimensional layout of the auditory midbrain in most species. Through study of interaural time difference (ITD) processing, the functional properties of neurons can be readily characterized and related to specific pathways. To characterize the representation of ITDs relative to the frequency and hodological organization of the IC, the properties of neurons were recorded and the sites recovered histologically. Subdivisions of the IC were identified based on cytochrome oxidase (CO) histochemistry. The results were plotted within a framework formed by an MRI atlas of the gerbil brain. The central nucleus was composed of two parts, and lateral and dorsal cortical areas were identified. The lateral part of the central nucleus had the highest CO activity in the IC and a high proportion of neurons sensitive to ITDs. The medial portion had lower CO activity and fewer ITD-sensitive neurons. A common tonotopy with a dorsolateral to ventromedial gradient of low to high frequencies spanned the two regions. The distribution of physiological responses was in close agreement with known patterns of ascending inputs. An understanding of the 3-dimensional organization of the IC is needed to specify how the single tonotopic representation in the IC central nucleus leads to the multiple tonotopic representations in core areas of the auditory cortex.
Collapse
Affiliation(s)
- Gilberto David Graña
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kendall A. Hutson
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexandra Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Andrew Pappa
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William Scott
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Kral A, Yusuf PA, Land R. Higher-order auditory areas in congenital deafness: Top-down interactions and corticocortical decoupling. Hear Res 2017; 343:50-63. [DOI: 10.1016/j.heares.2016.08.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/25/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022]
|
8
|
Tillein J, Hubka P, Kral A. Monaural Congenital Deafness Affects Aural Dominance and Degrades Binaural Processing. Cereb Cortex 2016; 26:1762-77. [PMID: 26803166 PMCID: PMC4785956 DOI: 10.1093/cercor/bhv351] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cortical development extensively depends on sensory experience. Effects of congenital monaural and binaural deafness on cortical aural dominance and representation of binaural cues were investigated in the present study. We used an animal model that precisely mimics the clinical scenario of unilateral cochlear implantation in an individual with single-sided congenital deafness. Multiunit responses in cortical field A1 to cochlear implant stimulation were studied in normal-hearing cats, bilaterally congenitally deaf cats (CDCs), and unilaterally deaf cats (uCDCs). Binaural deafness reduced cortical responsiveness and decreased response thresholds and dynamic range. In contrast to CDCs, in uCDCs, cortical responsiveness was not reduced, but hemispheric-specific reorganization of aural dominance and binaural interactions were observed. Deafness led to a substantial drop in binaural facilitation in CDCs and uCDCs, demonstrating the inevitable role of experience for a binaural benefit. Sensitivity to interaural time differences was more reduced in uCDCs than in CDCs, particularly at the hemisphere ipsilateral to the hearing ear. Compared with binaural deafness, unilateral hearing prevented nonspecific reduction in cortical responsiveness, but extensively reorganized aural dominance and binaural responses. The deaf ear remained coupled with the cortex in uCDCs, demonstrating a significant difference to deprivation amblyopia in the visual system.
Collapse
Affiliation(s)
- Jochen Tillein
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany Department of Otorhinolaryngology, J.W. Goethe University, Frankfurt am Main, Germany MED-EL GmbH, Innsbruck, Austria
| | - Peter Hubka
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Andrej Kral
- Cluster of Excellence Hearing4all, Institute of AudioNeuroTechnology and Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
9
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
10
|
Mishra SK, Boddupally SP, Rayapati D. Auditory Learning in Children With Cochlear Implants. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2015; 58:1052-1060. [PMID: 25812172 DOI: 10.1044/2015_jslhr-h-14-0340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
PURPOSE The purpose of this study was to examine and characterize the training-induced changes in speech-in-noise perception in children with congenital deafness who have cochlear implants (CIs). METHOD Twenty-seven children with congenital deafness who have CIs were studied. Eleven children with CIs were trained on a speech-in-noise task, number recognition in white noise, at home for 5 weeks (total 40 hr). Speech recognition thresholds (SRTs) in the trained, partially trained (numbers in speech-shaped noise), and untrained (digit triplets in speech-shaped noise) conditions were measured before, immediately after, and 3 weeks after training completion. Data were also collected from children (n = 13) and adults (n = 5) with normal hearing for comparison. RESULTS Analyses indicated that following training, the performance of children with CIs improved for all speech-in-noise tasks (∆SRT was approximately 3 dB). Training-induced improvements in speech-in-noise performance were retained for 3 weeks following cessation of training. Untrained children with CIs showed no such improvements. The performance of children with CIs, even after intensive training, was significantly lower than children and adults with normal hearing. CONCLUSIONS Training enhances speech-in-noise performance for children with congenital deafness who have CIs. Learning effects were stable and generalized to similar but untrained conditions. Current findings are encouraging for the consideration of home-based auditory training to be included in the pediatric CI habilitation programs.
Collapse
|
11
|
Kral A, Hubka P, Tillein J. Strengthening of hearing ear representation reduces binaural sensitivity in early single-sided deafness. Audiol Neurootol 2015; 20 Suppl 1:7-12. [PMID: 25998842 DOI: 10.1159/000380742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Single-sided deafness initiates extensive adaptations in the central auditory system, with the consequence that a stronger and a weaker ear representation develops in the auditory brain. Animal studies demonstrated that the effects are substantially stronger if the condition starts early in development. Sequential binaural cochlear implantations with longer interimplant delays demonstrate that the speech comprehension at the weaker ear is substantially compromised. A pronounced loss of the ability to extract and represent binaural localisation cues accompanies this condition, as shown in animal models.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, School of Medicine, Hannover Medical University, Hannover, Germany
| | | | | |
Collapse
|
12
|
Fuentes-Santamaría V, Alvarado JC, López-Muñoz DF, Melgar-Rojas P, Gabaldón-Ull MC, Juiz JM. Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci 2014; 8:319. [PMID: 25352772 PMCID: PMC4195288 DOI: 10.3389/fnins.2014.00319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/19/2014] [Indexed: 11/13/2022] Open
Abstract
Conductive hearing loss causes a progressive decline in cochlear activity that may result in functional and structural modifications in auditory neurons. However, whether these activity-dependent changes are accompanied by a glial response involving microglia, astrocytes, or both has not yet been fully elucidated. Accordingly, the present study was designed to determine the involvement of glial related mechanisms in the anteroventral cochlear nucleus (AVCN) of adult rats at 1, 4, 7, and 15 d after removing middle ear ossicles. Quantitative immunohistochemistry analyses at light microscopy with specific markers of microglia or astroglia along with immunocytochemistry at the electron microscopy level were used. Also, in order to test whether trophic support by neurotrophins is modulated in glial cells by auditory activity, the expression and distribution of neurotrophin-3 (NT-3) and its colocalization with microglial or astroglial markers was investigated. Diminished cochlear activity after middle ear ossicle removal leads to a significant ipsilateral increase in the mean gray levels and stained area of microglial cells but not astrocytes in the AVCN at 1 and 4 d post-lesion as compared to the contralateral side and control animals. These results suggest that microglial cells but not astrocytes may act as dynamic modulators of synaptic transmission in the cochlear nucleus immediately following unilateral hearing loss. On the other hand, NT-3 immunostaining was localized mainly in neuronal cell bodies and axons and was upregulated at 1, 4 and 7 d post-lesion. Very few glial cells expressed this neurotrophin in both control and experimental rats, suggesting that NT-3 is primarily activated in neurons and not as much in glia after limiting auditory activity in the AVCN by conductive hearing loss.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - Juan C Alvarado
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - Diego F López-Muñoz
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - Pedro Melgar-Rojas
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - María C Gabaldón-Ull
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| | - José M Juiz
- Facultad de Medicina, Instituto de Investigación en Discapacidades, Neurológicas (IDINE), Universidad de Castilla-La Mancha Albacete, Spain
| |
Collapse
|
13
|
Auditory neuroplasticity, hearing loss and cochlear implants. Cell Tissue Res 2014; 361:251-69. [DOI: 10.1007/s00441-014-2004-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
14
|
Cant NB. Patterns of convergence in the central nucleus of the inferior colliculus of the Mongolian gerbil: organization of inputs from the superior olivary complex in the low frequency representation. Front Neural Circuits 2013; 7:29. [PMID: 23509001 PMCID: PMC3589697 DOI: 10.3389/fncir.2013.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 02/07/2013] [Indexed: 11/13/2022] Open
Abstract
Projections to the inferior colliculus (IC) from the lateral and medial superior olivary nuclei (LSO and MSO) were studied in the gerbil (Meriones unguiculatus) with neuroanatomical tract-tracing methods. The terminal fields of projecting axons were labeled via anterograde transport of biotinylated dextran amine (BDA) and were localized on series of horizontal sections through the IC. In addition, to make the results easier to visualize in three dimensions and to facilitate comparisons among cases, the data were also reconstructed into the transverse plane. The results show that the terminal fields from the low frequency parts of the LSO and MSO are concentrated in a dorsal, lateral, and rostral area that is referred to as the "pars lateralis" of the central nucleus by analogy with the cat. This region also receives substantial input from both the contralateral and ipsilateral cochlear nuclei (Cant and Benson, 2008) and presumably plays a major role in processing binaural, low frequency information. The basic pattern of organization in the gerbil IC is similar to that of other rodents, although the low frequency part of the central nucleus in gerbils appears to be relatively greater than in the rat, consistent with differences in the audiograms of the two species.
Collapse
Affiliation(s)
- Nell B. Cant
- Department of Neurobiology, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
15
|
Kral A, Hubka P, Heid S, Tillein J. Single-sided deafness leads to unilateral aural preference within an early sensitive period. ACTA ACUST UNITED AC 2012; 136:180-93. [PMID: 23233722 DOI: 10.1093/brain/aws305] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Unilateral deafness has a high incidence in children. In addition to children who are born without hearing in one ear, children with bilateral deafness are frequently equipped only with one cochlear implant, leaving the other ear deaf. The present study investigates the effects of such single-sided deafness during development in the congenitally deaf cat. The investigated animals were either born with unilateral deafness or received a cochlear implant in one ear and were subjected to chronic monaural stimulation. In chronically stimulated animals, implantation ages were at the following three critical developmental points: 'early' during the peak of functional cortical synaptogenesis in deaf animals; 'intermediate' at the age when synaptic activity in the deaf cats dropped to the level of hearing control cats and finally, 'late' at the age when the evoked synaptic activity fell below the level of hearing control cats. After periods of unilateral hearing, local field potentials were recorded from the cortical surface using a microelectrode at ∼100 recording positions. Stimulation was with cochlear implants at both ears. The measures evaluated were dependent only on the symmetry of aural input: paired differences of onset latencies and paired relations of peak amplitudes of local field potentials. A massive reorganization of aural preference in favour of the hearing ear was found in these measures if the onset of unilateral hearing was early (before or around the peak of functional synaptogenesis). The effect was reduced if onset of unilateral hearing was in the intermediate period, and it disappeared if the onset was late. In early onset of unilateral deafness, the used ear became functionally dominant with respect to local field potential onset latency and amplitude. This explains the inferior outcome of implantations at the second-implanted ear compared with first-implanted ear in children. However, despite a central disadvantage for the deaf ear, it still remained capable of activating the auditory cortex. Appropriate training may thus help to improve the performance at the second-implanted ear. In conclusion, periods of monaural stimulation should be kept as short as possible, and training focused on the deaf ear should be introduced after delayed second implantation in children.
Collapse
Affiliation(s)
- Andrej Kral
- Institute of Audioneurotechnology, Feodor-Lynen-Strasse 35, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
16
|
Karcz A, Rübsamen R, Kopp-Scheinpflug C. Low-threshold potassium currents stabilize IID-sensitivity in the inferior colliculus. Front Neural Circuits 2012; 6:60. [PMID: 22969707 PMCID: PMC3431505 DOI: 10.3389/fncir.2012.00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/14/2012] [Indexed: 11/24/2022] Open
Abstract
The inferior colliculus (IC) is a midbrain nucleus that exhibits sensitivity to differences in interaural time and intensity (ITDs and IIDs) and integrates information from the auditory brainstem to provide an unambiguous representation of sound location across the azimuth. Further upstream, in the lateral superior olive (LSO), absence of low-threshold potassium currents in Kcna1−/− mice interfered with response onset timing and restricted IID-sensitivity to the hemifield of the excitatory ear. Assuming the IID-sensitivity in the IC to be at least partly inherited from LSO neurons, the IC IID-encoding was compared between wild-type (Kcna1+/+) and Kcna1−/− mice. We asked whether the effect observed in the Kcna1−/− LSO is (1) simply propagated into the IC, (2) is enhanced and amplified or, (3) alternatively, is compensated and so no longer detectable. Our results show that general IC response properties as well as the distribution of IID-functions were comparable in Kcna1−/− and Kcna1+/+ mice. In agreement with the literature IC neurons exhibited a higher level-invariance of IID-sensitivity compared to LSO neurons. However, manipulating the timing between the inputs of the two ears caused significantly larger shifts of IID-sensitivity in Kcna1−/− mice, whereas in the wild-type IC the IID functions were stable and less sensitive to changes of the temporal relationship between the binaural inputs. We conclude that the IC not only inherits IID-sensitivity from the LSO, but that the convergence with other, non-olivary inputs in the wild-type IC acts to quality-control, consolidate, and stabilize IID representation; this necessary integration of inputs is impaired in the absence of the low-threshold potassium currents mediated by Kv1.1.
Collapse
Affiliation(s)
- Anita Karcz
- Carl-Ludwig-Institute for Physiology, University of Leipzig, Medical School Leipzig, Germany
| | | | | |
Collapse
|
17
|
Hatano M, Ito M, Yoshizaki T, Kelly JB. Changes in projections to the inferior colliculus following early hearing loss in rats. Hear Res 2012; 287:57-66. [DOI: 10.1016/j.heares.2012.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/06/2012] [Accepted: 03/26/2012] [Indexed: 11/16/2022]
|
18
|
O’Neil JN, Connelly CJ, Limb CJ, Ryugo DK. Synaptic morphology and the influence of auditory experience. Hear Res 2011; 279:118-30. [PMID: 21310226 PMCID: PMC3116016 DOI: 10.1016/j.heares.2011.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/26/2011] [Accepted: 01/29/2011] [Indexed: 11/27/2022]
Abstract
The auditory experience is crucial for the normal development and maturation of brain structure and the maintenance of the auditory pathways. The specific aims of this review are (i) to provide a brief background of the synaptic morphology of the endbulb of Held in hearing and deaf animals; (ii) to argue the importance of this large synaptic ending in linking neural activity along ascending pathways to environmental acoustic events; (iii) to describe how the re-introduction of electrical activity changes this synapse; and (iv) to examine how changes at the endbulb synapse initiate trans-synaptic changes in ascending auditory projections to the superior olivary complex, the inferior complex, and the auditory cortex.
Collapse
Affiliation(s)
- Jahn N. O’Neil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Catherine J. Connelly
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Charles J. Limb
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - David K. Ryugo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Program in Neuroscience, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
19
|
Leake PA, Hradek GT, Hetherington AM, Stakhovskaya O. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J Comp Neurol 2011; 519:1526-45. [PMID: 21452221 PMCID: PMC3079794 DOI: 10.1002/cne.22582] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Postnatal development and survival of spiral ganglion (SG) neurons depend on both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partially prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae, and this is the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a miniosmotic pump. In BDNF-treated cochleae, SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal, and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement of electrically evoked auditory brainstem response thresholds. BDNF may have potential therapeutic value in the developing auditory system, but many serious obstacles currently preclude clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- Departmant of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143-0526, USA.
| | | | | | | |
Collapse
|
20
|
O'Neil JN, Limb CJ, Baker CA, Ryugo DK. Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. J Comp Neurol 2010; 518:2382-404. [PMID: 20437534 DOI: 10.1002/cne.22339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Congenital deafness results in synaptic abnormalities in auditory nerve endings. These abnormalities are most prominent in terminals called endbulbs of Held, which are large, axosomatic synaptic endings whose size and evolutionary conservation emphasize their importance. Transmission jitter, delay, or failures, which would corrupt the processing of timing information, are possible consequences of the perturbations at this synaptic junction. We sought to determine whether electrical stimulation of the congenitally deaf auditory system via cochlear implants would restore the endbulb synapses to their normal morphology. Three and 6-month-old congenitally deaf cats received unilateral cochlear implants and were stimulated for a period of 10-19 weeks by using human speech processors. Implanted cats exhibited acoustic startle responses and were trained to approach their food dish in response to a specific acoustic stimulus. Endbulb synapses were examined by using serial section electron microscopy from cohorts of cats with normal hearing, congenital deafness, or congenital deafness with a cochlear implant. Synapse restoration was evident in endbulb synapses on the stimulated side of cats implanted at 3 months of age but not at 6 months. In the young implanted cats, postsynaptic densities exhibited normal size, shape, and distribution, and synaptic vesicles had density values typical of hearing cats. Synapses of the contralateral auditory nerve in early implanted cats also exhibited synapses with more normal structural features. These results demonstrate that electrical stimulation with a cochlear implant can help preserve central auditory synapses through direct and indirect pathways in an age-dependent fashion.
Collapse
Affiliation(s)
- Jahn N O'Neil
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
21
|
Spatiotemporal patterns of cortical activity with bilateral cochlear implants in congenital deafness. J Neurosci 2009; 29:811-27. [PMID: 19158306 DOI: 10.1523/jneurosci.2424-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Congenital deafness affects developmental processes in the auditory cortex. In this study, local field potentials (LFPs) were mapped at the cortical surface with microelectrodes in response to cochlear implant stimulation. LFPs were compared between hearing controls and congenitally deaf cats (CDCs). Pulsatile electrical stimulation initially evoked cortical activity in the rostral parts of the primary auditory field (A1). This progressed both in the approximate dorsoventral direction (along the isofrequency stripe) and in the rostrocaudal direction. The dorsal branch of the wavefront split into a caudal branch (propagating in A1) and another smaller one propagating rostrally into the AAF (anterior auditory field). After the front reached the caudal border of A1, a "reflection wave" appeared, propagating back rostrally. In total, the waves took approximately 13-15 ms to propagate along A1 and return back. In CDCs, the propagation pattern was significantly disturbed, with a more synchronous activation of distant cortical regions. The maps obtained from contralateral and ipsilateral stimulation overlapped in both groups of animals. Although controls showed differences in the latency-amplitude patterns, cortical waves evoked by contralateral and ipsilateral stimulation were more similar in CDCs. Additionally, in controls, LFPs with contralateral and ipsilateral stimulation were more similar in caudal A1 than in rostral A1. This dichotomy was lost in deaf animals. In conclusion, propagating cortical waves are specific for the contralateral ear, they are affected by auditory deprivation, and the specificity of the cortex for stimulation of the contralateral ear is reduced by deprivation.
Collapse
|
22
|
Alvarado JC, Fuentes-Santamaría V, Henkel CK. Rapid modifications in calretinin immunostaining in the deep layers of the superior colliculus after unilateral cochlear ablation. Hear Res 2008; 247:78-86. [PMID: 19017539 DOI: 10.1016/j.heares.2008.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 10/20/2008] [Accepted: 10/26/2008] [Indexed: 11/24/2022]
Abstract
Calretinin (CR) is a calcium-binding protein that plays an important role in the homeostasis of intracellular calcium concentration in the auditory pathway. To test if hearing loss could lead indirectly to modifications in levels of this calcium-binding protein in neurons and neuropilar structures outside of the lemniscal auditory pathway, CR-immunostaining was evaluated in the superior colliculus (SC) in adult ferrets at 1, 20 and 90 days after unilateral cochlear ablation. The results demonstrate that within 24h there was a significant increase in CR-immunostaining in ablated animals as indicated by an increase in the mean gray level of immunostaining in the deep, multisensory layers of the contralateral SC compared to the ipsilateral side and control ferrets. This upregulation was evident in both neurons and neuropil and did not change at the two subsequent time points. In contrast, there was no change in the superficial layers of the SC which have visual properties but no auditory inputs. These findings suggest that upregulation of CR levels within neurons and neuropil in the contralateral deep SC is subject to modifications by activity in multisynaptic auditory pathways. Therefore, cochlear-driven activity appears to affect calcium-binding protein levels not only in auditory nuclei but also in other neural structures whose response properties may be influenced by auditory-related activity.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Regional Center for Biomedical Research (CRIB), Department of Medical Sciences, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
23
|
Leake PA, Stakhovskaya O, Hradek GT, Hetherington AM. Factors influencing neurotrophic effects of electrical stimulation in the deafened developing auditory system. Hear Res 2008; 242:86-99. [PMID: 18573324 PMCID: PMC2516744 DOI: 10.1016/j.heares.2008.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 05/21/2008] [Accepted: 06/02/2008] [Indexed: 02/01/2023]
Abstract
Research in animal models has demonstrated that electrical stimulation from a cochlear implant (CI) may help prevent degeneration of the cochlear spiral ganglion (SG) neurons after deafness. In cats deafened early in life, effective stimulation of the auditory nerve with complex signals for several months preserves a greater density of SG neurons in the stimulated cochleae as compared to the contralateral deafened ear. However, SG survival is still far from normal even with early intervention with an implant. Thus, pharmacologic agents and neurotrophic factors that might be used in combination with an implant are of great interest. Exogenous administration of GM1 ganglioside significantly reduces SG degeneration in deafened animals studied at 7-8 weeks of age, but after several months of stimulation, GM1-treated animals show only modestly better preservation of SG density compared to age-matched non-treated animals. A significant factor influencing neurotrophic effects in animal models is insertion trauma, which results in significant regional SG degeneration. Thus, an important goal is to further improve human CI electrode designs and insertion techniques to minimize trauma. Another important issue for studies of neurotrophic effects in the developing auditory system is the potential role of critical periods. Studies examining animals deafened at 30 days of age (rather than at birth) have explored whether a brief initial period of normal auditory experience affects the vulnerability of the SG or cochlear nucleus (CN) to auditory deprivation. Interestingly, SG survival in animals deafened at 30-days was not significantly different from age-matched neonatally deafened animals, but significant differences were observed in the central auditory system. CN volume was significantly closer to normal in the animals deafened at 30 days as compared to neonatally deafened animals. However, no difference was observed between the stimulated and contralateral CN volumes in either deafened group. Measurements of AVCN spherical cell somata showed that after later onset of deafness in the 30-day deafened group, mean cell size was significantly closer to normal than in the neonatally deafened group. Further, electrical stimulation elicited a significant increase in spherical cell size in the CN ipsilateral to the implant as compared to the contralateral CN in both deafened groups. Neuronal tracer studies have examined the primary afferent projections from the SG to the CN in neonatally deafened cats. CN projections exhibit a clear cochleotopic organization despite severe auditory deprivation from birth. However, when normalized for the smaller CN size after deafness, projections were 30-50% broader than normal. After unilateral electrical stimulation there was no difference between projections from the stimulated and non-stimulated ears. These findings suggest that early normal auditory experience may be essential for the normal development (or subsequent maintenance) of the topographic precision of SG-to-CN projections. After early deafness, the CN volume is markedly smaller than normal, and the spatial precision of SG projections that underlie frequency resolution in the central auditory system is reduced. Electrical stimulation over several months did not reduce or exacerbate these degenerative changes. If similar principles pertain in the human auditory system, then findings in animal models suggest that the basic cochleotopic organization of neural projections in the central auditory system is probably intact even in congenitally deaf individuals. However, the reduced spatial resolution of the primary afferent projections in our studies suggests that there may be inherent limitations for CI stimulation in congenitally deaf subjects. Spatial (spectral) selectivity of stimulation delivered on adjacent CI channels may be poorer due to the greater overlap of SG central axons representing nearby frequencies. Such CI users may be more dependent upon temporal features of electrical stimuli, and it may be advantageous to enhance the salience of such cues, for example, by removing some electrodes from the processor "map" to reduce channel interaction.
Collapse
Affiliation(s)
- Patricia A Leake
- Epstein Hearing Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 533 Parnassus Avenue, Room U490, San Francisco, CA 94143-0526, United States.
| | | | | | | |
Collapse
|
24
|
Leake PA, Hradek GT, Bonham BH, Snyder RL. Topography of auditory nerve projections to the cochlear nucleus in cats after neonatal deafness and electrical stimulation by a cochlear implant. J Assoc Res Otolaryngol 2008; 9:349-72. [PMID: 18574634 DOI: 10.1007/s10162-008-0127-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/30/2008] [Indexed: 01/03/2023] Open
Abstract
We previously reported that auditory nerve projections from the cochlear spiral ganglion (SG) to the cochlear nucleus (CN) exhibit clear cochleotopic organization in adult cats deafened as neonates before hearing onset. However, the topographic specificity of these CN projections in deafened animals is proportionately broader than normal (less precise relative to the CN frequency gradient). This study examined SG-to-CN projections in adult cats that were deafened as neonates and received a unilateral cochlear implant at approximately 7 weeks of age. Following several months of electrical stimulation, SG projections from the stimulated cochleae were compared to projections from contralateral, non-implanted ears. The fundamental organization of SG projections into frequency band laminae was clearly evident, and discrete projections were always observed following double SG injections in deafened cochleae, despite severe auditory deprivation and/or broad electrical activation of the SG. However, when normalized for the smaller CN size after deafness, AVCN, PVCN, and DCN projections on the stimulated side were broader by 32%, 34%, and 53%, respectively, than projections in normal animals (although absolute projection widths were comparable to normal). Further, there was no significant difference between projections from stimulated and contralateral non-implanted cochleae. These findings suggest that early normal auditory experience may be essential for normal development and/or maintenance of the topographic precision of SG-to-CN projections. After early deafness, the CN is smaller than normal, the topographic distribution of these neural projections that underlie frequency resolution in the central auditory system is proportionately broader, and projections from adjacent SG sectors are more overlapping. Several months of stimulation by a cochlear implant (beginning at approximately 7 weeks of age) did not lessen or exacerbate these degenerative changes observed in adulthood. One clinical implication of these findings is that congenitally deaf cochlear implant recipients may have central auditory system alterations that limit their ability to achieve spectral selectivity equivalent to post-lingually deafened subjects.
Collapse
Affiliation(s)
- Patricia A Leake
- Epstein Laboratory, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, 533 Parnassus Avenue, Room #U490, San Francisco, CA 94143-0526, USA.
| | | | | | | |
Collapse
|
25
|
Kalluri S, Depireux DA, Shamma SA. Perception and cortical neural coding of harmonic fusion in ferrets. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2008; 123:2701-16. [PMID: 18529189 PMCID: PMC2677325 DOI: 10.1121/1.2902178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study examined the perception and cortical representation of harmonic complex tones, from the perspective of the spectral fusion evoked by such sounds. Experiment 1 tested whether ferrets spontaneously distinguish harmonic from inharmonic tones. In baseline sessions, ferrets detected a pure tone terminating a sequence of inharmonic tones. After they reached proficiency, a small fraction of the inharmonic tones were replaced with harmonic tones. Some of the animals confused the harmonic tones with the pure tones at twice the false-alarm rate. Experiment 2 sought correlates of harmonic fusion in single neurons of primary auditory cortex and anterior auditory field, by comparing responses to harmonic tones with those to inharmonic tones in the awake alert ferret. The effects of spectro-temporal filtering were accounted for by using the measured spectrotemporal receptive field to predict responses and by seeking correlates of fusion in the predictability of responses. Only 12% of units sampled distinguished harmonic tones from inharmonic tones, a small percentage that is consistent with the relatively weak ability of the ferrets to spontaneously discriminate harmonic tones from inharmonic tones in Experiment 1.
Collapse
Affiliation(s)
- Sridhar Kalluri
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
26
|
Cant NB, Benson CG. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): projections from the cochlear nucleus. Neuroscience 2008; 154:206-17. [PMID: 18359572 DOI: 10.1016/j.neuroscience.2008.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 11/30/2022]
Abstract
Projections from the cochlear nuclear complex to the inferior colliculus in the gerbil (Meriones unguiculatus) were studied using anterograde tracing methods based on axonal transport. Methods were developed to map the results onto comparable sets of sections through the inferior colliculus so that the patterns of termination in different animals could be compared directly. Projections to the contralateral inferior colliculus are widespread and most, if not all of them, are topographically organized. Axons terminate throughout the central nucleus and also in at least three distinct regions outside the central nucleus: a caudomedial region in the dorsal cortex, the ventrolateral nucleus and the rostral pole nucleus. Projections from the dorsal and ventral cochlear nuclei appear to overlap almost completely, although those from the dorsal cochlear nucleus may be slightly more widespread at the boundaries of the central nucleus. Projections from the ipsilateral cochlear nuclei arise in both the dorsal and ventral divisions and are largely restricted to the dorsal (low-frequency) part of the inferior colliculus. In this region, the pattern of ipsilateral and contralateral projections is similar, although the terminal fields from the two sides do not appear to overlap completely. The methods developed to display the results form a framework for comparisons with the distribution of inputs from the other major sources of input to the inferior colliculus.
Collapse
Affiliation(s)
- N B Cant
- Department of Neurobiology, Duke University Medical Center, P. O. Box 3209, Durham, NC 27710, USA.
| | | |
Collapse
|
27
|
Franklin SR, Brunso-Bechtold JK, Henkel CK. Bilateral cochlear ablation in postnatal rat disrupts development of banded pattern of projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. Neuroscience 2008; 154:346-54. [PMID: 18372115 DOI: 10.1016/j.neuroscience.2008.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/25/2008] [Accepted: 02/13/2008] [Indexed: 11/16/2022]
Abstract
Axonal projections from the dorsal nucleus of the lateral lemniscus (DNLL) distribute contralaterally in a pattern of banded layers in the central nucleus of the inferior colliculus (IC). The banded pattern of DNLL projections is already in the IC by onset of hearing in postnatal rat pups. Previously, it was shown that unilateral cochlear ablation in neonatal rat pups disrupted the banded pattern in IC for the projections of the DNLL contralateral to the ablation but not those of the DNLL ipsilateral to the ablation. In the present study, bilateral cochlear ablation or sham surgery was performed at postnatal day 9 (P9) after which rat pups were killed at P12 and the brains removed to study axonal projections of the DNLL. A lipophilic carbocyanine dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), was placed in the dorsal tegmental commissure of Probst to label decussating DNLL axons that end in the central nucleus of the contralateral IC. The distribution of labeled fibers across the central nucleus of the IC was analyzed in digital images by comparing the pattern of labeling with a sine model of periodic distribution of banded layers. In the control group, labeled axons formed a regular pattern of dense banded layers in IC. In the bilateral cochlear ablation group, labeled axons in the IC were distributed diffusely and there was little or no regular pattern of dense bands of axonal labeling. The influence of the cochlea on developing auditory circuits possibly mediated by activity-dependent mechanisms is discussed.
Collapse
Affiliation(s)
- S R Franklin
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
28
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Synaptophysin and insulin-like growth factor-1 immunostaining in the central nucleus of the inferior colliculus in adult ferrets following unilateral cochlear removal: a densitometric analysis. Synapse 2007; 61:288-302. [PMID: 17318882 DOI: 10.1002/syn.20373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets to evaluate possible time-dependent modifications of synaptophysin and insulin-like growth factor-1 (IGF-1) in the central nucleus of the inferior colliculus (CNIC). Using densitometric analysis, synaptophysin and IGF-1 immunostaining were assessed at 1 (PA1) and 90 (PA90) days after cochlear ablation. The results demonstrated that 1 day after the lesion there was an increase in the levels of synaptophysin immunostaining bilaterally in the CNIC compared to control animals. That increase was no longer present at 90 days after the ablation. Overall levels of IGF-1 immunostaining at PA1 were increased significantly within neurons and neuropil. However, at PA90, only IGF-1 immunostaining contralateral to the lesion was elevated compared to control animals, although elevation was less than that observed at PA1. These results suggest that cochlear ablation appears to affect synaptophysin and IGF-1 protein levels bilaterally in the CNIC.
Collapse
Affiliation(s)
- Juan Carlos Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | |
Collapse
|
29
|
FRANKLIN SR, BRUNSO-BECHTOLD JK, HENKEL CK. Unilateral cochlear ablation before hearing onset disrupts the maintenance of dorsal nucleus of the lateral lemniscus projection patterns in the rat inferior colliculus. Neuroscience 2006; 143:105-15. [PMID: 16971048 PMCID: PMC2048763 DOI: 10.1016/j.neuroscience.2006.07.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/26/2022]
Abstract
During postnatal development, ascending and descending auditory inputs converge to form fibrodendritic layers within the central nucleus of the inferior colliculus (IC). Before the onset of hearing, specific combinations of inputs segregate into bands separated by interband spaces. These bands may define functional zones within the IC. Previous studies in our laboratory have shown that unilateral or bilateral cochlear ablation at postnatal day 2 (P2) disrupts the development of afferent bands from the dorsal nucleus of the lateral lemniscus (DNLL) to the IC. These results suggest that spontaneous activity propagated from the cochlea is required for the segregation of afferent bands within the developing IC. To test if spontaneous activity from the cochlea also may be required to maintain segregated bands of DNLL input, we performed cochlear ablations in rat pups at P9, after DNLL bands already are established. All animals were killed at P12 and glass pins coated with carbocyanine dye, DiI (1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), subsequently were placed in the commissure of Probst to label the crossed projections from both DNLLs. When compared with surgical controls, experimental results showed a similar pattern of DNLL bands in the IC contralateral to the ablated cochlea, but a disruption of DNLL bands in the IC ipsilateral to the cochlear ablation. The present results suggest that cochlear ablation after DNLL bands have formed may affect the maintenance of banded DNLL projections within the central nucleus of the IC.
Collapse
Affiliation(s)
| | | | - C. K. HENKEL
- *Corresponding author. Tel: +1-919-716-4379; fax: +1-919-716-4534. E-mail address: (C. K. Henkel)
| |
Collapse
|
30
|
Cant NB, Benson CG. Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 2006; 495:511-28. [PMID: 16498677 PMCID: PMC2566545 DOI: 10.1002/cne.20888] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The inferior colliculus (IC) receives its major ascending input from the cochlear nuclei, the superior olivary complex, and the nuclei of the lateral lemniscus. To understand better the terminal distribution of the inputs from these sources relative to one another, we made focal injections of a retrograde tracer, biotinylated dextran amine, in different parts of the IC in 74 gerbils (Meriones unguiculatus). The cases could be divided into three groups based on counts of labeled cells in brainstem auditory nuclei. Group 1 cases had labeled cells in both the cochlear nuclei and the lateral and medial superior olivary nuclei. Group 2 cases had labeled cells in the cochlear nuclei but few or none in the lateral and medial superior olivary nuclei. Both groups had labeled cells in the nuclei of the lateral lemniscus and the superior paraolivary nucleus. Group 3 cases had few labeled cells in any of the ascending auditory pathways. The group to which a case belonged was strongly related to the location of the injection site in the IC. The injection sites for both group 1 and group 2 were located in the central nucleus, but those for group 1 tended to be located laterally relative to those for group 2, which were located more medially and caudally. The injection sites for group 3 cases lay outside the central nucleus of the IC. The two regions of the central nucleus of the IC, distinguished on the basis of connectivity, are likely to subserve different functions.
Collapse
Affiliation(s)
- Nell B Cant
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
31
|
Alvarado JC, Fuentes-Santamaria V, Franklin SR, Brunso-Bechtold JK, Henkel CK. Unilateral cochlear ablation in adult ferrets results in upregulation in calretinin immunostaining in the central nucleus of the inferior colliculus. Neuroscience 2006; 136:957-69. [PMID: 16344163 DOI: 10.1016/j.neuroscience.2005.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 03/26/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
In the present study, unilateral cochlear ablations were performed in adult ferrets in order to determine whether an upregulation of the calretinin immunostained plexus in the central nucleus of the inferior colliculus occurs and if so, what the time course of this upregulation is. Accordingly, the mean gray level and the calretinin-immunostained area of the axonal plexus in the central nucleus of the inferior colliculus were evaluated at 1, 20 and 90 days after cochlear ablation. In unoperated animals, the calretinin-immunostained plexus was bilaterally symmetric. In ablated animals, both the mean gray level and the immunostained area of the plexus increased in the central nucleus of the inferior colliculus contralateral to the lesion compared with both the ipsilateral side and unoperated animals. This upregulation was present 24 h after the ablation and did not change at the two subsequent time points. In a previous study in young ferrets, the immunostained area of the plexus in the central nucleus of the inferior colliculus contralateral to the lesion increased 200% compared with control ferrets [J Comp Neurol 460 (2003) 585], whereas it increased only 33% in adult ferrets. These findings suggest that 1) calretinin upregulation in the contralateral central nucleus of the inferior colliculus following cochlear ablation occurs by 24 h after cochlear ablation and 2) there is an age-related decline in the magnitude of this upregulation after cochlear ablation.
Collapse
Affiliation(s)
- J C Alvarado
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA. jalvarad@@wfubmc.edu
| | | | | | | | | |
Collapse
|
32
|
Hsieh CY, Cramer KS. Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset. J Comp Neurol 2006; 497:589-99. [PMID: 16739167 DOI: 10.1002/cne.21002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deafferentation of neural tissue can result in cell death, morphological changes, and/or alterations in sources of innervation. These changes often occur during a limited period of development. In the auditory brainstem, the ventral cochlear nucleus (VCN) projects to the contralateral but not ipsilateral medial nucleus of the trapezoid body (MNTB). This pathway is part of a circuit that computes interaural intensity differences used in sound localization. Previous studies have shown that, after the cochlea is removed early in postnatal development, cells in the VCN on the deafferented side die, and the intact VCN innervates MNTB on both sides of the brain. These changes after cochlea removal are limited to an early postnatal period that preceeds hearing onset. In this study, we lesioned the VCN directly to evaluate plasticity in axonal pathways after hearing onset. We found that novel projections from the intact VCN to ipsilateral MNTB emerge after lesions performed as late as postnatal day 25. The morphological sequence of events is similar to that seen during the initial development of this pathway. These data suggest that plasticity in the auditory brainstem is possible when pathways are challenged with denervation of target nuclei. The results show that the opportunity for plasticity in auditory brainstem circuitry is more prolonged than previously thought and that novel pathways can form after the normal pathways are fully mature and functional. Moreover, sensitive periods for changes in individual pathways are independently regulated.
Collapse
Affiliation(s)
- Candace Y Hsieh
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA
| | | |
Collapse
|
33
|
Fuentes-Santamaria V, Alvarado JC, Taylor AR, Brunso-Bechtold JK, Henkel CK. Quantitative changes in calretinin immunostaining in the cochlear nuclei after unilateral cochlear removal in young ferrets. J Comp Neurol 2005; 483:458-75. [PMID: 15700274 PMCID: PMC1913210 DOI: 10.1002/cne.20437] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurons of the cochlear nuclei receive axosomatic endings from primary afferent fibers from the cochlea and have projections that diverge to form parallel ascending auditory pathways. These cells are characterized by neurochemical phenotypes such as levels of calretinin. To test whether or not early deafferentation results in changes in calretinin immunostaining in the cochlear nucleus, unilateral cochlear ablations were performed in ferrets soon after hearing onset (postnatal day [P]30-P40). Two months later, changes in calretinin immunostaining as well as cell size, volume, and synaptophysin immunostaining were assessed in the anteroventral (AVCN), posteroventral (PVCN), and dorsal cochlear nucleus (DCN). A decrease in calretinin immunostaining was evident ipsilaterally within the AVCN and PVCN but not in the DCN. Further analysis revealed a decrease both in the calretinin-immunostained neuropil and in the calretinin-immunostained area within AVCN and PVCN neurons. These declines were accompanied by significant ipsilateral decreases in volume as well as neuron area in the AVCN and PVCN compared with the contralateral cochlear nucleus and unoperated animals, but not compared with the DCN. In addition, there was a significant contralateral increase in calretinin-immunostained area within AVCN and PVCN neurons compared with control animals. Finally, a decrease in area of synaptophysin immunostaining in both the ipsilateral AVCN and PVCN without changes in the number of boutons was found. The present data demonstrate that unilateral cochlear ablation leads to 1) decreased immunostaining of the neuropil in the AVCN and PVCN ipsilaterally, 2) decreased calretinin immunostaining within AVCN and PVCN neurons ipsilaterally, 3) synaptogenesis in the AVCN and PVCN ipsilaterally, and 4) increased calretinin immunostaining within AVCN and PVCN neurons contralaterally.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA.
| | | | | | | | | |
Collapse
|
34
|
Harrison RV, Gordon KA, Mount RJ. Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation. Dev Psychobiol 2005; 46:252-61. [PMID: 15772969 DOI: 10.1002/dev.20052] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A range of basic and applied studies have demonstrated that during the development of the auditory system, early experimental manipulations or clinical interventions are generally more effective than those made later. We present a short review of these studies. We investigated this age-related plasticity in relation to the timing of cochlear implantation in deaf-from-birth children. Cochlear implantation is a standard intervention for providing hearing in children with severe to profound deafness. An important practical question is whether there is a critical period or cutoff age of implantation after which hearing outcomes are significantly reduced. In this article, we present data from prelingually deaf children (mostly congenitally deaf) implanted at ages ranging from 1 to 15 years. Each child was tested with auditory and speech understanding tests before implantation, and at regular intervals up to 8 years postimplantation. We measured the improvement in performance of speech understanding tests in younger implanted children and compared it with the results of those implanted at a later age. We also used a binary partitioning algorithm to divide the data systematically at all ages at implant to determine the optimum split, i.e., to determine the age at implant which best separates performance of early implanted versus later implanted children. We observed distinct age-of-implant cutoffs, and will discuss whether these really represent critical periods during development.
Collapse
Affiliation(s)
- Robert V Harrison
- Auditory Science Laboratory, Department of Otolaryngology, Division of Brain and Behaviour, The Hospital for Sick Children, Toronto M5G 1X8, Canada.
| | | | | |
Collapse
|
35
|
Vale C, Juíz JM, Moore DR, Sanes DH. Unilateral cochlear ablation produces greater loss of inhibition in the contralateral inferior colliculus. Eur J Neurosci 2004; 20:2133-40. [PMID: 15450092 DOI: 10.1111/j.1460-9568.2004.03679.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bilateral cochlear ablation leads to a profound weakening of synaptic inhibition within the inferior colliculus (IC) of gerbils [Vale & Sanes (2000) J. Neurosci., 20, 1912-1921]. To examine whether unilateral deafening leads to similar functional alterations, we studied the effect of unilateral cochlear ablation on inhibitory synaptic properties both ipsilateral and contralateral to the deafened ear. Lateral lemniscal and commissure of the IC-evoked inhibitory postsynaptic currents (IPSCs) were recorded in an IC brain slice preparation using whole-cell and gramicidin perforated-patch electrodes in the presence of kynurenic acid. Unilateral cochlear ablation led to a 23 mV depolarizing shift in the IPSC equilibrium potential for IC neurons contralateral to the deafened ear, but only a 10 mV depolarization in the ipsilateral IC. Lateral lemniscal-evoked inhibitory synaptic conductance declined significantly in the ipsilateral and contralateral IC, whereas commissural-evoked inhibitory synaptic conductance declined only contralateral to the ablated cochlea. An analysis of paired-pulse facilitation showed that inhibitory transmitter release was more affected ipsilateral to the ablated cochlea. Thus, unilateral cochlear ablation modifies inhibitory synapses in the inferior colliculus, but these changes appear to be dominated by postsynaptic alterations in the contralateral IC, and by presynaptic changes in the ipsilateral IC.
Collapse
Affiliation(s)
- Carmen Vale
- School of Medicine, and Centro Regional de Investigaciones Biomedicas, University of Castilla-La Mancha, Spain
| | | | | | | |
Collapse
|
36
|
Chen TJ, Huang CW, Wang DC, Chen SS. Co-induction of growth-associated protein GAP-43 and neuronal nitric oxide synthase in the cochlear nucleus following cochleotomy. Exp Brain Res 2004; 158:151-62. [PMID: 15148562 DOI: 10.1007/s00221-004-1886-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 02/17/2004] [Indexed: 11/28/2022]
Abstract
In adult animals, cochlear lesioning leads to a reactive synaptogenesis with a reemergence of growth-associated protein, GAP-43, in the auditory brainstem nuclei. In addition, nitric oxide (NO) is also implicated in synaptogenesis. Three isoforms of nitric oxide synthase (NOS) responsible for generating NO have been identified and, in neurons, the predominant isoform is neuronal NOS (nNOS). Studies in visual or olfactory systems have found that the NOS expression often correlates with periods of axonal outgrowth and synapse formation; whether NO plays a similar role in the auditory brainstem needs to be examined. In the present study, a unilateral cochleotomy was performed in adult mice to examine the relationship between the reemergence of GAP-43 and the expression pattern of nNOS. Following surgery, GAP-43 re-emerged in the ipsilateral anterior ventral cochlear nucleus (AVCN) and the immunoreactivity reached a climax around postoperative day (POD) 8; the same expression pattern as that reported in the previous literature is the indicator of synaptogenesis. As for the nNOS immunoreactivity, a dramatic redistribution from a mostly cytoplasmal to a predominantly membranous localization in the ipsilateral AVCN was found especially at POD 4. A similar redistribution pattern in the ipsilateral AVCN for the N-methyl-D-aspartate (NMDA) receptor was also observed at POD 4, corresponding to the fact that the activation of nNOS is coupled to calcium influx via the NMDA-receptor. Furthermore, the expression of cyclic guanosine monophosphate (cGMP) is an indicator for activity of soluble guanylyl cyclase (sGC), the substrate of NO, which reveals the target area of NO. Therefore, cGMP immunoreactivity was also examined and an obvious increase of cytoplasmal cGMP expression was observed around POD 4. Accordingly, it is suggested that nNOS activity correlates closely with the reactive synaptogenesis following a cochleotomy. Further evidence is shown by the results of fluorescent double staining; nNOS-positive cells were surrounded by GAP-43 labeled regions that appeared to be presynaptic boutons, and the vast majority of nNOS-positive cells also expressed cGMP. The former result indicates that, after surgery, there should be new terminal endings projecting onto the nNOS-positive cells in the AVCN. Furthermore, the latter result suggests a possible role of an autocrine mediator for nNOS in the AVCN.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
37
|
|
38
|
Hartmann R, Kral A. Central Responses to Electrical Stimulation. COCHLEAR IMPLANTS: AUDITORY PROSTHESES AND ELECTRIC HEARING 2004. [DOI: 10.1007/978-0-387-22585-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Cant NB, Benson CG. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 2003; 60:457-74. [PMID: 12787867 DOI: 10.1016/s0361-9230(03)00050-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cochlear nuclear complex gives rise to widespread projections to nuclei throughout the brainstem. The projections arise from separate, well-defined populations of cells. None of the cell populations in the cochlear nucleus projects to all brainstem targets, and none of the targets receives inputs from all cell types. The projections of nine distinguishable cell types in the cochlear nucleus-seven in the ventral cochlear nucleus and two in the dorsal cochlear nucleus-are described in this review. Globular bushy cells and two types of spherical bushy cells project to nuclei in the superior olivary complex that play roles in sound localization based on binaural cues. Octopus cells convey precisely timed information to nuclei in the superior olivary complex and lateral lemniscus that, in turn, send inhibitory input to the inferior colliculus. Cochlear root neurons send widespread projections to areas of the reticular formation involved in startle reflexes and autonomic functions. Type I multipolar cells may encode complex features of natural stimuli and send excitatory projections directly to the inferior colliculus. Type II multipolar cells send inhibitory projections to the contralateral cochlear nuclei. Fusiform cells in the dorsal cochlear nucleus appear to be important for the localization of sounds based on spectral cues and send direct excitatory projections to the inferior colliculus. Giant cells in the dorsal cochlear nucleus also project directly to the inferior colliculus; some of them may convey inhibitory inputs to the contralateral cochlear nucleus as well.
Collapse
Affiliation(s)
- Nell B Cant
- Department of Neurobiology, Duke University Medical Center, P.O. Box 3209, Durham, NC 27710, USA.
| | | |
Collapse
|
40
|
Fuentes-Santamaria V, Alvarado JC, Brunso-Bechtold JK, Henkel CK. Upregulation of calretinin immunostaining in the ferret inferior colliculus after cochlear ablation. J Comp Neurol 2003; 460:585-96. [PMID: 12717716 DOI: 10.1002/cne.10676] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In many systems, including ascending auditory pathways, calcium-binding proteins are markers of specific neuronal circuits. Previous studies suggest that calretinin immunostaining may be a specific marker for circuits in the inferior colliculus (IC) that code timing information. We undertook experiments to determine the changes in calretinin immunostaining in the IC that take place in response to cochlear ablation. Cochlear ablation was performed unilaterally in ferrets just after hearing onset. Animals survived for 2-3 months after ablation and brains were then processed for calretinin immunocytochemistry. The mean optical density and stained area of the calretinin immunopositive plexus in the IC were determined for five coronal sections through the right and left IC. In controls (n = 3), measurements of these parameters in the central nucleus of the IC showed symmetry between the two sides. In experimental animals (n = 8) the calretinin immunopositive plexus contralateral to the cochlear ablation was denser and larger than that in either the ipsilateral IC or in the IC of control animals. The calretinin plexus in the ipsilateral IC was slightly less dense and smaller than in controls but the differences did not reach statistical significance. IC volume measurements and synaptophysin immunostaining analysis in the central nucleus of the IC revealed no statistical differences between ablated and control animals or between the two sides in ablated animals. The significant increase in both mean optical density and immunostained area of the calretinin plexus in the IC contralateral to the cochlear ablation may reflect an upregulation in calretinin expression in the nuclei that contribute to this plexus.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaria
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | |
Collapse
|
41
|
Jen PHS, Xu L. Monaural middle ear destruction in juvenile and adult mice: effects on responses to sound direction in the inferior colliculus ipsilateral to the intact ear. Hear Res 2002; 174:249-59. [PMID: 12433415 DOI: 10.1016/s0378-5955(02)00699-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined the effect of monaural middle ear destruction on auditory responses to sound direction in the inferior colliculus (IC) of the laboratory mice, Mus musculus. Monaural middle ear destruction was performed on juvenile and adult mice (the experimental mice). Auditory response properties of neurons to ipsilateral and contralateral sounds (I-40 degrees and C-40 degrees ) were examined in the IC ipsilateral to the intact ear 4 weeks later. IC neurons of control mice had higher minimum thresholds (MTs), larger Q(n) (Q(10), Q(30)) values but smaller dynamic ranges at I-40 degrees than at C-40 degrees. These direction-dependent response properties were not observed for IC neurons of experimental juvenile and adult mice. However, Q(n) values of IC neurons were significantly smaller in experimental juvenile than in control and experimental adult mice. Normal tonotopic organization in terms of positive correlation between recording depth and best frequency (BF) was observed in the IC of control and experimental adult mice at both sound directions but not in the IC of experimental juvenile mice. A positive correlation of increasing MT with BF was only observed for IC neurons in control mice but not in both experimental mice. Possible mechanisms for these different response properties are discussed.
Collapse
Affiliation(s)
- Philip H-S Jen
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|
42
|
Vale C, Sanes DH. The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur J Neurosci 2002; 16:2394-404. [PMID: 12492434 DOI: 10.1046/j.1460-9568.2002.02302.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The consequences of deafness on the central auditory nervous system have been examined at many levels, from molecular to functional. However, there has never been a direct and selective measurement of excitatory synaptic function following total hearing loss. In the present study, gerbils were deafened at postnatal day 9, an age at which there is no deafferentation-induced cell death of ventral cochlear nucleus neurons. One to five days after bilateral cochlear ablation, the amplitude of evoked excitatory postsynaptic currents (EPSC) was measured with whole-cell voltage-clamp recordings in an inferior colliculus (IC) brain slice preparation in response to electrical stimulation of the ipsilateral lateral lemniscus (LL) or the commissure of the inferior colliculus (CIC). Deafness resulted in larger LL- and CIC-evoked EPSC amplitudes and durations. This result was observed at a depolarized holding potential. In addition, deafness caused a decrease in excitatory neurotransmitter release at the LL pathway, as assessed with a paired-pulse stimulation protocol. In contrast to its effect on excitatory synapses, bilateral cochlear ablation reduced inhibitory synaptic strength in IC neurons. The effects included a postsynaptic decrease in IPSC conductance, a 25-mV depolarization in the IPSC equilibrium potential and a decrease of neurotransmitter release. Thus normal innervation differentially affects excitatory and inhibitory synaptic strength in IC neurons, and these changes may contribute to alterations in auditory coding properties following sensory deprivation.
Collapse
Affiliation(s)
- Carmen Vale
- Center for Neural Science and Department of Biology, 4 Washington Place, New York University, New York, NY 10003, USA
| | | |
Collapse
|
43
|
Russell FA, Moore DR. Ultrastructural transynaptic effects of unilateral cochlear ablation in the gerbil medial superior olive. Hear Res 2002; 173:43-61. [PMID: 12372634 DOI: 10.1016/s0378-5955(02)00606-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the long-term effects of unilateral hearing loss on the structure of synapses within the gerbil medial superior olivary (MSO) nuclei. Five animals had complete (surgical) left cochlear ablation at postnatal day 18. Previous studies have shown this to produce, within 3 days, significant transneuronal atrophy in the left dendritic field of both MSOs. Electron micrographs from sagittal ultrathin sections through the MSOs of the cochlear-ablated animals were compared to those from unoperated normals. Qualitatively, the ultrastructural features were similar. Most of the axodendritic terminals were R-type (round-type vesicles, putative excitatory) whereas, in the central part of the nucleus, predominated by neuron soma profiles, terminals of P- and F-type (pleomorphic- and flattened-type vesicles, putative inhibitory) were present in equal numbers with R-type terminals. F-type terminals were infrequent and occurred most around lateral parts of the MSO somata. These three types of terminals seen around the somata and proximal dendrites all had extended profiles with multiple, discontinuous appositions. Quantitative analysis revealed that R-type axodendritic terminals became smaller and less densely populated with vesicles where they synapsed onto the remaining dendrites arrayed towards the ablated side of both MSOs, and axosomatic P-type afferent terminals were smaller in the contralateral nuclei. A significant reduction in the number of terminals and synapses occurred in the central, somatic, region of the ipsilateral MSO. However, the terminal vesicle concentration in the remaining terminals increased. The results indicate that cochlear ablation can induce transynaptic reduction in the size of afferent axon terminals within the MSO, and alter their vesicle concentration. These changes are likely to affect the probability of transmitter release and thus influence their signaling power within the nucleus.
Collapse
Affiliation(s)
- F Anne Russell
- University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK.
| | | |
Collapse
|
44
|
Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 2002; 82:601-36. [PMID: 12087130 DOI: 10.1152/physrev.00002.2002] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traditionally the auditory system was considered a hard-wired sensory system; this view has been challenged in recent years in light of the plasticity of other sensory systems, particularly the visual and somatosensory systems. Practical experience in clinical audiology together with the use of prosthetic devices, such as cochlear implants, contributed significantly to the present view on the plasticity of the central auditory system, which was originally based on data obtained in animal experiments. The loss of auditory receptors, the hair cells, results in profound changes in the structure and function of the central auditory system, typically demonstrated by a reorganization of the projection maps in the auditory cortex. These plastic changes occur not only as a consequence of mechanical lesions of the cochlea or biochemical lesions of the hair cells by ototoxic drugs, but also as a consequence of the loss of hair cells in connection with aging or noise exposure. In light of the aging world population and the increasing amount of noise in the modern world, understanding the plasticity of the central auditory system has its practical consequences and urgency. In most of these situations, a common denominator of central plastic changes is a deterioration of inhibition in the subcortical auditory nuclei and the auditory cortex. In addition to the processes that are elicited by decreased or lost receptor function, the function of nerve cells in the adult central auditory system may dynamically change in the process of learning. A better understanding of the plastic changes in the central auditory system after sensory deafferentation, sensory stimulation, and learning may contribute significantly to improvement in the rehabilitation of damaged or lost auditory function and consequently to improved speech processing and production.
Collapse
Affiliation(s)
- Josef Syka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
45
|
Tucci D, Cant NB, Durham D. Conductive hearing loss results in changes in cytochrome oxidase activity in gerbil central auditory system. J Assoc Res Otolaryngol 2002; 3:89-106. [PMID: 12083727 PMCID: PMC3202368 DOI: 10.1007/s101620010091] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Conductive hearing loss (CHL) restricts auditory input to an intact peripheral auditory system. Effects of deprivation on the central auditory system (CAS) have been debated, although a number of studies support the hypothesis that CHL can cause modification of CAS structure and function. The present study was designed to test the hypothesis that unilateral CHL results in a decrease in cytochrome oxidase (CO) activity in CAS nuclei that receive major afferent input from the affected ear. Gerbils at postnatal day 12 (P21) or 6-8 weeks underwent left unilateral CHL (malleus removal), cochlear ablation, or a sham surgical procedure. After a survival time of 48 hours or 3 weeks, animals were sacrificed and tissue was processed for cytochrome oxidase histochemistry. Optical density (OD) measurements were made from individual neurons in the anteroventral cochlear nucleus (AVCN) and from medial and lateral dendritic fields in the medial superior olivary nucleus (MSO), the lateral superior olivary nucleus, and the inferior colliculus. The width of the CO-stained neuropil in MSO was also measured as an estimate of dendritic length. OD measures were corrected to neutral areas of the brain. Cochlear ablation caused significant decreases in CO activity in left lower brainstem nuclei, particularly in adult animals. Following CHL, a significant decrease in CO activity was observed in the ipsilateral AVCN and a significant increase was observed in the contralateral AVCN. Cochlear ablation resulted in decreased width of MSO neuropil containing dendrites that receive primary input from the ablated ear. CHL resulted in a significant increase in the width of MSO neuropil on both sides of the brain in the P21 animals that survived 3 weeks but not in P21 animals that survived only 48 hours or in the adult animals. Unilateral CHL is associated with changes in CO activity in the AVCN and may affect MSO dendritic length in younger animals.
Collapse
Affiliation(s)
- Debara Tucci
- Division of Otolaryngology-Head and Neck Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
46
|
Harrison RV. Age-related tonotopic map plasticity in the central auditory pathways. SCANDINAVIAN AUDIOLOGY. SUPPLEMENTUM 2002:8-14. [PMID: 11409783 DOI: 10.1080/010503901750166529] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Inner hair cell lesions to the basal turn of the cochlea effectively result in a partial deafferentation of the auditory system. At the level of the midbrain (central nucleus of inferior colliculus) cochleotopic maps, based on single unit response characteristic frequency, are changed after such deafferentation. When a cochlear lesion is induced in a neonatal animal (chinchilla), the reorganization of the frequency map is more extensive than that resulting from similar deafferentation in the adult subject. Neonatal cochlear lesions result in an over-representation of sound frequencies corresponding to the border of the cochlear lesion, while similar lesions in the adult do not. The results suggest that significant plasticity exists in the auditory midbrain during early post natal development (even in a precocious species, such as chinchilla); however, this plasticity is largely lost in the mature animal. A conceptual model for the frequency map re-wiring is presented.
Collapse
Affiliation(s)
- R V Harrison
- Department of Otolaryngology, The Hospital for Sick Children, and University of Toronto, Canada.
| |
Collapse
|
47
|
Xu L, Jen PH. The effect of monaural middle ear destruction on postnatal development of auditory response properties of mouse inferior collicular neurons. Hear Res 2001; 159:1-13. [PMID: 11520630 DOI: 10.1016/s0378-5955(01)00304-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study examined the effect of monaural middle ear destruction on postnatal development of auditory response properties of inferior collicular (IC) neurons of the laboratory mouse, Mus musculus. Monaural middle ear destruction was performed on juvenile and adult mice and the auditory response properties of neurons in both ICs were examined 4 weeks thereafter. IC neurons of control mice typically had lower minimum thresholds, larger dynamic ranges and greater Q(10) values than IC neurons of experimental juvenile and adult mice. In experimental mice, neurons in the ipsilateral IC (relative to the intact ear) typically had longer latencies, higher minimum thresholds, and smaller dynamic ranges than neurons in the contralateral IC. In experimental adult mice, neurons in the ipsilateral IC had sharper frequency tuning curves than neurons in the contralateral IC. Clear tonotopic organization was only observed in the IC of control mice and experimental adult mice. However, the correlation of increasing minimum threshold with best frequency was observed for IC neurons in control mice but not in experimental juvenile and adult mice. Possible mechanisms for these different response properties are discussed.
Collapse
Affiliation(s)
- L Xu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
48
|
Abstract
Animal models of conductive hearing loss (CHL) show altered structure and function in the central auditory system (CAS), particularly following unilateral deprivation. Assessment of neuronal activity as measured by 2-deoxyglucose (2-DG) uptake following CHL has been reported by two groups of investigators, with different findings. Woolf and colleagues [Brain Res. 274 (1983) 119] found that 2-DG uptake increased in the cochlear nucleus ipsilateral to the CHL, while Tucci et al. [Laryngoscope 109 (1999) 1359] found a decrease in 2-DG uptake in the ipsilateral cochlear nucleus. One significant difference between the protocols in the two studies was that, in the first study, animals were maintained in silence following 2-DG injection, whereas in the Tucci et al. study, animals were exposed to sound. The current study was designed to replicate the protocol used by Woolf et al. Young adult gerbils underwent unilateral malleus removal with bilateral canal ligation (n=6) or a sham procedure (n=7) 48 h prior to 2-DG administration and sacrifice. Optical density measurements were made from CAS nuclei. 2-DG uptake decreased in the ipsilateral cochlear nucleus and contralateral inferior colliculus, and in nuclei of the superior olivary complex bilaterally, supporting the finding that CHL is associated with a decrease in CAS neuronal activity.
Collapse
Affiliation(s)
- D L Tucci
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Duke University Medical Center, Box 3805, Durhan, NC 27710, USA.
| | | | | |
Collapse
|
49
|
Marianowski R, Liao WH, Van Den Abbeele T, Fillit P, Herman P, Frachet B, Huy PT. Expression of NMDA, AMPA and GABA(A) receptor subunit mRNAs in the rat auditory brainstem. I. Influence of early auditory deprivation. Hear Res 2000; 150:1-11. [PMID: 11077189 DOI: 10.1016/s0378-5955(00)00166-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Impact of early post-natal deafening on auditory pathways was investigated in newborn rats deafened by daily amikacin injections from P7 to P16 inducing a complete destruction of the organ of Corti. The expression of mRNAs encoding N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and gamma-aminobutyric acid type A (GABA(A)) receptor subunits was then studied by in situ hybridization in the dorsal and ventral cochlear nucleus and in the central nucleus of the inferior colliculus (CNIC). Early post-natal deafening decreased bilaterally the expression of mRNAs encoding NR1, NR2a, NR2b and flop isoforms of AMPA receptors. On the contrary, it increased the expression of mRNAs encoding some GABA(A) subunits (alpha1, beta1, gamma2) and flip isoforms of AMPA receptors. These changes were more pronounced in cochlear nuclei than in CNIC. They suggest that auditory sensation is essential in the normal development of central auditory pathways.
Collapse
Affiliation(s)
- R Marianowski
- Service d'Otorhinolaryngologie de l'Hôpital Lariboisière et Neurobiologie des Réseaux Sensorimoteurs, UPRESA-CNRS 7060, Faculté Lariboisière-St-Louis, Paris, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
In the present study, anatomical projections from the medial geniculate body (MGB) to primary auditory cortex (AI) were investigated in normal adult cats and in animals that were neonatally deafened with the ototoxic drug amikacin. Cochleotopic/tonotopic maps in AI (based on neural response characteristic frequency) were obtained with microelectrode recording techniques, and single or multiple injections of retrograde tracers (horseradish peroxidase and fluorescent dyes) were introduced into AI. The AI maps of the amikacin-treated cats had an abnormal cochleotopic organization, such that deprived cortical areas exhibited an expanded representation of intact regions of the damaged cochlea. However, retrograde tracer injections into different regions of AI produced a normal pattern of labeling in the ventral division of the medial geniculate body (MGBv). In both experimental and control animals, the main mass of labeled thalamic cells was found in the MGBv. Different isofrequency contours in AI receive input from different portions of the MGBv. Thus, cell arrays labeled by anterior AI injections were situated medially in MGBv, and injections into posterior AI labeled MGBv more laterally. Furthermore, the deafened cats did not develop a more divergent thalamocortical projection compared with normal control animals, indicating that an abnormal spread of the thalamocortical afferents across the frequency domain in AI (anterior-posterior axis) is not responsible for the altered cochleotopic map in these neonatally deafened animals. The relatively normal thalamocortical projection pattern suggests that, after neonatal cochlear lesions, the major reorganization of cochleotopic maps occurs at subthalamic levels.
Collapse
Affiliation(s)
- S G Stanton
- Auditory Science Laboratory, Otolaryngology/Brain and Behavior, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|