1
|
Chee H, Kimura A, Yamamoto‐Kinami A, Tsuchiya Y, Kanazawa T, Hoshino Y, Matsuda K, Ichijo T. Dynamic Changes in Postprandial Plasma Free Amino Acid Levels of the Hepatic Portal, Hepatic, and Jugular Veins in the Healthy Pre-Ruminant Calves. Anim Sci J 2025; 96:e70058. [PMID: 40165607 PMCID: PMC11959318 DOI: 10.1111/asj.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/10/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Sufficient amino acids (AAs) supply is crucial in growing animals to maintain the rapid skeletal muscle protein synthesis and healthy growth. Liver is known to be the major organ that plays a central role in AA metabolism. Seeing as few studies have been made to investigate the dynamic changes of postprandial AAs over a short time interval before and after the liver, a first attempt was made to investigate the changes in postprandial free AA levels over eight time points with short interval in plasma, collected simultaneously from the hepatic portal, hepatic, and jugular veins, to better understand the intrahepatic, pre- and post-hepatic AA metabolisms. AAs absorption and uptake by liver occurred soon after feeding and most of the AAs peaked at 30 min postprandial. Two postprandial peaks of the plasma total free AAs, essential AAs (EAAs), and non-essential AAs were observed in hepatic portal and hepatic veins, indicating that two phases of digestion and absorption of AAs may occur in the gastrointestinal tract of the pre-ruminant calves. Individual free AAs showed three main AA transition profiles over time. The total EAA concentration at 240 min postprandial was significantly higher (p < 0.05) in the HPV than in the JV.
Collapse
Affiliation(s)
- HueyShy Chee
- Graduate School of Veterinary ScienceIwate UniversityMoriokaIwateJapan
| | - Atsushi Kimura
- Farm Animal Clinical Skills and Disease Control CenterIwate UniversityMoriokaIwateJapan
| | - Aiko Yamamoto‐Kinami
- Farm Animal Clinical Skills and Disease Control CenterIwate UniversityMoriokaIwateJapan
| | - Yoshiyuki Tsuchiya
- Farm Animal Clinical Skills and Disease Control CenterIwate UniversityMoriokaIwateJapan
| | - Tomomi Kanazawa
- Cooperative Department of Veterinary Medicine, Faculty of AgricultureIwate UniversityMoriokaIwateJapan
| | - Yuki Hoshino
- Graduate School of Veterinary ScienceIwate UniversityMoriokaIwateJapan
- Cooperative Department of Veterinary Medicine, Faculty of AgricultureIwate UniversityMoriokaIwateJapan
| | - Keiichi Matsuda
- Miyagi Prefectural Federation of Agricultural Mutual Aid AssociationKurokawa‐gunMiyagiJapan
| | - Toshihiro Ichijo
- Graduate School of Veterinary ScienceIwate UniversityMoriokaIwateJapan
- Farm Animal Clinical Skills and Disease Control CenterIwate UniversityMoriokaIwateJapan
- Cooperative Department of Veterinary Medicine, Faculty of AgricultureIwate UniversityMoriokaIwateJapan
| |
Collapse
|
2
|
Cheng Y, Ren Y, Zhang W, Lu J, Xie F, Fang YD, Fan X, He W, Wang W. Regionalization of intestinal microbiota and metabolites in the small intestine of the Bactrian camel. Front Immunol 2024; 15:1464664. [PMID: 39660142 PMCID: PMC11628504 DOI: 10.3389/fimmu.2024.1464664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Peyer's patches (PPs) are crucial antigen-inductive sites of intestinal mucosal immunity. Prior research indicated that, in contrast to other ruminants, PPs in the small intestine of Bactrian camels are found in the duodenum, jejunum, and ileum and display polymorphism. Using this information, we analyzed the microbial and metabolic characteristics in various segments of the Bactrian camel's small intestine to further elucidate how the immune system varies across different regions. Methods In this study, the microbiota and metabolite of 36 intestinal mucosal samples, including duodenal (D-PPs), jejunal (J-PPs), and ileal PPs (I-PPs), were profiled for six Bactrian camels using 16S rRNA gene sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS). To confirm meaningful associations, we conducted connection analyses on the significantly different objects identified in each group's results. ELISA was used to analyze the levels of IgA, IgG, and IgM in the same tissues. Results The microbiota and metabolite profiles of J-PPs and I-PPs were found to be similar, whereas those of D-PPs were more distinct. In J-PPs and I-PPs, the dominant bacterial genera included Clostridium, Turicibacter, and Shigella. In contrast, D-PPs had a significant increase in the abundance of Prevotella, Fibrobacter, and Succinobacter. Regarding the metabolomics, D-PPs exhibited high levels of polypeptides, acetylcholine, and histamine. On the other hand, J-PPs and I-PPs were characterized by an enrichment of free amino acids, such as L-arginine, L-glutamic acid, and L-serine. These metabolic differences mainly involve amino acid production and metabolic processes. Furthermore, the distribution of intestinal immunoglobulins highlighted the specificity of D-PPs. Our results indicated that proinflammatory microbes and metabolites were significantly enriched in D-PPs. In contrast, J-PPs and I-PPs contained substances that more effectively enhance immune responses, as evidenced by the differential distribution of IgA, IgG, and IgM. Discussion The intestinal microenvironment of Bactrian camels displays distinct regional disparities, which we propose are associated with variations in immunological function throughout different segments of the small intestine. This study highlights the specific traits of the intestinal microbiota and metabolites in Bactrian camels, offering a valuable reference for understanding the relationship between regional intestinal immunity and the general health and disease of the host.
Collapse
Affiliation(s)
- Yujiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yan Ren
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Schwärzler J, Mayr L, Grabherr F, Tilg H, Adolph TE. Epithelial metabolism as a rheostat for intestinal inflammation and malignancy. Trends Cell Biol 2024; 34:913-927. [PMID: 38341347 DOI: 10.1016/j.tcb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
The gut epithelium protects the host from a potentially hostile environment while allowing nutrient uptake that is vital for the organism. To maintain this delicate task, the gut epithelium has evolved multilayered cellular functions ranging from mucus production to hormone release and orchestration of mucosal immunity. Here, we review the execution of intestinal epithelial metabolism in health and illustrate how perturbation of epithelial metabolism affects experimental gut inflammation and tumorigenesis. We also discuss the impact of environmental factors and host-microbe interactions on epithelial metabolism in the context of inflammatory bowel disease and colorectal cancer. Insights into epithelial metabolism hold promise to unravel mechanisms of organismal health that may be therapeutically exploited in humans in the future.
Collapse
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Haynes J, Palaniappan B, Crutchley JM, Sundaram U. Regulation of Enterocyte Brush Border Membrane Primary Na-Absorptive Transporters in Human Intestinal Organoid-Derived Monolayers. Cells 2024; 13:1623. [PMID: 39404387 PMCID: PMC11482628 DOI: 10.3390/cells13191623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In the small intestine, sodium (Na) absorption occurs primarily via two apical transporters, Na-hydrogen exchanger 3 (NHE3) and Na-glucose cotransporter 1 (SGLT1). The two primary Na-absorptive pathways were previously shown to compensatorily regulate each other in rabbit and rat intestinal epithelial cells. However, whether NHE3 and SGLT1 regulate one another in normal human enterocytes is unknown, mainly due to a lack of appropriate experimental models. To investigate this, we generated 2D enterocyte monolayers from human jejunal 3D organoids and used small interfering RNAs (siRNAs) to knock down NHE3 or SGLT1. Molecular and uptake studies were performed to determine the effects on NHE3 and SGLT1 expression and activity. Knockdown of NHE3 by siRNA in enterocyte monolayers was verified by qPCR and Western blot analysis and resulted in reduced NHE3 activity. However, in NHE3 siRNA-transfected cells, SGLT1 activity was significantly increased. siRNA knockdown of SGLT1 was confirmed by qPCR and Western blot analysis and resulted in reduced SGLT1 activity. However, in SGLT1 siRNA-transfected cells, NHE3 activity was significantly increased. These results demonstrate for the first time the functionality of siRNA in patient-derived organoid monolayers. Furthermore, they show that the two primary Na absorptive pathways in human enterocytes reciprocally regulate one another.
Collapse
Affiliation(s)
| | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA
| |
Collapse
|
5
|
Fuentes J, Gregório SF, Fonseca F, Robles-Arozarena R, Martos-Sitcha JA, Moyano FJ. Effect of bile salts on intestinal epithelial function in gilthead seabream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1777-1790. [PMID: 38916718 PMCID: PMC11286703 DOI: 10.1007/s10695-024-01369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
In the context of modern aquaculture, the effort to reduce the reliance on fishmeal/marine ingredients in fish diets has led to the exploration of plant-based protein sources as potential substitutes, a dietary shift that disrupts the bile acid profile in fish. Therefore, bile salts are being sought as additives. However, artificially increased intestinal levels of bile acids may significantly impact mucosal function. Therefore, here, we explored the regulatory role in the intestine of gilthead sea bream (Sparus aurata) of (i) chenodeoxycholic acid (CDC), (ii) a mixture formed by two bile acids, 3% cholic acid and 97% deoxycholic acid (MIX), and (iii) a conjugated bile salt sodium taurocholate (TC) in Ussing chambers with the epithelial voltage clamp technique. We tested the bile salts in a 50-500 μg/ml concentration range, and all of them promoted ion absorption. Yet, clear concentration-dependent and more pronounced effects on the ion transport were observed in the posterior intestine. On the other hand, bile salts had no or minor effects on tissue resistance. However, there are indications that the MIX could have adverse effects at high concentrations (500 μg/ml), promoting a threefold increase in tissue permeability measured using FITC-dextran (4 kD) regardless of the intestinal region, thus suggesting an alteration in intestinal permeability at high bile salt concentrations. The findings from our study emphasize the importance of considering intestinal function when contemplating the possible use of a particular bile salt as a dietary supplement. It appears that bile salts, whether acting individually or in combination, play a pivotal role in orchestrating nutrient absorption by influencing the function of epithelial ion transport. However further research is needed to fully grasp the region-dependent nuances of bile salt effects on ion transport and the ultimate consequences for nutrient absorption in the context of fish aquaculture.
Collapse
Affiliation(s)
- J Fuentes
- Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Instituto de Ciencias Marinas de Andalucía, 11519, Puerto Real, Cádiz, Spain.
| | - S F Gregório
- Centro de Ciências do Mar, Universidade do Algarve, 8005-139, Faro, Portugal
| | - F Fonseca
- ARNET (Aquatic Network, Associated Laboratory), Centre for Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
| | | | - J A Martos-Sitcha
- Departamento de Biología Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519, Puerto Real, Cádiz, Spain
| | - F J Moyano
- Departamento de Biologia y Geologia Facultad de Ciencias, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Almeria, La Cañada de San Urbano, 04120, Almería, Spain.
| |
Collapse
|
6
|
Luo L, Zeng H, Hu Y, Jiang L, Fu C, Huang J, Chen J, Zeng Q. The amino acid transporter SLC16A10 promotes melanogenesis by facilitating the transportation of phenylalanine. Exp Dermatol 2024; 33:e15165. [PMID: 39171634 DOI: 10.1111/exd.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Phenylalanine is a crucial amino acid in the process of melanogenesis. However, the exact mechanism by which it is transported into melanocytes has not been disclosed. The aim of this study was to identify and examine the key transporters that are responsible for phenylalanine transportation and evaluate their significance in melanogenesis. The amino acid transporter SLC16A10 was found to be up-regulated in both melasma (GSE72140) and sun-exposed skin (GSE67098). The protein levels of SLC16A10 were proportional to the melanin content in melanocytic nevi, indicating that SLC16A10 was related to melanogenesis. After SLC16A10 overexpression, melanin increased significantly in MNT1 cells. Meanwhile, the expression of melanogenesis-related proteins such as TYR and TYRP1 increased, while their RNA levels did not change. Transcriptomics data indicated that SLC16A10 can enhance the function of ribosome. Furthermore, targeted metabolomics data and ELISA results demonstrated SLC16A10 mainly affected the transport of phenylalanine into the cells. Then, phenylalanine was added to the cell culture medium after SLC16A10 overexpression, melanin synthesis in cells furtherly increased, which verified that SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine. Finally, we found that SLC16A10 expression increased after UVB irradiation. Knockdown SLC16A10 reduced UVB-induced melanin production and phenylalanine uptake by cells. In summary, SLC16A10 enhances melanogenesis by promoting the uptake of phenylalanine, and upregulation SLC16A10 is likely responsible for the UVB-induced hyperpigmentation as well.
Collapse
Affiliation(s)
- Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Yibo Hu
- Clinical Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Kasper C. Animal board invited review: Heritability of nitrogen use efficiency in fattening pigs: Current state and possible directions. Animal 2024; 18:101225. [PMID: 39013333 DOI: 10.1016/j.animal.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Pork, an important component of human nutrition worldwide, contributes considerably to anthropogenic nitrogen and greenhouse gas emissions. Reducing the environmental impact of pig production is therefore essential. This can be achieved through system-level strategies, such as optimising resource use, improving manure management and recycling leftovers from human food production, and at the individual animal level by maintaining pig health and fine-tuning dietary protein levels to individual requirements. Breeding, coupled with nutritional strategies, offers a lasting solution to improve nitrogen use efficiency (NUE) - the ratio of nitrogen retained in the body to nitrogen ingested. With a heritability as high as 0.54, incorporating NUE into breeding programmes appears promising. Nitrogen use efficiency involves multiple tissues and metabolic processes, and is influenced by the environment and individual animal characteristics, including its genetic background. Heritable genetic variation in NUE may therefore occur in many different processes, including the central nervous regulation of feed intake, the endocrine system, the gastrointestinal tract where digestion and absorption take place, and the composition of the gut microbiome. An animal's postabsorptive protein metabolism might also harbour important genetic variation, especially in the maintenance requirements of tissues and organs. Precise phenotyping, although challenging and costly, is essential for successful breeding. Various measurement techniques, such as imaging techniques and mechanistic models, are being explored for their potential in genetic analysis. Despite the difficulties in phenotyping, some studies have estimated the heritability and genetic correlations of NUE. These studies suggest that direct selection for NUE is more effective than indirect methods through feed efficiency. The complexity of NUE indicates a polygenic trait architecture, which has been confirmed by genome-wide association studies that have been unable to identify significant quantitative trait loci. Building sufficiently large reference populations to train genomic prediction models is an important next step. However, this will require the development of truly high-throughput phenotyping methods. In conclusion, breeding pigs with higher NUE is both feasible and necessary but will require increased efforts in high-throughput phenotyping and improved genome annotation.
Collapse
Affiliation(s)
- C Kasper
- Animal GenoPhenomics, Agroscope, Posieux, Switzerland.
| |
Collapse
|
8
|
Modvig IM, Smits MM, Galsgaard KD, Hjørne AP, Drzazga AK, Rosenkilde MM, Holst JJ. L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels. Nutr Diabetes 2024; 14:43. [PMID: 38862477 PMCID: PMC11166632 DOI: 10.1038/s41387-024-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown. METHODS We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon. RESULTS Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 μM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 μM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon. CONCLUSIONS L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.
Collapse
Affiliation(s)
- Ida Marie Modvig
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mark M Smits
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Douglas Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Pii Hjørne
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katarzyna Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Funnell MP, Juett LA, Reynolds KM, Johnson DA, James RM, Mears SA, Cheuvront SN, Kenefick RW, James LJ. Iterative assessment of a sports rehydration beverage containing a novel amino acid formula on water uptake kinetics. Eur J Nutr 2024; 63:1125-1137. [PMID: 38349552 PMCID: PMC11139694 DOI: 10.1007/s00394-024-03325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/10/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Rapid gastric emptying and intestinal absorption of beverages is essential for rapid rehydration, and certain amino acids (AA) may augment fluid delivery. Three sugar-free beverages, containing differing AA concentrations (AA + PZ), were assessed for fluid absorption kinetics against commercial sugar-free (PZ, GZ) and carbohydrate-containing (GTQ) beverages. METHODS Healthy individuals (n = 15-17 per study) completed three randomised trials. Three beverages (550-600 mL) were ingested in each study (Study 1: AA + PZ [17.51 g/L AA], PZ, GZ; Study 2: AA + PZ [6.96 g/L AA], PZ, GZ; Study 3: AA + PZ [3.48 g/L AA], PZ, GTQ), containing 3.000 g deuterium oxide (D2O). Blood samples were collected pre-, 2-min, 5-min, and every 5-min until 60-min post-ingestion to quantify maximal D2O enrichment (Cmax), time Cmax occurred (Tmax) and area under the curve (AUC). RESULTS Study 1: AUC (AA + PZ: 15,184 ± 3532 δ‰ vs. VSMOW; PZ: 17,328 ± 3153 δ‰ vs. VSMOW; GZ: 17,749 ± 4204 δ‰ vs. VSMOW; P ≤ 0.006) and Tmax (P ≤ 0.005) were lower for AA + PZ vs. PZ/GZ. Study 2: D2O enrichment characteristics were not different amongst beverages (P ≥ 0.338). Study 3: Cmax (AA + PZ: 440 ± 94 δ‰ vs. VSMOW; PZ: 429 ± 83 δ‰ vs. VSMOW; GTQ: 398 ± 81 δ‰ vs. VSMOW) was greater (P = 0.046) for AA + PZ than GTQ, with no other differences (P ≥ 0.106). CONCLUSION The addition of small amounts of AA (3.48 g/L) to a sugar-free beverage increased fluid delivery to the circulation compared to a carbohydrate-based beverage, but greater amounts (17.51 g/L) delayed delivery.
Collapse
Affiliation(s)
- Mark P Funnell
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Loris A Juett
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Kirsty M Reynolds
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Drusus A Johnson
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Ruth M James
- Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Stephen A Mears
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Samuel N Cheuvront
- Entrinsic Bioscience, LLC, Norwood, MA, 02062, USA
- Sports Science Synergy, LLC, Franklin, MA, 02038, USA
| | | | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
10
|
Bouqellah NA, El-Sayyad GS, Attia MS. Induction of tomato plant biochemical immune responses by the synthesized zinc oxide nanoparticles against wilt-induced Fusarium oxysporum. Int Microbiol 2024; 27:435-448. [PMID: 37491678 DOI: 10.1007/s10123-023-00404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
The current study used zinc oxide nanoparticles (ZnO-NPs) to protect the tomato plant against Fusarium wilt. Gamma rays were used to synthesize ZnO-NPs, and the designed ZnO-NPs were characterized using high-resolution transmission electron microscopy (HRTEM), scanning electron microscope (SEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and ultraviolet-visible (UV-Vis.) spectroscopy. We found that the 20 kGy dose is the most effective for ZnO-NPs synthesis, with the highest O.D. = 1.65 (diluted 3 times) at 400 nm. The scale of ZnO-NPs ranged from 10.45 to 75.25 nm with an average diameter of 40.20 nm. The results showed that the designed ZnO-NPs showed promising activity as a potent inducer of plant physiological immunity against Fusarium wilt disease. Likewise, ZnO-NPs significantly reduced the wilt disease symptoms incidence by 28.57% and high protection by 67.99% against F. oxysporum. Additionally, infected tomato plants treated with ZnO-NPs show improved shoot length (44.71%), root length (40.0%), number of leaves (60.0 %), chlorophyll a (36.93%), chlorophyll b (16.46%), and carotenoids (21.87%) versus infected plants. Notably, in the treatment of tomato seedlings, the beneficial effects of ZnO-NPs extended to increase not only in osmolyte contents but also total phenol contents in comparison with control plants. In conclusion, the designed ZnO-NPs can control Fusarium wilt disease and improve and develop biochemical compounds responsible for defense against fusarial infection.
Collapse
Affiliation(s)
- Nahla A Bouqellah
- Biology Department, Science College, Taibah University, Al Madinah Al Munawwarah, 42317-8599, Saudi Arabia.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, sixth of October City, Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohamed S Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
Duarte ME, Parnsen W, Zhang S, Abreu MLT, Kim SW. Low crude protein formulation with supplemental amino acids for its impacts on intestinal health and growth performance of growing-finishing pigs. J Anim Sci Biotechnol 2024; 15:55. [PMID: 38528636 PMCID: PMC10962153 DOI: 10.1186/s40104-024-01015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Low crude protein (CP) formulations with supplemental amino acids (AA) are used to enhance intestinal health, reduce costs, minimize environmental impact, and maintain growth performance of pigs. However, extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met. Moreover, implementing a low CP formulation can increase the net energy (NE) content in feeds causing excessive fat deposition. Additional supplementation of functional AA, coupled with low CP formulation could further enhance intestinal health and glucose metabolism, improving nitrogen utilization, and growth performance. Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs. METHODS In Exp. 1, 90 pigs (19.7 ± 1.1 kg, 45 barrows and 45 gilts) were assigned to 3 treatments: CON (18.0% CP, supplementing Lys, Met, and Thr), LCP (16.0% CP, supplementing Lys, Met, Thr, Trp, and Val), and LCPT (16.1% CP, LCP + 0.05% SID Trp). In Exp. 2, 72 pigs (34.2 ± 4.2 kg BW) were assigned to 3 treatments: CON (17.7% CP, meeting the requirements of Lys, Met, Thr, and Trp); LCP (15.0% CP, meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and VLCP (12.8% CP, meeting Lys, Thr, Trp, Met, Val, Ile, Phe, His, and Leu). In Exp. 3, 72 pigs (54.1 ± 5.9 kg BW) were assigned to 3 treatments and fed experimental diets for 3 phases (grower 2, finishing 1, and finishing 2). Treatments were CON (18.0%, 13.8%, 12.7% CP for 3 phases; meeting Lys, Met, Thr, and Trp); LCP (13.5%, 11.4%, 10.4% CP for 3 phases; meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and LCPG (14.1%, 12.8%, 11.1% CP for 3 phases; LCP + Glu to match SID Glu with CON). All diets had 2.6 Mcal/kg NE. RESULTS In Exp. 1, overall, the growth performance did not differ among treatments. The LCPT increased (P < 0.05) Claudin-1 expression in the duodenum and jejunum. The LCP and LCPT increased (P < 0.05) CAT-1, 4F2hc, and B0AT expressions in the jejunum. In Exp. 2, overall, the VLCP reduced (P < 0.05) G:F and BUN. The LCP and VLCP increased (P < 0.05) the backfat thickness (BFT). In Exp. 3, overall, growth performance and BFT did not differ among treatments. The LCPG reduced (P < 0.05) BUN, whereas increased the insulin in plasma. The LCP and LCPG reduced (P < 0.05) the abundance of Streptococcaceae, whereas the LCP reduced (P < 0.05) Erysipelotrichaceae, and the alpha diversity. CONCLUSIONS When implementing low CP formulation, CP can be reduced by supplementation of Lys, Thr, Met, Trp, Val, and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition. Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wanpuech Parnsen
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shihai Zhang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Márvio L T Abreu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
12
|
Fathima S, Al Hakeem WG, Selvaraj RK, Shanmugasundaram R. Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions. Front Physiol 2024; 14:1326809. [PMID: 38235383 PMCID: PMC10791986 DOI: 10.3389/fphys.2023.1326809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Arginine is a functional amino acid essential for various physiological processes in poultry. The dietary essentiality of arginine in poultry stems from the absence of the enzyme carbamoyl phosphate synthase-I. The specific requirement for arginine in poultry varies based on several factors, such as age, dietary factors, and physiological status. Additionally, arginine absorption and utilization are also influenced by the presence of antagonists. However, dietary interventions can mitigate the effect of these factors affecting arginine utilization. In poultry, arginine is utilized by four enzymes, namely, inducible nitric oxide synthase arginase, arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The intermediates and products of arginine metabolism by these enzymes mediate the different physiological functions of arginine in poultry. The most studied function of arginine in humans, as well as poultry, is its role in immune response. Arginine exerts immunomodulatory functions primarily through the metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part in inflammation or the resolution of inflammation. These properties of arginine and arginine metabolites potentiate its use as a nutraceutical to prevent the incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the poultry gut microbiota, the metabolites of which might have important implications for gut microbial composition, immune regulation, metabolism, and overall host health. This comprehensive review provides insights into the multifaceted roles of arginine and arginine metabolites in poultry nutrition and wellbeing, with particular emphasis on the potential of arginine in immune regulation and microbial homeostasis in poultry.
Collapse
Affiliation(s)
- Shahna Fathima
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
13
|
Noorman L, van der Hee B, Gilbert MS, de Vries S, van der Hoek S, Gerrits WJJ. Assessing seromuscular layer and serosa removal on intestinal permeability measurements in weaned piglet everted sac segments. J Anim Sci 2024; 102:skae148. [PMID: 38804653 PMCID: PMC11222984 DOI: 10.1093/jas/skae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024] Open
Abstract
The integrity of the intestinal barrier is crucial for regulating the passage of pathogens and toxins, while facilitating nutrient absorption. The everted gut sac technique, an ex-vivo technique, can be used to study interventions on barrier function. This cost-effective approach utilizes relatively large gut segments to study specific intestinal regions. Typically, intact (non-stripped) intestinal segments are used, but their use may underestimate permeability due to the medial positioning of blood vessels relative to the seromuscular layer and serosa. However, removing these layers risks physical damage, resulting in an overestimation of intestinal permeability. Therefore, we investigated the impact of stripping jejunal segments on permeability to fluorescein isothiocyanate-dextran (FITC, 4 kDa) and tetramethylrhodamine isothiocyanate-dextran (TRITC, 40 kDa), and on the absorption of glucose, lysine, and methionine in jejunal segments from 80 piglets at 8 d postweaning. Piglets were subjected to either high or low sanitary housing conditions and diets provoking intestinal protein fermentation or not, expected to influence intestinal permeability. Stripping of the seromuscular layer and serosa increased the passage of 4 kDa FITC-dextran (stripped vs. non-stripped; 1.1 vs. 0.9 pmol/cm2/min, P < 0.001), glucose (40.0 vs. 19.1 pmol/cm2/min, P < 0.001), lysine (2.5 vs. 2.0 nmol/cm2/min, P < 0.001), and methionine (4.1 vs. 2.7 pmol/cm2/min, P < 0.001). As permeability increased, the differences in methionine passage between stripped and non-stripped intestinal segments also increased (slope = 1.30, P = 0.009). The coefficients of variation were comparable between stripped and non-stripped intestines (over all treatments, stripped vs. non-stripped 38% vs. 40%). Stripping, by isolating mucosal processes without introducing additional variation, is thus recommended for studies on intestinal permeability or absorption.
Collapse
Affiliation(s)
- Lonneke Noorman
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, The Netherlands
| | - Bart van der Hee
- Host-Microbe Interactomics, Department of Animal Sciences, Wageningen University & Research, 6700AH Wageningen, The Netherlands
- Laboratory of Microbiology, Agrotechnology and Food Sciences, Wageningen University & Research, 6700EH Wageningen, The Netherlands
| | - Myrthe S Gilbert
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6700AH Wageningen, The Netherlands
| | - Sonja de Vries
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6700AH Wageningen, The Netherlands
| | - Sylvia van der Hoek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CL Utrecht, The Netherlands
| | - Walter J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, 6700AH Wageningen, The Netherlands
| |
Collapse
|
14
|
Okamoto E, Matsuda S, Yoshino Y, Morikawa Y, Suenami K, Tabuchi Y, Matsunaga T, Hayashi H, Ikari A. Increase in Paracellular Leakage of Amino Acids Mediated by Aging-Induced Reduction of Claudin-4 Expression. J Nutr 2023; 153:3360-3372. [PMID: 37806357 DOI: 10.1016/j.tjnut.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Claudins (CLDNs), major components of tight junctions, control paracellular permeabilities of mineral ions and wastes. The absorption of nutrients including glucose and amino acids (AAs) is regulated by intestinal epithelial cells. However, the role of CLDNs is not fully understood. OBJECTIVES The purpose of this study was to clarify the effect of AA deprivation on the expression of AA transporters and CLDNs, as well as the role of CLDNs in the regulation of paracellular AA fluxes. METHODS The messenger RNA and protein expression of various CLDNs were examined by real-time quantitative polymerase chain reaction and Western blot analyses, respectively. The AA selectivity of CLDNs was estimated using liquid chromatography-tandem mass spectrometry (LC-MS) analysis. RESULTS The expression levels of some AA transporters, CLDN4, and CLDN15 were increased by AA deprivation in normal mouse colon-derived MCE301 cells. The expression of AA transporters and CLDN15 in the mouse colon was positively correlated with aging but the expression of CLDN4 was not. The AA deprivation-induced elevation of CLDN4 expression was inhibited by MHY1485, a mammalian target of rapamycin (mTOR) activator. Furthermore, CLDN4 expression was increased by rapamycin, an mTOR inhibitor. mTOR may be involved in the transcriptional activation of CLDN4. The fluxes of AAs from the basal to apical compartments were decreased and increased by CLDN4 overexpression and silencing, respectively. LC-MS analysis showed that the fluxes of all AAs, especially Lys, His, and Arg, were enhanced by CLDN4 silencing. CONCLUSIONS CLDN4 is suggested to form a paracellular barrier to AAs, especially alkaline AAs, which is attenuated with aging.
Collapse
Affiliation(s)
- Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Shunsuke Matsuda
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | | | | | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
15
|
Tamura R, Sabu Y, Mizuno T, Mizuno S, Nakano S, Suzuki M, Abukawa D, Kaji S, Azuma Y, Inui A, Okamoto T, Shimizu S, Fukuda A, Sakamoto S, Kasahara M, Takahashi S, Kusuhara H, Zen Y, Ando T, Hayashi H. Intestinal Atp8b1 dysfunction causes hepatic choline deficiency and steatohepatitis. Nat Commun 2023; 14:6763. [PMID: 37990006 PMCID: PMC10663612 DOI: 10.1038/s41467-023-42424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
Choline is an essential nutrient, and its deficiency causes steatohepatitis. Dietary phosphatidylcholine (PC) is digested into lysoPC (LPC), glycerophosphocholine, and choline in the intestinal lumen and is the primary source of systemic choline. However, the major PC metabolites absorbed in the intestinal tract remain unidentified. ATP8B1 is a P4-ATPase phospholipid flippase expressed in the apical membrane of the epithelium. Here, we use intestinal epithelial cell (IEC)-specific Atp8b1-knockout (Atp8b1IEC-KO) mice. These mice progress to steatohepatitis by 4 weeks. Metabolomic analysis and cell-based assays show that loss of Atp8b1 in IEC causes LPC malabsorption and thereby hepatic choline deficiency. Feeding choline-supplemented diets to lactating mice achieves complete recovery from steatohepatitis in Atp8b1IEC-KO mice. Analysis of samples from pediatric patients with ATP8B1 deficiency suggests its translational potential. This study indicates that Atp8b1 regulates hepatic choline levels through intestinal LPC absorption, encouraging the evaluation of choline supplementation therapy for steatohepatitis caused by ATP8B1 dysfunction.
Collapse
Affiliation(s)
- Ryutaro Tamura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Sabu
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiki Abukawa
- Department of Gastroenterology and Hepatology, Miyagi Children's Hospital, Miyagi, Japan
| | - Shunsaku Kaji
- Department of Pediatrics, Tsuyama-Chuo Hospital, Okayama, Japan
| | - Yoshihiro Azuma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Eastern Hospital, Kanagawa, Japan
| | - Tatsuya Okamoto
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-Border Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital & King's College London, London, UK
| | - Tomohiro Ando
- Axcelead Drug Discovery Partners, Inc., Fujisawa, Kanagawa, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
16
|
Wei Y, Cui X, Zhou Z, Ma Q, Xu H, Liang M. Growth, Cannibalism, and 5-TH Metabolism in Pufferfish ( Takifugu obscurus ♀ × Takifugu rubripes): The Role of Graded Levels of Dietary Tryptophan. AQUACULTURE NUTRITION 2023; 2023:6693175. [PMID: 37719925 PMCID: PMC10505084 DOI: 10.1155/2023/6693175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
The objective of this study was to investigate the potential effect of graded levels of tryptophan on the growth, cannibalism, and 5-hydroxytryptpamine (5-TH) metabolism in pufferfish (Takifugu obscurus ♀ × Takifugu rubripes ♂). A 63-day feeding trial was performed wherein pufferfish were fed four diets. Three experimental diets were formulated with various levels of tryptophan based on the control diet. Four diets were named as T1, T2, T3, and T4, corresponding to 4.30, 7.80, 14.90, and 23.70 g kg-1 tryptophan of dry diet. Final body weight, weight gain, and specific growth rate were similar between the T1 and T4 groups, but exhibited a significantly increased trend compared to the T2 group. Although survival rate was not affected by various levels of dietary tryptophan, intraspecific cannibalism was significantly reduced in the group fed with highest level of tryptophan (T4). For free amino acid in brain, the concentration of tryptophan was the highest in the T3 group and the lowest in the T2 group, while phenylalanine, tyrosine, and methionine showed an opposite trend between those two groups. The levels of dietary tryptophan not only affected the expression of aromatic amino acid transporter TAT1, but also affected the expression of B0AT1, B0AT2, and 4F2hc in intestine, as well as B0AT1, y+LAT1, and LAT2 in brain. The activity of tryptophan hydroxylase (TPH) in serum increased with the increase of dietary tryptophan, and the expression of TPH1 in brain upregulated in the excessive tryptophan groups (T2, T3, and T4). MAO activity in serum as well as its gene expression in brain and intestine showed a decreased trend in the T4 group. In conclusion, excessive tryptophan (23.70 g kg-1 of dry diet, corresponding to 50.3 g kg-1 of dietary protein) in feed could mitigate cannibalistic behavior of pufferfish and promote the growth, and the reason for this effect might affect the metabolism of 5-TH in vivo.
Collapse
Affiliation(s)
- Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 1 Wenhai Road, Shandong, Qingdao 266237, China
| | - Xishuai Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Zhibing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 1 Wenhai Road, Shandong, Qingdao 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, 1 Wenhai Road, Shandong, Qingdao 266237, China
| |
Collapse
|
17
|
Cavigliasso F, Savary L, Spangenberg JE, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Experimental evolution of metabolism under nutrient restriction: enhanced amino acid catabolism and a key role of branched-chain amino acids. Evol Lett 2023; 7:273-284. [PMID: 37475747 PMCID: PMC10355184 DOI: 10.1093/evlett/qrad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 07/22/2023] Open
Abstract
Periodic food shortage is a common ecological stressor for animals, likely to drive physiological and metabolic adaptations to alleviate its consequences, particularly for juveniles that have no option but to continue to grow and develop despite undernutrition. Here we study changes in metabolism associated with adaptation to nutrient shortage, evolved by replicate Drosophila melanogaster populations maintained on a nutrient-poor larval diet for over 240 generations. In a factorial metabolomics experiment we showed that both phenotypic plasticity and genetically-based adaptation to the poor diet involved wide-ranging changes in metabolite abundance; however, the plastic response did not predict the evolutionary change. Compared to nonadapted larvae exposed to the poor diet for the first time, the adapted larvae showed lower levels of multiple free amino acids in their tissues-and yet they grew faster. By quantifying accumulation of the nitrogen stable isotope 15N we show that adaptation to the poor diet led to an increased use of amino acids for energy generation. This apparent "waste" of scarce amino acids likely results from the trade-off between acquisition of dietary amino acids and carbohydrates observed in these populations. The three branched-chain amino acids (leucine, isoleucine, and valine) showed a unique pattern of depletion in adapted larvae raised on the poor diet. A diet supplementation experiment demonstrated that these amino acids are limiting for growth on the poor diet, suggesting that their low levels resulted from their expeditious use for protein synthesis. These results demonstrate that selection driven by nutrient shortage not only promotes improved acquisition of limiting nutrients, but also has wide-ranging effects on how the nutrients are used. They also show that the abundance of free amino acids in the tissues does not, in general, reflect the nutritional condition and growth potential of an animal.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jorge E Spangenberg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Okamoto E, Matsuda S, Yoshino Y, Morikawa Y, Suenami K, Tabuchi Y, Matsunaga T, Ikari A. Regulation of Paracellular Fluxes of Amino Acids by Claudin-8 in Normal Mouse Intestinal MCE301 Cells. Nutrients 2023; 15:nu15061346. [PMID: 36986076 PMCID: PMC10055863 DOI: 10.3390/nu15061346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The ingested proteins are catabolized to di/tri-peptides and amino acids (AAs), which are absorbed through various transporters in the small intestinal and colonic epithelial cells. Tight junctions (TJs) are formed between neighboring cells and restrict paracellular fluxes to mineral ions and aqueous molecules. However, it is unknown whether the TJs are implicated in the control of paracellular fluxes to AAs. The paracellular permeability is controlled by claudins (CLDNs), which comprise a family of over 20 members. Here, we found that CLDN8 expression is decreased by AAs deprivation in normal mouse colon-derived MCE301 cells. The reporter activity of CLDN8 was not significantly changed by AAs deprivation, whereas the stability of CLDN8 protein was decreased. MicroRNA analysis showed that AAs deprivation increases the expression of miR-153-5p which targets CLDN8. The AAs deprivation-induced decline of CLDN8 expression was reversed by a miR-153-5p inhibitor. The CLDN8 silencing enhanced the paracellular fluxes to AAs, especially middle molecular size AAs. The expression levels of colonic CLDN8 and miR-153-5p in aged mice were lower and higher than those in young mice, respectively. We suggest that AAs deprivation downregulates CLDN8-dependent barrier function, mediated by the elevation of miR-153-5p expression in the colon, in order to enhance the AAs absorption.
Collapse
Affiliation(s)
- Ema Okamoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Shunsuke Matsuda
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
- Correspondence: ; Tel.: +81-58-230-8124
| |
Collapse
|
19
|
Chen W, Yan Q, Zhong R, Tan Z. Amino acid profiles, amino acid sensors and transporters expression and intestinal microbiota are differentially altered in goats infected with Haemonchus contortus. Amino Acids 2023; 55:371-384. [PMID: 36648537 DOI: 10.1007/s00726-023-03235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Infection with the nematode Haemonchus contortus causes host malnutrition and gastrointestinal injuries. The objective of this study was to investigate the effects of H. contortus infection on gastrointestinal contents of free amino acids (AA), the expression of AA transporters and microbiota with a focus on amino acid metabolism. Twenty-four Xiangdong black goats (13 ± 1.5 kg, 6 months old) were randomly assigned into the control group (n = 8) and the infected group (n = 16). The results showed that H. contortus infection increased (P < 0.05) the free AA contents in jejunum and ileum digesta. The concentrations of blood threonine, phenylalanine and tyrosine were lower (P < 0.05) in the infected group as compared to the control group. In the jejunum and ileum epithelium, H. contortus infection significantly (P < 0.05) down-regulated the expression of AA transporter b0,+AT/rBAT and B0AT1, but up-regulated (P < 0.05) the expression of transporter CAT2 and xCT. Furthermore, microbiota in both jejunum (Bifidobacteriaceae, Lachnospiraceae, Bacteroidaceae, Enterobacteriaceae, and Micrococcaceae) and ileum (Acidaminococcaceae, Desulfovibrionaceae, Bacteroidaceae, and Peptostreptococcaceae) were also altered at the family level by H. contortus infection. The commensal bacteria of jejunum showed a close correlation with amino acids, AA transporters, and amino acid metabolism, especially cystine. In conclusion, H. contortus infection affected the intestinal AA contents and the expression of intestinal AA transporters, suggesting altered AA metabolism and absorption, which were accompanied by changes in the relative abundances of gut bacteria that mediate amino acid metabolism.
Collapse
Affiliation(s)
- Wenxun Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China.
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, Jilin, People's Republic of China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, People's Republic of China
| |
Collapse
|
20
|
Mele S, Martelli F, Lin J, Kanca O, Christodoulou J, Bellen HJ, Piper MDW, Johnson TK. Drosophila as a diet discovery tool for treating amino acid disorders. Trends Endocrinol Metab 2023; 34:85-105. [PMID: 36567227 DOI: 10.1016/j.tem.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Amino acid disorders (AADs) are a large group of rare inherited conditions that collectively impact one in 6500 live births, often resulting in rapid neurological decline and death during infancy. For several AADs, including phenylketonuria, dietary modification prevents physiological deterioration and ameliorates symptoms. Despite this remarkable potential for treatment success, dietary therapy for most AADs remains largely unexplored. Although animal models have provided novel insights into AAD mechanisms, few have been used for therapeutic diet discovery. Here, we find that of all the animal models, Drosophila is particularly well suited for nutrigenomic disease modelling, having amino acid pathways conserved with humans, exceptional genetic tractability, and the unique availability of a synthetic customisable diet.
Collapse
Affiliation(s)
- Sarah Mele
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Felipe Martelli
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Jiayi Lin
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - John Christodoulou
- Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Duncan Neurological Research Institute of Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Travis K Johnson
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
21
|
Eugenio FA, van Milgen J, Duperray J, Sergheraert R, Le Floc’h N. Apparent jejunal amino acid digestibility, gut morphology, and the expression of intestinal amino acid transporters in pigs fed protein or free amino acids. J Anim Sci 2023; 101:skac417. [PMID: 36583730 PMCID: PMC9904176 DOI: 10.1093/jas/skac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022] Open
Abstract
Dietary amino acids (AA) supplied as protein or in free form are not only digested and absorbed at different rates but can also induce differences in the intestinal physiology of pigs. We compared the apparent jejunal AA digestibility, intestinal morphology, and gene expression of AA transporters of pigs fed diets providing different forms of AA. Thirty growing pigs (33.7 ± 4.1 kg) were fed one of three experimental diets that provided AA either as protein from feather meal (INT), as free AA and small peptides obtained by extensive acid hydrolysis of feathers (HYD), or as a mix of individual purified AA with the same AA profile as HYD (FAA). Pigs were fed the same quantity of feed, energy, and AA. After 14 d, pigs were slaughtered 3 h after feeding a meal with indigestible markers. Digesta and tissue were collected from different sections of the small intestine. Jejunal digesta was used to measure apparent jejunal digestibility of AA. Samples of the duodenum, jejunum, and ileum were used to measure intestinal morphology and the gene expression of intestinal AA transporters. The measured apparent jejunal digestibility of AA of INT was lower compared to HYD and FAA (P < 0.05). The apparent jejunal digestibility of Cys, Gly, His, Met, and Pro was lower for FAA compared to HYD (P < 0.05). This may be due to the small peptides in HYD, which are absorbed faster than individual AA. The villi area in the ileum of HYD fed pigs was the highest (P < 0.05) among the treatments, which may be associated with the reabsorption of endogenous proteins, which occurs mostly in the ileum. In the duodenum, HYD and FAA had lower expression of PepT1 (P < 0.01) probably due to the rapid transit time of digesta compared to INT fed pigs. Pigs fed HYD expressed more ASCT2 (P = 0.02) and CAT-1 (P = 0.04) in the jejunum compared to the pigs fed the other diets. The expression of these transporters along the intestine depended on the relative abundance of readily absorbable dietary AA. Results showed that dietary AA form can have an influence on the morphology and on the expression of different AA transporters along the different sections of the small intestine.
Collapse
Affiliation(s)
- Francis Amann Eugenio
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| | | | | | | | - Nathalie Le Floc’h
- PEGASE, INRAE, Institut Agro, 35590, Saint-Gilles, France
- BCF Life Sciences, Boisel, 56140 Pleucadeuc, France
| |
Collapse
|
22
|
Peden DL, Funnell MP, Reynolds KM, Kenefick RW, Cheuvront SN, Mears SA, James LJ. Post-exercise rehydration: Comparing the efficacy of three commercial oral rehydration solutions. Front Sports Act Living 2023; 5:1158167. [PMID: 37181252 PMCID: PMC10174327 DOI: 10.3389/fspor.2023.1158167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction This study compared the efficacy of three commercial oral rehydration solutions (ORS) for restoring fluid and electrolyte balance, after exercise-induced dehydration. Method Healthy, active participants (N = 20; ♀ = 3; age ∼27 y, V˙O2peak ∼52 ml/kg/min) completed three randomised, counterbalanced trials whereby intermittent exercise in the heat (∼36°C, ∼50% humidity) induced ∼2.5% dehydration. Subsequently, participants rehydrated (125% fluid loss in four equal aliquots at 0, 1, 2, 3 h) with a glucose-based (G-ORS), sugar-free (Z-ORS) or amino acid-based sugar-free (AA-ORS) ORS of varying electrolyte composition. Urine output was measured hourly and capillary blood samples collected pre-exercise, 0, 2 and 5 h post-exercise. Sodium, potassium, and chloride concentrations in urine, sweat, and blood were determined. Results Net fluid balance peaked at 4 h and was greater in AA-ORS (141 ± 155 ml) and G-ORS (101 ± 195 ml) than Z-ORS (-47 ± 208 ml; P ≤ 0.010). Only AA-ORS achieved positive sodium and chloride balance post-exercise, which were greater for AA-ORS than G-ORS and Z-ORS (P ≤ 0.006), as well as for G-ORS than Z-ORS (P ≤ 0.007) from 1 to 5 h. Conclusion when provided in a volume equivalent to 125% of exercise-induced fluid loss, AA-ORS produced comparable/superior fluid balance and superior sodium/chloride balance responses to popular glucose-based and sugar-free ORS.
Collapse
Affiliation(s)
- Donald L. Peden
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Mark P. Funnell
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Kirsty M. Reynolds
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Samuel N. Cheuvront
- Entrinsic Bioscience, LLC, Norwood, MA, United States
- Sports Science Synergy, LLC, Franklin, MA, United States
| | - Stephen A. Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Lewis J. James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
- Correspondence: Lewis J. James
| |
Collapse
|
23
|
Abstract
Sucrose, the primary circulating sugar in plants, contains equal amounts of fructose and glucose. The latter is the predominant circulating sugar in animals and thus the primary fuel source for various tissue and cell types in the body. Chronic excessive energy intake has, however, emerged as a major driver of obesity and associated pathologies including nonalcoholic fatty liver diseases (NAFLD) and the more severe nonalcoholic steatohepatitis (NASH). Consumption of a high-caloric, western-style diet induces gut dysbiosis and inflammation resulting in leaky gut. Translocation of gut-derived bacterial content promotes hepatic inflammation and ER stress, and when either or both of these are combined with steatosis, it can cause NASH. Here, we review the metabolic links between diet-induced changes in the gut and NASH. Furthermore, therapeutic interventions for the treatment of obesity and liver metabolic diseases are also discussed with a focus on restoring the gut-liver axis.
Collapse
|
24
|
Coles MJ, Masood M, Crowley MM, Hudgi A, Okereke C, Klein J. It Ain't Over 'Til It's Over: SARS CoV-2 and Post-infectious Gastrointestinal Dysmotility. Dig Dis Sci 2022; 67:5407-5415. [PMID: 35357608 PMCID: PMC8968095 DOI: 10.1007/s10620-022-07480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.
Collapse
Affiliation(s)
- Michael J Coles
- Department of Gastroenterology, Temple University Hospital, Philadelphia, USA.
| | - Muaaz Masood
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Madeline M Crowley
- Department of Biomedical Engineering, University of British Colombia, Vancouver, Canada
| | - Amit Hudgi
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Chijioke Okereke
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Jeremy Klein
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|
25
|
Efficacy and pharmacokinetics of betaine in CBS and cblC deficiencies: a cross-over randomized controlled trial. Orphanet J Rare Dis 2022; 17:417. [PMID: 36376887 PMCID: PMC9664596 DOI: 10.1186/s13023-022-02567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Betaine is an "alternate" methyl donor for homocysteine remethylation catalyzed by betaine homocysteine methyltransferase (BHMT), an enzyme mainly expressed in the liver and kidney. Betaine has been used for more than 30 years in pyridoxine non-responsive cystathionine beta-synthase (pnrCBS) and cobalamin C (cblC) deficiencies to lower the hyperhomocysteinemia, although little is known about the optimal therapeutic dosage and its pharmacokinetic in these patients. AIMS We compared 2 betaine doses (100 mg/kg/day vs. 250 mg/kg/day) in children affected by pnrCBS or cblC deficiencies. We also measured the pharmacokinetics parameters after a single dose of betaine (100 or 250 mg/kg) in these patients. METHODS We conducted a prospective, randomized, crossover clinical trial with blinded evaluation. The primary outcome was the equivalence of total plasma homocysteine (tHcy) concentrations upon one-month oral treatment with betaine at 100 versus 250 mg/kg/day. RESULTS Eleven patients completed the study (5 pnrCBS and 6 cblC). tHcy concentrations were equivalent after a one-month treatment period for the two betaine dosages. Multivariate analysis showed a significant effect of betaine dose on methionine (Met) (p = 0.01) and S-adenosylmethionine (SAM) concentrations (p = 0.006). CONCLUSIONS Our analysis shows that there is no overt benefit to increasing betaine dosage higher than 100 mg/kg/day to lower tHcy concentrations in pnrCBS and cblC deficiencies. However, increasing betaine up to 250 mg/kg/d could benefit cblC patients through the increase of methionine and SAM concentrations, as low Met and SAM concentrations are involved in the pathophysiology of this disease. In contrast, in pnrCBS deficiency, betaine doses higher than 100 mg/kg/day could be harmful to these patients with pre-existing hypermethioninemia. TRIAL REGISTRATION Clinical Trials, NCT02404337. Registered 23 May 2015-prospectively registered, https://clinicaltrials.gov .
Collapse
|
26
|
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022; 11:cells11182874. [PMID: 36139448 PMCID: PMC9497230 DOI: 10.3390/cells11182874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide transporter 2 (PepT2) in mammals plays essential roles in the reabsorption and conservation of peptide-bound amino acids in the kidney and in maintaining neuropeptide homeostasis in the brain. It is also of significant medical and pharmacological significance in the absorption and disposing of peptide-like drugs, including angiotensin-converting enzyme inhibitors, β-lactam antibiotics and antiviral prodrugs. Understanding the structure, function and regulation of PepT2 is of emerging interest in nutrition, medical and pharmacological research. In this review, we provide a comprehensive overview of the structure, substrate preferences and localization of PepT2 in mammals. As PepT2 is expressed in various organs, its function in the liver, kidney, brain, heart, lung and mammary gland has also been addressed. Finally, the regulatory factors that affect the expression and function of PepT2, such as transcriptional activation and posttranslational modification, are also discussed.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guoliang Luo
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Chunling Xu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jian Wu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
- Correspondence: (J.H.); (Y.J.)
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence: (J.H.); (Y.J.)
| |
Collapse
|
27
|
Freund M, Graus D, Fleischmann A, Gilbert KJ, Lin Q, Renner T, Stigloher C, Albert VA, Hedrich R, Fukushima K. The digestive systems of carnivorous plants. PLANT PHYSIOLOGY 2022; 190:44-59. [PMID: 35604105 PMCID: PMC9434158 DOI: 10.1093/plphys/kiac232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 05/19/2023]
Abstract
To survive in the nutrient-poor habitats, carnivorous plants capture small organisms comprising complex substances not suitable for immediate reuse. The traps of carnivorous plants, which are analogous to the digestive systems of animals, are equipped with mechanisms for the breakdown and absorption of nutrients. Such capabilities have been acquired convergently over the past tens of millions of years in multiple angiosperm lineages by modifying plant-specific organs including leaves. The epidermis of carnivorous trap leaves bears groups of specialized cells called glands, which acquire substances from their prey via digestion and absorption. The digestive glands of carnivorous plants secrete mucilage, pitcher fluids, acids, and proteins, including digestive enzymes. The same (or morphologically distinct) glands then absorb the released compounds via various membrane transport proteins or endocytosis. Thus, these glands function in a manner similar to animal cells that are physiologically important in the digestive system, such as the parietal cells of the stomach and intestinal epithelial cells. Yet, carnivorous plants are equipped with strategies that deal with or incorporate plant-specific features, such as cell walls, epidermal cuticles, and phytohormones. In this review, we provide a systematic perspective on the digestive and absorptive capacity of convergently evolved carnivorous plants, with an emphasis on the forms and functions of glands.
Collapse
Affiliation(s)
- Matthias Freund
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Dorothea Graus
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München and GeoBio-Center LMU, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kadeem J Gilbert
- Department of Plant Biology & W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA
| | - Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, University of Würzburg, Würzburg, Germany
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Kenji Fukushima
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Das R, Sobi RA, Sultana AA, Nahar B, Bardhan PK, Luke L, Fontaine O, Ahmed T. A double-blind clinical trial to compare the efficacy and safety of a multiple amino acid-based ORS with the standard WHO-ORS in the management of non-cholera acute watery diarrhea in infants and young children: "VS002A" trial protocol. Trials 2022; 23:706. [PMID: 36008819 PMCID: PMC9403960 DOI: 10.1186/s13063-022-06601-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diarrhea is the second deadliest disease for under-five children globally and the situation is more serious in developing countries. Oral rehydration solution (ORS) is being used as a standard treatment for acute watery diarrhea for a long time. Our objective is to compare the efficacy of amino acid-based ORS "VS002A" compared to standard glucose-based WHO-ORS in infants and young children suffering from acute non-cholera watery diarrhea. METHODS It is a randomized, double-blind, two-cell clinical trial at Dhaka Hospital of icddr,b. A total of 312 male children aged 6-36 months old with acute non-bloody watery diarrhea are included in this study. Intervention arm participants get amino acid-based ORS (VS002A) and the control arm gets standard glucose-based WHO-ORS. The primary efficacy endpoint is the duration of diarrhea in the hospital. DISCUSSION Oral rehydration therapy (ORT) with the present ORS formulation has certain limitations - it does not reduce the volume, frequency, or duration of diarrhea. Additionally, the failure of present standard ORS to significantly reduce stool output likely contributes to the relatively limited use of ORS by mothers as they do not feel that ORS is helping their child recover from the episode of diarrhea. Certain neutral amino acids (e.g., glycine, L-alanine, L-glutamine) can enhance the absorption of sodium ions and water from the gut. By using this concept, a shelf-stable, sugar-free amino acid-based hydration medicinal food named 'VS002A' that effectively rehydrates, and improves the barrier function of the bowel following infections targeting the gastrointestinal tract has been developed. If the trial shows significant benefits of VS002A use, this may provide evidence to support consideration of the use of VS002A in the present WHO diarrhea management guidelines. Conversely, if there is no evidence of benefit, these results will reaffirm the current guidelines. TRIAL REGISTRATION ClinicalTrials.gov NCT04677296 . Registered on December 21, 2020.
Collapse
Affiliation(s)
- Rina Das
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
- Department of Environmental Health Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| | - Rukaeya Amin Sobi
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Al-Afroza Sultana
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Baitun Nahar
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Pradip Kumar Bardhan
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura Luke
- Science & Technology, Entrinsic Bioscience Inc., Boston, MA, USA
| | - Olivier Fontaine
- Science & Technology, Entrinsic Bioscience Inc., Boston, MA, USA
| | - Tahmeed Ahmed
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- James P. Grant School of Public Health, BRAC University, Dhaka, 1212, Bangladesh
- Department of Global Health, University of Washington, Seattle, WA, 98104, USA
| |
Collapse
|
29
|
Zhu H, Bai M, Xie X, Wang J, Weng C, Dai H, Chen J, Han F, Lin W. Impaired Amino Acid Metabolism and Its Correlation with Diabetic Kidney Disease Progression in Type 2 Diabetes Mellitus. Nutrients 2022; 14:nu14163345. [PMID: 36014850 PMCID: PMC9415588 DOI: 10.3390/nu14163345] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metabolomics is useful in elucidating the progression of diabetes; however, the follow-up changes in metabolomics among health, diabetes mellitus, and diabetic kidney disease (DKD) have not been reported. This study was aimed to reveal metabolomic signatures in diabetes development and progression. Methods: In this cross-sectional study, we compared healthy (n = 30), type 2 diabetes mellitus (T2DM) (n = 30), and DKD (n = 30) subjects with the goal of identifying gradual altering metabolites. Then, a prospective study was performed in T2DM patients to evaluate these altered metabolites in the onset of DKD. Logistic regression was conducted to predict rapid eGFR decline in T2DM subjects using altered metabolites. The prospective association of metabolites with the risk of developing DKD was examined using logistic regression and restricted cubic spline regression models. Results: In this cross-sectional study, impaired amino acid metabolism was the main metabolic signature in the onset and development of diabetes, which was characterized by increased N-acetylaspartic acid, L-valine, isoleucine, asparagine, betaine, and L-methionine levels in both the T2DM and DKD groups. These candidate metabolites could distinguish the DKD group from the T2DM group. In the follow-up study, higher baseline levels of L-valine and isoleucine were significantly associated with an increased risk of rapid eGFR decline in T2DM patients. Of these, L-valine and isoleucine were independent risk factors for the development of DKD. Notably, nonlinear associations were also observed for higher baseline levels of L-valine and isoleucine, with an increased risk of DKD among patients with T2DM. Conclusion: Amino acid metabolism was disturbed in diabetes, and N-acetylaspartic acid, L-valine, isoleucine, asparagine, betaine, and L-methionine could be biomarkers for the onset and progression of diabetes. Furthermore, high levels of L-valine and isoleucine may be risk factors for DKD development.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Mengqiu Bai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Junni Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Huifen Dai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua 322000, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
- Correspondence: (F.H.); (W.L.); Tel.: +86-571-86971990 (W.L.)
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua 322000, China
- Correspondence: (F.H.); (W.L.); Tel.: +86-571-86971990 (W.L.)
| |
Collapse
|
30
|
Kraiprom T, Jantarat S, Yaemkong S, Cherdthong A, Incharoen T. Feeding Thai Native Sheep Molasses Either Alone or in Combination with Urea-Fermented Sugarcane Bagasse: The Effects on Nutrient Digestibility, Rumen Fermentation, and Hematological Parameters. Vet Sci 2022; 9:vetsci9080415. [PMID: 36006330 PMCID: PMC9412698 DOI: 10.3390/vetsci9080415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to find out how adding molasses to fermented sugarcane bagasse (FSB) alone or in combination with urea affected sheep’s rumen fermentation, hematological parameters, and ability to digest nutrients. Four Thai native sheep with an initial body weight (BW) of 20.87 ± 1.95 kg and 11 ± 1.0 months old were assigned to a 4 × 4 Latin square design with 4 periods of 14-d adaptation and 7 d of sample collection. Each treatment received a different combination of experimental roughage as follows: FSB without additives (T1), FSB + 10% molasses (T2), FSB + 20% molasses (T3), and FSB + 10% molasses + 3% urea (T4). The concentrate diet was fed twice daily at 2% BW, while roughage sources were provided ad libitum for each treatment. The crude protein (CP) digestibility in the T2 and T3 groups was higher (p < 0.05) than in the FSB group without additions, with the T4 group having the highest (p < 0.05). Although there were no significant differences in blood glucose, packed cell volume, ruminal pH, ammonia−nitrogen (NH3-N), propionic acid, or acetic acid, the plasma urea nitrogen (PUN) at 0 h was highest in the T4 group (p < 0.05) compared with the other groups. However, the proportion of butyric acid tended to be higher in all FSB groups with additives. Thus, the current experiment concluded that the addition of molasses alone or in combination with urea had positive effects on pH and LAB population, and including both together in FSB improved the CP digestibility of sheep. In conclusion, FSB with 10% molasses and 3% urea might be used as an alternate roughage source for ruminants without affecting the animal’s ruminal fermentation or hematological parameters.
Collapse
Affiliation(s)
- Thaintip Kraiprom
- Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Pattani 94000, Thailand
| | - Sitthisak Jantarat
- Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Pattani 94000, Thailand
| | - Suphawadee Yaemkong
- Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Anusorn Cherdthong
- Increase Production Efficiency and Meat Quality of Native Beef and Buffalo Research Group, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tossaporn Incharoen
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence:
| |
Collapse
|
31
|
Chai HH, Ham JS, Kim TH, Lim D. Identifying ligand-binding specificity of the oligopeptide receptor OppA from Bifidobacterium longum KACC91563 by structure-based molecular modeling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Lok KH, Wareham NJ, Nair RS, How CW, Chuah LH. Revisiting the concept of incretin and enteroendocrine L-cells as type 2 diabetes mellitus treatment. Pharmacol Res 2022; 180:106237. [PMID: 35487405 PMCID: PMC7614293 DOI: 10.1016/j.phrs.2022.106237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022]
Abstract
The significant growth in type 2 diabetes mellitus (T2DM) prevalence strikes a common threat to the healthcare and economic systems globally. Despite the availability of several anti-hyperglycaemic agents in the market, none can offer T2DM remission. These agents include the prominent incretin-based therapy such as glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors that are designed primarily to promote GLP-1R activation. Recent interest in various therapeutically useful gastrointestinal hormones in T2DM and obesity has surged with the realisation that enteroendocrine L-cells modulate the different incretins secretion and glucose homeostasis, reflecting the original incretin definition. Targeting L-cells offers promising opportunities to mimic the benefits of bariatric surgery on glucose homeostasis, bodyweight management, and T2DM remission. Revising the fundamental incretin theory is an essential step for therapeutic development in this area. Therefore, the present review explores enteroendocrine L-cell hormone expression, the associated nutrient-sensing mechanisms, and other physiological characteristics. Subsequently, enteroendocrine L-cell line models and the latest L-cell targeted therapies are reviewed critically in this paper. Bariatric surgery, pharmacotherapy and new paradigm of L-cell targeted pharmaceutical formulation are discussed here, offering both clinician and scientist communities a new common interest to push the scientific boundary in T2DM therapy.
Collapse
Affiliation(s)
- Kok-Hou Lok
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Nicholas J Wareham
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge, UK.
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
33
|
Role of dietary amino acids and microbial metabolites in the regulation of pig intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 9:1-6. [PMID: 35949980 PMCID: PMC9344294 DOI: 10.1016/j.aninu.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/17/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
With the rapid development of sequencing technology, research on pigs has focused on intestinal microbes. Accumulating evidence suggests that the metabolites of intestinal microbes are the key medium for interactions between microbes and the host. Amino acid metabolism is involved in the growth and immune processes of pigs. The gut microbes of pigs are heavily involved in the metabolism of amino acids in their hosts. Here, we review the latest relevant literature. Research findings show that microbial metabolites, such as indoles, short-chain fatty acids, and ammonia, play a key role in gut health. Moreover, we summarize the effects of amino acids on the structure of the gut microbial community and the metabolism of amino acids by pig gut microbes. Evidence shows that microbial amino acid metabolites act as signal molecules in the intestine and play an important role in the intestinal health of pigs.
Collapse
|
34
|
Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2022; 200:2069-2083. [PMID: 34365573 PMCID: PMC8349466 DOI: 10.1007/s12011-021-02851-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
Selenium is an essential trace element for humans and animals. As with oxygen and sulfur, etc., it belongs to the sixth main group of the periodic table of elements. Therefore, the corresponding amino acids, such as selenocysteine (Sec), serine (Ser), and cysteine (Cys), have similar spatial structure, physical, and chemical properties. In this review, we focus on the neglected but key role of serine in a possible mechanism of the physiological adaptation to Se-deficiency in human beings with an adequate intake of dietary protein: the insertion of Cys in place of Sec during the translation of selenoproteins dependent on the Sec insertion sequence element in the 3'UTR of mRNA at the UGA codon through a novel serine-dependent pathway for the de novo synthesis of the Cys-tRNA[Ser]Sec, similar to Sec-tRNA[Ser]Sec. We also discuss the important roles of serine in the metabolism of selenium directly or indirectly via GSH, and the maintenance of selenium homostasis regulated through the methylation modification of Sec-tRNA[Ser]Sec at the position 34U by SAM. Finally, we propose a hypothesis to explain why Keshan disease has gradually disappeared in China and predict the potential health risk of the human body in the physiological adaptation state of low selenium based on the results of animal experiments.
Collapse
Affiliation(s)
- Qin Wang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Feng Han
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd, Wuhan, 430022, Hubei Province, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- The Key Laboratory of Micronutrients Nutrition, National Health Commission of The People's Republic of China, Beijing, China.
| |
Collapse
|
35
|
Molecular mechanism of nutrient uptake in developing embryos of oviparous cloudy catshark (Scyliorhinus torazame). PLoS One 2022; 17:e0265428. [PMID: 35290397 PMCID: PMC8923501 DOI: 10.1371/journal.pone.0265428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Forms of embryonic nutrition are highly diverse in cartilaginous fishes, which contain oviparity, yolk-sac viviparity and several types of matrotrophic viviparity (histotrophy, oophagy, and placentotrophy). The molecular mechanisms of embryonic nutrition are poorly understood in these animals as few species are capable of reproducing in captivity. Oviparous cartilaginous fishes solely depend on yolk nutrients for their growth and development. In the present study, we compared the contribution to embryonic nutrition of the embryonic intestine with the yolk sac membrane (YSM). RNA-seq analysis was performed on the embryonic intestine and YSM of the oviparous cloudy catshark Scyliorhinus torazame to identify candidate genes involved in nutrient metabolism to further the understanding of nutrient utilization of developing embryos. RNA-seq discovery was subsequently confirmed by quantitative PCR analysis and we identified increases in several amino acid transporter genes (slc3a1, slc6a19, slc3a2, slc7a7) as well as genes involved in lipid absorption (apob and mtp) in the intestine after ‘pre-hatching’, which is a developmental event marked by an early opening of the egg case about 4 months before hatching. Although a reciprocal decrease in the nutritional role of YSM was expected after the intestine became functional, we observed similar increases in gene expression among amino acid transporters, lipid absorption molecules, and lysosomal cathepsins in the extraembryonic YSM in late developmental stages. Ultrastructure of the endodermal cells of YSM showed that yolk granules were incorporated by endocytosis, and the number of granules increased during development. Furthermore, the digestion of yolk granules in the YSM and nutrient transport through the basolateral membrane of the endodermal cells appeared to be enhanced after pre-hatching. These findings suggest that nutrient digestion and absorption is highly activated in both intestine and YSM after pre-hatching in catshark embryos, which supports the rapid growth at late developmental stages.
Collapse
|
36
|
Chu F, Wan H, Xiao W, Dong H, Lü M. Ca 2+-Permeable Channels/Ca 2+ Signaling in the Regulation of Ileal Na +/Gln Co-Transport in Mice. Front Pharmacol 2022; 13:816133. [PMID: 35281933 PMCID: PMC8905502 DOI: 10.3389/fphar.2022.816133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Oral glutamine (Gln) has been widely used in gastrointestinal (GI) clinical practice, but it is unclear if Ca2+ regulates intestinal Gln transport, although both of them are essential nutrients for mammals. Chambers were used to determine Gln (25 mM)-induced Isc through Na+/Gln co-transporters in the small intestine in the absence or the presence of selective activators or blockers of ion channels and transporters. Luminal but not serosal application of Gln induced marked intestinal Isc, especially in the distal ileum. Lowering luminal Na+ almost abolished the Gln-induced ileal Isc, in which the calcium-sensitive receptor (CaSR) activation were not involved. Ca2+ removal from both luminal and serosal sides of the ileum significantly reduced Gln- Isc. Blocking either luminal Ca2+ entry via the voltage-gated calcium channels (VGCC) or endoplasmic reticulum (ER) release via inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) attenuated the Gln-induced ileal Isc, Likewise, blocking serosal Ca2+ entry via the store-operated Ca2+ entry (SOCE), TRPV1/2 channels, and Na+/Ca2+ exchangers (NCX) attenuated the Gln-induced ileal Isc. In contrast, activating TRPV1/2 channels enhanced the Gln-induced ileal Isc. We concluded that Ca2+ signaling is critical for intestinal Gln transport, and multiple plasma membrane Ca2+-permeable channels and transporters play roles in this process. The Ca2+ regulation of ileal Na+/Gln transport expands our understanding of intestinal nutrient uptake and may be significant in GI health and disease.
Collapse
Affiliation(s)
- Fenglan Chu
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Muhan Lü
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Yu Y, Zhang B, Ji P, Zuo Z, Huang Y, Wang N, Liu C, Liu SJ, Zhao F. Changes to gut amino acid transporters and microbiome associated with increased E/I ratio in Chd8 +/- mouse model of ASD-like behavior. Nat Commun 2022; 13:1151. [PMID: 35241668 PMCID: PMC8894489 DOI: 10.1038/s41467-022-28746-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD), a group of neurodevelopmental disorders characterized by social communication deficits and stereotyped behaviors, may be associated with changes to the gut microbiota. However, how gut commensal bacteria modulate brain function in ASD remains unclear. Here, we used chromodomain helicase DNA-binding protein 8 (CHD8) haploinsufficient mice as a model of ASD to elucidate the pathways through which the host and gut microbiota interact with each other. We found that increased levels of amino acid transporters in the intestines of the mouse model of ASD contribute to the high level of serum glutamine and the increased excitation/inhibition (E/I) ratio in the brain. In addition, elevated α-defensin levels in the haploinsufficient mice resulted in dysregulation of the gut microbiota characterized by a reduced abundance of Bacteroides. Furthermore, supplementation with Bacteroides uniformis improved the ASD-like behaviors and restored the E/I ratio in the brain by decreasing intestinal amino acid transport and the serum glutamine levels. Our study demonstrates associations between changes in the gut microbiota and amino acid transporters, and ASD-like behavioral and electrophysiology phenotypes, in a mouse model.
Collapse
Affiliation(s)
- You Yu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peifeng Ji
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yongxi Huang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
38
|
Adhikari S, Schop M, de Boer IJM, Huppertz T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022; 14:947. [PMID: 35267922 PMCID: PMC8912699 DOI: 10.3390/nu14050947] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
For design of healthy and sustainable diets and food systems, it is important to consider not only the quantity but also the quality of nutrients. This is particularly important for proteins, given the large variability in amino acid composition and digestibility between dietary proteins. This article reviews measurements and metrics in relation to protein quality, but also their application. Protein quality methods based on concentrations and digestibility of individual amino acids are preferred, because they do not only allow ranking of proteins, but also assessment of complementarity of protein sources, although this should be considered only at a meal level and not a diet level. Measurements based on ileal digestibility are preferred over those on faecal digestibility to overcome the risk of overestimation of protein quality. Integration of protein quality on a dietary level should also be done based on measurements on an individual amino acid basis. Effects of processing, which is applied to all foods, should be considered as it can also affect protein quality through effects on digestibility and amino acid modification. Overall, protein quality data are crucial for integration into healthy and sustainable diets, but care is needed in data selection, interpretation and integration.
Collapse
Affiliation(s)
- Shiksha Adhikari
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Marijke Schop
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Imke J. M. de Boer
- Animal Production Systems Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands; (M.S.); (I.J.M.d.B.)
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
- Friesland Campina, Research and Development, 3818 LE Amersfoort, The Netherlands
| |
Collapse
|
39
|
Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol Metab 2022; 33:120-135. [PMID: 34924221 DOI: 10.1016/j.tem.2021.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/01/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Amino acids modulate glucose homeostasis. Cytosolic levels of amino acids are regulated by amino acid transporters, modulating insulin release, protein synthesis, cell proliferation, cell fate, and metabolism. In β-cells, amino acid transporters modulate incretin-stimulated insulin release. In the liver, amino acid transporters provide glutamine and alanine for gluconeogenesis. Intestinal amino acid transporters facilitate the intake of amino acids causing protein restriction when inactive. Adipocyte development is regulated by amino acid transporters through activation of mechanistic target of rapamycin (mTORC1) and amino acid-related metabolites. The accumulation and metabolism of branched-chain amino acids (BCAAs) in muscle depends on transporters. The integration between amino acid metabolism and transport is critical for the maintenance and function of tissues and cells involved in glucose homeostasis.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Acton 2601, Australia.
| |
Collapse
|
40
|
Bhutia YD, Mathew M, Sivaprakasam S, Ramachandran S, Ganapathy V. Unconventional Functions of Amino Acid Transporters: Role in Macropinocytosis (SLC38A5/SLC38A3) and Diet-Induced Obesity/Metabolic Syndrome (SLC6A19/SLC6A14/SLC6A6). Biomolecules 2022; 12:biom12020235. [PMID: 35204736 PMCID: PMC8961558 DOI: 10.3390/biom12020235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl−) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid–base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).
Collapse
|
41
|
Xenogeneic-Free Human Intestinal Organoids for Assessing Intestinal Nutrient Absorption. Nutrients 2022; 14:nu14030438. [PMID: 35276796 PMCID: PMC8838315 DOI: 10.3390/nu14030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Since many nutrients, including the three major ones of glucose, dipeptides, and cholesterol, are mainly absorbed in the small intestine, the assessment of their effects on intestinal tissue is important for the study of food absorption. However, cultured intestinal cell lines, such as Caco-2 cells, or animal models, which differ from normal human physiological conditions, are generally used for the evaluation of intestinal absorption and digestion. Therefore, it is necessary to develop an alternative in vitro method for more accurate analyses. In this study, we demonstrate inhibitory effects on nutrient absorption through nutrient transporters using three-dimensional xenogeneic-free human intestinal organoids (XF-HIOs), with characteristics of the human intestine, as we previously reported. We first show that the organoids absorbed glucose, dipeptide, and cholesterol in a transporter-dependent manner. Next, we examine the inhibitory effect of natural ingredients on the absorption of glucose and cholesterol. We reveal that glucose absorption was suppressed by epicatechin gallate or nobiletin, normally found in green tea catechin or citrus fruits, respectively. In comparison, cholesterol absorption was not inhibited by luteolin and quercetin, contained in some vegetables. Our findings highlight the usefulness of screening for the absorption of functional food substances using XF-HIOs.
Collapse
|
42
|
Taslimifar M, Faltys M, Kurtcuoglu V, Verrey F, Makrides V. Analysis of L-leucine amino acid transporter species activity and gene expression by human blood brain barrier hCMEC/D3 model reveal potential LAT1, LAT4, B 0AT2 and y +LAT1 functional cooperation. J Cereb Blood Flow Metab 2022; 42:90-103. [PMID: 34427144 PMCID: PMC8721536 DOI: 10.1177/0271678x211039593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the CNS, amino acid (AA) neurotransmitters and neurotransmitter precursors are subject to tight homeostatic control mediated by blood-brain barrier (BBB) solute carrier amino acid transporters (AATs). Since the BBB is composed of multiple closely apposed cell types and opportunities for human in vivo studies are limited, we used in vitro and computational approaches to investigate human BBB AAT activity and regulation. Quantitative real-time PCR (qPCR) of the human BBB endothelial cell model hCMEC/D3 (D3) was used to determine expression of selected AAT, tight junction (TJ), and signal transduction (ST) genes under various culture conditions. L-leucine uptake data were interrogated with a computational model developed by our group for calculating AAT activity in complex cell cultures. This approach is potentially applicable to in vitro cell culture drug studies where multiple "receptors" may mediate observed responses. Of 7 Leu AAT genes expressed by D3 only the activity of SLC7A5-SLC3A2/LAT1-4F2HC (LAT1), SLC43A2/LAT4 (LAT4) and sodium-dependent AATs, SLC6A15/B0AT2 (B0AT2), and SLC7A7/y+LAT1 (y+LAT1) were calculated to be required for Leu uptake. Therefore, D3 Leu transport may be mediated by a potentially physiologically relevant functional cooperation between the known BBB AAT, LAT1 and obligatory exchange (y+LAT1), facilitative diffusion (LAT4), and sodium symporter (B0AT2) transporters.
Collapse
Affiliation(s)
- Mehdi Taslimifar
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Martin Faltys
- Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Department of Intensive Care Medicine, University Hospital, University of Bern, Bern, Switzerland
| | - Vartan Kurtcuoglu
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - François Verrey
- Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,National Center of Competence in Research, Kidney CH, Switzerland
| | - Victoria Makrides
- The Interface Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,Epithelial Transport Group, Institute of Physiology, University of Zürich, Zürich, Switzerland.,EIC BioMedical Labs, Norwood, MA, USA
| |
Collapse
|
43
|
Zhang M, Hu R, Huang Y, Zhou F, Li F, Liu Z, Geng Y, Dong H, Ma W, Song K, Song Y. Present and Future: Crosstalks Between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Front Endocrinol (Lausanne) 2022; 13:933110. [PMID: 35928893 PMCID: PMC9343597 DOI: 10.3389/fendo.2022.933110] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disease, affecting 8%-13% of the females of reproductive age, thereby compromising their fertility and long-term health. However, the pathogenesis of PCOS is still unclear. It is not only a reproductive endocrine disease, dominated by hyperandrogenemia, but also is accompanied by different degrees of metabolic abnormalities and insulin resistance. With a deeper understanding of its pathogenesis, more small metabolic molecules, such as bile acids, amino acids, and short-chain fatty acids, have been reported to be involved in the pathological process of PCOS. Recently, the critical role of gut microbiota in metabolism has been focused on. The gut microbiota-related metabolic pathways can significantly affect inflammation levels, insulin signaling, glucose metabolism, lipid metabolism, and hormonal secretions. Although the abnormalities in gut microbiota and metabolites might not be the initial factors of PCOS, they may have a significant role in the pathological process of PCOS. The dysbiosis of gut microbiota and disturbance of gut metabolites can affect the progression of PCOS. Meanwhile, PCOS itself can adversely affect the function of gut, thereby contributing to the aggravation of the disease. Inhibiting this vicious cycle might alleviate the symptoms of PCOS. However, the role of gut microbiota in PCOS has not been fully explored yet. This review aims to summarize the potential effects and modulative mechanisms of the gut metabolites on PCOS and suggests its potential intervention targets, thus providing more possible treatment options for PCOS in the future.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yufan Song,
| |
Collapse
|
44
|
Shida Y, Endo H, Owada S, Inagaki Y, Sumiyoshi H, Kamiya A, Eto T, Tatemichi M. Branched-chain amino acids govern the high learning ability phenotype in Tokai high avoider (THA) rats. Sci Rep 2021; 11:23104. [PMID: 34845278 PMCID: PMC8630195 DOI: 10.1038/s41598-021-02591-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
To fully understand the mechanisms governing learning and memory, animal models with minor interindividual variability and higher cognitive function are required. THA rats established by crossing those with high learning capacity exhibit excellent learning and memory abilities, but the factors underlying their phenotype are completely unknown. In the current study, we compare the hippocampi of parental strain Wistar rats to those of THA rats via metabolomic analysis in order to identify molecules specific to the THA rat hippocampus. Higher branched-chain amino acid (BCAA) levels and enhanced activation of BCAA metabolism-associated enzymes were observed in THA rats, suggesting that acetyl-CoA and acetylcholine are synthesized through BCAA catabolism. THA rats maintained high blood BCAA levels via uptake of BCAAs in the small intestine and suppression of BCAA catabolism in the liver. Feeding THA rats with a BCAA-reduced diet decreased acetylcholine levels and learning ability, thus, maintaining high BCAA levels while their proper metabolism in the hippocampus is the mechanisms underlying the high learning ability in THA rats. Identifying appropriate BCAA nutritional supplements and activation methods may thus hold potential for the prevention and amelioration of higher brain dysfunction, including learning disabilities and dementia.
Collapse
Affiliation(s)
- Yukari Shida
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hitoshi Endo
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Satoshi Owada
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Hideaki Sumiyoshi
- Center for Matrix Biology and Medicine, Department of Innovative Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Masayuki Tatemichi
- Center for Molecular Prevention and Environmental Medicine, Department of Preventive Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
45
|
Zhou Y, Wang B, Wang Q, Tang L, Zou P, Zeng Z, Zhang H, Gong L, Li W. Protective Effects of Lactobacillus plantarum Lac16 on Clostridium perfringens Infection-Associated Injury in IPEC-J2 Cells. Int J Mol Sci 2021; 22:ijms222212388. [PMID: 34830269 PMCID: PMC8620398 DOI: 10.3390/ijms222212388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
| | - Huihua Zhang
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Department of Animal Sciences, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
- Correspondence: (L.G.); (W.L.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (B.W.); (Q.W.); (L.T.); (P.Z.); (Z.Z.)
- Correspondence: (L.G.); (W.L.)
| |
Collapse
|
46
|
Expression and function of SLC38A5, an amino acid-coupled Na+/H+ exchanger, in triple-negative breast cancer and its relevance to macropinocytosis. Biochem J 2021; 478:3957-3976. [PMID: 34704597 PMCID: PMC8652584 DOI: 10.1042/bcj20210585] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Metabolic reprogramming in cancer necessitates increased amino acid uptake, which is accomplished by up-regulation of specific amino acid transporters. However, not all tumors rely on any single amino acid transporter for this purpose. Here, we report on the differential up-regulation of the amino acid transporter SLC38A5 in triple-negative breast cancer (TNBC). The up-regulation is evident in TNBC tumors, conventional and patient-derived xenograft TNBC cell lines, and a mouse model of spontaneous TNBC mammary tumor. The up-regulation is confirmed by functional assays. SLC38A5 is an amino acid-dependent Na+/H+ exchanger which transports Na+ and amino acids into cells coupled with H+ efflux. Since cell-surface Na+/H+ exchanger is an established inducer of macropinocytosis, an endocytic process for cellular uptake of bulk fluid and its components, we examined the impact of SLC38A5 on macropinocytosis in TNBC cells. We found that the transport function of SLC38A5 is coupled to the induction of macropinocytosis. Surprisingly, the transport function of SLC38A5 is inhibited by amilorides, the well-known inhibitors of Na+/H+ exchanger. Down-regulation of SLC38A5 in TNBC cells attenuates serine-induced macropinocytosis and reduces cell proliferation significantly as assessed by multiple methods, but does not induce cell death. The Cancer Genome Atlas database corroborates SLC38A5 up-regulation in TNBC. This represents the first report on the selective expression of SLC38A5 in TNBC and its role as an inducer of macropinocytosis, thus revealing a novel, hitherto unsuspected, function for an amino acid transporter that goes beyond amino acid delivery but is still relevant to cancer cell nutrition and proliferation.
Collapse
|
47
|
Teng PY, Choi J, Yadav S, Tompkins YH, Kim WK. Effects of low-crude protein diets supplemented with arginine, glutamine, threonine, and methionine on regulating nutrient absorption, intestinal health, and growth performance of Eimeria-infected chickens. Poult Sci 2021; 100:101427. [PMID: 34551373 PMCID: PMC8463775 DOI: 10.1016/j.psj.2021.101427] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
The study was conducted to evaluate the effects of low crude protein diets supplemented with arginine, glutamine, methionine, and/or threonine on apparent ileal digestibility of amino acids, intestinal morphology, intestinal permeability, gene expression of nutrient transporters, and tight junction proteins of broiler chickens challenged with mixed Eimeria spp. A total of five hundred seventy-six, 12-day-old male broiler chickens were allocated into 8 treatments, and 6 replicate cages of 12 chickens per cage. This experiment included a nonchallenged control (NC) fed regular corn-soybean meal-based diet (Regular diet, 19% crude protein), an Eimeria-challenged control (CC) fed Regular diet, an Eimeria challenge group fed low-crude protein diet (LCP, 16% crude protein), 4 Eimeria challenge groups fed low-crude protein diet supplemented with 0.75% arginine, glutamine, methionine, and threonine, respectively (ARG, GLN, MET, and THR), and an Eimeria challenge group fed low-crude protein diet with 0.75% supplemented arginine, glutamine, methionine, and threonine collectively as a combination group (COMB). On d 14, birds in the challenge groups were gavaged with a mixed Eimeria spp. solution containing 12,500 oocysts of E. maxima, 12,500 oocysts of E. tenella, and 62,500 oocysts of E. acervulina. The results showed that the Eimeria challenge reduced overall growth performance, but the LCP had no adverse impacts on intestinal health and growth of Eimeria-infected birds compared to the CC. Additionally, supplementation of crystalline arginine, glutamine, methionine, and threonine improved the apparent ileal digestibility of these specific amino acids on 6 dpi. Moreover, the THR treatment increased villus height in the duodenum. The ARG treatment decreased intestinal permeability and gene expression of amino acid transporters, whereas the GLN and THR treatments both reversed adverse effects of coccidiosis on gene expression of tight junction protein (claudin 1). However, the MET and COMB treatments exacerbated infection severity of coccidiosis. In summary, adding 0.75% of arginine, glutamine, or threonine in a low crude protein diet can improve the intestinal health of birds challenged with a mild coccidia infection.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Y H Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
48
|
Bröer S, Gauthier-Coles G. Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport. J Nutr 2021; 152:16-28. [PMID: 34718668 PMCID: PMC8754572 DOI: 10.1093/jn/nxab342] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acid homeostasis is maintained by import, export, oxidation, and synthesis of nonessential amino acids, and by the synthesis and breakdown of protein. These processes work in conjunction with regulatory elements that sense amino acids or their metabolites. During and after nutrient intake, amino acid homeostasis is dominated by autoregulatory processes such as transport and oxidation of excess amino acids. Amino acid deprivation triggers processes such as autophagy and the execution of broader transcriptional programs to maintain plasma amino acid concentrations. Amino acid transport plays a crucial role in the absorption of amino acids in the intestine, the distribution of amino acids across cells and organs, the recycling of amino acids in the kidney, and the recycling of amino acids after protein breakdown.
Collapse
|
49
|
Barilli A, Visigalli R, Ferrari F, Di Lascia M, Riccardi B, Puccini P, Dall'Asta V, Rotoli BM. Organic cation transporters (OCTs/OCTNs) in human primary alveolar epithelial cells. Biochem Biophys Res Commun 2021; 576:27-32. [PMID: 34478916 DOI: 10.1016/j.bbrc.2021.08.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Alveolar epithelium, besides exerting a key role in gas exchange and surfactant production, plays important functions in host defense and inflammation. Pathological conditions associated to alveolar dysfunction include Acute Respiratory Distress Syndrome (ARDS), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). The use of predictive in vitro models of human alveolar epithelium is nowadays required for the study of disease mechanisms, as well as of pharmacokinetic parameters of pulmonary drugs delivery. Here, we employed a novel 3D model of human alveoli, namely EpiAlveolar™, consisting of primary alveolar epithelial cells, pulmonary endothelial cells and fibroblasts, that reflects properly the in vivo-like conditions. In EpiAlveolar™ we performed a characterization of Organic Cation Transporters (OCTs and OCTNs) expression and activity and we found that OCTN2, OCT1 and OCT3 are expressed on the basolateral membrane; instead, ATB0,+ transporter for cationic and neutral amino acids, which shares with OCTN2 the affinity for carnitine as substrate, is readily detectable and functional at the apical side. We also show that these transporters differentially interact with anticholinergic drugs. Overall, our findings reveal close similarities of EpiAlveolar™ with the tracheal/bronchial epithelium (EpiAirway™ model) and entrust this alveolar tissue as a potential tool for the screening of biopharmaceuticals molecules.
Collapse
Affiliation(s)
- Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Valeria Dall'Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| |
Collapse
|
50
|
Fairweather SJ, Rajendran E, Blume M, Javed K, Steinhöfel B, McConville MJ, Kirk K, Bröer S, van Dooren GG. Coordinated action of multiple transporters in the acquisition of essential cationic amino acids by the intracellular parasite Toxoplasma gondii. PLoS Pathog 2021; 17:e1009835. [PMID: 34432856 PMCID: PMC8423306 DOI: 10.1371/journal.ppat.1009835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/07/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is ‘trans-stimulated’ by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites. The causative agent of toxoplasmosis, Toxoplasma gondii, is a versatile intracellular parasite that can proliferate within nucleated cells of warm-blooded organisms. In order to survive, T. gondii parasites must scavenge the cationic amino acids lysine and arginine from their hosts. In a previous study, we demonstrated that a plasma membrane-localized protein called TgApiAT1 facilitates the uptake of arginine into the parasite. We found that parasites lacking TgApiAT1 could proliferate when cultured in medium containing high concentrations of arginine, suggesting the existence of an additional uptake pathway for arginine. In the present study, we demonstrate that this second uptake pathway is mediated by TgApiAT6-1, a protein belonging to the same solute transporter family as TgApiAT1. We show that TgApiAT6-1 is the major lysine transporter of the parasite, and that it is critical for parasite proliferation. Furthermore, we demonstrate that TgApiAT6-1 can transport arginine into parasites under conditions in which arginine concentrations are high and lysine concentrations are comparatively lower. These data support a model for the finely-tuned acquisition of essential cationic amino acids that involves multiple transporters, and which likely contributes to these parasites being able to survive and proliferate within a wide variety of host cell types.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (SJF); (GGvD)
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Martin Blume
- Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Robert Koch Institute, Berlin, Germany
| | - Kiran Javed
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Birte Steinhöfel
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Humboldt University Berlin, Berlin, Germany
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stefan Bröer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (SJF); (GGvD)
| |
Collapse
|