1
|
Reiner A, Medina L, Abellan A, Deng Y, Toledo CA, Luksch H, Vega-Zuniga T, Riley NB, Hodos W, Karten HJ. Neurochemistry and circuit organization of the lateral spiriform nucleus of birds: A uniquely nonmammalian direct pathway component of the basal ganglia. J Comp Neurol 2024; 532:e25620. [PMID: 38733146 PMCID: PMC11090467 DOI: 10.1002/cne.25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellan
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Claudio A.B. Toledo
- Neuroscience Research Nucleus, Universidade Cidade de Sao Paulo, Sao Paulo 65057-420, Brazil
| | - Harald Luksch
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nell B. Riley
- Department of Psychology, University of Maryland College Park 20742-4411
| | - William Hodos
- Department of Psychology, University of Maryland College Park 20742-4411
| | - Harvey J. Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093-0608
| |
Collapse
|
2
|
Kamkrathok B, Sartsoongnoen N, Chaiseha Y. Neuropeptide Y and maternal behavior in the female native Thai chicken. Acta Histochem 2021; 123:151698. [PMID: 33711725 DOI: 10.1016/j.acthis.2021.151698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
Maternal care behaviors in birds include incubation and rearing behaviors. During incubating period, the hens stop laying and eating less due to food restriction as a natural fasting when compared with the rearing hens, resulting in low production of eggs and chicks. Neuropeptide Y (NPY), a neurotransmitter/neuromodulator, is very well known to be involved in food intake regulation in birds and mammals. The objective of this study is to elucidate the association between NPY and maternal behaviors in the female native Thai chicken. The distributions of NPY-immunoreactive (-ir) neurons and fibers in the brain of the incubating (INC), nest-deprived (ND), and replaced-egg-with-chicks (REC) hens at day 6 were determined utilizing immunohistochemistry technique. The results revealed that the distributions of NPY-ir neurons and fibers were observed within the septalis lateralis, nucleus rotundus, and nucleus dorsolateralis anterior thalami, with predominantly located within the the nucleus paraventricularis magnocellularis (PVN). NPY-ir fibers were located throughout the brain and the densest NPY-ir fibers were distributed in a discrete region lying close to the ventriculus tertius (third ventricle) through the hypothalamus. Changes in the number of NPY-ir neurons within the PVN of the INC, ND, and REC hens were compared at different time points (at days 6 and 14). Interestingly, the number of NPY-ir neurons within the PVN was significantly higher (P < 0.05) in the INC hens when compared with those of the ND and REC hens at day 14 but not day 6. In addition, the number of NPY-ir neurons within the PVN of the INC hens was significantly increased (P < 0.05) from day 6 to day 14 but not the ND and REC hens. These results indicated, for the first time, the asscociation between NPY and maternal behaviors in the femle native Thai chicken. Change in the number of NPY-ir neurons within the PVN during the transition from incubating to rearing behavior suggested the possible role of NPY in the regulation of the maternal behaviors in this equatorial species. In addition, the native Thai chicken might be an excellent animal model for the study of this phenomenon.
Collapse
Affiliation(s)
- Boonyarit Kamkrathok
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Natagarn Sartsoongnoen
- Program of Biology, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | - Yupaporn Chaiseha
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
3
|
Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Struct Funct 2020; 225:2239-2269. [PMID: 32743670 DOI: 10.1007/s00429-020-02123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
The organization of the pallial derivatives across vertebrates follows a comparable elementary arrangement, although not all of them possess a layered cortical structure as sophisticated as the cerebral cortex of mammals. However, its expansion along evolution has only been possible by the development and coevolution of the cellular networks formed by excitatory neurons and inhibitory interneurons. Thus, the comparative analysis of interneuron types in vertebrate models of key evolutionary significance will provide important information, due to the extraordinary anatomical sophistication of their interneuron systems with simpler behavioral implications. Particularly in mammals, the main consensus for classifying interneuron types is based on non-overlapping markers, which do not form a single population, but consist of several distinct classes of inhibitory cells showing co-expression of other markers. In our study, we analyzed immunohistochemically the expression of the main markers like somatostatin (SOM), parvalbumin (PV), calretinin (CR), calbindin (CB), neuropeptide Y (NPY) and/or nitric oxide synthase (NOS) at the pallial regions of three different models of Osteichthyes. First, we selected two tetrapods, one amniote from the genus Pseudemys belonging to the order Testudine, at the base of the amniote diversification and with a three-layered simple cortex, and the Anuran Xenopus laevis, an anamniote tetrapod with a non-layered evaginated pallium, and finally the order Polypteriform, a small fish group at the base of the actinopterygian diversification with an everted telencephalon. SOM was the most conserved interneuron type in terms of its distribution and co-expression with other markers such as CR, in contrast to PV, which showed a different pattern between the models analyzed. In addition, the SOM expression supports a homological relationship between the medial pallial derivatives in all the models. CR and CB expressions in the tetrapods were observed, particularly, CR expressing cells were detected in the medial and the dorsal pallial derivatives, in contrast to CB, which appeared only in discrete scattered populations. However, the pallium of Polypteriforms fishes was almost devoid of CR cells, in contrast to the important number of CB cells observed in all the pallial regions. The NPY immunoreactivity was detected in all the pallial domains of all the models, as well as cells coexpressing CR. Finally, the pallial nitrergic expression was also conserved, which allows to postulate the homological relationships between the ventropallial and the amygdaloid derivatives. In summary, even in basal pallial models the neurochemically characterized interneurons indicate that their first appearance took place before the common ancestor of amniotes. Thus, our results suggest a shared pattern of interneuron types in the pallium of all Osteichthyes.
Collapse
|
4
|
Rook N, Letzner S, Packheiser J, Güntürkün O, Beste C. Immediate early gene fingerprints of multi-component behaviour. Sci Rep 2020; 10:384. [PMID: 31941919 PMCID: PMC6962395 DOI: 10.1038/s41598-019-56998-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to execute different responses in an expedient temporal order is central for efficient goal-directed actions and often referred to as multi-component behaviour. However, the underlying neural mechanisms on a cellular level remain unclear. Here we establish a link between neural activity at the cellular level within functional neuroanatomical structures to this form of goal-directed behaviour by analyzing immediate early gene (IEG) expression in an animal model, the pigeon (Columba livia). We focus on the group of zif268 IEGs and ZENK in particular. We show that when birds have to cascade separate task goals, ZENK expression is increased in the avian equivalent of the mammalian prefrontal cortex, i.e. the nidopallium caudolaterale (NCL) as well as in the homologous striatum. Moreover, in the NCL as well as in the medial striatum (MSt), the degree of ZENK expression was highly correlated with the efficiency of multi-component behaviour. The results provide the first link between cellular IEG expression and behavioural outcome in multitasking situations. Moreover, the data suggest that the function of the fronto-striatal circuitry is comparable across species indicating that there is limited flexibility in the implementation of complex cognition such as multi-component behaviour within functional neuroanatomical structures.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Sara Letzner
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
6
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
8
|
Devraj S, Kumari Y, Rastogi A, Rani S, Kumar V. Neuropeptide Y mRNA and peptide in the night-migratory redheaded bunting brain. Cell Tissue Res 2014; 354:551-62. [PMID: 23797336 DOI: 10.1007/s00441-013-1667-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
This study investigated the distribution of neuropeptide Y (NPY) in the brain of the night-migratory redheaded bunting (Emberiza bruniceps). We first cloned the 275-bp NPY gene in buntings, with ≥95% homology with known sequences from other birds. The deduced peptide sequence contained all conserved 36 amino acids chain of the mature NPY peptide, but lacked 6 amino acids that form the NPY signal peptide. Using digosigenin-labeled riboprobe prepared from the cloned sequence, the brain cells that synthesize NPY were identified by in-situ hybridization. The NPY peptide containing cell bodies and terminals (fibers) were localized by immunocytochemistry. NPY mRNA and peptide were widespread throughout the bunting brain. This included predominant pallial and sub-pallial areas (cortex piriformis, cortex prepiriformis, hyperpallium apicale, hippocampus, globus pallidus) and thalamic and hypothalamic nuclei (organum vasculosum laminae terminalis, nucleus (n.) dorsolateralis anterior thalami, n. rotundus, n. infundibularis) including the median eminence and hind brain (n. pretectalis, n. opticus basalis, n. reticularis pontis caudalis pars gigantocellularis). The important structures with only NPY-immunoreactive fibers included the olfactory bulb, medial and lateral septal areas, medial preoptic nucleus, medial suprachiasmatic nucleus, paraventricular nucleus, ventromedial hypothalamic nucleus, optic tectum, and ventro-lateral geniculate nucleus. These results demonstrate that NPY is possibly involved in the regulation of several physiological functions (e.g. daily timing feeding, and reproduction) in the migratory bunting.
Collapse
|
9
|
Peng Z, Zhang X, Liu Y, Xi C, Zeng S, Zhang X, Zuo M, xu J, Ji Y, Han Z. Ultrastructural and electrophysiological analysis of Area X in the untutored and deafened Bengalese finch in relation to normally reared birds. Brain Res 2013; 1527:87-98. [PMID: 23820426 DOI: 10.1016/j.brainres.2013.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/28/2013] [Accepted: 06/24/2013] [Indexed: 11/15/2022]
Abstract
Birdsong learning bears many similarities to human speech acquisition. Although the anterior forebrain pathway (AFP) is believed to be involved in birdsong learning, the underlying neural mechanisms are unclear. We produced two types of abnormal song learning: young birds untutored from adult "song tutors", or birds deafened by bilateral cochlear removal before the onset of sensory learning. We then studied how ultrastructure and electrophysiological activity changed in an AFP nucleus, Area X, among these birds at adulthood. Our results showed that, although the size of Area X did not change significantly, the numbers of synapses per unit area and compound synapses and the percent of concave synapses increased significantly in the untutored or deafened birds. The percent of perforated synapses or axo-spinous synapses decreased compared to the normally reared birds, suggesting a decreased efficiency of synaptic transmission in the untutored or deafened birds. We then identified several types of spontaneously firing cells in Area X. Cells with fast and slow firing rates did not show significant electrophysiological differences among the groups, but cells with moderate firing rates, most likely DLM-projecting neurons, fired at significantly lower rates in the untutored and deafened birds. In addition, cells firing irregularly were only found in the deafened birds. Thus, the decreased or irregular electrophysiological activity in the untutored or deafened birds, together with the corresponding ultrastructural findings, could be implicated in the abnormal song production in these two types of birds.
Collapse
Affiliation(s)
- Zhe Peng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 718] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
11
|
Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res 2011; 1424:67-101. [PMID: 22015350 PMCID: PMC3378669 DOI: 10.1016/j.brainres.2011.09.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/18/2022]
Abstract
The subpallial region of the avian telencephalon contains neural systems whose functions are critical to the survival of individual vertebrates and their species. The subpallial neural structures can be grouped into five major functional systems, namely the dorsal somatomotor basal ganglia; ventral viscerolimbic basal ganglia; subpallial extended amygdala including the central and medial extended amygdala and bed nuclei of the stria terminalis; basal telencephalic cholinergic and non-cholinergic corticopetal systems; and septum. The paper provides an overview of the major developmental, neuroanatomical and functional characteristics of the first four of these neural systems, all of which belong to the lateral telencephalic wall. The review particularly focuses on new findings that have emerged since the identity, extent and terminology for the regions were considered by the Avian Brain Nomenclature Forum. New terminology is introduced as appropriate based on the new findings. The paper also addresses regional similarities and differences between birds and mammals, and notes areas where gaps in knowledge occur for birds.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 2010; 62:196-220. [DOI: 10.1016/j.vascn.2010.05.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 11/26/2022]
|
14
|
Reiner A. The Conservative Evolution of the Vertebrate Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Alponti RF, Breno MC, Mancera JM, Martin-Del-Rio MP, Silveira PF. Distribution of somatostatin immunoreactivity in the brain of the snake Bothrops jararaca. Gen Comp Endocrinol 2006; 145:270-9. [PMID: 16288754 DOI: 10.1016/j.ygcen.2005.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/16/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
The distribution of perikarya and fibers containing somatostatin was studied in the brain of the snake Bothrops jararaca by means of immunohistochemistry using an antiserum against synthetic somatostatin. Immunoreactive perikarya and fibers were localized in telencephalic, diencephalic and mesencephalic areas. In the telencephalon, numerous immunoreactive perikarya were found in the medial, dorsomedial, dorsal and lateral cortex, mainly in the deep plexiform layer, less so in the cellular layer, but not in the superficial plexiform layer. Immunoreactive perikarya were also observed in the dorsal ventricular ridge, the nucleus of the diagonal band of Broca, amygdaloid complex, septum and lamina terminalis. In the diencephalon, labelled cells were observed in the paraventricular, periventricular hypothalamic and in the recessus infundibular nuclei. In the mesencephalon, immunoreactive perikarya were seen in the mesencephalic reticular formation, reticular nucleus of the isthmus and torus semicircularis. Labelled fibers ran along the diencephalic floor and the inner zone of the median eminence, and ended in the neural lobe of the hypophysis. Other fibers were observed in the outer zone of the median eminence close to the portal vessels and in the septum, lamina terminalis, retrochiasmatic nucleus, deep layers of the tectum, periventricular gray and granular layer of the cerebellum. Our data suggest that somatostatin may function as a mediator of adenohypophysial secretion as well as neurotransmitter and/or neuromodulator which can regulate the neurohypophysial peptides in the snake B. jararaca.
Collapse
Affiliation(s)
- R F Alponti
- Laboratory of Pharmacology, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
16
|
Laverghetta AV, Toledo CAB, Veenman CL, Yamamoto K, Wang H, Reiner A. Cellular Localization of AMPA Type Glutamate Receptor Subunits in the Basal Ganglia of Pigeons (Columba livia). BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:10-38. [PMID: 16219996 DOI: 10.1159/000088856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 05/24/2005] [Indexed: 11/19/2022]
Abstract
Corticostriatal and thalamostriatal projections utilize glutamate as a neurotransmitter in mammals and birds. The influence on striatum is mediated, in part, by ionotropic AMPA-type glutamate receptors, which are heteromers composed of GluR1-4 subunits. Although the cellular localization of AMPA-type subunits has been well characterized in mammalian basal ganglia, their localization in avian basal ganglia has not. We thus carried out light microscopic single- and double-label and electron microscopic single-label immunohistochemical studies of GluR1-4 distribution and cellular localization in pigeon basal ganglia. Single-label studies showed that the striatal neuropil is rich in GluR1, GluR2, and GluR2/3 immunolabeling, suggesting the localization of GluR1, GluR2 and/or GluR3 to the dendrites and spines of striatal projection neurons. Double-label studies and perikaryal size distribution determined from single-label material indicated that about 25% of enkephalinergic and 25% of substance P-containing striatal projection neuron perikarya contained GluR1, whereas GluR2 was present in about 75% of enkephalinergic neurons and all substance-P -containing neurons. The perikaryal size distribution for GluR2 compared to GluR2/3 suggested that enkephalinergic neurons might more commonly contain GluR3 than do substance P neurons. Parvalbuminergic and calretininergic striatal interneurons were rich in GluR1 and GluR4, a few cholinergic striatal interneurons possessed GluR2, but somatostatinergic striatal interneurons were devoid of all subunits. The projection neurons of globus pallidus all possessed GluR1, GluR2, GluR2/3 and GluR4 immunolabeling. Ultrastructural analysis of striatum revealed that GluR1 was preferentially localized to dendritic spines, whereas GluR2/3 was found in spines, dendrites, and perikarya. GluR2/3-rich spines were generally larger than GluR1 spines and more frequently possessed perforated post-synaptic densities. These results show that the diverse basal ganglia neuron types each display different combinations of AMPA subunit localization that shape their responses to excitatory input. For striatal projection neurons and parvalbuminergic interneurons, the combinations resemble those for the corresponding cell types in mammals, and thus their AMPA responses to glutamate are likely to be similar.
Collapse
Affiliation(s)
- Antonio V Laverghetta
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Reiner A, Laverghetta AV, Meade CA, Cuthbertson SL, Bottjer SW. An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch. J Comp Neurol 2004; 469:239-61. [PMID: 14694537 DOI: 10.1002/cne.11012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Area X is a nucleus within songbird basal ganglia that is part of the anterior forebrain song learning circuit. It receives cortical song-related input and projects to the dorsolateral medial nucleus of thalamus (DLM). We carried out single- and double-labeled immunohistochemical and pathway tracing studies in male zebra finch to characterize the cellular organization and circuitry of area X. We found that 5.4% of area X neuronal perikarya are relatively large, possess aspiny dendrites, and are rich in the pallidal neuron/striatal interneuron marker Lys8-Asn9-neurotensin8-13 (LANT6). Many of these perikarya were found to project to the DLM, and their traits suggest that they are pallidal. Area X also contained several neuron types characteristic of the striatum, including interneurons co-containing LANT6 and the striatal interneuron marker parvalbumin (2% of area X neurons), interneurons containing parvalbumin but not LANT6 (4.8%), cholinergic interneurons (1.4%), and neurons containing the striatal spiny projection neuron marker dopamine- and adenosine 3',5'-monophosphate-regulated phosphoprotein (DARPP-32) (30%). Area X was rich in substance P (SP)-containing terminals, and many ended on area X neurons projecting to the DLM with the woolly fiber morphology characteristic of striatopallidal terminals. Although SP+ perikarya were not detected in area X, prior studies suggest it is likely that SP-synthesizing neurons are present and the source of the SP+ input to area X neurons projecting to the DLM. Area X was poor in enkephalinergic fibers and perikarya. The present data support the premise that area X contains both striatal and pallidal neurons, with the striatal neurons likely to include SP+ neurons that project to the pallidal neurons.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
18
|
Gaikwad A, Biju KC, Saha SG, Subhedar N. Neuropeptide Y in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus. J Chem Neuroanat 2004; 27:55-70. [PMID: 15036363 DOI: 10.1016/j.jchemneu.2003.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 10/14/2003] [Accepted: 11/29/2003] [Indexed: 11/15/2022]
Abstract
Distribution of neuropeptide Y (NPY)-like immunoreactivity in the forebrain of catfish Clarias batrachus was examined with immunocytochemistry. Conspicuous immunoreactivity was seen in the olfactory receptor neurons (ORNs), their projections in the olfactory nerve, fascicles of the olfactory nerve layer in the periphery of bulb and in the medial olfactory tracts as they extend to the telencephalic lobes. Ablation of the olfactory organ resulted in loss of immunoreactivity in the olfactory nerve layer of the bulb and also in the fascicles of the medial olfactory tracts. This evidence suggests that NPY may serve as a neurotransmitter in the ORNs and convey chemosensory information to the olfactory bulb, and also to the telencephalon over the extrabulbar projections. In addition, network of beaded immunoreactive fibers was noticed throughout the olfactory bulb, which did not respond to ablation experiment. These fibers may represent centrifugal innervation of the bulb. Strong immunoreactivity was encountered in some ganglion cells of nervus terminalis. Immunoreactive fibers and terminal fields were widely distributed in the telencephalon. Several neurons of nucleus entopeduncularis were moderately immunoreactive; and a small population of neurons in nucleus preopticus periventricularis was also labeled. Immunoreactive terminal fields were particularly conspicuous in the preoptic, the tuberal areas, and the periventricular zone around the third ventricle and inferior lobes. NPY immunoreactive cells and fibers were detected in all the lobes of the pituitary gland. Present results describing the localization of NPY in the forebrain of C. batrachus are in concurrence with the pattern of the immunoreactivity encountered in other teleosts. However, NPY in olfactory system of C. batrachus is a novel feature that suggests a role for the peptide in processing of chemosensory information.
Collapse
Affiliation(s)
- Archana Gaikwad
- Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur 440 033, India
| | | | | | | |
Collapse
|
19
|
Brox A, Puelles L, Ferreiro B, Medina L. Expression of the genes GAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods. J Comp Neurol 2003; 461:370-93. [PMID: 12746875 DOI: 10.1002/cne.10688] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated whether gamma-amino butyric acidergic (GABAergic) cell populations correlate positionally with specific Dlx-expressing histogenetic territories in an anamniote tetrapod, the frog Xenopus laevis. To that end, we cloned a fragment of Xenopus GAD67 gene (xGAD67, expressed in GABAergic neurons) and compared its expression with that of Distal-less-4 gene (xDll-4, ortholog of mouse Dlx2) in the forebrain at late larval and adult stages. In Xenopus, GABAergic neurons were densely concentrated in xDll-4-positive territories, such as the telencephalic subpallium, part of the hypothalamus, and ventral thalamus, where nearly all neurons expressed both genes. In contrast, the pallium of Xenopus generally contained dispersed neurons expressing xGAD67 or xDll-4, which may represent local circuit neurons. As in amniotes, these pallial interneurons may have been produced in the subpallium and migrated tangentially into the pallium during development. In Xenopus, the ventral division of the classic lateral pallium contained extremely few GABAergic cells and showed only low signal of the pallial gene Emx1, suggesting that it may represent the amphibian ventral pallium, homologous to that of amniotes. At caudal forebrain levels, a number of GABAergic neurons was observed in several areas (dorsal thalamus, pretectum), but no correlation to xDll-4 was observed there. The location of GABAergic neurons in the forebrain and their relation to the developmental regulatory genes Dll and Dlx were very similar in Xenopus and in amniotes. The close correlation in the expression of both genes in rostral forebrain regions supported the notion that Dll/Dlx are among the genes involved in the acquisition of the GABAergic phenotype.
Collapse
Affiliation(s)
- Aurora Brox
- Department of Human Anatomy, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
20
|
den Boer-Visser AM, Dubbeldam JL. The distribution of dopamine, substance P, vasoactive intestinal polypeptide and neuropeptide Y immunoreactivity in the brain of the collared dove, Streptopelia decaocto. J Chem Neuroanat 2002; 23:1-27. [PMID: 11756007 DOI: 10.1016/s0891-0618(01)00138-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study is part of a program intended to provide the neuroanatomical framework for investigations of the role of brain areas in specific aspects of behavior in the collared dove. In the present study, the distribution of dopamine-, substance P-, vasoactive intestinal polypeptide (VIP)- and neuropeptide Y (NPY)-immunoreactivity are mapped throughout the brain of this bird. For each substance, our observations are compared with data from studies in other species of birds. Over all, our data confirm the results of previous reports, but a few differences with data from some of these studies are found. The immunohistochemical data are used in an attempt to define more precisely cell areas and their subdivisions in the avian forebrain and brainstem, and to compare these areas to nuclei in the brain of mammals.
Collapse
Affiliation(s)
- A M den Boer-Visser
- Evolutionary Morphology Group, Institute of Evolutionary and Ecological Sciences, Leiden University, PO Box 9516, NL-2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Gould KL, Newman SW, Tricomi EM, DeVoogd TJ. The distribution of substance P and neuropeptide Y in four songbird species: a comparison of food-storing and non-storing birds. Brain Res 2001; 918:80-95. [PMID: 11684045 DOI: 10.1016/s0006-8993(01)02961-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distributions of the neuropeptides substance P (SP) and neuropeptide Y (NPY) were investigated in four songbird species that differ in their food-storing behavior. The food-storing black-capped chickadee (Parus atricapillus) was compared to the non-storing blue tit (Parus caeruleus) and great tit (Parus major) within the avian family Paridae, as well as to the non-storing dark-eyed junco (Junco hyemalis). All four species showed a similar distribution of SP throughout the brain with the exception of two areas, the hippocampal complex (including hippocampus (Hp) and parahippocampus (APH)) and the Wulst (including the hyperstriatum accessorium (HA)). SP-like immunoreactivity was found in cells of the Hp in juncos, but not in the three parid species. Two areas within the APH and HA showed SP-like immunoreactivity in all four species. The more medial of these (designated SPm) is a distinctive field of fibers and terminals found throughout the APH and extending into the HA. A positive relationship between SPm and Hp volume was found for all four species with the chickadee having a significantly larger SPm area relative to telencephalon than the other species. The distribution of SP in this region may be related to differences in food-storing behavior. In contrast to substance P, NPY distribution throughout the brain was similar in all four species. Further, NPY-immunoreactive cells were found in the Hp of all four species and no species differences in the number of NPY cells was observed.
Collapse
Affiliation(s)
- K L Gould
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
22
|
Ebersole TJ, Conlon JM, Goetz FW, Boyd SK. Characterization and distribution of neuropeptide Y in the brain of a caecilian amphibian. Peptides 2001; 22:325-34. [PMID: 11287086 DOI: 10.1016/s0196-9781(01)00334-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuropeptide Y (NPY) from the brain of an amphibian from the order Gymnophiona (the caecilian, Typhlonectes natans) was characterized. We cloned a 790 base pair cDNA encoding the caecilian NPY precursor. The open reading frame consisted of 291 bases, indicating an NPY precursor of 97 amino acids. Both deduced and isolated NPY primary structures were Tyr-Pro-Ser-Lys-Pro-Asp-Asn-Pro-Gly-Glu(10)-Asp-Ala-Pro-Ala-Glu-Asp-Met-Ala-Lys-Tyr(20)-Tyr-Ser-Ala-Leu-Arg-His-Tyr-Ile-Asn-Leu(30)-Ile-Thr-Arg-Gln-Arg-Tyr. NH2. In caecilian brain, we observed NPY immunoreactive cells within the medial pallium, basal forebrain, preoptic area, midbrain tegmentum and trigeminal nucleus. The prevalence of preoptic and hypothalamic terminal field staining supports the hypothesis that NPY controls pituitary function in this caecilian.
Collapse
Affiliation(s)
- T J Ebersole
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
23
|
Esposito V, Pelagalli GV, De Girolamo P, Gargiulo G. Anatomical distribution of NPY-like immunoreactivity in the domestic chick brain (Gallus domesticus). ACTA ACUST UNITED AC 2001; 263:186-201. [PMID: 11360235 DOI: 10.1002/ar.1089] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y-immunoreactive (NPY-ir) fibers and neurons in the brain of the domestic chick (Gallus domesticus) were described using an immunohistochemical technique. NPY-ir neurons were seen in the lobus parolfactorius; hyperstriatum, neostriatum, paleostriatum, and archistriatum; hippocampal and parahippocampal areas; dorsolateral corticoid area; piriform cortex; two thalamic areas contiguous to the n. rotundus; n. dorsolateralis anterior thalami, pars lateralis, and pars magnocellularis; n. periventricularis hypothalami; n. paraventricularis magnocellularis; regio lateralis hypothalami; n. infundibuli; inner zone of the median eminence; dorsal and lateral portions of the n. opticus basalis; n. raphes; and n. reticularis paramedianus. NPY-ir fibers were seen throughout the entire chick brain, but were more abundant in the hypothalamus where they formed networks and pathways. They were also observed in some circumventricular organs. The anatomical data of the present study regarding the distribution of NPY ir in the chick brain, together with the physiological findings of other studies, suggest that NPY plays a key role in the regulation of the neuroendocrine, vegetative, and sensory systems of birds by acting as a neuromodulator and/or neurotransmitter.
Collapse
Affiliation(s)
- V Esposito
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Universita' di Napoli Federico II, 80137 Napoli, Italia.
| | | | | | | |
Collapse
|
24
|
Meade CA, Figueredo-Cardenas G, Fusco F, Nowak TS, Pulsinelli WA, Reiner A. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease. Exp Neurol 2000; 166:307-23. [PMID: 11085896 DOI: 10.1006/exnr.2000.7530] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The various types of striatal projection neurons and interneurons show a differential pattern of loss in Huntington's disease (HD). Since striatal injury has been suggested to involve similar mechanisms in transient global brain ischemia and HD, we examined the possibility that the patterns of survival for striatal neurons after transient global ischemic damage to the striatum in rats resemble that in HD. The perikarya of specific types of striatal interneurons were identified by histochemical or immunohistochemical labeling while projection neuron abundance was assessed by cresyl violet staining. Projectionneuron survival was assessed by neurotransmitter immunolabeling of their efferent fibers in striatal target areas. The relative survival of neuron types was determined quantitatively within the region of ischemic damage, and the degree of fiber loss in striatal target areas was quantified by computer-assisted image analysis. We found that NADPHd(+) and cholinergic interneurons were largely unaffected, even in the striatal area of maximal damage. Parvalbumin interneurons, however, were as vulnerable as projection neurons. Among immunolabeled striatal projection systems, striatoentopeduncular fibers survived global ischemia better than did striatopallidal or striatonigral fibers. The order of vulnerability observed in this study among the striatal projection systems, and the resistance to damage shown by NADPHd(+) and cholinergic interneurons, is similar to that reported in HD. The high vulnerability of projection neurons and parvalbumin interneurons to global ischemia also resembles that seen in HD. Our results thus indicate that global ischemic damage to striatum in rat closely mimics HD in its neuronal selectivity, which supports the notion that the mechanisms of injury may be similar in both.
Collapse
Affiliation(s)
- C A Meade
- Department of Anatomy and Neurobiology, Department of Neurology, University of Tennessee at Memphis, The Health Sciences Center, Memphis, Tennessee, 38163, USA
| | | | | | | | | | | |
Collapse
|
25
|
Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG. Pathway tracing using biotinylated dextran amines. J Neurosci Methods 2000; 103:23-37. [PMID: 11074093 DOI: 10.1016/s0165-0270(00)00293-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biotinylated dextran amines (BDA) are highly sensitive tools for anterograde and retrograde pathway tracing studies of the nervous system. BDA can be reliably delivered into the nervous system by iontophoretic or pressure injection and visualized with an avidin-biotinylated HRP (ABC) procedure, followed by a standard or metal-enhanced diaminobenzidine (DAB) reaction. High molecular weight BDA (10 k) yields sensitive and exquisitely detailed labeling of axons and terminals, while low molecular weight BDA (3 k) yields sensitive and detailed retrograde labeling of neuronal cell bodies. The detail of neuronal cell body labeling can be Golgi-like. BDA tolerates EM fixation and processing well and can, therefore, be readily used in ultrastructural studies. Additionally, BDA can be combined with other anterograde or retrograde tracers (e.g. PHA-L or cholera toxin B fragment) and visualized either by multi-color DAB multiple-labeling - if permanent labels are desired, or by using multiple simultaneous immunofluorescence - if fluorescence viewing is desired. In the same manner, BDA pathway tracing and neurotransmitter immunolabeling can be combined. Note that BDA pathway tracing can also be combined with anterograde or retrograde labeling with fluorescent dextran amines, if one wishes to exclusively use tracers with the favorable transport properties and sensitivities of dextran amines. In this case, the BDA can be visualized together with the fluorescent dextran amines using fluorescence labeling for the BDA, or the fluorescent dextran amines can be visualized together with the BDA by multicolor DAB labeling via immunolabeling of the fluorescent dextran amines using anti-fluorophore antisera. BDA is, thus, a flexible and valuable pathway tracing tool that has gained widespread popularity in recent years.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee - Memphis, The Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Sun Z, Reiner A. Localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick. J Chem Neuroanat 2000; 19:211-24. [PMID: 11036238 DOI: 10.1016/s0891-0618(00)00069-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distribution and cellular localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick were examined using in situ hybridization histochemistry with 35[S]-dATP labeled oligonucleotide probes, visualized with film and emulsion autoradiography. Labeling for D1A receptor mRNA was intense in the medial and lateral striatum, and moderately abundant in the pallial regions termed the archistriatum and the neostriatum, in the hypothalamic paraventricular nucleus region, and in the superficial gray layer of optic tectum of the midbrain. D1B receptor mRNA was abundant in the medial and lateral striatum, and in the pallial region termed the hyperstriatum ventrale, and moderately abundant in the intralaminar dorsal and posterior thalamus and in the superficial gray of the optic tectum. At the cellular level, about 75% of neurons in the medial striatum and 59% of neurons in the lateral striatum were labeled for D1A receptor mRNA, whereas about 39% of the neurons in the medial striatum and 21% in the lateral striatum were labeled for D1B receptor mRNA. Large striatal neurons were not labeled for D1A or D1B receptor mRNA. The data suggest that while both D1A and D1B receptors mediate dopaminergic responses in many neurons of the avian striatum, primarily D1A receptors mediate dopaminergic responses in the archistriatum and the neostriatum, while primarily D1B receptors mediate dopaminergic responses in the hyperstriatum ventrale and the thalamus.
Collapse
Affiliation(s)
- Z Sun
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee-Memphis, The Health Sciences Center, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
27
|
Castro A, Becerra M, Manso MJ, Anadón R. Development of immunoreactivity to neuropeptide Y in the brain of brown trout (Salmo trutta fario). J Comp Neurol 1999; 414:13-32. [PMID: 10494075 DOI: 10.1002/(sici)1096-9861(19991108)414:1<13::aid-cne2>3.0.co;2-r] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of neuropeptide Y-immunoreactive (NPY-ir) neurons in the brain of the brown trout, Salmo trutta fario, was studied by using the streptavidin-biotin immunohistochemical method. Almost all NPY-ir neurons found in the brain of adults already appeared in embryonic stages. The earliest NPY-ir neurons were observed in the laminar nucleus, the locus coeruleus, and the vagal region of 9-mm-long embryos. In the lateral area of the ventral telencephalon, habenula, hypothalamus, optic tectum, and saccus vasculosus, NPY-ir cells appeared shortly after (embryos 12-14 mm in length). The finding of NPY-ir cells in the saccus vasculosus and the vagal region expand the NPY-ir structures known in teleosts. Among the regions of the trout brain most richly innervated by NPY-ir fibers are the hypothalamus, the isthmus, and the complex of the nucleus of the solitary tract/area postrema, suggesting a correlation of NPY with visceral functions. Two patterns of development of NPY-ir populations were observed: Some populations showed a lifetime increase in cell number, whereas, in other populations, cell number was established early in development or even diminished in adulthood. These developmental patterns were compared with those found in other studies of teleosts and with those found in other vertebrates. J. Comp. Neurol. 414:13-32, 1999.
Collapse
Affiliation(s)
- A Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
28
|
Abstract
The present review provides an overview of the distribution of dopaminergic fibers and dopaminoceptive elements within the avian telencephalon, the possible interactions of dopamine (DA) with other biochemically identified systems as revealed by immunocytochemistry, and the involvement of DA in behavioral processes in birds. Primary sensory structures are largely devoid of dopaminergic fibers, DA receptors and the D1-related phosphoprotein DARPP-32, while all these dopaminergic markers gradually increase in density from the secondary sensory to the multimodal association and the limbic and motor output areas. Structures of the avian basal ganglia are most densely innervated but, in contrast to mammals, show a higher D2 than D1 receptor density. In most of the remaining telencephalon D1 receptors clearly outnumber D2 receptors. Dopaminergic fibers in the avian telencephalon often show a peculiar arrangement where fibers coil around the somata and proximal dendrites of neurons like baskets, probably providing them with a massive dopaminergic input. Basket-like innervation of DARPP-32-positive neurons seems to be most prominent in the multimodal association areas. Taken together, these anatomical findings indicate a specific role of DA in higher order learning and sensory-motor processes, while primary sensory processes are less affected. This conclusion is supported by behavioral findings which show that in birds, as in mammals, DA is specifically involved in sensory-motor integration, attention and arousal, learning and working memory. Thus, despite considerable differences in the anatomical organization of the avian and mammalian forebrain, the organization of the dopaminergic system and its behavioral functions are very similar in birds and mammals.
Collapse
Affiliation(s)
- D Durstewitz
- AE Biopsychologie, Ruhr-Universität Bochum, Germany.
| | | | | |
Collapse
|
29
|
Riters LV, Erichsen JT, Krebs JR, Bingman VP. Neurochemical evidence for at least two regional subdivisions within the homing pigeon (Columba livia) caudolateral neostriatum. J Comp Neurol 1999; 412:469-87. [PMID: 10441234 DOI: 10.1002/(sici)1096-9861(19990927)412:3<469::aid-cne7>3.0.co;2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The distributions of one neurotransmitter, two neurotransmitter-related substances, and five neuropeptides were examined within the homing pigeon caudolateral neostriatum (NCL). All eight neuroactive substances were found within a tyrosine hydroxylase (TH)-dense region that defines the NCL. Overall regional variation in the relative density of these substances suggested at least two neurochemically distinct portions of NCL. Dorsal NCL contained relatively dense staining for TH, choline acetyltransferase, and substance P, whereas vasoactive intestinal polypeptide was more abundant in ventral portions of NCL. Serotonin and cholecystokinin were found to be densest in intermediate portions of NCL. Somatostatin and leucine-enkephalin were homogeneously distributed throughout NCL. The results suggest that NCL may consist of multiple subdivisions. Investigations into the behavioral importance of these regions are necessary to clarify the role of this brain region in avian behavior.
Collapse
Affiliation(s)
- L V Riters
- Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | | | | |
Collapse
|
30
|
Reiner A, Perera M, Paullus R, Medina L. Immunohistochemical localization of DARPP32 in striatal projection neurons and striatal interneurons in pigeons. J Chem Neuroanat 1998; 16:17-33. [PMID: 9924970 DOI: 10.1016/s0891-0618(98)00056-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DARPP32 is a D1-receptor associated signaling protein found in striatal projection neurons in mammals, including both substance P-containing (SP+) neurons and enkephalinergic (ENK+) projection neurons. The present study used immunohistochemical single- and double-labeling to examine the cellular localization of DARPP32 in pigeon striatum. Single-label studies revealed that DARPP32 is present in numerous medium-sized striatal perikarya and DARPP32+ axons and terminals were seen to profusely innervate the two major striatal projection targets, the pallidum and the substantia nigra. The single-labeling studies indicated that about 60% of all striatal perikarya labeled for DARPP32+ in striatum, which exceeds the abundance of either SP+ or ENK+ perikarya. Single-labeling studies also showed that the abundance of DARPP32+ fibers and terminals in pallidum exceeds that of either SP+ or ENK+ fibers and terminals in pallidum. Double-labeling found that 30-50% of striatal SP+ perikarya and 7-24% of ENK+ striatal perikarya labeled for DARPP32 in pigeon, and confirmed that DARPP32 was found in both SP+ and ENK+ fibers and terminals in pallidum. In contrast to its prevalence in striatal projection neurons, DARPP32 was virtually absent from cholinergic and NPY+ striatal interneurons, as also true in mammals. Our data are consistent with the interpretation that many SP+ neurons and many ENK+ neurons in avian striatum possess D1-type dopamine receptors and use a DARPP32 signalling pathway, although this may be more common for SP+ than for ENK+ neurons.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee-Memphis, The Health Science Center, 38163, USA.
| | | | | | | |
Collapse
|
31
|
Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:235-85. [PMID: 9858740 DOI: 10.1016/s0165-0173(98)00016-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While a basal ganglia with striatal and pallidal subdivisions is 1 clearly present in many extant anamniote species, this basal ganglia is cell sparse and receives only a relatively modest tegmental dopaminergic input and little if any cortical input. The major basal ganglia influence on motor functions in anamniotes appears to be exerted via output circuits to the tectum. In contrast, in modern mammals, birds, and reptiles (i.e., modern amniotes), the striatal and pallidal parts of the basal ganglia are very neuron-rich, both consist of the same basic populations of neurons in all amniotes, and the striatum receives abundant tegmental dopaminergic and cortical input. The functional circuitry of the basal ganglia also seems very similar in all amniotes, since the major basal ganglia influences on motor functions appear to be exerted via output circuits to both cerebral cortex and tectum in sauropsids (i.e., birds and reptiles) and mammals. The basal ganglia, output circuits to the cortex, however, appear to be considerably more developed in mammals than in birds and reptiles. The basal ganglia, thus, appears to have undergone a major elaboration during the evolutionary transition from amphibians to reptiles. This elaboration may have enabled amniotes to learn and/or execute a more sophisticated repertoire of behaviors and movements, and this ability may have been an important element of the successful adaptation of amniotes to a fully terrestrial habitat. The mammalian lineage appears, however, to have diverged somewhat from the sauropsid lineage with respect to the emergence of the cerebral cortex as the major target of the basal ganglia circuitry devoted to executing the basal ganglia-mediated control of movement.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163,
| | | | | |
Collapse
|
32
|
Marín O, Smeets WJ, González A. Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibians. Trends Neurosci 1998; 21:487-94. [PMID: 9829691 DOI: 10.1016/s0166-2236(98)01297-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It has been postulated frequently that the fundamental organization of the basal ganglia (BG) in vertebrates arose with the appearance of amniotes during evolution. An alternative hypothesis, however, is that such a condition was already present in early anamniotic tetrapods and, therefore, characterizes the acquisition of the tetrapod phenotype rather than the anamniotic-amniotic transition. Re-examination of the BG organization in tetrapods in the light of recent findings in amphibians strongly supports the notion that elementary BG structures were present in the brain of ancestral tetrapods and that they were organized according to a general plan shared today by all extant tetrapods.
Collapse
Affiliation(s)
- O Marín
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
33
|
Galatioto S, Abbate F, Laura R, Naccari F, Germanà G. Morphological and immunohistochemical considerations on the basal ganglia in pigeon (Columba livia). Anat Histol Embryol 1998; 27:173-8. [PMID: 9652145 DOI: 10.1111/j.1439-0264.1998.tb00176.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphological and immunohistochemical studies carried out particularly around the level of the basal ganglia (BG) in birds, are reported and commented on. Our results showed, on paraffin embedded avian BG, both the histological features and the immunohistochemical findings on immunofluorescence distribution of some neuropeptides (especially Metenkephalin) in the striatal complex. By comparing our results of Metenkephalin immunoreactivity (Menkir) with the referred analogous ones of Substance P (SP) quoted in literature, we confirmed the strikingly similar labelling at the levels of the Lobus paraolfactorius (LPO) and Paleostriatum augmentatum (PA), in contrast with the very low immunoreactivity at the Paleostriatum primitivum (PP) levels. We were able also to demonstrate the strong MEnk-ir of the neurons of the Nucleus accumbens, Nucleus septalis and paraventricularis. All these findings are also in accord to the interpretation by many AA (Wynne and Gunturkun, 1995; Reinez et al., 1983), about the anatomical correspondence between the LPO-PA complex of birds and the caudate-putamen in mammals. Some MEnk + 'wooly like fibres' described in our specimens in the PA (on the contrary reported in the Gpe segment of mammals) apparently escape these correspondence.
Collapse
Affiliation(s)
- S Galatioto
- Dipartimento di Patologia Umana (Neuropatologia), Policlinico Universitario, Messina, Italy
| | | | | | | | | |
Collapse
|
34
|
Vallarino M, Mathieu M, D'Aniello B, Rastogi RK. Distribution of somatostatin-like immunoreactivity in the brain of the frog, Rana esculenta, during development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:13-23. [PMID: 9554935 DOI: 10.1016/s0165-3806(97)00162-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The anatomical distribution of somatostatin-like immunoreactivity in the central nervous system of the frog, Rana esculenta, during development and in juvenile specimens was investigated by indirect immunofluorescence. Soon after hatching, at stages II-III, somatostatin-like immunoreactive structures were found in the preoptic-median eminence complex. In stage VI tadpoles, new groups of immunopositive perikarya and nerve fibers appeared in the diencephalon, within the ventral infundibular nucleus and in the ventral area of the thalamus, as well as in the medial pallium. In stages XII-XIV of development, immunopositive perikarya were also present in the dorsal infundibular nucleus of the hypothalamus and ventrolateral area of the thalamus. A small group of somatostatin-like immunoreactive neurons appeared in the posteroventral nucleus of the rhombencephalon. However, these neurons were not seen in later stages of development. Tadpoles in stages XVIII, XXI-XXII and in juveniles were characterized by a wider distribution of immunoreactive cell bodies and fibers in the pallium. New groups of immunoreactive neurons were found in the dorsal and lateral pallium. The presence of positive perikarya in the lateral pallium is a transient expression found only in these stages. The organization of the somatostatinergic system was most complex during the metamorphic climax, with the appearance of positive cell bodies in the posterocentralis area of the thalamus, and in juvenile animals with the presence of perikarya in the ventral part of the medial pallium and within the central grey rhombencephali. In contrast to the adult frog, somatostatin neurons were not observed in the mesencephalon of tadpoles and juveniles.
Collapse
Affiliation(s)
- M Vallarino
- Istituto di Anatomia Comparata, Università di Genova, Italy
| | | | | | | |
Collapse
|
35
|
Lee EY, Lee TS, Baik SH, Cha CI. Postnatal development of somatostatin- and neuropeptide Y-immunoreactive neurons in rat cerebral cortex: a double-labeling immunohistochemical study. Int J Dev Neurosci 1998; 16:63-72. [PMID: 9664223 DOI: 10.1016/s0736-5748(97)00040-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The postnatal development of somatostatin (SOM)- and neuropeptide Y (NPY)-immunoreactive (ir) neurons was examined in rat cerebral cortex, while considering their coexistence in cortical neurons. Using double immunohistochemical staining for SOM and NPY with diaminobenzidine and benzidine dihydrochloride as chromogens, we subdivided immunoreactive cells into double-labeled SOM/NPY-, SOM only-, and NPY only-ir neurons. SOM/NPY- and SOM only-ir neurons were detectable even at the day of birth, in contrast on NPY only-ir cells which first appeared in most cortices from week two. The morphological features of double-labeled SOM/NPY neurons differed with those of SOM only- and NPY only-ir neurons. No apparent changes in the shape and size of single-labeled neurons occurred with age; throughout their postnatal life they were round and ovoid, had a thin rim of perinuclear cytoplasm, and short processes. However, the features of SOM/NPY-ir neurons were not consistent according to postnatal age; by day P7, these neurons showed immature features and they began to show more advanced neuronal characteristics by week P2, when they had a larger and more intensely-stain cytoplasm. In addition, their processes were longer, thicker and more complex than at earlier ages. At this age, SOM/NPY-ir somata were close to their near maximum size. From week P4, they became smaller and were lightly labeled. SOM/NPY-ir somata were larger than SOM only- and NYP only-ir somata at and after two weeks of age. The present results, showing different postnatal maturation patterns such as time of appearance and morphological features, raise the possibilities that double-labeled SOM/NPY and single-labeled immunoreactive neurons may be different populations regulated by different mechanisms in their development, and with different functional properties during development.
Collapse
Affiliation(s)
- E Y Lee
- Department of Anatomy, College of Medicine, Chungbuk National University, Cheongju, Korea.
| | | | | | | |
Collapse
|
36
|
Figueredo-Cardenas G, Harris CL, Anderson KD, Reiner A. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Exp Neurol 1998; 149:356-72. [PMID: 9500958 DOI: 10.1006/exnr.1997.6724] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the relative ability of those striatal neuron types containing calbindin or parvalbumin to withstand a Ca(2+)-mediated excitotoxic insult, we injected the NMDA receptor-specific excitotoxin quinolinic acid (QA) into the striatum in mature adult rats and 2 months later examined the relative survival of striatal interneurons rich in parvalbumin and striatal projection neurons rich in calbindin. To provide standardization to the survival of striatal neuron types thought to be poor in Ca2+ buffering proteins, the survival was compared to that of somatostatin-neuropeptide Y (SS/NPY)-containing interneurons and enkephalinergic projection neurons, which are devoid of or relatively poorer in such proteins. The various neuron types were identified by immunohistochemical labeling for these type-specific markers and their relative survival was compared at each of a series of increasing distances from the injection center. In brief, we found that parvalbuminergic, calbindinergic, and enkephalinergic neurons all showed a generally comparable gradient of neuronal loss, except just outside the lesion center, where calbindin-rich neurons showed significantly enhanced survival. In contrast, striatal SS/NPY interneurons were more vulnerable to QA than any of these three other types. These observed patterns of survival following intrastriatal QA injection suggest that calbindin and parvalbumin content does not by itself determine the vulnerability of striatal neurons to QA-mediated excitotoxicity in mature adult rats. For example, parvalbuminergic striatal interneurons were not impervious to QA, while cholinergic striatal interneurons are highly resistant and SS/NPY+ striatal interneurons are highly vulnerable. Both cholinergic and SS/NPY+ interneurons are devoid of any known calcium buffering protein. Similarly, calbindin does not prevent striatal projection neuron vulnerability to QA excitotoxicity. Nonetheless, our data do suggest that calbindin may offer striatal neurons some protection against moderate excitotoxic insults, and this may explain the reportedly slightly greater vulnerability of striatal neurons that are poor in calbindin to ischemia and Huntington's disease.
Collapse
Affiliation(s)
- G Figueredo-Cardenas
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
37
|
Figueredo-Cardenas G, Chen Q, Reiner A. Age-dependent differences in survival of striatal somatostatin-NPY-NADPH-diaphorase-containing interneurons versus striatal projection neurons after intrastriatal injection of quinolinic acid in rats. Exp Neurol 1997; 146:444-57. [PMID: 9270055 DOI: 10.1006/exnr.1997.6549] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some authors have reported greater sparing of neurons containing somatostatin (SS)-neuropeptide Y (NPY)-NADPH-diaphorase (NADPHd) than projection neurons after intrastriatal injection of quinolinic acid (QA), an excitotoxin acting at NMDA receptors. Such findings have been used to support the NMDA receptor excitotoxin hypothesis of Huntington's disease (HD) and to claim that intrastriatal QA produces an animal model of HD. Other studies have, however, reported that SS/NPY/NADPHd interneurons are highly vulnerable to QA. We examined the influence of animal age (young versus mature), QA concentration (225 mM versus 50 mM), and injection speed (3 min versus 15 min) on the relative SS/NPY/NADPHd neuron survival in eight groups of rats that varied along these parameters to determine the basis of such prior discrepancies. Two weeks after QA injection, we analyzed the relative survival of neurons labeled by NADPHd histochemistry, SS/NPY immunohistochemistry, or cresyl violet staining (which stains all striatal neurons, the majority of which are projection neurons) in the so-called lesion transition zone (i.e., the zone of 40-60% neuronal survival). We found that age, and to a lesser extent injection speed, had a significant effect on relative SS/NPY/NADPHd interneuron survival. The NADPHd- and SS/NPY-labeled neurons typically survived better than projection neurons in young rats and more poorly in mature rats. This trend was greatly accentuated with fast QA injection. Age-related differences may be attributable to declines in projection neuron sensitivity to QA with age. Since rapid QA injections result in excitotoxin efflux, we interpret the effect of injection speed to suggest that brief exposure to a large dose of QA (with fast injection) may better accentuate the differential vulnerabilities of NADPHd/SS/NPY interneurons and projection neurons than does exposure to the same total amount of QA delivered more gradually (slow injection). These findings reconcile the discordant results found by previous authors and suggest that QA injected into rat striatum does reproduce the neurochemical traits of HD under some circumstances. These findings are consistent with a role of excitotoxicity in HD pathogenesis, and they also have implications for the basis of the more pernicious nature of striatal neuron loss in juvenile onset HD.
Collapse
Affiliation(s)
- G Figueredo-Cardenas
- Department of Anatomy and Neurobiology, The University of Tennessee Health Sciences Center, Memphis 38163, USA
| | | | | |
Collapse
|
38
|
Csillag A, Székely AD, Stewart MG. Synaptic terminals immunolabelled against glutamate in the lobus parolfactorius of domestic chicks (Gallus domesticus) in relation to afferents from the archistriatum. Brain Res 1997; 750:171-9. [PMID: 9098542 DOI: 10.1016/s0006-8993(96)01346-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lobus parolfactorius (LPO) has been implicated in memory formation associated with passive avoidance training of young posthatch domestic chicks. The anatomical circuitry underlying memory formation in the chick is likely to involve the intermediate medial hyperstriatum ventrale-archistriatum-LPO arc. In the present work, we attempted to combine an ultrastructural characterisation of archistriatal afferent terminals in LPO with a description of the synaptic structure of LPO, in particular those elements that are immunoreactive to glutamate and GABA. Ventral archistriatal regions of 7-day-old domestic chicks were iontophoretically injected with Phaseolus vulgaris leucoagglutinin and the anterograde transport of the tracer was detected in the LPO. Selected samples from these birds, and also from other day-old chicks, were resin-embedded and reacted for L-glutamate or GABA, using the postembedding immunocytochemical method. Glutamate was abundant in the neuropil of LPO and typically seen in axodendritic or axospinous terminals with asymmetrical junctions, often multiple or perforated postsynaptic appositions. Conversely, GABA was often present in aspinous dendrites, probably representing GABAergic local circuit neurons or (putative striatonigral) projection neurons. Archistriatal efferents terminating in LPO formed small en passant or terminal varicosities, with infrequent asymmetrical axospinous synapses. Glutamate was not detected in these boutons. The findings imply that the functional state of LPO, based on powerful glutamatergic excitation, may be modified by a non-glutamatergic archistriatal input.
Collapse
Affiliation(s)
- A Csillag
- Department of Anatomy, Semmelweis University of Medicine, Budapest, Hungary.
| | | | | |
Collapse
|
39
|
Abstract
Using immunohistochemical double-labeling with a specific antibody recognizing both NR2A and NR2B subunits, we studied the cellular distribution of the NMDA receptor subunit NR2A/2B on all major known striatal neuron types. Among striatal interneurons, our results showed that none of somatostatin interneurons was labeled for NR2A/2B subunits, 56% of parvalbumin interneurons were double-labeled for NR2A/2B, and all identified cholinergic interneurons were labeled for NR2A/2B. Among striatal projections neurons, 95% of striatonigral neurons, 96% of enkephalin-containing neurons, and 98% of calbindin-containing striatal matrix neurons were double-labeled for NR2A/2B. Our studies demonstrate that there is a differential distribution of the NMDA receptor NR2A/2B subunits on striatal neuron types. The paucity of NR2A/2B subunits on NMDA receptors on striatal somatostatin interneurons may confer resistance to NMDA receptor-mediated excitotoxicity on these neurons.
Collapse
Affiliation(s)
- Q Chen
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163, USA
| | | |
Collapse
|
40
|
Merckaert J, Vandesande F. Autoradiographic localization of receptors for neuropeptide Y (NPY) in the brain of broiler and leghorn chickens (Gallus domesticus). J Chem Neuroanat 1996; 12:123-34. [PMID: 9115667 DOI: 10.1016/s0891-0618(96)00194-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Broiler and leghorn chickens show an extreme difference in ingestive and reproductive behavior. As neuropeptide Y (NPY) influences both behaviors the goal of this study was to elucidate the distribution, expression and affinity of NPY binding sites in broiler and leghorn chicken brain. By means of in vitro autoradiography, sections of chicken brains were incubated with 3H-NPY as tracer and NPY as displacer. Scatchard analysis revealed a curvilinear plot suggesting two subtypes of the NPY binding site in the chicken brain, a high affinity one (KD = 2-4 nM) and one with a lower affinity (KD = 18-24 nM). Binding sites for NPY are localized with high density in the different subdivisions of the neostriatum and the hyperstriatum, the cerebellum, the nucleus septalis lateralis and medialis, the nucleus ruber and the nucleus tractus solitarii. A lower density of NPY binding sites was found in the different subdivisions of the striatum, the nucleus mesencephalicus lateralis pars dorsalis, the paleostriatum, the archistriatum intermedium pars ventralis, the nucleus geniculatus lateralis, the nucleus taeniae, the locus ceruleus, the nucleus rotondus, the nucleus habenularis medialis, the nucleus dorsomedialis anterior (rostralis) thalami, the pituitary and the area of the hypothalamus with its nuclei such as the nucleus paraventricularis magnocellularis and the nucleus preopticus medialis. Comparison of the localization of NPY binding sites in the brains of broilers and leghorns showed no differences but the density of both receptor types is two to three times higher in broilers than in leghorns.
Collapse
Affiliation(s)
- J Merckaert
- European Graduate School for Neuroscience, Laboratory for Neuroendocrinology, Leuven, Belgium
| | | |
Collapse
|
41
|
Nacher J, Ramirez C, Molowny A, Lopez-Garcia C. Ontogeny of somatostatin immunoreactive neurons in the medial cerebral cortex and other cortical areas of the lizard Podarcis hispanica. J Comp Neurol 1996; 374:118-35. [PMID: 8891951 DOI: 10.1002/(sici)1096-9861(19961007)374:1<118::aid-cne9>3.0.co;2-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ontogeny of somatostatin immunoreactive interneurons in the cerebral cortex of the lizard Podarcis hispanica has been studied in histological series of embryos, perinatal specimens, and adults. Somatostatin immunoreactive interneurons appear in the early stages of lizard cerebral cortex ontogeny, their number increases during embryonary development, reaches a peak in early postnatal life, and decreases in adult lizards. The first somatostatin immunoreactive somata in the lizard forebrain appeared on E36, and they were located in non cortical areas. Then, on E39 and later, somatostatin immunoreactive neurons were seen in the lizard cortex in a rostral-to-caudal spatial gradient, which parallels that of the normal histogenesis of the lizard cerebral cortex. On E39, labelled somata were seen in the medial and dorsal cortex inner plexiform layers; immunoreactive puncta and dendritic processes were detectable in the inner plexiform layer of the medial cortex. On E40, labelled neurons were observed in the inner plexiform layer of the lateral cortex; labelled processes were found in the inner plexiform layers (dorsomedial, dorsal, and lateral cortices) and the outer plexiform layers (medial and dorsomedial cortices). At hatching (P0), some somatostatin immunoreactive neurons populated the external plexiform layer of the dorsomedial cortex. On P28, groups of labelled neurons appeared in the cell layer of dorsal and lateral cortices, reaching the adult-mature pattern of somatostatin immunoreactivity in the lizard cerebral cortex, i.e., labelled somata and dendritic processes populating the inner plexiform layers in addition to an axonic labelled plexus in the outermost part of the outer plexiform layers. Immunoreactive somata and processes occupied all the cortical areas, but they were especially abundant in the dorsomedial cortex. Proliferating Cell Nuclear Antigen (PCNA) immunostaining in the same histological series revealed that the number of PCNA immunoreactive nuclei in the subjacent proliferative neuroepithelium followed an inverse-complementary evolution to somatostatin, suggesting some temporal relationship between somatostatin immunoreactive cells and neurogenesis in the lizard cerebral cortex.
Collapse
Affiliation(s)
- J Nacher
- Facultad de Ciencias Biologicas, Universidad de Valencia, Spain
| | | | | | | |
Collapse
|
42
|
Figueredo-Cardenas G, Morello M, Sancesario G, Bernardi G, Reiner A. Colocalization of somatostatin, neuropeptide Y, neuronal nitric oxide synthase and NADPH-diaphorase in striatal interneurons in rats. Brain Res 1996; 735:317-24. [PMID: 8911672 DOI: 10.1016/0006-8993(96)00801-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The neuropeptides somatostatin (SS), neuropeptide Y (NPY), the enzyme neuronal nitric oxide synthase (nNOS) and enzymatic activity for NADPH diaphorase (NADPHd) are extensively colocalized in striatal interneurons, which has led to the widespread tendency to operationally treat all four substances as being completely colocalized within a single class of striatal interneurons. We have explored the validity of this assumption in rat striatum using multiple-labeling methods. Conventional epi-illumination fluorescence microscopy was used to examine tissue triple labeled for SS, NPY and nNOS, or double-labeled for SS and nNOS or for SS and NPY. In tissue double-labeled for SS and nNOs, confocal laser scanning microscopy (CLSM) images of SS and nNOS labeling were compared to subsequent NADPHd labeling. We found that SS, NPY and nNOS co-occurred extensively, but a moderately abundant population of neurons containing SS and nNOS but not NPY was also observed, as were small populations of SS only and nNOS only neurons. About 80% of SS+ neurons contained NPY, and no NPY neurons were devoid of SS or nNOS. All neurons containing nNOS in rat striatum were found to contain NADPHd. Combining our various quantitative observations, we found that of those striatal neurons containing any combination of SS, NPY, nNOS and NADPHd in rats, about 73% contained all four, 16% contained SS, nNOS and NADPHd, 5% contained SS only, and 6% contained only nNOS and NADPHd. These results indicate that while there is a large population of striatal neurons in which SS, NPY, nNOS and NADPHd are colocalized in rats, there may be smaller populations of striatal neurons devoid of NPY in which SS or nNOS/NADPHd are found individually or together.
Collapse
Affiliation(s)
- G Figueredo-Cardenas
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
43
|
Karle EJ, Anderson KD, Medina L, Reiner A. Light and electron microscopic immunohistochemical study of dopaminergic terminals in the striatal portion of the pigeon basal ganglia using antisera against tyrosine hydroxylase and dopamine. J Comp Neurol 1996; 369:109-24. [PMID: 8723706 DOI: 10.1002/(sici)1096-9861(19960520)369:1<109::aid-cne8>3.0.co;2-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present study, we used immunohistochemical labeling with antibodies against tyrosine hydroxylase (TH) or dopamine (DA) to study the dopaminergic input to the striatal portion of the basal ganglia in pigeons (i.e., lobus parolfactorius and paleostriatum augmentatum). At the light microscopic level, the anti-TH and anti-DA revealed a similar abundance and distribution of numerous labeled fine fibers and varicosities within the striatum. In contrast, the use of an antidopamine beta-hydroxylase antiserum (which labels only adrenergic and noradrenergic terminals) labeled very few striatal fibers, which were restricted to visceral striatum. These results demonstrate that anti-TH mainly labels dopaminergic terminals in the striatum. At the electron microscopic level, the anti-TH and anti-DA antisera labeled numerous axon terminals within the striatum (15-20% of all striatal terminals). These terminals tended to be small (with an average length of 0.6 microns) and flattened, and their vesicles tended to be small (35-60 nm in diameter) and pleomorphic. About 50% of the terminals were observed to make synaptic contacts in the planes of section examined, and nearly all of these synaptic contacts were symmetric. Both TH+ and DA+ terminals typically contacted dendritic shafts or the necks of dendritic spines, but a few contacted perikarya. No clear differences were observed between TH+ and DA+ terminals within medial striatum (whose neurons project to the nigra in birds) or between TH+ and DA+ terminals within lateral striatum (whose neurons project to the pallidum in birds). In addition, no differences were observed between medial and lateral striata in either TH+ or DA+ terminals. Thus, there is no evident difference in pigeons between striatonigral and striatopallidal neurons in their dopaminergic innervation. Our results also indicate that the abundance, ultrastructural characteristics, and postsynaptic targets of the midbrain dopaminergic input to the pigeon striatum are highly similar to those in mammals. This anatomical similarity is consistent with the pharmacologically demonstrable similarity in the role of the dopaminergic input to the striatum in birds and mammals.
Collapse
Affiliation(s)
- E J Karle
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
44
|
Figueredo-Cardenas G, Medina L, Reiner A. Calretinin is largely localized to a unique population of striatal interneurons in rats. Brain Res 1996; 709:145-50. [PMID: 8869567 DOI: 10.1016/0006-8993(95)01392-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have reported the presence of the calcium binding protein calretinin in neurons in the striatal part of the basal ganglia in rats and primates. In the present study, immunofluorescence double-labeling techniques and immunofluorescence combined with retrograde labeling were used in rats to determine whether calretinin is found in any of the known types of striatal neurons. The results showed that a small fraction of the calretinin-containing neurons (< 10%) contain parvalbumin, but none of the calretinin-containing striatal neurons contained markers for the other two major types of striatal interneurons (i.e., choline acetyltransferase-containing cholinergic neurons and somatostatin-containing neurons). Additionally, calretinin was not found in projection neurons, using either calbindin or DARPP32 as immunofluorescent markers of striatal projections neurons in general, or using retrograde labeling to specifically identify either striatonigral or striatopallidal neurons. Thus, calretinin appears to be largely found in a unique population of striatal interneurons in rats. This population appears to be about one third the abundance of any of the previously identified populations of striatal interneurons.
Collapse
Affiliation(s)
- G Figueredo-Cardenas
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | |
Collapse
|
45
|
Kohler EC, Messer WS, Bingman VP. Evidence for muscarinic acetylcholine receptor subtypes in the pigeon telencephalon. J Comp Neurol 1995; 362:271-82. [PMID: 8576438 DOI: 10.1002/cne.903620209] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
At least five subtypes of muscarinic acetylcholine receptors are expressed in various mammalian tissue preparations. The following experiment, through the use of direct binding assays (using tritiated quinuclidinyl benzilate), competitive binding assays (using tritiated quinuclidinyl benzilate and unlabeled pirenzepine or AF-DX 116), and autoradiographic techniques, examined whether two of these five putative muscarinic acetylcholine receptor subtypes can be found in avian brain. Accordingly, autoradiographic mapping of pirenzepine-sensitive (M1-like) and AF-DX 116-sensitive (M2-like) muscarinic acetylcholine receptor subtypes in the pigeon telencephalon was conducted. Although both ligands bound throughout the brain, most telencephalic regions, including the archistriatum, the neostriatum, and basal ganglia structures like lobus paraolfactorius, nucleus accumbens, and paleostriatum, showed a higher density of M1-like sites. The exception to this finding was the nucleus basalis which appeared as a region where M2-like sites predominated. Moreover, the telencephalic region with the largest ratio of M1-like to M2-like sites was the lateral portion of the parahippocampus; a characteristic shared with the mammalian dentate gyrus. The findings reported here are generally consistent with previous reports of mammalian M1/M2 receptor distributions.
Collapse
Affiliation(s)
- E C Kohler
- Department of Psychology, Bowling Green State University, Ohio 43403, USA
| | | | | |
Collapse
|
46
|
Medina L, Anderson KD, Karle EJ, Reiner A. An ultrastructural double-label immunohistochemical study of the enkephalinergic input to dopaminergic neurons of the substantia nigra in pigeons. J Comp Neurol 1995; 357:408-32. [PMID: 7673476 DOI: 10.1002/cne.903570307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electron microscopic immunohistochemical double-label studies were carried out in pigeons to characterize the ultrastructural organization and postsynaptic targets of enkephalinergic (ENK+) striatonigral projection. ENK+ terminals in the substantia nigra were labeled with antileucine-enkephalin antiserum by using peroxidase-antiperoxidase methods, and dopaminergic neurons were labeled with anti-tyrosine hydroxylase antiserum by using silver-intensified immunogold methods. ENK+ terminals on dopaminergic neurons were equal in abundance to ENK+ terminals on nondopaminergic neurons, although the former were typically somewhat smaller than the latter (mean size: 0.50 vs. 0.75 micron, respectively). ENK+ terminals were evenly distributed on the cell bodies and dendrites of dopaminergic neurons, and they were evenly distributed on dendrites but rare on perikarya of nondopaminergic neurons. Transection of the basal telencephalic output revealed that 75% of the nigral ENK+ terminals were of basal telencephalic origin. These telencephalic ENK+ terminals included over 80% of those smaller than 0.80 micron on dopaminergic neurons and smaller than 1.0 micron on nondopaminergic neurons, and none greater than this in size. Both telencephalic and the nontelencephalic ENK+ nigral terminals made predominantly symmetric synapses on nigral neurons. Although the basal telencephalic ENK+ terminals uniformly targeted dendrites and perikarya, nontelencephalic ENK+ terminals seemed to avoid perikarya. The results indicate that ENK+ striatonigral neurons in birds may directly influence both dopaminergic and nondopaminergic neurons of the substantia nigra. Based on similar data for substance P-containing striatonigral terminals, the roles of enkephalin and substance P in influencing nigral dopaminergic neurons may differ slightly, as they appear to target preferentially different portions of dopaminergic neurons. The overall results in pigeons are similar to those for ENK+ terminals in the ventral tegmental area in rats, suggesting that the synaptic organization of the ENK+ input to the tegmental dopaminergic cell fields is similar in mammals and birds.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163, USA
| | | | | | | |
Collapse
|
47
|
Vallarino M, Tranchand-Bunel D, Thoumas JL, Masini MA, Conlon JM, Fournier A, Pelletier G, Vaudry H. Neuropeptide tyrosine in the brain of the African lungfish, Protopterus annectens: immunohistochemical localization and biochemical characterization. J Comp Neurol 1995; 356:537-51. [PMID: 7560265 DOI: 10.1002/cne.903560405] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lungfishes, which share similarities with both fishes and amphibians, represent an interesting group in which to investigate the evolutionary transition from fishes to tetrapods. In the present study, we have investigated the localization and biochemical characteristics of neuropeptide Y (NPY)-immunoreactive material in the central nervous system of the African lungfish, Protopterus annectens. NPY-immunoreactive cell bodies were found in various regions of the brain, most notably in the telencephalon (septal area, ventral striatum, and nucleus accumbens), in the diencephalon (preoptic nucleus, periventricular region of the hypothalamus, and ventral thalamus), and in the tegmentum of the mesencephalon. A strong immunoreaction was also detected in cell bodies of the nervus terminalis. Immunoreactive nerve fibers were particularly abundant in the ventral striatum, the nucleus accumbens, the diagonal band of Broca, the hypothalamus, and the mesencephalic tegmentum. Positive fibers were also seen in the median eminence and in the neural lobe of the pituitary. The NPY-immunoreactive material localized in the brain and pituitary was characterized by combining high-performance liquid chromatography (HPLC) analysis and radioimmunological quantitation. The displacement curves obtained with synthetic porcine and frog NPY and serial dilutions of brain and pituitary extracts were parallel. Reversed-phase HPLC analysis of telencephalon, diencephalon, and pituitary extracts resolved a major NPY-immunoreactive peak that coeluted with frog NPY. The similarity between the distribution of NPY-containing neurons and the biochemical characteristics of the immunoreactive peptide in the brain of lungfish and frog strongly favors a close phylogenetic relationship between dipnoans and amphibians.
Collapse
Affiliation(s)
- M Vallarino
- Istituto di Anatomia Comparata, Università di Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rushlow W, Flumerfelt BA, Naus CC. Colocalization of somatostatin, neuropeptide Y, and NADPH-diaphorase in the caudate-putamen of the rat. J Comp Neurol 1995; 351:499-508. [PMID: 7721980 DOI: 10.1002/cne.903510403] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Somatostatin, neuropeptide Y, and nicotinamide adenine dinucleotide phosphate-diaphorase are colocalized within a small population of medium aspiny neurons in the caudate-putamen of the rat. The extent of colocalization, however, appears to be in dispute. In order to examine the question of colocalization between these three neuroactive substances, a series of double-labelling experiments was performed. This was accomplished by combining immunocytochemistry for somatostatin or neuropeptide Y or enzyme histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase with in situ hybridization for somatostatin and/or neuropeptide Y mRNA. The results of such analysis indicate that nicotinamide adenine dinucleotide phosphate-diaphorase and somatostatin mRNA are 100% colocalized throughout the caudate-putamen, except for the area bordering the globus pallidus. All neurons that contain neuropeptide Y contain somatostatin message. Only 84% of the neurons that contain somatostatin mRNA, however, also contain neuropeptide Y. Neurons that contain somatostatin 28 but not neuropeptide Y are found throughout the caudate-putamen. These results indicate that the somatostatin neuron population in the rat caudate-putamen is not homogeneous. Instead, the medium aspiny neuron population is actually composed of several subpopulations based on the content of neuroactive substances.
Collapse
Affiliation(s)
- W Rushlow
- Department of Anatomy, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
49
|
Rushlow W, Naus CC, Flumerfelt BA. Colocalization of prosomatostatin-derived peptides in the caudate-putamen of the rat. J Comp Neurol 1994; 349:583-95. [PMID: 7860789 DOI: 10.1002/cne.903490406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the striatum of rat, somatostatin 14, somatostatin 28, and somatostatin 28(1-12) have previously been localized within a small population of medium aspiny local circuit neurons. Because all three peptide fragments are generated through the cleavage of prosomatostatin by different converting enzymes, the possibility for differential expression of these peptides exists. In order to investigate this possibility, frozen sections were collected from the brains of adult female Wistar rats fixed with 4% paraformaldehyde and double labelled using immunocytochemistry and in situ hybridization. Sections were first processed for somatostatin 14, somatostatin 28, or somatostatin 28(1-12) by using the avidin-biotin complex immunocytochemical technique followed by in situ hybridization using 35S-labelled antisense riboprobes to somatostatin mRNA. The results of such analysis revealed that somatostatin 28 and somatostatin mRNA are 100% colocalized. Somatostatin 14 and somatostatin 28(1-12), in contrast, are only present within 66% of the neurons that express somatostatin mRNA. Examination of the anatomical distribution of neurons that express both somatostatin mRNA and somatostatin 14 or somatostatin 28(1-12) protein reveals that these neurons are present throughout the caudate-putamen of rat but are more prevalent in the ventromedial regions. Neurons that express somatostatin mRNA but not somatostatin 14 or somatostatin 28(1-12) are also present throughout the caudate-putamen but are most numerous within a dorsolateral strip just beneath the corpus callosum. These results suggest that the somatostatin neuron population within the rat caudate-putamen is actually composed of two smaller subpopulations based on neuropeptide content. The first subpopulation contains somatostatin 28 and constitutes one-third of the total somatostatin population, whereas the other contains somatostatin 28, somatostatin 14, and somatostatin 28(1-12) and represents the remaining two-thirds of the cells that express somatostatin mRNA.
Collapse
Affiliation(s)
- W Rushlow
- Department of Anatomy, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
50
|
Székely AD, Boxer MI, Stewart MG, Csillag A. Connectivity of the lobus parolfactorius of the domestic chicken (Gallus domesticus): an anterograde and retrograde pathway tracing study. J Comp Neurol 1994; 348:374-93. [PMID: 7844254 DOI: 10.1002/cne.903480305] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In 1-week-old domestic chicks, the connectivity of the lobus parolfactorius (LPO), part of the avian basal ganglia, was investigated using Phaseolus vulgaris leucoagglutinin and horseradish peroxidase for anterograde and retrograde pathway tracing, respectively. Tyrosine hydroxylase immunocytochemistry was applied in combination with Phaseolus lectin to assess the overlap between LPO efferents and diencephalic and mesencephalic catecholamine centres. Anterograde projections from LPO were detected in the hyperstriatum, neostriatum, and paleostriatum. Intranuclear connections were also apparent within the LPO. Descending LPO efferents innervated the lateral mammillary and intramedial nuclei and the dorsomedial thalamic complex. Fibres from LPO were observed in the tectal gray, substantia nigra, area ventralis tegmentalis of Tsai, and the adjacent nucleus mesencephalicus profundus. Further caudally, projections from LPO reached the nucleus papillioformis, locus coeruleus, and subcoeruleus ventralis. LPO efferents were coextensive with tyrosine hydroxylase-positive cells in the nuclei mamillaris lateralis and intramedialis of the hypothalamus, area ventralis tegmentalis, substantia nigra, locus coeruleus, and subcoeruleus ventralis of mesencephalic and pontine tegmentum. Close contacts between LPO fibres and catecholamine cells were visible in the nigra and the area ventralis tegmentalis. Retrograde labelling from LPO was found in the archistriatum, dorsomedial thalamic complex, nuclei lateralis anterior and superficialis parvicellularis thalami, substantia nigra, central gray, area ventralis tegmentalis of Tsai, and locus coeruleus and in cells dorsal to the decussation of brachium conjunctivum. Reciprocal connections were verified between the LPO and the following areas: dorsomedial thalamic complex, central gray, substantia nigra, area ventralis of Tsai, and locus coeruleus.
Collapse
Affiliation(s)
- A D Székely
- First Department of Anatomy, Semmelweis University of Medicine, Budapest, Hungary
| | | | | | | |
Collapse
|