1
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020; 170:106981. [PMID: 30630042 PMCID: PMC6612482 DOI: 10.1016/j.nlm.2019.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates unknown factors that may slow or even reverse neurodegenerative pathology in animal models of Alzheimer's Disease (AD). Cerebellum shows increased activity in early AD and Parkinson's disease (PD), suggesting a compensatory function that may mitigate early symptoms of neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate neuropathological markers of AD in a recognized progression and generally, cerebellum is the last brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain neurodegenerative mechanisms. On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum appears to be one of the most susceptible brain regions to injury and one of the first to exhibit signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, it may contribute to pathological behavioral outcomes. The cerebellum is well known for comparing internal representations of information with observed outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, and required for cognitive domains such as working memory. While cerebellum has reciprocal connections with non-motor brain regions and likely plays a role in complex, goal-directed behaviors, it has proven difficult to establish what it does mechanistically to modulate these behaviors. Due to this lack of understanding, it's not surprising to see the cerebellum reflexively dismissed or even ignored in basic and translational neuropsychiatric literature. The overarching goals of this review are to answer the following questions from primary literature: When the cerebellum is affected by pathology, is it associated with decreased cognitive function? When it is intact, does it play a compensatory or protective role in maintaining cognitive function? Are there theoretical frameworks for understanding the role of cerebellum in cognition, and perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, and not often treated.
Collapse
Affiliation(s)
- Katharine J Liang
- University of Washington School of Medicine, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Erik S Carlson
- University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
3
|
A hypothetical universal model of cerebellar function: reconsideration of the current dogma. THE CEREBELLUM 2014; 12:758-72. [PMID: 23584616 DOI: 10.1007/s12311-013-0477-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is commonly studied in the context of the classical eyeblink conditioning model, which attributes an adaptive motor function to cerebellar learning processes. This model of cerebellar function has quite a few shortcomings and may in fact be somewhat deficient in explaining the myriad functions attributed to the cerebellum, functions ranging from motor sequencing to emotion and cognition. The involvement of the cerebellum in these motor and non-motor functions has been demonstrated in both animals and humans in electrophysiological, behavioral, tracing, functional neuroimaging, and PET studies, as well as in clinical human case studies. A closer look at the cerebellum's evolutionary origin provides a clue to its underlying purpose as a tool which evolved to aid predation rather than as a tool for protection. Based upon this evidence, an alternative model of cerebellar function is proposed, one which might more comprehensively account both for the cerebellum's involvement in a myriad of motor, affective, and cognitive functions and for the relative simplicity and ubiquitous repetitiveness of its circuitry. This alternative model suggests that the cerebellum has the ability to detect coincidences of events, be they sensory, motor, affective, or cognitive in nature, and, after having learned to associate these, it can then trigger (or "mirror") these events after having temporally adjusted their onset based on positive/negative reinforcement. The model also provides for the cerebellum's direction of the proper and uninterrupted sequence of events resulting from this learning through the inhibition of efferent structures (as demonstrated in our lab).
Collapse
|
4
|
Ruigrok TJH, Teune TM. Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat. Front Syst Neurosci 2014; 8:23. [PMID: 24600356 PMCID: PMC3930852 DOI: 10.3389/fnsys.2014.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 11/21/2022] Open
Abstract
The organization of the cerebellum is characterized by a number of longitudinally organized connection patterns that consist of matching olivo-cortico-nuclear zones. These entities, referred to as modules, have been suggested to act as functional units. The various parts of the cerebellar nuclei (CN) constitute the output of these modules. We have studied to what extent divergent and convergent patterns in the output of the modules to four, functionally distinct brain areas can be recognized. Two retrograde tracers were injected in various combinations of the following nuclei: the red nucleus (RN), as a main premotor nucleus; the prerubral area, as a main supplier of afferents to the inferior olive (IO); the nucleus reticularis tegmenti pontis (NRTP), as a main source of cerebellar mossy fibers; and the IO, as the source of climbing fibers. For all six potential combinations three cases were examined. All nine cases with combinations that involved the IO did not, or hardly, resulted in double labeled neurons. In contrast, all other combinations resulted in at least 10% and up to 67% of double labeled neurons in cerebellar nuclear areas where both tracers were found. These results show that the cerebellar nuclear neurons that terminate within the studied areas represent basically two intermingled populations of projection cells. One population corresponds to the small nucleo-olivary neurons whereas the other consists of medium- to large-sized neurons which are likely to distribute their axons to several other areas. Despite some consistent differences between the output patterns of individual modules we propose that modular cerebellar output to premotor areas such as the RN provides simultaneous feedback to both the mossy fiber and the climbing fiber system and acts in concert with a designated GABAergic nucleo-olivary circuit. These features seem to form a basic characteristic of cerebellar operation.
Collapse
Affiliation(s)
- Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC RotterdamRotterdam, Netherlands
| | | |
Collapse
|
5
|
Celio MR, Babalian A, Ha QH, Eichenberger S, Clément L, Marti C, Saper CB. Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents. J Comp Neurol 2013; 521:3133-53. [PMID: 23787784 PMCID: PMC3772778 DOI: 10.1002/cne.23344] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/28/2013] [Accepted: 04/05/2013] [Indexed: 11/07/2022]
Abstract
A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus.
Collapse
Affiliation(s)
- Marco R. Celio
- Anatomy Unit, Department of Medicine and “Program
in Neuroscience”, University of Fribourg, CH-1700 Fribourg
- Department of Neurology and “Program in
Neuroscience”, Harvard Medical School, Beth Israel Deaconess Medical Center,
330 Brookline Avenue, Boston, MA 02215, USA
| | - Alexander Babalian
- Anatomy Unit, Department of Medicine and “Program
in Neuroscience”, University of Fribourg, CH-1700 Fribourg
| | - Quan Hue Ha
- Department of Neurology and “Program in
Neuroscience”, Harvard Medical School, Beth Israel Deaconess Medical Center,
330 Brookline Avenue, Boston, MA 02215, USA
| | - Simone Eichenberger
- Anatomy Unit, Department of Medicine and “Program
in Neuroscience”, University of Fribourg, CH-1700 Fribourg
| | - Laurence Clément
- Anatomy Unit, Department of Medicine and “Program
in Neuroscience”, University of Fribourg, CH-1700 Fribourg
| | - Christiane Marti
- Anatomy Unit, Department of Medicine and “Program
in Neuroscience”, University of Fribourg, CH-1700 Fribourg
| | - Clifford B. Saper
- Department of Neurology and “Program in
Neuroscience”, Harvard Medical School, Beth Israel Deaconess Medical Center,
330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
6
|
Grossberg S, Srihasam K, Bullock D. Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets. Neural Netw 2011; 27:1-20. [PMID: 22078464 DOI: 10.1016/j.neunet.2011.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 10/14/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
How does the brain coordinate saccadic and smooth pursuit eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets, and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? The neural model proposed here answers these questions. Modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF, LIP, and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model's ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about coordinated saccade-pursuit tracking.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Department of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA.
| | | | | |
Collapse
|
7
|
Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011; 5:53. [PMID: 22065951 PMCID: PMC3207327 DOI: 10.3389/fnint.2011.00053] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
Collapse
Affiliation(s)
- Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| | | | - Cullen B. Owens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Nouk Tanke
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Negah Rahmati
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chiheng Ju
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Wei Gong
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
8
|
Simulating the shaping of the fastigial deep nuclear saccade command by cerebellar Purkinje cells. Neural Netw 2010; 23:789-804. [PMID: 20542662 DOI: 10.1016/j.neunet.2010.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 05/07/2010] [Indexed: 11/20/2022]
Abstract
Early lesion and physiological studies established the key contributions of the cerebellar cortex and fastigial deep nuclei in maintaining the accuracy of saccades. Recent evidence has demonstrated that fastigial oculomotor region cells (FORCs) provide commands that are critical both for driving and braking saccades. Modeling studies have largely ignored the mechanisms by which the FORC activity patterns, and those of the Purkinje cells (PCs) that inhibit them, are produced by the mossy fiber (MF) inputs common to both. We have created a hybrid network of integrate-and-fire and summation units to model the circuitry between PCs, FORCs, and MFs that can account for all observed PC and FORC activity patterns. The model demonstrates that a crucial component of FORC activity may be due to the rebound depolarization intrinsic to FORC neurons that, like the MF-driven activity of FORCs, is also shaped by PC inhibition and disinhibition. The model further demonstrates that the shaping of the FORC saccade command by PCs can be adaptively modified through plausible learning rules based on cerebellar long-term depression (LTD) and long-term potentiation (LTP), which are guided by climbing fiber (CF) input to PCs that realistically indicates only the direction (but not the magnitude) of saccade error. These modeling results provide new insights into the adaptive control by the cerebellum of the deep nuclear saccade command.
Collapse
|
9
|
Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum. J Comp Neurol 2009; 517:524-38. [PMID: 19795496 DOI: 10.1002/cne.22167] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Somatostatin 28 immunoreactivity (Sst28-ir) identifies a specific subset of mossy fiber terminals in the adult mouse cerebellum. By using double-labeling immunohistochemistry, we determined that Sst28-ir is associated with presynaptic mossy fiber terminal rosettes, and not Purkinje cells, Golgi cells, or unipolar brush cells. Sst28-ir mossy fibers are restricted to the central zone (lobules VI/VII) and nodular zone (lobules IX, X) of the vermis, and the paraflocculus and flocculus. Within each transverse zone the mossy fiber terminal fields form a reproducible array of parasagittal stripes. The boundaries of Sst28-ir stripes align with a specific array of Purkinje cell stripes revealed by using immunocytochemistry for the small heat shock protein HSP25. In the cerebellum of the homozygous weaver mouse, in which a subpopulation of HSP25-ir Purkinje cells are located ectopically, the corresponding Sst28-ir mossy fiber projection is also ectopic, suggesting a role for a specific Purkinje cell subset in afferent pattern formation. Likewise, in the scrambler mutant mouse, Sst28-ir mossy fibers show a very close association with HSP25-ir Purkinje cell clusters. HSP25 itself does not appear to be critical for normal patterning, however: in the KJR mouse, which does not express cerebellar HSP25, Sst28 expression appears to be normal. Likewise, the Purkinje cell patterning antigens zebrin II and HSP25 are expressed normally in both Sst- and Sst-receptor knockout mice, suggesting that somatostatinergic transmission is not necessary for Purkinje cell stripe formation.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|
10
|
Watson TC, Jones MW, Apps R. Electrophysiological mapping of novel prefrontal - cerebellar pathways. Front Integr Neurosci 2009; 3:18. [PMID: 19738932 PMCID: PMC2737490 DOI: 10.3389/neuro.07.018.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/30/2009] [Indexed: 12/05/2022] Open
Abstract
Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.
Collapse
Affiliation(s)
- Thomas C Watson
- Department of Physiology & Pharmacology, School of Medical Sciences, University Walk, University of Bristol Bristol, UK
| | | | | |
Collapse
|
11
|
Hogie M, Guerbet M, Reber A. The toxic effects of toluene on the optokinetic nystagmus in pigmented rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:872-878. [PMID: 18397809 DOI: 10.1016/j.ecoenv.2008.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 02/18/2008] [Accepted: 02/24/2008] [Indexed: 05/26/2023]
Abstract
The effects of 375 mgm(-3) (100 ppm) toluene in air inhalation were evaluated on pigmented rats during either repeated exposures over five consecutive days 3h a day or during a single 4-h exposure. At the end of the inhalation period, the animals were returned to fresh air to evaluate their ability to recover optokinetic performance. The optokinetic responses were analyzed using a magnetic search coil technique previously described. After repeated toluene exposure, the eye position at rest of all the rats was unsteady. In response to visual stimulation, the eye velocity was slower and more irregular than in the control state. At the end of the stimulation, the environment of the animals became stationary, but the eye did not immediately return to a fixed stable position. A similar effect was observed after a single exposure. An increase of the optokinetic deficit was observed after single or repeated 375 mgm(-3) toluene exposures. No recovery was observed even after a single exposure. In view of the fact that toluene is a widely used solvent, these results show that inhalation of low concentrations, even for short single exposures, must be taken into account, because gaze destabilization could cause vertigo symptoms.
Collapse
Affiliation(s)
- Manuela Hogie
- Faculty of Sciences, Laboratory of Neurosciences and Environment, Rouen University, 76821 Mont Saint Aignan Cedex, France
| | | | | |
Collapse
|
12
|
Bolstad I, Leergaard TB, Bjaalie JG. Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence. Brain Struct Funct 2007; 212:85-93. [PMID: 17717700 DOI: 10.1007/s00429-007-0145-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 05/09/2007] [Indexed: 12/21/2022]
Abstract
The cerebral cortex conveys major input to the granule cell layer of the cerebellar hemispheres by way of the pontine nuclei. Cerebrocortical projections terminate in multiple, widely distributed clusters in the pontine nuclei. This clustered organization is thought to provide the transition between the different organizational principles of the cerebrum and cerebellum, and indicates that parallel processing occurs at multiple sites in the pontine nuclei. At a cellular level, however, it is unknown whether individual cerebropontine neurons target pontocerebellar cells located in different clusters or not. We have employed anterograde axonal tracing and 3D computerized reconstruction techniques to characterize the branching pattern and morphology of individual cerebropontine axons from the primary somatosensory cortex (SI). Our findings show that 43% of the cerebrobulbar fibers arising from SI whisker representations provide two or three fibers entering the pontine nuclei, whereas 39% have only one fiber, and the remaining 18% do not project to the pontine nuclei. Thus, it appears that a majority of cerebropontine axons originating in SI whisker representations diverge to contact multiple, separated pontocerebellar cells. Further, 84% of the somatosensory cerebropontine fibers are collateral branches from cerebrobulbar and/or cerebrospinal parent fibers, while 16% are direct cerebropontine projections without a further descending projection. A range of thicknesses of the fibers entering the pontine nuclei were observed, with collaterals of corticobulbar fibers having the smallest diameter. Taken together, these findings may be related to previously described separate cerebropontine transmission lines with different properties.
Collapse
Affiliation(s)
- Ingeborg Bolstad
- Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, P.O Box 1105, Blindern, 0317 Oslo, Norway
| | | | | |
Collapse
|
13
|
Giolli RA, Blanks RHI, Lui F. The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. PROGRESS IN BRAIN RESEARCH 2006; 151:407-40. [PMID: 16221596 DOI: 10.1016/s0079-6123(05)51013-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accessory optic system (AOS) is formed by a series of terminal nuclei receiving direct visual information from the retina via one or more accessory optic tracts. In addition to the retinal input, derived from ganglion cells that characteristically have large receptive fields, are direction-selective, and have a preference for slow moving stimuli, there are now well-characterized afferent connections with a key pretectal nucleus (nucleus of the optic tract) and the ventral lateral geniculate nucleus. The efferent connections of the AOS are robust, targeting brainstem and other structures in support of visual-oculomotor events such as optokinetic nystagmus and visual-vestibular interaction. This chapter reviews the newer experimental findings while including older data concerning the structural and functional organization of the AOS. We then consider the ontogeny and phylogeny of the AOS and include a discussion of similarities and differences in the anatomical organization of the AOS in nonmammalian and mammalian species. This is followed by sections dealing with retinal and cerebral cortical afferents to the AOS nuclei, interneuronal connections of AOS neurons, and the efferents of the AOS nuclei. We conclude with a section on Functional Considerations dealing with the issues of the response properties of AOS neurons, lesion and metabolic studies, and the AOS and spatial cognition.
Collapse
Affiliation(s)
- Roland A Giolli
- Department of Anatomy and Neurobiology, University of California, College of Medicine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
14
|
Pakan JMP, Wylie DRW. Two optic flow pathways from the pretectal nucleus lentiformis mesencephali to the cerebellum in pigeons (Columba livia). J Comp Neurol 2006; 499:732-44. [PMID: 17048227 DOI: 10.1002/cne.21108] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurons in the pretectal nucleus lentiformis mesencephali (LM) are involved in the analysis of optic flow. LM provides mossy fiber inputs to folia VI-VIII of the posterior cerebellum and IXcd of the vestibulocerebellum. Previous research has shown that the vestibulocerebellum is involved in visual-vestibular integration supporting gaze stabilization. The function of folia VI-VIII in pigeons is not well understood; however, these folia receive input from a tectopontine system, which is likely involved with analyzing local motion as opposed to optic flow. We sought to determine whether the mossy fiber input from LM to IXcd differs from that to VI-VIII. Fluorescent retrograde tracers were injected into these folia, and the pattern of labeling in LM was observed. Large multipolar neurons were labeled throughout the rostrocaudal extent of LM. There was a clear mediolateral difference: 74.3% of LM neurons projecting to IXcd were located in the lateral subnucleus of LM (LMl), whereas 73.8% of LM neurons projecting to VI-VIII were found in medial LM (LMm). This suggests that the subnuclei of LM have differing roles. In particular, the LMl-IXcd pathway is involved in generating the optokinetic response. We suggest that the pathway from LMm to VI-VIII is integrating optic flow and local motion to support various oculomotor and visuomotor behaviors, including obstacle avoidance during locomotion.
Collapse
Affiliation(s)
- Janelle M P Pakan
- Division of Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
15
|
May PJ. The mammalian superior colliculus: laminar structure and connections. PROGRESS IN BRAIN RESEARCH 2006; 151:321-78. [PMID: 16221594 DOI: 10.1016/s0079-6123(05)51011-2] [Citation(s) in RCA: 462] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The superior colliculus is a laminated midbrain structure that acts as one of the centers organizing gaze movements. This review will concentrate on sensory and motor inputs to the superior colliculus, on its internal circuitry, and on its connections with other brainstem gaze centers, as well as its extensive outputs to those structures with which it is reciprocally connected. This will be done in the context of its laminar arrangement. Specifically, the superficial layers receive direct retinal input, and are primarily visual sensory in nature. They project upon the visual thalamus and pretectum to influence visual perception. These visual layers also project upon the deeper layers, which are both multimodal, and premotor in nature. Thus, the deep layers receive input from both somatosensory and auditory sources, as well as from the basal ganglia and cerebellum. Sensory, association, and motor areas of cerebral cortex provide another major source of collicular input, particularly in more encephalized species. For example, visual sensory cortex terminates superficially, while the eye fields target the deeper layers. The deeper layers are themselves the source of a major projection by way of the predorsal bundle which contributes collicular target information to the brainstem structures containing gaze-related burst neurons, and the spinal cord and medullary reticular formation regions that produce head turning.
Collapse
Affiliation(s)
- Paul J May
- Department of Anatomy, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| |
Collapse
|
16
|
Abstract
Research over the past two decades in mammals, especially primates, has greatly improved our understanding of the afferent and efferent connections of two retinorecipient pretectal nuclei, the nucleus of the optic tract (NOT) and the pretectal olivary nucleus (PON). Functional studies of these two nuclei have further elucidated some of the roles that they play both in oculomotor control and in relaying oculomotor-related signals to visual relay nuclei. Therefore, following a brief overview of the anatomy and retinal projections to the entire mammalian pretectum, the connections and potential roles of the NOT and the PON are considered in detail. Data on the specific connections of the NOT are combined with data from single-unit recording, microstimulation, and lesion studies to show that this nucleus plays critical roles in optokinetic nystagmus, short-latency ocular following, smooth pursuit eye movements, and adaptation of the gain of the horizontal vestibulo-ocular reflex. Comparable data for the PON show that this nucleus plays critical roles in the pupillary light reflex, light-evoked blinks, rapid eye movement sleep triggering, and modulating subcortical nuclei involved in circadian rhythms.
Collapse
Affiliation(s)
- Paul D R Gamlin
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
18
|
Abstract
Pathways linking action to perception are generally presented as passing from sensory pathways, through the thalamus, and then to a putative hierarchy of corticocortical links to motor outputs or to memory. Evidence for more direct sensorimotor links is now presented to show that cerebral cortex rarely, if ever, receives messages representing receptor activity only; thalamic inputs to cortex also carry copies of current motor instructions. Pathways afferent to the thalamus represent the primary input to neocortex. Generally they are made up of branching axons that send one branch to the thalamus and another to output centers of the brain stem or spinal cord. The information transmitted through the classical "sensory" pathways to the thalamus represents not only information about the environment and the body, but also about instructions currently on their way to motor centers. The proposed hierarchy of direct corticocortical connections of the sensory pathways is not the only possible hierarchy of cortical connections. There is also a hierarchy of the corticofugal pathways to motor centers in the midbrain, and there are transthalamic corticocortical pathways that may show a comparable hierarchy. The extent to which these hierarchies may match each other, and relate to early developmental changes are poorly defined at present, but are important for understanding mechanisms that can link action and perception in the developing brain.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, School of Medicine, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Leergaard TB, Alloway KD, Pham TAT, Bolstad I, Hoffer ZS, Pettersen C, Bjaalie JG. Three-dimensional topography of corticopontine projections from rat sensorimotor cortex: comparisons with corticostriatal projections reveal diverse integrative organization. J Comp Neurol 2004; 478:306-22. [PMID: 15368533 DOI: 10.1002/cne.20289] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The major cortical-subcortical re-entrant pathways through the basal ganglia and cerebellum are considered to represent anatomically segregated channels for information originating in different cortical areas. A capacity for integrating unique combinations of cortical inputs has been well documented in the basal ganglia circuits but is largely undefined in the precerebellar circuits. To compare and quantify the amount of overlap that occurs in the first link of the cortico-ponto-cerebellar pathway, a dual tracing approach was used to map the spatial relationship between projections originating from the primary somatosensory cortex (SI), the secondary somatosensory cortex (SII), and the primary motor cortex (MI). The anterograde tracers biotinylated dextran amine and Fluoro-Ruby were injected into homologous whisker representations of either SI and SII, or SI and MI. The ensuing pontine labeling patterns were analyzed using a computerized three-dimensional reconstruction approach. The results demonstrate that whisker-related projections from SI and MI are largely segregated. At some locations, the two projections are adjoining and partly overlapping. Furthermore, SI contributes significantly more corticopontine projections than MI. By comparison, projections from corresponding representations in SI and SII terminate in similar parts of the pontine nuclei and display considerable amounts of spatial overlap. Finally, comparison of corticopontine and corticostriatal projections in the same experimental animals reveals that SI-SII overlap is significantly larger in the pontine nuclei than in the neostriatum. These structural differences indicate a larger capacity for integration of information within the same sensory modality in the pontocerebellar system compared to the basal ganglia.
Collapse
Affiliation(s)
- Trygve B Leergaard
- Neural Systems and Graphics Computing Laboratory, Centre for Molecular Biology and Neuroscience and Department of Anatomy, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
20
|
Winship IR, Hurd PL, Wylie DRW. Spatiotemporal tuning of optic flow inputs to the vestibulocerebellum in pigeons: differences between mossy and climbing fiber pathways. J Neurophysiol 2004; 93:1266-77. [PMID: 15483061 DOI: 10.1152/jn.00815.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pretectum, accessory optic system (AOS), and vestibulocerebellum (VbC) have been implicated in the analysis of optic flow and generation of the optokinetic response. Recently, using drifting sine-wave gratings as stimuli, it has been shown that pretectal and AOS neurons exhibit spatiotemporal tuning. In this respect, there are two groups: fast neurons, which prefer low spatial frequency (SF) and high temporal frequency (TF) gratings, and slow neurons, which prefer high SF-low TF gratings. In pigeons, there are two pathways from the pretectum and AOS to the VbC: a climbing fiber (CF) pathway to Purkinje cells (P cells) via the inferior olive and a direct mossy fiber (MF) pathway to the granular layer (GL). In the present study, we assessed spatiotemporal tuning in the VbC of ketamine-anesthetized pigeons using standard extracellular techniques. Recordings were made from 17 optic-flow-sensitive units in the GL, presumably granule cells or MF rosettes, and the complex spike activity (CSA) of 39 P-cells, which reflects CF input. Based on spatiotemporal tuning to gratings moving in the preferred direction, eight GL units were classified as fast units, with a primary response to low SF-high TF gratings (mean = 0.13 cpd/8.24 Hz), whereas nine were slow units preferring high SF-low TF gratings (mean = 0.68 cpd/0.30 Hz). CSA was almost exclusively tuned to slow gratings (mean = 0.67 cpd/0.35 Hz). We conclude that MF input to the VbC is from both fast and slow cells in the AOS and pretectum, whereas the CF input is primarily tuned to slow gratings.
Collapse
Affiliation(s)
- Ian R Winship
- Deptartment of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | |
Collapse
|
21
|
Abstract
The raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The serotonergic neurons are their main neuronal components, although a proportion of them lie in subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in the connectivity. Thus, the mesencephalon and rostral pons, neurons within the rostral raphe complex (caudal linear, dorsal raphe, and median raphe nuclei) project primarily to the forebrain. By contrast, in the caudal pons and medulla oblongata, neurons within the caudal raphe complex (raphe magnus, raphe obscurus, raphe pallidus nuclei and parts of the adjacent lateral reticular formation) project to the brainstem nuclei and to the spinal cord. The median raphe and dorsal raphe nuclei provide parallel and overlapping projections to many forebrain structures with axon fibers exhibiting distinct structural and functional characteristics. The caudal group of the serotonergic system projects to the brainstem, and, by three parallel projections, to the dorsal, intermediate and ventral columns in the spinal cord. The serotonergic axons arborize over large areas comprising functionally diverse targets. Some projections form classical chemical synapses while many do not, thus contributing to the so-called paracrine or volume transmission. The serotonergic projections participate in the regulation of different functional (motor, somatosensory, limbic) systems; and have been associated with a wide range of neuropsychiatric and neurological disorders. Finally, recent experimental data support the role of serotonin in modulating brain development, such that a dysfunction in serotonergic transmission during early life could lead to long lasting structural and functional alterations.
Collapse
Affiliation(s)
- Jean-Pierre Hornung
- Institut de biologie cellulaire et de morphologie, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
22
|
Guillery RW, Sherman SM. The thalamus as a monitor of motor outputs. Philos Trans R Soc Lond B Biol Sci 2002; 357:1809-21. [PMID: 12626014 PMCID: PMC1693090 DOI: 10.1098/rstb.2002.1171] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many of the ascending pathways to the thalamus have branches involved in movement control. In addition, the recently defined, rich innervation of 'higher' thalamic nuclei (such as the pulvinar) from pyramidal cells in layer five of the neocortex also comes from branches of long descending axons that supply motor structures. For many higher thalamic nuclei the clue to understanding the messages that are relayed to the cortex will depend on knowing the nature of these layer five motor outputs and on defining how messages from groups of functionally distinct output types are combined as inputs to higher cortical areas. Current evidence indicates that many and possibly all thalamic relays to the neocortex are about instructions that cortical and subcortical neurons are contributing to movement control. The perceptual functions of the cortex can thus be seen to represent abstractions from ongoing motor instructions.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, University of Wisconsin School of Medicine, 1300 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
23
|
Serapide MF, Parenti R, Pantò MR, Zappalà A, Cicirata F. Multiple zonal projections of the nucleus reticularis tegmenti pontis to the cerebellar cortex of the rat. Eur J Neurosci 2002; 15:1854-8. [PMID: 12081665 DOI: 10.1046/j.1460-9568.2002.02029.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Compartmentalization (alternating labelled and unlabelled stripes) of mossy fibre terminals was found in the cerebellar cortex after iontophoretic injections of biotinylated dextran amine into discrete regions of the nucleus reticularis tegmenti pontis (NRTP). The zonal pattern was only observed when volumes of nuclear tissue ranging from 4.5 x 106 to 17.66 x 106 microm3 were impregnated. Up to nine compartments (i.e. up to five stripes separated by four interstripes) were found in crus I and in vermal lobule VI. Up to seven compartments (four stripes and three interstripes) were found in crus II; up to five compartments (three stripes and two interstripes) were identified in the lobulus simplex, the paraflocculus and vermal lobules IV, V and VII; up to three compartments (two stripes and one interstripe) were identified in the paramedian lobule and, finally, up to two compartments (one stripe and one interstripe) were identified in the copula pyramidis, in the flocculus and in vermal lobules II, III, VIII and IX. The projections of the NRTP are arranged according to a divergent/convergent projection pattern. From single injections in the NRTP, projections were traced to a set of cortical stripes widely distributed over the cerebellar cortex. The set of stripes labelled from different regions of the NRTP partially overlapped but complete overlap was never found. This finding revealed that the topographic combination of the projections of the NRTP to the cerebellar cortex is specific for each region of the NRTP. Finally, the projections to single cortical areas were arranged according to a pattern of compartmentalization that is specific for each cortical area, independent of the site of injection in the NRTP and of the number of stripes evident in the cortex.
Collapse
Affiliation(s)
- M F Serapide
- Department of Physiological Science, University of Catania, V. le A. Doria 6, Italy
| | | | | | | | | |
Collapse
|
24
|
Stanton GB. Organization of cerebellar and area "y" projections to the nucleus reticularis tegmenti pontis in macaque monkeys. J Comp Neurol 2001; 432:169-83. [PMID: 11241384 DOI: 10.1002/cne.1095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Axonal projections to the nucleus reticularis tegmenti pontis (RTP) were studied in 11 macaque monkeys by mapping axonal degeneration from lesions centered in the dentate and interpositus anterior (IA) nuclei and by mapping anterograde transport of tritiated amino acid precursors injected into the dentate nucleus. Projections from the dentate and IA nuclei overlap in central parts of the body of RTP, but the terminal field of dentate axons extends dorsomedial and rostral to the terminal field of IA axons, and IA terminal fields extend more ventrolaterally. A caudal to rostral topography of projections from each nucleus onto dorsal to ventral parts of RTP was seen. Projections from rostral parts of both nuclei terminate in a sublemniscal part of the nucleus. The topography of dentate and IA projections onto central to ventrolateral RTP appears to match somatotopic maps of these cerebellar nuclei with the somatotopic map of projections to RTP from primary motor cortex. Projections from caudal and ventral parts of the dentate nucleus appear to overlap oculomotor inputs to rostral, dorsal, and medial RTP from the frontal and supplementary eye fields, the superior colliculus, and the oculomotor region of the caudal fastigial nucleus. Projections to the paramedian part of RTP from vestibular area "y" were also found in two cases that correlated with projections to vertical oculomotor motoneurons. The maps of dentate and IA projections onto RTP correlate predictably with maps of dentate and IA projections to the ventrolateral thalamus and subnuclei of the red nucleus that were made from these same cases (Stanton [1980b] J. Comp. Neurol. 192:377-385).
Collapse
Affiliation(s)
- G B Stanton
- Department of Anatomy, Howard University College of Medicine, 520 W. Street NW, Washington, DC 20059, USA.
| |
Collapse
|
25
|
Tham TN, Lazarini F, Franceschini IA, Lachapelle F, Amara A, Dubois-Dalcq M. Developmental pattern of expression of the alpha chemokine stromal cell-derived factor 1 in the rat central nervous system. Eur J Neurosci 2001; 13:845-56. [PMID: 11264658 DOI: 10.1046/j.0953-816x.2000.01451.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stromal cell-derived factor 1 (SDF-1) is an alpha-chemokine that stimulates migration of haematopoietic progenitor cells and development of the immune system. SDF-1 is also abundantly and selectively expressed in the developing and mature CNS, as we show here. At embryonic day 15, SDF-1 transcripts were detected in the germinal periventricular zone and in the deep layer of the forming cerebral cortex. At birth, granule cells in the cerebellum and glial cells of the olfactory bulb outer layer showed an SDF-1 in situ hybridization signal that decreased progressively within the next 2 weeks. In other regions such as cortex, thalamus and hippocampus, SDF-1 transcripts detected at birth progressively increased in abundance during the postnatal period. SDF-1 protein was identified by immunoblot and/or immunocytochemistry in most brain regions where these transcripts were detected. SDF-1 was selectively localized in some thalamic nuclei and neurons of the fifth cortical layer as well as in pontine and brainstem nuclei which relay the nociceptive response. The presence of SDF-1 transcripts in cerebellar granule cells was correlated with their migration from the external to the inner granular layers with disappearance of the signal when migration was completed. In contrast, SDF1 mRNA signal increased during formation of the hippocampal dentate gyrus and stayed high in this region throughout life. The selective and regulated expression of SDF-1 in these regions suggests a role in precursor migration, neurogenesis and, possibly, synaptogenesis. Thus this alpha chemokine may be as essential to nervous system function as it is to the immune system.
Collapse
Affiliation(s)
- T N Tham
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
26
|
Semba K. Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 2000; 115:117-41. [PMID: 11000416 DOI: 10.1016/s0166-4328(00)00254-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies over the last decade have shown that the basal forebrain (BF) consists of more than its cholinergic neurons. The BF also contains non-cholinergic neurons, including gamma-aminobutyric acid-ergic neurons which co-distribute and co-project with the cholinergic neurons. Both types of neuron project, in variable proportions, to the cerebral cortex, hippocampus, thalamus, amygdala, and olfactory bulb, whereas descending projections to the posterior hypothalamus and brainstem nuclei are predominantly non-cholinergic. Some of the cholinergic and non-cholinergic projection neurons contain neuropeptides such as galanin, nitric oxide synthase, and possibly glutamate. To understand better the function of the BF, the organization of the multiple ascending and descending projections of BF neurons is reviewed along with their neurochemical heterogeneity, and possible functions of individual pathways are discussed. It is proposed that BF neurons belong to multiple systems with distinct cognitive, motivational, emotional, motor, and regulatory functions, and that through these pathways, the BF plays a role in controlling both cognitive and non-cognitive aspects of vigilance.
Collapse
Affiliation(s)
- K Semba
- Department of Anatomy and Neurobiology, Dalhousie University, B3H 4H7, Halifax, NS, Canada.
| |
Collapse
|
27
|
Leergaard TB, Lyngstad KA, Thompson JH, Taeymans S, Vos BP, De Schutter E, Bower JM, Bjaalie JG. Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. J Comp Neurol 2000; 422:246-66. [PMID: 10842230 DOI: 10.1002/(sici)1096-9861(20000626)422:2<246::aid-cne7>3.0.co;2-r] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the primary somatosensory cortex (SI), the body surface is mapped in a relatively continuous fashion, with adjacent body regions represented in adjacent cortical domains. In contrast, somatosensory maps found in regions of the cerebellar hemispheres, which are influenced by the SI through a monosynaptic link in the pontine nuclei, are discontinuous ("fractured") in organization. To elucidate this map transformation, the authors studied the organization of the first link in the SI-cerebellar pathway, the SI-pontine projection. After injecting anterograde axonal tracers into electrophysiologically defined parts of the SI, three-dimensional reconstruction and computer-graphic visualization techniques were used to analyze the spatial distribution of labeled fibers. Several target regions in the pontine nuclei were identified for each major body representation. The labeled axons formed sharply delineated clusters that were distributed in an inside-out, shell-like fashion. Upper lip and other perioral representations were located in a central core, whereas extremity and trunk representations were found more externally. The multiple clusters suggest that the pontine nuclei contain several representations of the SI map. Within each representation, the spatial relationships of the SI map are largely preserved. This corticopontine projection pattern is compatible with recently proposed principles for the establishment of subcortical topographic patterns during development. The largely preserved spatial relationships in the pontine somatotopic map also suggest that the transformation from an organized topography in SI to a fractured map in the cerebellum takes place primarily in the mossy fiber pontocerebellar projection.
Collapse
Affiliation(s)
- T B Leergaard
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yakushin SB, Gizzi M, Reisine H, Raphan T, Büttner-Ennever J, Cohen B. Functions of the nucleus of the optic tract (NOT). II. Control of ocular pursuit. Exp Brain Res 2000; 131:433-47. [PMID: 10803412 PMCID: PMC2002478 DOI: 10.1007/s002219900302] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ocular pursuit in monkeys, elicited by sinusoidal and triangular (constant velocity) stimuli, was studied before and after lesions of the nucleus of the optic tract (NOT). Before NOT lesions, pursuit gains (eye velocity/target velocity) were close to unity for sinusoidal and constant-velocity stimuli at frequencies up to 1 Hz. In this range, retinal slip was less than 2 degrees. Electrode tracks made to identify the location of NOT caused deficits in ipsilateral pursuit, which later recovered. Small electrolytic lesions of NOT reduced ipsilateral pursuit gains to below 0.5 in all tested conditions. Pursuit was better, however, when the eyes moved from the contralateral side toward the center (centripetal pursuit) than from the center ipsilaterally (centrifugal pursuit), although the eyes remained in close proximity to the target with saccadic tracking. Effects of lesions on ipsilateral pursuit were not permanent, and pursuit gains had generally recovered to 60-80% of baseline after about 2 weeks. One animal had bilateral NOT lesions and lost pursuit for 4 days. Thereafter, it had a centrifugal pursuit deficit that lasted for more than 2 months. Vertical pursuit and visually guided saccades were not affected by the bilateral NOT lesions in this animal. We also compared effects of these and similar NOT lesions on optokinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Correlation of functional deficits with NOT lesions from this and previous studies showed that rostral lesions of NOT in and around the pretectal olivary nucleus, which interrupted cortical input through the brachium of the superior colliculus (BSC), affected both smooth pursuit and OKN. In two animals in which it was tested, NOT lesions that caused a deficit in pursuit also decreased the rapid and slow components of OKN slow-phase velocity and affected OKAN. It was previously shown that slightly more caudal NOT lesions were more effective in altering gain adaptation of the angular vestibulo-ocular reflex (aVOR). The present findings suggest that cortical pathways through rostral NOT play an important role in maintenance of ipsilateral ocular pursuit. Since lesions that affected ocular pursuit had similar effects on ipsilateral OKN, processing for these two functions is probably closely linked in NOT, as it is elsewhere.
Collapse
Affiliation(s)
- S B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Buisseret-Delmas C, Angaut P, Compoint C, Diagne M, Buisseret P. Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<264::aid-cne10>3.0.co;2-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Dori IE, Dinopoulos A, Parnavelas JG. The development of the synaptic organization of the serotonergic system differs in brain areas with different functions. Exp Neurol 1998; 154:113-25. [PMID: 9875273 DOI: 10.1006/exnr.1998.6937] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The serotonergic innervation of the developing superior colliculus and ventrolateral nucleus of the thalamus of the rat were studied with light and electron microscope immunocytochemistry. We compared the pattern of innervation and synaptic organization of the serotonin (5-HT) system in the superficial and deep layers of the superior colliculus. We also compared the developmental pattern of synaptic incidence of 5-HT varicosities in the superior colliculus with that in the ventrolateral nucleus. Serotonin fibers were present in the superior colliculus at birth, concentrated mainly in the deep layers, whereas the superficial layers were only sparsely innervated. By the end of the first postnatal week the overall density of 5-HT fibers increased, but was still higher in the deep than in the superficial layers. The distribution pattern, density, and morphology of serotonergic axons acquired mature features by the end of the third postnatal week. In the adult, these axons were thin, varicose, forming a complex network which was denser in the lower part of the superficial layers and the upper part of the deep layers. Electron microscopical analysis revealed that the vast majority of 5-HT varicosities established symmetrical synapses with dendritic shafts in all layers of the superior colliculus throughout development. In the superficial layers, known to be involved in visual functions, the proportion of varicosities forming synapses increased gradually from birth to reach a peak at the end of the first postnatal week, then declined markedly in the subsequent 2 weeks before rising again at later stages. In contrast, in the deep layers and in the ventrolateral nucleus of the thalamus, areas involved in motor functions, the proportion of 5-HT varicosities engaged in synaptic contacts showed a continuous increase from birth until adulthood. Considering these results together with data from our previous studies, we speculate that the regional heterogeneity in the synaptic organization of the serotonergic system may reflect a differential role of 5-HT in the development of brain areas with different functions.
Collapse
Affiliation(s)
- I E Dori
- Department of Anatomy, School of Veterinary Medicine, University of Thessaloniki, Greece
| | | | | |
Collapse
|
31
|
Verveer C, Hawkins RK, Ruigrok TJ, De Zeeuw CI. Ultrastructural study of the GABAergic and cerebellar input to the nucleus reticularis tegmenti pontis. Brain Res 1997; 766:289-96. [PMID: 9359619 DOI: 10.1016/s0006-8993(97)00774-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nucleus reticularis tegmenti pontis is an intermediate of the cerebrocerebellar pathway and serves as a relay centre for sensorimotor and visual information. The central nuclei of the cerebellum provide a dense projection to the nucleus reticularis tegmenti pontis, but it is not known to what extent this projection is excitatory or inhibitory, and whether the terminals of this projection contact the neurons in the nucleus reticularis tegmenti pontis that give rise to the mossy fibre collaterals innervating the cerebellar nuclei. In the present study the nucleus reticularis tegmenti pontis of the cat was investigated at the ultrastructural level following anterograde and retrograde transport of wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) from the cerebellar nuclei combined with postembedding GABA immunocytochemistry. The neuropil of this nucleus was found to contain many WGA-HRP labeled terminals, cell bodies and dendrites, but none of these pre- or postsynaptic structures was double labeled with GABA. The vast majority of the WGA-HRP labeled terminals contained clear spherical vesicles, showed asymmetric synapses, and contacted intermediate or distal dendrites. Many of the postsynaptic elements of the cerebellar afferents in the nucleus reticularis tegmenti pontis were retrogradely labeled with WGA-HRP, while relatively few were GABAergic. We conclude that all cerebellar terminals in the nucleus reticularis tegmenti pontis of the cat are nonGABAergic and excitatory, and that they contact predominantly neurons that project back to the cerebellum. Thus, the reciprocal circuit between the cerebellar nuclei and the nucleus reticularis tegmenti pontis appears to be well designed to function as an excitatory reverberating loop.
Collapse
Affiliation(s)
- C Verveer
- Department of Anatomy, Erasmus University of Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Clark RE, Gohl EB, Lavond DG. The learning-related activity that develops in the pontine nuclei during classical eye-blink conditioning is dependent on the interpositus nucleus. Learn Mem 1997; 3:532-44. [PMID: 10456115 DOI: 10.1101/lm.3.6.532] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A growing body of research now implicates the cerebellum in the formation and storage of the critical neural plasticity that subserves the classically conditioned eye-blink response. Previous anatomical, physiological, and behavioral research suggests that auditory-conditioned stimulus information is routed to the cerebellum by the pontine nuclei. However, it has also been observed from multiple unit recordings that some populations of pontine cells, in addition to showing auditory-evoked responses, also show changes in activity that is learning-related. It is unknown whether this learning-related activity is generated by the pontine cells or whether it is generated by some other structure and projected to the pontine nuclei. Because the cerebellum has been implicated in the formation of the essential plasticity that subserves this learned behavior, we examined how multiple unit recordings of learning-related activity within the pontine nuclei are affected by reversible inactivation of the interpositus nucleus of the cerebellum. The results indicated clearly that when the interpositus nucleus was inactivated, the learning-related activity in the pontine nuclei was abolished completely and the auditory stimulus-evoked activity was unaffected. In contract, when the facial nucleus was inactivated, both the auditory stimulus and the learning-related activity were still present. These results indicate that the learning-related activity exhibited by some populations of pontine nuclei cells is dependent on the interpositus nucleus and may represent feedback from the cerebellum.
Collapse
Affiliation(s)
- R E Clark
- Department of Psychology, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
33
|
Abstract
Dendritic features of identified projection neurons in two precerebellar nuclei, the pontine nuclei (PN) and the nucleus reticularis tegmenti pontis (NRTP) were established by using a combination of retrograde tracing (injection of fluorogold or rhodamine labelled latex micro-spheres into the cerebellum) with subsequent intracellular filling (lucifer yellow) in fixed slices of pontine brainstem. A multivariate analysis revealed that parameters selected to characterize the dendritic tree such as size of dendritic field, number of branching points, and length of terminal dendrites did not deviate significantly between different regions of the PN and the NRTP. On the other hand, projection neurons in ventral regions of the PN were characterized by an irregular coverage of their distal dendrites by appendages while those in the dorsal PN and the NRTP were virtually devoid of them. The NRTP, dorsal, and medial PN tended to display larger somata and more primary dendrites than ventral regions of the PN. These differences, however, do not allow the differentiation of projection neurons within the PN from those in the NRTP. They rather reflect a dorso-ventral gradient ignoring the border between the nuclei. Accordingly, a cluster analysis did not differentiate distinct types of projection neurons within the total sample. In both nuclei, multiple linear regression analysis revealed that the size of dendritic fields was strongly correlated with the length of terminal dendrites while it did not depend on other parameters of the dendritic field. Thus, larger dendritic fields seem not to be accompanied by a higher complexity but rather may be used to extend the reach of a projection neuron within the arrangement of afferent terminals. We suggest that these similarities within dendritic properties in PN and NRTP projection neurons reflect similar processing of afferent information in both precerebellar nuclei.
Collapse
Affiliation(s)
- C Schwarz
- Sektion für Visuelle Sensomotorik, Neurologische Universitätsklinik Tübingen, Germany.
| | | |
Collapse
|
34
|
Abstract
The alpha-herpes virus (pseudorabies, PRV) was used to observe central nervous system (CNS) pathways associated with the vestibulocerebellar system. Retrograde transneuronal migration of alpha-herpes virions from specific lobules of the gerbil and rat vestibulo-cerebellar cortex was detected immunohistochemically. Using a time series analysis, progression of infection along polyneuronal cerebellar afferent pathways was examined. Pressure injections of > 20 nanoliters of a 10(8) plaque forming units (pfu) per ml solution of virus were sufficient to initiate an infectious locus which resulted in labeled neurons in the inferior olivary subnuclei, vestibular nuclei, and their afferent cell groups in a progressive temporal fashion and in growing complexity with increasing incubation time. We show that climbing fibers and some other cerebellar afferent fibers transported the virus retrogradely from the cerebellum within 24 hours. One to three days after cerebellar infection discrete cell groups were labeled and appropriate laterality within crossed projections was preserved. Subsequent nuclei labeled with PRV after infection of the flocculus/paraflocculus, or nodulus/uvula, included the following: vestibular (e.g., z) and inferior olivary nuclei (e.g., dorsal cap), accessory oculomotor (e.g., Darkschewitsch n.) and accessory optic related nuclei, (e.g., the nucleus of the optic tract, and the medial terminal nucleus); noradrenergic, raphe, and reticular cell groups (e.g., locus coeruleus, dorsal raphe, raphe pontis, and the lateral reticular tract); other vestibulocerebellum sites, the periaqueductal gray, substantia nigra, hippocampus, thalamus and hypothalamus, amygdala, septal nuclei, and the frontal, cingulate, entorhinal, perirhinal, and insular cortices. However, there were differences in the resulting labeling between infection in either region. Double-labeling experiments revealed that vestibular efferent neurons are located adjacent to, but are not included among, flocculus-projecting supragenual neurons. PRV transport from the vestibular labyrinth and cervical muscles also resulted in CNS infections. Virus propagation in situ provides specific connectivity information based on the functional transport across synapses. The findings support and extend anatomical data regarding vestibulo-olivo-cerebellar pathways.
Collapse
Affiliation(s)
- G D Kaufman
- Department of Otolaryngology, University of Texas Medical Branch, Galveston 77555-1063, USA
| | | | | | | |
Collapse
|
35
|
Schmidt M, Schiff D, Bentivoglio M. Independent efferent populations in the nucleus of the optic tract: an anatomical and physiological study in rat and cat. J Comp Neurol 1995; 360:271-85. [PMID: 8522647 DOI: 10.1002/cne.903600206] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The efferent projections of the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic system (DTN) to the contralateral NOT-DTN, ipsilateral inferior olive (IO), ipsilateral nucleus prepositus hypoglossi (NPH), and ipsilateral dorsal lateral geniculate nucleus (LGNd) were examined in pigmented rats and in cats by using anterograde and retrograde tract tracing, as well as extracellular recording and electrical stimulation. Anterograde tracing in the rat revealed a dense termination field of NOT-DTN efferents throughout the homologous contralateral territory. In both species three different cell populations, projecting to the contralateral NOT-DTN, ipsilateral IO, and ipsilateral LGNd, respectively, were distinguished by means of multiple retrograde tracing. No clear topographical segregation of the different NOT-DTN relay cell populations was observed. On the other hand, a large proportion (at least 60%) of NOT-DTN neurons projecting to the ipsilateral NPH were found to bifurcate upon the IO in the rat. Electrophysiologically, NOT-DTN neurons projecting to the IO were identified by their directionally selective responses. Such neurons were never activated by electrical stimulation of either the contralateral NOT-DTN or the ipsilateral LGNd. Neurons antidromically activated from the contralateral NOT-DTN could not be activated from the ipsilateral LGNd. Thus, in both cat and rat the NOT-DTN includes at least three independent relay cell populations. As a consequence, the NOT-DTN must serve functions additional to the generation of eye movements during optokinetic nystagnus, a function subserved by the directionally selective NOT-DTN cells.
Collapse
Affiliation(s)
- M Schmidt
- Allgemeine Zoologie und Neurobiologie, Ruhr-Universität, Bochum, Germany
| | | | | |
Collapse
|
36
|
Conley M, Friederich-Ecsy B. Functional organization of the ventral lateral geniculate complex of the tree shrew (Tupaia belangeri): II. Connections with the cortex, thalamus, and brainstem. J Comp Neurol 1993; 328:21-42. [PMID: 7679121 DOI: 10.1002/cne.903280103] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Connections of the ventral lateral geniculate complex (GLv) in the tree shrew were traced by anterograde and retrograde transport of WGA-HRP. The results buttress earlier findings that GLv in this species is composed of two main divisions, lateral and medial, each of which differs in its connections with the brainstem and cerebral cortex. The connections of the lateral division (GLv) suggest that it participates in visuosensory functions: it receives input from the retina, striate cortex, pretectum, and retino-recipient layers of the superior colliculus. These connections help clarify the identification of the internal and external subdivisions of GLv inasmuch as projections from both the superior colliculus and pretectum terminate in the external subdivision and each, in turn, receives a projection from the internal subdivision. Connections of the medial division suggest that this part of the nucleus is involved with visuomotor functions. Thus, the medio-caudal subdivision projects to the pontine nuclei, the prerubral field and the central lateral nucleus. The medio-caudal subdivision also receives projections from the lateral cerebellar nucleus, so that the GLv-ponto-cerebello-GLv loop involves mainly one subdivision of GLv. The medio-rostral subdivision receives projections from the pretectum and parietal cortex. Its output is directed primarily at the intermediate and deep layers of the superior colliculus. All of these targets of GLv, the pons, prerubral field, and deep layers of the superior colliculus, are known to play a role in the coordination of head and eye movements. Additional connections of GLv with the vestibular nuclei, intralaminar nuclei, hypothalamus, and facial motor nucleus are also described.
Collapse
Affiliation(s)
- M Conley
- Departmetn of Psychology, Duke University, Durham, North Carolina 27706
| | | |
Collapse
|
37
|
van der Togt C, van der Want J. Variation in form and axonal termination in the nucleus of the optic tract of the rat: the medial terminal nucleus input on neurons projecting to the inferior olive. J Comp Neurol 1992; 325:446-61. [PMID: 1280284 DOI: 10.1002/cne.903250310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nucleus of the optic tract (NOT) and the medial terminal nucleus (MTN) are two primary visual nuclei that take part in circuits sustaining the optokinetic reflex. The morphology of rat NOT cells projecting to the inferior olive (NOT-IO neurons) and their terminal input, specifically terminals originating from the MTN, have been studied in the rat at the light and electron microscopical level. This has been done by means of combined retrograde tracing from the inferior olive and anterograde tracing from the MTN to the NOT. The area containing MTN terminal fibers and the area occupied by NOT-IO neurons has been found to match. This matched distribution provides a more detailed description of the NOT, with possible functional implications. Identified NOT-IO neurons demonstrate considerable variability in their dendritic branching pattern and have been found to include all neuronal cell types described for the NOT. The dendritic branching pattern of NOT-IO cells could be related to the orientation and distribution of the NOT's major afferent fiber systems. NOT-IO neurons receive a variable MTN and retinal input onto their somata, comparable to other cells in the NOT. With exception of the superficial part of the NOT, NOT-IO neurons with the most MTN terminals were found dorsally in areas containing large numbers of MTN terminals. In conclusion, although NOT-IO neurons are uniform with respect to their receptive field properties, they vary considerably with respect to the shape of the cell body, dendritic branching pattern, and terminal input. This means that morphological characteristics of NOT-IO neurons have no predictive value with regard to their receptive field properties.
Collapse
Affiliation(s)
- C van der Togt
- The Netherlands Ophthalmic Research Institute, Department of Morphology, Amsterdam
| | | |
Collapse
|
38
|
Abstract
The pontine nuclei provide the cerebellar hemispheres with the majority of their mossy fiber afferents, and receive their main input from the cerebral cortex. Even though the vast majority of pontine neurons send their axons to the cerebellar cortex, and are contacted monosynaptically by (glutamatergic) corticopontine fibers, the information-processing taking place is not well understood. In addition to typical projection neurons, the pontine nuclei contain putative GABA-ergic interneurons and complex synaptic arrangements. The corticopontine projection is characterized by a precise but highly divergent terminal pattern. Large and functionally diverse parts of the cerebral cortex contribute; in the monkey the most notable exception is the almost total lack of projections from large parts of the prefrontal and temporal cortices. Within corticopontine projections from visual and somatosensory areas there is a de-emphasis of central vision and distal parts of the extremities as compared with other connections of these sensory areas. Subcorticopontine projections provide only a few percent of the total input to the pontine nuclei. Certain cell groups, such as the reticular formation, project in a diffuse manner whereas other nuclei, such as the mammillary nucleus, project to restricted pontine regions only, partially converging with functionally related corticopontine connections. The pontocerebellar projection is characterized by a highly convergent pattern, even though there is also marked divergence. Neurons projecting to a single cerebellar folium appear to be confined to a lamella-shaped volume in the pontine nuclei. The organization of the pontine nuclei suggests that they ensure that information from various, functionally diverse, parts of the cerebral cortex and subcortical nuclei are brought together and integrated in the cerebellar cortex.
Collapse
Affiliation(s)
- P Brodal
- Department of Anatomy, University of Oslo, Norway
| | | |
Collapse
|
39
|
Berretta S, Bosco G, Smecca G, Perciavalle V. The cerebellopontine system: an electrophysiological study in the rat. Brain Res 1991; 568:178-84. [PMID: 1814566 DOI: 10.1016/0006-8993(91)91395-h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the effects of electric stimulation of the cerebellar lateral nucleus (LN) in the rat on the activity of single pontocerebellar neurons in the basilar pontine nuclei (BPN) and the reticulotegmental nucleus (RtTg). We found that about half of the cells of these nuclei that were influenced by LN stimulation were inhibited. A significant fraction of both excitatory and inhibitory responses had latencies of less than 4 ms and were able to follow high frequency stimulation, compatible with a monosynaptic linkage. Extracellular field potential recordings within the BPN and RtTg were interpreted as arising from impulses propagating along inhibitory axons projecting in a bundle from the cerebellum to these pontine structures. Microiontophoretic administration of GABA antagonists bicuculline or picrotoxin abolished or attenuated most inhibitory effects. Therefore, we conclude that LN-induced inhibition is most likely mediated by cerebellopontine GABAergic fibers. The functional significance of this cerebellopontine inhibitory circuit is discussed.
Collapse
Affiliation(s)
- S Berretta
- Institute of Human Physiology, University of Catania, Italy
| | | | | | | |
Collapse
|
40
|
Kaufman GD, Anderson JH, Beitz A. Activation of a specific vestibulo-olivary pathway by centripetal acceleration in rat. Brain Res 1991; 562:311-7. [PMID: 1773343 DOI: 10.1016/0006-8993(91)90637-b] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Unanesthetized Long-Evans (pigmented) rats were subjected to 2.0 G centripetal acceleration for 90 min. Immunohistochemical analysis, using a polyclonal antibody for Fos, revealed a distinct pattern of neuronal activation in the off-axis animals in the dorsomedial cell column (DMCC) of the inferior olivary nucleus. These results are consistent with previous anatomical evidence and indicate that the DMCC is an important component in an otolith-olivocerebellar circuit which may help to define an internal spatial reference.
Collapse
Affiliation(s)
- G D Kaufman
- Department of Veterinary Biology, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
41
|
Päällysaho J, Sugita S, Noda H. Brainstem mossy fiber projections to lobules VIa, VIb,c, VII and VIII of the cerebellar vermis in the rat. Neurosci Res 1991; 12:217-31. [PMID: 1721116 DOI: 10.1016/0168-0102(91)90112-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brainstem mossy-fiber projections to lobules VIa, VIb,c, VII and VIII of the cerebellar vermis were studied by retrograde transport of horseradish peroxidase in the rat. The distribution of labeled cells indicated that these lobules received major projections from topographically different locations of the basilar pontine nuclei and the nucleus reticularis tegmenti pontis. Lobules VIa and VIII received an additional strong projection from the lateral reticular nucleus. Moderate projections were found to reach lobule VIa from the raphe pontis and external cuneate nucleus; lobules VIb,c from the raphe pontis, lateral reticular nucleus, and a group of cells in the lateral tegmentum; lobule VII from the spinal vestibular nucleus and a lateral tegmental cell group; and lobule VIII from the medial and spinal vestibular nuclei, nucleus intercalatus and Roller of the perihypoglossal nuclei, and the main cuneate nucleus. The quantitative and topographical differences in the origin of mossy fibers suggest that these lobules may subserve slightly different functions.
Collapse
Affiliation(s)
- J Päällysaho
- Department of Visual Science, School of Optometry, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
42
|
Allen GV, Hopkins DA. Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat. J Comp Neurol 1990; 301:214-31. [PMID: 1702105 DOI: 10.1002/cne.903010206] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The anterograde and retrograde transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) was used to study the anatomical organization of descending projections from the mamillary body (MB) to the mesencephalon and pons at light and electron microscopic levels. Injections of WGA-HRP into the medial mamillary nucleus resulted in dense anterograde and retrograde labeling in the ventral tegmental nucleus, while injections in the lateral mamillary nucleus resulted in dense anterograde labeling in the dorsal tegmental nucleus pars dorsalis and dense anterograde and retrograde labeling in the pars ventralis of the dorsal tegmental nucleus. Anterogradely labeled fibers in the mamillotegmental tract diverged from the principal mamillary tract in an extensive dorsocaudally oriented swath of axons which extended to the dorsal and ventral tegmental nuclei, and numerous axons turned sharply ventrally and rostrally to terminate topographically in the dorsomedial nucleus reticularis tegmenti pontis and rostromedial pontine nuclei. The anterograde labeling in these two precerebellar relay nuclei was distributed near the midline such that projections from the lateral mamillary nucleus terminated mainly dorsomedial to the terminal fields of projections from the medial mamillary nucleus. In the dorsal and ventral tegmental nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites and to a lesser extent with neuronal somata. A few labeled terminals contained pleomorphic vesicles and formed symmetric synaptic junctions with dendrites and neuronal somata. Labeled axon terminals were also frequently found in synaptic contact with retrogradely labeled dendrites and neuronal somata in the dorsal and ventral tegmental nuclei. These findings indicate that neurons in the dorsal and ventral tegmental nuclei are reciprocally connected with MB projection neurons. In the nucleus reticularis tegmenti pontis and medial pontine nuclei, labeled axon terminals contained round synaptic vesicles and formed asymmetric synaptic junctions primarily with small diameter dendrites. The present study demonstrates that projections from the medial and lateral nuclei of the MB are topographically organized in the mesencephalon and pons. The synaptic morphology of mamillotegmental projections suggests that they may have excitatory influences primarily on the distal dendrites of neurons in these brain regions.
Collapse
Affiliation(s)
- G V Allen
- Department of Anatomy, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
43
|
Leichnetz GR. Preoccipital cortex receives a differential input from the frontal eye field and projects to the pretectal olivary nucleus and other visuomotor-related structures in the rhesus monkey. Vis Neurosci 1990; 5:123-33. [PMID: 2177637 DOI: 10.1017/s095252380000016x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bidirectional axonal transport capabilities of the horseradish peroxidase (HRP) technique facilitated the study of the frontal-eye-field (FEF) input and pretectal output of two regions of extrastriate preoccipital cortex (POC). Following horseradish peroxidase (HRP) gel implants into the middle and dorsal POC in two rhesus monkeys, the middle POC implant demonstrated retrograde frontal cortical labeling largely restricted to the inferior frontal eye field (iFEF) and adjacent inferior prefrontal convexity, whereas the dorsal POC implant showed labeling in the caudal ventral bank of the superior ramus of the arcuate sulcus (sas) and middle-to-dorsal region of the rostral bank of the concavity of the arcuate sulcus (dorsal FEF). Prominent anterogradely labeled efferent preoccipital projections were observed to the ipsilateral pretectal olivary nucleus (PON) and to a lesser extent the anterior pretectal nucleus. Although the middle POC case had heavier projections to the lateral PON, the dorsal case projected more heavily to the medial PON. In addition, both implants demonstrated subcortical connections with the lateral and dorsal inferior pulvinar nuclei, central superior lateral thalamic intralaminar nucleus, caudate nucleus, and middle-to-ventral claustrum. However, while the middle POC implant had efferent projections to the superficial superior colliculus (SC), pregeniculate nucleus (PGN), lateral terminal accessory optic nucleus (LTN), and dorsolateral pontine nucleus (DLPN), resembling those previously reported for the middle temporal (MT) visual area (Maunsell & Van Essen, 1982; Ungerleider et al., 1984), the dorsal implant had projections to the lateral intermediate SC, zona incerta (ZI), PGN, a notably lesser projection to the LTN, and basilar pontine projections to the lateral and lateral dorsal pontine subnuclei (not including the extreme dorsolateral DLPN). These preliminary results suggest that the preoccipital cortex, which reportedly functions in pupillary constriction, accommodation, and convergence, entertains connections with the PON and other visuomotor-related structures, and thus could act as an intermediary in the pathway between the iFEF and PON, and provide a possible explanation for pupillary effects that occur with stimulation of the FEF (Jampel, 1960) and within the contex of other oculomotor activities. The findings shed light on certain differences in connections of middle vs. dorsal POC with visuomotor-related nuclei, and appear to suggest that the middle region, which receives input from the iFEF, has greater access to the optokinetic (OKN) system by virtue of its projection to the LTN, and to the smooth-pursuit system b
Collapse
Affiliation(s)
- G R Leichnetz
- Department of Anatomy, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0709
| |
Collapse
|
44
|
Hayakawa T, Zyo K. Ultrastructure of the mammillotegmental projections to the ventral tegmental nucleus of Gudden in the rat. J Comp Neurol 1990; 293:466-75. [PMID: 1691215 DOI: 10.1002/cne.902930309] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study examines the termination pattern of axons from the medial mammillary nucleus within the ventral tegmental nucleus of Gudden (TV) in rats by using anterograde transport of horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) and visualized with tetramethylbenzidine. The neuropil of TV contains three classes of axodendritic terminals, that is, terminals containing round, flat, and pleomorphic synaptic vesicles. These types make up 55.6%, 26.1%, and 18.3%, respectively, of all normal axodendritic terminals. Injection of WGA-HRP into the medial mammillary nucleus permits ultrastructural recognition of anterogradely labeled terminals within the TV. More than 80% of the labeled terminals contain round synaptic vesicles and form asymmetric synaptic contacts, whereas about 16% contain flat synaptic vesicles with symmetric synaptic contacts. There are a few labeled terminals with pleomorphic vesicles and only a few axosomatic terminals. Almost all labeled terminals are small, having diameters of less than 1.5 microns. Compared with the distributions of normal and labeled terminals with round vesicles, there is an increase of the percentage of labeled terminals with round vesicles on the intermediate dendrites (1-2 microns diameter) and a decrease on the distal dendrites (less than 1 micron diameter). Anterogradely labeled axon terminals often contact retrogradely labeled dendrites. These results suggest that the medial mammillary neurons send mainly excitatory as well as a few inhibitory inputs to the dendrites of TV and have direct reciprocal contacts with the TV neurons.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Japan
| | | |
Collapse
|
45
|
Woolf NJ, Butcher LL. Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum. Brain Res Bull 1989; 23:519-40. [PMID: 2611694 DOI: 10.1016/0361-9230(89)90197-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Descending projections from cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei, collectively referred to as the pontomesencephalotegmental (PMT) cholinergic complex, were studied by use of the fluorescent retrograde tracers fluorogold, true blue, or Evans Blue in combination with choline acetyltransferase (ChAT) immunohistochemistry of acetylcholinesterase (AChE) pharmacohistochemistry. Pedunculopontine somata positive for ChAT or staining intensely for AChE were retrogradely labeled with fluorescent tracers following infusions into the motor nuclei of cranial nerves 5, 7, and 12. ChAT-positive cells in both the pedunculopontine and laterodorsal tegmental nuclei demonstrated projections to the vestibular nuclei, the spinal nucleus of the 5th cranial nerve, deep cerebellar nuclei, pontine nuclei, locus ceruleus, raphe magnus nucleus, dorsal raphe nucleus, median raphe nucleus, the medullary reticular nuclei, and the oral and caudal pontine reticular nuclei. Fluorescent tracers used in combination with AChE pharmacohistochemistry corroborated these projections and, in addition, provided evidence for cholinergic pontomesencephalic projections to the lateral reticular nucleus and inferior olive. The majority of retrogradely labeled neurons demonstrating ChAT-like immunoreactivity were found ipsilateral to the injection site, but, in all cases, tracer-containing cholinergic cells contralateral to the infused side of the brain were detected also. More retrogradely labeled cells containing ChAT were observed in the pedunculopontine tegmental than in the laterodorsal tegmental nucleus following tracer injections at all sites with the exceptions of the locus ceruleus and dorsal raphe nucleus where the converse profile was observed. None of the pedunculopontine or laterodorsal tegmental cells immunopositive for ChAT or stained intensely for AChE contained retrogradely transported tracers following dye infusions into the cerebellar cortex or cervical spinal cord. Triple-label experiments using two tracers infused into different sites in the same animal revealed that individual ChAT-immunoreactive cells in the PMT cholinergic complex projected to more than one hindbrain site in some cases and had ascending projections as well. Certain ChAT-positive somata in the pedunculopontine and laterodorsal tegmental nuclei were found in close association with several fiber tracts, including the superior cerebellar peduncle, lateral lemniscus, dorsal tegmental tract, and medial longitudinal fasciculus.
Collapse
Affiliation(s)
- N J Woolf
- Department of Psychology, University of California, Los Angeles 90024-1653
| | | |
Collapse
|
46
|
Hayakawa T, Zyo K. Retrograde double-labeling study of the mammillothalamic and the mammillotegmental projections in the rat. J Comp Neurol 1989; 284:1-11. [PMID: 2502564 DOI: 10.1002/cne.902840102] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Collateral axonal branching from the medial or lateral mammillary nuclei to the anterior thalamus, Gudden's tegmental nuclei, the nucleus reticularis tegmenti pontis, and the medial pontine nucleus was studied using the fluorescent retrograde double-labeling method. One day after injection of Fast Blue into the anterior thalamic nuclei or Gudden's tegmental nuclei, Nuclear Yellow was injected into Gudden's tegmental nuclei or the nucleus reticularis tegmenti pontis and the medial pontine nucleus. Following 1 day survival, single- and double-labeled neurons were examined in the mammillary nuclei. The lateral mammillary nucleus contains neurons whose collateral fibers project to both the dorsal tegmental nucleus of Gudden and the ipsilateral or contralateral anterodorsal thalamic nucleus, to both the medial pontine nucleus and the anterodorsal thalamic nucleus, and to both the dorsal tegmental nucleus of Gudden and the medial pontine nucleus. The pars medianus and pars medialis of the medial mammillary nucleus contain neurons whose collateral fibers project to both the anteromedial thalamic nucleus and the ventral tegmental nucleus of Gudden, to both the anteromedial thalamic nucleus and the medial part of the nucleus reticularis tegmenti pontis, and to both the ventral tegmental nucleus of Gudden and the medial part of the nucleus reticularis tegmenti pontis. The dorsal half of the pars posterior of the medial mammillary nucleus contains a few neurons whose collateral fibers project to both the anteromedial thalamic nucleus and the rostral part of the ventral tegmental nucleus of Gudden, and to both the caudal part of the anteroventral thalamic nucleus and the rostral part of the ventral tegmental nucleus of Gudden, while the pars lateralis of the medial mammillary nucleus contains no double-labeled neurons and projects only to the anteroventral thalamic nucleus.
Collapse
Affiliation(s)
- T Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Japan
| | | |
Collapse
|
47
|
Semba K, Reiner PB, McGeer EG, Fibiger HC. Brainstem projecting neurons in the rat basal forebrain: neurochemical, topographical, and physiological distinctions from cortically projecting cholinergic neurons. Brain Res Bull 1989; 22:501-9. [PMID: 2469525 DOI: 10.1016/0361-9230(89)90102-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnocellular regions of the basal forebrain contain cholinergic neurons that project to the cerebral cortex. Neurons in the same basal forebrain regions innervate the brainstem. The present study investigated whether these brainstem projecting neurons are cholinergic, project also to the cortex, and share similar physiological properties as cortically projecting neurons. Data with retrograde tracing from various regions of the pons, medulla, and cortex combined with choline acetyltransferase immunofluorescence indicated that: 1) brainstem projecting neurons are usually segregated from cortically projecting and/or cholinergic neurons in the basal forebrain, 2) virtually no brainstem projecting neurons in the basal forebrain are cholinergic, and 3) only rarely do basal forebrain neurons have axon collaterals that project to both cortex and brainstem. Extracellular recordings from basal forebrain neurons confirmed the paucity of axonal collateralization and the topographic segregation between cortically and brainstem projecting basal forebrain neurons, and, in addition, showed that brainstem projecting neurons have a slower mean conduction velocity than cortically projecting neurons. These observations suggest that basal forebrain neurons projecting to the brainstem (pons, medulla) and the cortex represent separate cell populations in terms of projections, neurotransmitter content, distribution, and physiological properties.
Collapse
Affiliation(s)
- K Semba
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
48
|
Korp BG, Blanks RH, Torigoe Y. Projections of the nucleus of the optic tract to the nucleus reticularis tegmenti pontis and prepositus hypoglossi nucleus in the pigmented rat as demonstrated by anterograde and retrograde transport methods. Vis Neurosci 1989; 2:275-86. [PMID: 2562149 DOI: 10.1017/s095252380000119x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The visual pathways from the nucleus of the optic tract (NOT) to the nucleus reticularis tegmenti pontis (NRTP) and prepositus hypoglossi nucleus (ph) were studied following injections of tritiated leucine into the NOT of pigmented rats. The cell bodies of origin of the pretectal-NRTP, NRTP-ph, and pretectal-ph projections were determined using retrograde horseradish peroxidase (HRP) technique. The pretectum projects strongly to the rostral two-thirds of the central and pericentral subdivisions of the NRTP and sends a remarkably smaller projection to the ph. Both are entirely ipsilateral. The fibers destined for the ph travel with the NOT-NRTP bundle, pass through the NRTP, traverse the medial longitudinal fasciculus, and are distributed to the rostral one-half of the ph. The retrograde HRP studies confirm these pathways. The pretectal projections to the NRTP arise from neurons in the rostromedial NOT; those to the ph are located primarily in the rostral NOT although small numbers are found within the anterior, posterior, and olivary pretectal nuclei. Of major importance is the fact that the ph injections retrogradely label neurons within the NRTP and the adjacent paramedian pontine reticular formation. This NRTP-ph projection is entirely bilateral and arises from parts of both subdivisions of the nucleus targeted by NOT afferents. Both the direct NOT-ph and indirect NOT-NRTP-ph connections provide the anatomical basis for the relay of visual (optokinetic) information to the perihypoglossal complex and, presumably, by virtue of reciprocal ph-vestibular nuclear connections, to the vestibular nuclei itself. Such pathways confirm previous physiological studies in rat and, in particular, clarify the contrasting effects of electrolytic lesions of NRTP in rat which completely abolishes optokinetic nystagmus (OKN) (Cazin et al., 1980a) vs kainic acid lesions which produce only minor effects on OKN slow velocity (Hess et al., 1988). Given these differential effects, one concludes that the critical pathway for OKN passes in relation to, but is not significantly relayed by, the neurons of the NRTP or adjacent pontine tegmentum. The present studies suggest that one such fiber system is the NOT-ph bundle. How this relatively small projection compares to other possible fiber of passage systems remains to be determined electrophysiologically.
Collapse
Affiliation(s)
- B G Korp
- Department of Anatomy and Neurobiology, University of California, Irvine 92717
| | | | | |
Collapse
|
49
|
Wells GR, Hardiman MJ, Yeo CH. Visual projections to the pontine nuclei in the rabbit: orthograde and retrograde tracing studies with WGA-HRP. J Comp Neurol 1989; 279:629-52. [PMID: 2465324 DOI: 10.1002/cne.902790410] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Visual projections to the pontine nuclei in the rabbit were examined by means of both orthograde and retrograde tracing of WGA-HRP. The tecto-pontine projection was examined following microinjections of WGA-HRP in the right superior colliculus. The projection to the pontine nuclei is strictly ipsilateral and terminates at middle and caudal levels of the pons. The projection is absent in rostral pontine nuclei. The strongest projection is to the dorsal border of the dorsolateral pontine nuclei and is the only projection seen when the primary injection site is confined to superficial laminae. When the primary injection site also includes intermediate and deep laminae, patches of labelled terminals are also seen within dorsolateral, lateral, peduncular, paramedian, and ventral pontine nuclei as well as in the contralateral nucleus reticularis tegmenti pontis. The striate corticopontine projection was also examined with orthograde tracing of WGA-HRP. The striate corticopontine projection is ipsilateral. Most labelled terminals were seen in dorsolateral and lateral pontine nuclei throughout the rostral half of pons with some additional terminal labelling in paramedian and peduncular nuclei. Labelled terminals were also seen in ventral pontine nuclei throughout the middle and caudal levels of the pons. In a retrograde tracing study, visual projections to the pontine nuclei were examined following microinjections of WGA-HRP into the pontine nuclei. Labelled cells were seen ipsilaterally in superficial and deep laminae of the superior colliculus and in layer V of striate and surrounding occipital cortex. The pontine nuclei also receive ipsilateral projections from the ventral lateral geniculate, the nucleus of the optic tract, anterior and posterior pretectal nuclei, and the dorsal and medial terminal nuclei of the accessory optic system. These pathways are potential sources of visual input to the cerebellum.
Collapse
Affiliation(s)
- G R Wells
- Department of Anatomy and Developmental Biology, University College London, England
| | | | | |
Collapse
|
50
|
Giolli RA, Torigoe Y, Blanks RH, McDonald HM. Projections of the dorsal and lateral terminal accessory optic nuclei and of the interstitial nucleus of the superior fasciculus (posterior fibers) in the rabbit and rat. J Comp Neurol 1988; 277:608-20. [PMID: 3209748 DOI: 10.1002/cne.902770412] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The projections of the dorsal and lateral terminal accessory optic nuclei (DTN and LTN) and of the dorsal and ventral components of the interstitial nucleus of the superior fasciculus (posterior fibers; inSFp have been studied in the rabbit and rat by the method of retrograde axonal transport following injections of horseradish peroxidase into oculomotor-related brainstem nuclei. The projections of the ventral division of the inSFp have been further investigated in rabbits with the anterograde axonal transport of 3H-leucine. The data show that the projections of the DTN, LTN, and inSFp are remarkably similar in rabbit and rat. The DTN projects heavily to the ipsilateral medial terminal accessory optic nucleus (MTN), nucleus of the optic tract, and dorsal cap of the inferior olive. The DTN projects sparsely to the ipsilateral visual tegmental relay zone and to the contralateral superior and lateral vestibular nuclei. The LTN and dorsal component of the inSFp are found to share the same basic connections; both project heavily to the ipsilateral nucleus of the optic tract and visual tegmental relay zone and send a moderately sized projection to the ipsilateral MTN. However, while the dorsal component of the inSFp sends significant ipsilateral projections to both rostral and caudal portions of the dorsal cap, only a few LTN neurons appear to follow this example and only by projecting to the rostral part of the dorsal cap. In addition, both the LTN and dorsal component of the inSFp send sparse contralateral projections to the MTN, nucleus of the optic tract, and visual tegmental relay zone; and the dorsal component of the inSFp also provides a sparse contralateral projection to both rostral and caudal portions of the dorsal cap. The ventral component of the inSFp projects heavily to the ipsilateral visual tegmental relay zone and moderately to the ipsilateral MTN and nucleus of the optic tract. The ventral inSFp projects sparsely to the contralateral MTN, the nucleus of the optic tract, and the visual tegmental relay zone. A few of its neurons target the ipsilateral dorsal cap of the inferior olive. Unlike the DTN (present study) and the MTN (Giolli et al.: J. Comp. Neurol. 227:228-251, '84; J. Comp. Neurol. 232:99-116, '85a), the LTN and the inSFp of the rabbit and rat lack projections to the superior and lateral vestibular nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R A Giolli
- Department of Anatomy and Neurobiology, California College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|