1
|
Plakhova TV, Vyshegorodtseva MA, Seregina IF, Svetogorov RD, Trigub AL, Kozlov DA, Egorov AV, Shaulskaya MD, Tsymbarenko DM, Romanchuk AY, Ivanov VK, Kalmykov SN. Unexpected nanoscale CeO 2 structural transformations induced by ecologically relevant phosphate species. CHEMOSPHERE 2024; 368:143664. [PMID: 39489308 DOI: 10.1016/j.chemosphere.2024.143664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
In the present study, the dissolution and microstructural transformation of CeO2 nanoparticles (NPs) in a phosphate-containing milieu were investigated. The dissolution behaviour of 2 nm and 5 nm CeO2 NPs in phosphate buffer solutions was found to differ markedly from that observed in 0.01 M NaClO4. Through synchrotron X-ray diffraction analysis and X-ray absorption spectroscopy, the interaction between CeO2 NPs and phosphate species was examined, revealing the transformation of the oxide into sodium-cerium double phosphate, with cerium predominantly existing in the Ce(IV) state. According to scanning and transmission electron microscopy observations, thus formed Na-Ce(IV) phosphate consists of spindle-like aggregates of nanocrystalline rods, presumably formed during phosphate anions sorption on the initial CeO2 surface. Pair distribution function analysis revealed that Na-Ce(IV) phosphate has a three-dimensional framework crystal structure, similar to NaTh2(PO4)3, as reported earlier, with large channels along the c-axis containing disordered sodium atoms. This study represents the first detailed analysis of phosphate-induced speciation and microstructural transformation of CeO2 NPs, resulting in the formation of Ce(IV) phosphate. Similar processes may occur in natural ecosystems upon the introduction of CeO2 NPs.
Collapse
Affiliation(s)
- Tatiana V Plakhova
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Maria A Vyshegorodtseva
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Irina F Seregina
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Roman D Svetogorov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia; National Research Centre «Kurchatov Institute», Akademika Kurchatova pl. 1, 123182, Moscow, Russia.
| | - Alexander L Trigub
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia; National Research Centre «Kurchatov Institute», Akademika Kurchatova pl. 1, 123182, Moscow, Russia.
| | - Daniil A Kozlov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii prosp. 31, 117901, Moscow, Russia.
| | - Alexander V Egorov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Maria D Shaulskaya
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Dmitry M Tsymbarenko
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Anna Yu Romanchuk
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii prosp. 31, 117901, Moscow, Russia.
| | - Stepan N Kalmykov
- Lomonosov Moscow State University, Department of Chemistry, Leninskie Gory 1/3, 119991, Moscow, Russia.
| |
Collapse
|
2
|
Gosens I, Minnema J, Boere AJF, Duistermaat E, Fokkens P, Vidmar J, Löschner K, Bokkers B, Costa AL, Peters RJB, Delmaar C, Cassee FR. Biodistribution of cerium dioxide and titanium dioxide nanomaterials in rats after single and repeated inhalation exposures. Part Fibre Toxicol 2024; 21:33. [PMID: 39143599 PMCID: PMC11323389 DOI: 10.1186/s12989-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/21/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Physiologically based kinetic models facilitate the safety assessment of inhaled engineered nanomaterials (ENMs). To develop these models, high quality datasets on well-characterized ENMs are needed. However, there are at present, several data gaps in the systemic availability of poorly soluble particles after inhalation. The aim of the present study was therefore to acquire two comparable datasets to parametrize a physiologically-based kinetic model. METHOD Rats were exposed to cerium dioxide (CeO2, 28.4 ± 10.4 nm) and titanium dioxide (TiO2, 21.6 ± 1.5 nm) ENMs in a single nose-only exposure to 20 mg/m3 or a repeated exposure of 2 × 5 days to 5 mg/m3. Different dose levels were obtained by varying the exposure time for 30 min, 2 or 6 h per day. The content of cerium or titanium in three compartments of the lung (tissue, epithelial lining fluid and freely moving cells), mediastinal lymph nodes, liver, spleen, kidney, blood and excreta was measured by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at various time points post-exposure. As biodistribution is best studied at sub-toxic dose levels, lactate dehydrogenase (LDH), total protein, total cell numbers and differential cell counts were determined in bronchoalveolar lavage fluid (BALF). RESULTS Although similar lung deposited doses were obtained for both materials, exposure to CeO2 induced persistent inflammation indicated by neutrophil granulocytes influx and exhibited an increased lung elimination half-time, while exposure to TiO2 did not. The lavaged lung tissue contained the highest metal concentration compared to the lavage fluid and cells in the lavage fluid for both materials. Increased cerium concentrations above control levels in secondary organs such as lymph nodes, liver, spleen, kidney, urine and faeces were detected, while for titanium this was found in lymph nodes and liver after repeated exposure and in blood and faeces after a single exposure. CONCLUSION We have provided insight in the distribution kinetics of these two ENMs based on experimental data and modelling. The study design allows extrapolation at different dose-levels and study durations. Despite equal dose levels of both ENMs, we observed different distribution patterns, that, in part may be explained by subtle differences in biological responses in the lung.
Collapse
Affiliation(s)
- Ilse Gosens
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands.
| | - Jordi Minnema
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - A John F Boere
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Evert Duistermaat
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Paul Fokkens
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Janja Vidmar
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrin Löschner
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bas Bokkers
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Anna L Costa
- National Research Council, Institute of Science and Technology for Ceramics, Faenza, Italy
| | - Ruud J B Peters
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - Christiaan Delmaar
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, PO box 1, Bilthoven, MA, 3720, The Netherlands
- Institute for Risk Assessment Studies, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Shen Y, Shen Y, Bi X, Shen A, Wang Y, Ding F. Application of Nanoparticles as Novel Adsorbents in Blood Purification Strategies. Blood Purif 2024; 53:743-754. [PMID: 38740012 DOI: 10.1159/000539286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Blood purification therapy for patients overloaded with metabolic toxins or drugs still needs improvement. Blood purification therapies, such as in hemodialysis or peritoneal dialysis can profit from a combined application with nanoparticles. SUMMARY In this review, the published literature is analyzed with respect to nanomaterials that have been customized and functionalized as nano-adsorbents during blood purification therapy. Liposomes possess a distinct combined structure composed of a hydrophobic lipid bilayer and a hydrophilic core. The liposomes which have enzymes in their aqueous core or obtain specific surface modifications of the lipid bilayer can offer appreciated advantages. Preclinical and clinical experiments with such modified liposomes show that they are highly efficient and generally safe. They may serve as indirect and direct adsorption materials both in hemodialysis and peritoneal dialysis treatment for patients with renal or hepatic failure. Apart from dialysis, nanoparticles made of specially designed metal and activated carbon have also been utilized to enhance the removal of solutes during hemoadsorption. Results are a superior adsorption capacity and good hemocompatibility shown during the treatment of patients with toxication or end-stage renal disease. In summary, nanomaterials are promising tools for improving the treatment efficacy of organ failure or toxication. KEY MESSAGES (i) The pH-transmembrane liposomes and enzyme-loaded liposomes are two representatives of liposomes with modified aqueous inner core which have been put into practice in dialysis. (ii) Unmodified or physiochemically modified liposomal bilayers are ideal binders for lipophilic protein-bound uremic toxins or cholestatic solutes, thus liposome-supported dialysis could become the next-generation hemodialysis treatment of artificial liver support system. (iii) Novel nano-based sorbents featuring large surface area, high adsorption capacity and decent biocompatibility have shown promise in the treatment of uremia, hyperbilirubinemia, intoxication, and sepsis. (vi) A major challenge of production lies in avoiding changes in physical and chemical properties induced by manufacturing and sterilizing procedures.
Collapse
Affiliation(s)
- Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China,
| | - Yuqi Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao Bi
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aiwen Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhao Y, Song L, Li M, Peng H, Qiu X, Li Y, Zhu B, Liu C, Ren S, Miao L. Injectable CNPs/DMP1-loaded self-assembly hydrogel regulating inflammation of dental pulp stem cells for dentin regeneration. Mater Today Bio 2024; 24:100907. [PMID: 38170028 PMCID: PMC10758968 DOI: 10.1016/j.mtbio.2023.100907] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Vital pulp preservation, which is a clinical challenge of aseptic or iatrogenic accidental exposure of the pulp, in cases direct pulp capping is the main technology. Human dental pulp stem cells (hDPSCs) play a critical role in pulp tissue repair, but their differentiative ability could be inhibited by the potential infection and inflammatory response of the exposed pulp. Therefore, inflammatory regulation and differentiated promotion of hDPSCs are both essential for preserving living pulp teeth. In this study, we constructed a functional dental pulp-capping hydrogel by loading cerium oxide nanoparticles (CNPs) and dentin matrix protein-1 (DMP1) into an injectable Fmoc-triphenylalanine hydrogel (Fmoc-phe3 hydrogel) as CNPs/DMP1/Hydrogel for in situ drugs delivery. With a view to long-term storage and release of CNPs (anti-inflammatory and antioxidant) to regulate the local inflammatory environment and DMP1 to promote the regeneration of dentin. Results of CCK-8, LDH release, hemolysis, and Live/Dead assessment of cells demonstrated the good biocompatibility of CNPs/DMP1/Hydrogel. The levels of alkaline phosphatase activity, quantification of the mineralized nodules, expressions of osteogenic genes and proteins demonstrated CNPs/DMP1/Hydrogel could protect the activity of hDPSCs' osteogenic/dentinogenic differentiation by reducing the inflammation response via releasing CNPs. The therapy effects were further confirmed in rat models, CNPs/DMP1/Hydrogel reduced the necrosis rate of damaged pulp and promoted injured pulp repair and reparative dentin formation with preserved vital pulps. In summary, the CNPs/DMP1/Hydrogel composite is an up-and-coming pulp-capping material candidate to induce reparative dentin formation, as well as provide a theoretical and experimental basis for developing pulp-capping materials.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lutong Song
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengchen Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoran Peng
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyi Qiu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuyang Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bijun Zhu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuangshuang Ren
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Neuer AL, Herrmann IK, Gogos A. Biochemical transformations of inorganic nanomedicines in buffers, cell cultures and organisms. NANOSCALE 2023; 15:18139-18155. [PMID: 37946534 PMCID: PMC10667590 DOI: 10.1039/d3nr03415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
The field of nanomedicine is rapidly evolving, with new materials and formulations being reported almost daily. In this respect, inorganic and inorganic-organic composite nanomaterials have gained significant attention. However, the use of new materials in clinical trials and their final approval as drugs has been hampered by several challenges, one of which is the complex and difficult to control nanomaterial chemistry that takes place within the body. Several reviews have summarized investigations on inorganic nanomaterial stability in model body fluids, cell cultures, and organisms, focusing on their degradation as well as the influence of corona formation. However, in addition to these aspects, various chemical reactions of nanomaterials, including phase transformation and/or the formation of new/secondary nanomaterials, have been reported. In this review, we discuss recent advances in our understanding of biochemical transformations of medically relevant inorganic (composite) nanomaterials in environments related to their applications. We provide a refined terminology for the primary reaction mechanisms involved to bridge the gaps between different disciplines involved in this research. Furthermore, we highlight suitable analytical techniques that can be harnessed to explore the described reactions. Finally, we highlight opportunities to utilize them for diagnostic and therapeutic purposes and discuss current challenges and research priorities.
Collapse
Affiliation(s)
- Anna L Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Neuer AL, Geck D, Gogos A, Kissling VM, Balfourier A, Herrmann IK. Nanoanalytical Insights into the Stability, Intracellular Fate, and Biotransformation of Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38367-38380. [PMID: 37549199 DOI: 10.1021/acsami.3c08818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Metal-organic frameworks (MOFs) have found increasing applications in the biomedical field due to their unique properties and high modularity. Although the limited stability of MOFs in biological environments is increasingly recognized, analytical techniques have not yet been harnessed to their full potential to assess the biological fate of MOFs. Here, we investigate the environment-dependent biochemical transformations of widely researched nanosized MOFs (nMOFs) under conditions relevant to their medical application. We assess the chemical stability of antimicrobial zinc-based drug delivery nMOFs (Zn-ZIF-8 and Zn-ZIF-8:Ce) and radio-enhancer candidate nMOFs (Hf-DBA, Ti-MIL-125, and TiZr-PCN-415) containing biologically nonessential group IV metal ions. We reveal that even a moderate decrease in pH to values encountered in lysosomes (pH 4.5-5) leads to significant dissolution of ZIF-8 and partial dissolution of Ti-MIL-125, whereas no substantial dissolution was observed for TiZr-PCN-415 and Hf-DBA nMOFs. Exposure to phosphate-rich buffers led to phosphate incorporation in all nMOFs, resulting in amorphization and morphological changes. Interestingly, long-term cell culture studies revealed that nMOF (bio)transformations of, e.g., Ti-MIL-125 were cellular compartment-dependent and that the phosphate content in the nMOF varied significantly between nMOFs localized in lysosomes and those in the cytoplasm. These results illustrate the delicate nature and environment-dependent properties of nMOFs across all stages of their life cycle, including storage, formulation, and application, and the need for in-depth analyses of biotransformations for an improved understanding of structure-function relationships. The findings encourage the considerate choice of suspension buffers for MOFs because these media may lead to significant material alterations prior to application.
Collapse
Affiliation(s)
- Anna Lena Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Deborah Geck
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Alice Balfourier
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
- Laboratoire des BioMolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Graham UM, Dozier AK, Feola DJ, Tseng MT, Yokel RA. Macrophage Polarization Status Impacts Nanoceria Cellular Distribution but Not Its Biotransformation or Ferritin Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2298. [PMID: 37630884 PMCID: PMC10459093 DOI: 10.3390/nano13162298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
The innate immune system is the first line of defense against external threats through the initiation and regulation of inflammation. Macrophage differentiation into functional phenotypes influences the fate of nanomaterials taken up by these immune cells. High-resolution electron microscopy was used to investigate the uptake, distribution, and biotransformation of nanoceria in human and murine M1 and M2 macrophages in unprecedented detail. We found that M1 and M2 macrophages internalize nanoceria differently. M1-type macrophages predominantly sequester nanoceria near the plasma membrane, whereas nanoceria are more uniformly distributed throughout M2 macrophage cytoplasm. In contrast, both macrophage phenotypes show identical nanoceria biotransformation to cerium phosphate nanoneedles and simultaneous nanoceria with ferritin co-precipitation within the cells. Ferritin biomineralization is a direct response to nanoparticle uptake inside both macrophage phenotypes. We also found that the same ferritin biomineralization mechanism occurs after the uptake of Ce-ions into polarized macrophages and into unpolarized human monocytes and murine RAW 264.7 cells. These findings emphasize the need for evaluating ferritin biomineralization in studies that involve the internalization of nano objects, ranging from particles to viruses to biomolecules, to gain greater mechanistic insights into the overall immune responses to nano objects.
Collapse
Affiliation(s)
- Uschi M. Graham
- Pharmaceutical Sciences Department, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA;
| | - Alan K. Dozier
- National Institute of Occupational Safety and Health (NIOSH), Cincinnati, OH 45213-2515, USA;
| | - David J. Feola
- Pharmacy Practice and Science Department, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA;
| | - Michael T. Tseng
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Robert A. Yokel
- Pharmaceutical Sciences Department, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA;
| |
Collapse
|
8
|
Hancock ML, Grulke EA, Yokel RA. Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:762-780. [PMID: 37405151 PMCID: PMC10315891 DOI: 10.3762/bjnano.14.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Cerium atoms on the surfaces of nanoceria (i.e., cerium oxide in the form of nanoparticles) can store or release oxygen, cycling between Ce3+ and Ce4+; therefore, they can cause or relieve oxidative stress within living systems. Nanoceria dissolution occurs in acidic environments. Nanoceria stabilization is a known problem even during its synthesis; in fact, a carboxylic acid, namely citric acid, is used in many synthesis protocols. Citric acid adsorbs onto nanoceria surfaces, limiting particle formation and creating stable dispersions with extended shelf life. To better understand factors influencing the fate of nanoceria, its dissolution and stabilization have been previously studied in vitro using acidic aqueous environments. Nanoceria agglomerated in the presence of some carboxylic acids over 30 weeks, and degraded in others, at pH 4.5 (i.e., the pH value in phagolysosomes). Plants release carboxylic acids, and cerium carboxylates are found in underground and aerial plant parts. To further test nanoceria stability, suspensions were exposed to light and dark conditions, simulating plant environments and biological systems. Light induced nanoceria agglomeration in the presence of some carboxylic acids. Nanoceria agglomeration did not occur in the dark in the presence of most carboxylic acids. Light initiates free radicals generated by ceria nanoparticles. Nanoceria completely dissolved in the presence of citric, malic, and isocitric acid when exposed to light, attributed to nanoceria dissolution, release of Ce3+ ions, and formation of cerium coordination complexes on the ceria nanoparticle surface that inhibit agglomeration. Key functional groups of carboxylic acids that prevented nanoceria agglomeration were identified. A long carbon chain backbone containing a carboxylic acid group geminal to a hydroxy group in addition to a second carboxylic acid group may optimally complex with nanoceria. The results provide mechanistic insight into the role of carboxylic acids in nanoceria dissolution and its fate in soils, plants, and biological systems.
Collapse
Affiliation(s)
- Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States
| | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, United States
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, United States
| |
Collapse
|
9
|
Hadrup N, Sahlgren N, Jacobsen NR, Saber AT, Hougaard KS, Vogel U, Jensen KA. Toxicity dose descriptors from animal inhalation studies of 13 nanomaterials and their bulk and ionic counterparts and variation with primary particle characteristics. Nanotoxicology 2023; 17:338-371. [PMID: 37300873 DOI: 10.1080/17435390.2023.2221728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
This study collects toxicity data from animal inhalation studies of some nanomaterials and their bulk and ionic counterparts. To allow potential grouping and interpretations, we retrieved the primary physicochemical and exposure data to the extent possible for each of the materials. Reviewed materials are compounds (mainly elements, oxides and salts) of carbon (carbon black, carbon nanotubes, and graphene), silver, cerium, cobalt, copper, iron, nickel, silicium (amorphous silica and quartz), titanium (titanium dioxide), and zinc (chemical symbols: Ag, C, Ce, Co, Cu, Fe, Ni, Si, Ti, TiO2, and Zn). Collected endpoints are: a) pulmonary inflammation, measured as neutrophils in bronchoalveolar lavage (BAL) fluid at 0-24 hours after last exposure; and b) genotoxicity/carcinogenicity. We present the dose descriptors no-observed-adverse-effect concentrations (NOAECs) and lowest-observed-adverse-effect concentrations (LOAECs) for 88 nanomaterial investigations in data-library and graph formats. We also calculate 'the value where 25% of exposed animals develop tumors' (T25) for carcinogenicity studies. We describe how the data may be used for hazard assessment of the materials using carbon black as an example. The collected data also enable hazard comparison between different materials. An important observation for poorly soluble particles is that the NOAEC for neutrophil numbers in general lies around 1 to 2 mg/m3. We further discuss why some materials' dose descriptors deviate from this level, likely reflecting the effects of the ionic form and effects of the fiber-shape. Finally, we discuss that long-term studies, in general, provide the lowest dose descriptors, and dose descriptors are positively correlated with particle size for near-spherical materials.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- Research group for risk-benefit, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Nicklas Sahlgren
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| |
Collapse
|
10
|
Gobut H, Erel S, Ozdemir C, Mortas T, Arslan M, Kucuk A, Kasapbasi E, Kavutcu M. Effects of cerium oxide on liver tissue in liver ischemia‑reperfusion injury in rats undergoing sevoflurane anesthesia. Exp Ther Med 2023; 25:164. [PMID: 36936704 PMCID: PMC10015321 DOI: 10.3892/etm.2023.11863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/16/2022] [Indexed: 03/21/2023] Open
Abstract
During liver surgery and transplantation, periods of partial or total vascular occlusion are inevitable and result in ischemia-reperfusion (IR) injury. Nanomedicine uses the latest technological advancement, which has emerged from interdisciplinary efforts involving biomedical sciences, physics and engineering to protect and improve human health. Antioxidant nanoparticles are potential therapeutic agents. The present study investigated the effects of cerium oxide (Co) administration and sevoflurane anesthesia on liver tissue with IR injury. A total of 36 rats were randomly divided into control, Co, IR, IR-Sevoflurane (IRS), Co + IR and Co + IRS groups. In the IR, IRS and Co + IRS groups, hepatic IR was induced. Intraperitoneal Co was administered to the Co groups 30 min before ischemia. Sevoflurane was administered to the IRS and Co + IRS groups during IR injury. Liver tissue samples were examined under the light microscope by staining with hematoxylin and eosin. Thiobarbituric acid (TBARS) levels as well as catalase (CAT) and glutathione-S-transferase (GST) enzyme activity were evaluated in liver tissue samples. The IR group had considerably more hydropic degeneration, sinusoidal dilatation and parenchymal neutrophil infiltration than the Co, IRS, Co + IR and Co + IRS groups. CAT and GST enzyme activity were significantly higher in Co and Co + IR groups compared with the IR group. TBARS levels were significantly lower in Co, IRS, Co + IR and Co + IRS groups compared whit those in the IR group. Intraperitoneal injection of Co with sevoflurane decreased oxidative stress and damage to the liver.
Collapse
Affiliation(s)
- Huseyin Gobut
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Selin Erel
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Cagri Ozdemir
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Tulay Mortas
- Department of Histology and Embryology, Faculty of Medicine, Kirikkale University, Kirikkale 71450, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
- Life Sciences and Application Research Centre, Gazi University, Ankara 06830, Turkey
| | - Aysegul Kucuk
- Department of Medical Physiology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya 43020, Turkey
| | - Esat Kasapbasi
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
11
|
Berthing T, Holmfred E, Vidmar J, Hadrup N, Mortensen A, Szarek J, Loeschner K, Vogel U. Comparison of biodistribution of cerium oxide nanoparticles after repeated oral administration by gavage or snack in Sprague Dawley rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103939. [PMID: 35908641 DOI: 10.1016/j.etap.2022.103939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The rate of translocation of ingested nanoparticles (NPs) and how the uptake is affected by a food matrix are key aspects of health risk assessment. In this study, female Sprague Dawley rats (N = 4/group) received 0, 1.4, or 13 mg of cerium oxide (CeO2 NM-212) NPs/rat/day by gavage or in a chocolate spread snack 5 days/week for 1 or 2 weeks followed by 2 weeks of recovery. A dose and time-dependent uptake in the liver and spleen of 0.1-0.3 and 0.004-0.005 parts per million (ng/mg) of the total administered dose was found, respectively. There was no statistically significant difference in cerium concentration in the liver or spleen after gavage compared to snack dosing. Microscopy revealed indications of necrotic changes in the liver and decreased cellularity in white pulp in the spleen. The snack provided precise administration and a more human-relevant exposure of NPs and could improve animal welfare as alternative to gavage.
Collapse
Affiliation(s)
- Trine Berthing
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark.
| | - Else Holmfred
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Janja Vidmar
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Niels Hadrup
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Alicja Mortensen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Józef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-717 Olsztyn, Poland
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Zeng F, Shi Y, Wu C, Liang J, Zhong Q, Briley K, Xu B, Huang Y, Long M, Wang C, Chen J, Tang Y, Li X, Jiang M, Wang L, Xu Q, Yang L, Chen P, Duan S, Xie J, Li C, Wu Y. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease. J Nanobiotechnology 2022; 20:107. [PMID: 35246140 PMCID: PMC8896226 DOI: 10.1186/s12951-022-01319-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable disease of the gastrointestinal tract with a lack of effective therapeutic strategies. The proinflammatory microenvironment plays a significant role in both amplifying and sustaining inflammation during IBD progression. Herein, biocompatible drug-free ceria nanoparticles (CeNP-PEG) with regenerable scavenging activities against multiple reactive oxygen species (ROS) were developed. CeNP-PEG exerted therapeutic effect in dextran sulfate sodium (DSS)-induced colitis murine model, evidenced by corrected the disease activity index, restrained colon length shortening, improved intestinal permeability and restored the colonic epithelium disruption. CeNP-PEG ameliorated the proinflammatory microenvironment by persistently scavenging ROS, down-regulating the levels of multiple proinflammatory cytokines, restraining the proinflammatory profile of macrophages and Th1/Th17 response. The underlying mechanism may involve restraining the co-activation of NF-κB and JAK2/STAT3 pathways. In summary, this work demonstrates an effective strategy for IBD treatment by ameliorating the self-perpetuating proinflammatory microenvironment, which offers a new avenue in the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Yahong Shi
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chunni Wu
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Jianming Liang
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Qixin Zhong
- Department of Cardiovascular, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, 518034, China
| | - Karen Briley
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | - Bin Xu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,Zhongshan Institute for Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, 528437, China.,School of Advanced Study, Institute of Natural Medicine and Health Product, Taizhou University, Taizhou, 318000, China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Cong Wang
- Key Laboratory of Smart Drug Deliver, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201213, China.,China Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
| | - Jian Chen
- Key Laboratory of Smart Drug Deliver, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201213, China
| | - Yonghua Tang
- Radiology Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China
| | - Xinying Li
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Luting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin Xu
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Liu Yang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Peng Chen
- Artemisinin Research Center, Institute of Science and Technology, The First Affiliated Hospital, The First Clinical Medical School, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510450, China
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, China.
| | - Cong Li
- Key Laboratory of Smart Drug Deliver, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201213, China.
| | - Yingwei Wu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
13
|
Laisney J, Loczenski Rose V, Watters K, Donohue KV, Unrine JM. Delivery of short hairpin RNA in the neotropical brown stink bug, Euschistus heros, using a composite nanomaterial. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104906. [PMID: 34301367 DOI: 10.1016/j.pestbp.2021.104906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The response of insects to orally delivered double-stranded RNA ranges widely among taxa studied to date. Long dsRNA does elicit a response in stink bugs but the dose required to achieve an effect is relatively high compared to other insects such Colorado potato beetle or western corn rootworm. Improving the delivery of dsRNA to stink bugs will improve the likelihood of using RNA-based biocontrols for the management of these economically important pests. Short hairpin RNA (shRNA) is a useful molecule with which to test improvements in the delivery of double stranded RNA in the neotropical brown stink bug, Euschistus heros, since shRNA alone does not elicit a clear effect like that for long dsRNA. Here, we show for the first time the oral delivery of shRNA triggering RNA interference (RNAi) in E. heros using 4 nm cerium oxide nanoparticles (CeO2 NPs) coated with diethylamioethyl dextran (Dextran-DEAE) as a carrier. We identified particle properties (coating composition and degree of substitution, hydrodynamic diameter, and zeta potential) and shRNA loading rates (Ce:shRNA mass ratio) that resulted in successful transcript reduction or RNAi. When the Z-average diameter of CeO2 Dextran-DEAE-shRNA NP complex was less than 250 nm and the zeta potential was in the 15-25 mV range (Ce:shRNA mass ratio of 0.7:1), significant mortality attributed to RNAi was observed with a shRNA concentration in feeding solution of 250 ng/μl. The degradation of the targeted troponin transcript by NP-delivered shRNA was equivalent to that observed with long dsRNA, while naked shRNA transcript reduction was not statistically significant. Elemental mapping by synchrotron X-ray fluorescence microprobe confirmed uptake and distribution of Ce throughout the body with the highest concentrations found in gut tissue. Taken together, our results suggest that a nanoparticle delivery system can improve the delivery of RNA-based biocontrols to E. heros, and therefore its attractiveness as an application in the management of this important pest in soybean production.
Collapse
Affiliation(s)
- Jérôme Laisney
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA
| | - Vanessa Loczenski Rose
- Formulation Technology Group, Syngenta, Jealotts Hill international Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Kayla Watters
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Kevin V Donohue
- Syngenta Crop Protection LLC, 9 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Jason M Unrine
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
14
|
Yokel RA, Wohlleben W, Keller JG, Hancock ML, Unrine JM, Butterfield DA, Grulke EA. The preparation temperature influences the physicochemical nature and activity of nanoceria. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:525-540. [PMID: 34136328 PMCID: PMC8182686 DOI: 10.3762/bjnano.12.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal. To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accelerated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally synthesized nanoceria material, and a calcined form of the solvothermally synthesized nanoceria material (ca. 40, 4, and 40 nm diameter, respectively) was investigated. Two dissolution methods were employed. Dissolution of NM-212 and the calcined nanoceria was much slower than that of the non-calcined form. The decreased solubility was attributed to an increased amount of surface Ce4+ species induced by the high temperature. Carboxylic acids doubled the very low dissolution rate of NM-212. Nanoceria dissolution releases Ce3+ ions, which, with phosphate, form insoluble cerium phosphate in vivo. The addition of immobilized phosphates did not accelerate nanoceria dissolution, suggesting that the Ce3+ ion release during nanoceria dissolution was phosphate-independent. Smaller particles resulting from partial nanoceria dissolution led to less cellular protein carbonyl formation, attributed to an increased amount of surface Ce3+ species. Surface reactivity was greater for the solvothermally synthesized nanoceria, which had more Ce3+ species at the surface. The results show that temperature treatment of nanoceria can produce significant differences in solubility and surface cerium valence, which affect the biological and catalytic properties of nanoceria.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, 40536-0596, USA
| | | | | | - Matthew L Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506-0046, USA
| | - Jason M Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | | | - Eric A Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, 40506-0046, USA
| |
Collapse
|
15
|
Sauer UG, Werle K, Waindok H, Hirth S, Hachmöller O, Wohlleben W. Critical Choices in Predicting Stone Wool Biodurability: Lysosomal Fluid Compositions and Binder Effects. Chem Res Toxicol 2021; 34:780-792. [PMID: 33464877 DOI: 10.1021/acs.chemrestox.0c00401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The hazard potential, including carcinogenicity, of inhaled man-made vitreous fibers (MMVFs) is correlated with their biodurability in the lung, as prerequisite for biopersistence. Abiotic dissolution testing serves to predict biodurability. We re-analyzed the International Agency for Research on Cancer Monograph on MMVFs and found that the correlation between in vivo biopersistence and abiotic dissolution presented therein confounded different simulant fluids and further confounded evaluation of leaching vs structural elements. These are critical choices for abiotic dissolution testing, as are binder removal and the rate of the flow that removes ions during testing. Therefore, we experimentally demonstrated how fluid composition and binder affect abiotic dissolution of a representative stone wool MMVF. We compared six simulant fluids (all pH 4.5, reflecting the environment of alveolar macrophage lysosomes) that differed in organic acids, which have a critical role in their ability to modulate the formation of Si-rich gels on the fiber surfaces. Removing the binder accelerates the average dissolution rate by +104% (max. + 273%) across the fluids by suppression of gel formation. Apart from the high-citrate fluid that predicted a 10-fold faster dissolution than is observed in vivo, none of the five other fluids resulted in dissolution rates above 400 ng/cm2/h, the limit associated with the exoneration from classification for carcinogenicity in the literature. These findings were confirmed with and without binder. For corroboration, five more stone wool MMVFs were assessed with and without binder in one specific fluid. Again, the presence of the binder caused gel formation and reduced dissolution rates. To enhance the reliability and robustness of abiotic predictions of biodurability, we recommend replacing the critically influential citric acid in pH 4.5 fluids with other organic acids. Also, future studies should consider structural transformations of the fibers, including changes in fiber length, fiber composition, and reprecipitation of gel layers.
Collapse
Affiliation(s)
- Ursula G Sauer
- Scientific Consultancy - Animal Welfare, 85579 Neubiberg, Germany
| | - Kai Werle
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Hubert Waindok
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Sabine Hirth
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Oliver Hachmöller
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| | - Wendel Wohlleben
- Department of Material Physics and Analytics, BASF SE, Advanced Materials Research, 67056 Ludwigshafen, Germany
| |
Collapse
|
16
|
You G, Hou J, Xu Y, Miao L, Ao Y, Xing B. Surface Properties and Environmental Transformations Controlling the Bioaccumulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:155-206. [PMID: 32462332 DOI: 10.1007/398_2020_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Increasing production and utilization of cerium oxide nanoparticles (CNPs) in recent years have raised wide concerns about their toxicity. Numerous studies have been conducted to reveal the toxicity of CNPs, but the results are sometimes contradictory. In this review, the most important factors in mediating CNPs toxicity are discussed, including (1) the roles of physicochemical properties (size, morphology, agglomeration condition, surface charge, coating and surface valence state) on CNPs toxicity; (2) the phase transfer and transformation process of CNPs in various aqueous, terrestrial, and airborne environments; and (3) reductive dissolution of CNPs core and their chemical reactions with phosphate, sulfate/S2-, and ferrous ions. The physicochemical properties play key roles in the interactions of CNPs with organisms and consequently their environmental transformations, reactivity and toxicity assessment. Also, the speciation transformations of CNPs caused by reactions with (in)organic ligands in both environmental and biological systems would further alter their fate, transport, and toxicity potential. Thus, the toxicity mechanisms are proposed based on the physical damage of direct adsorption of CNPs onto the cell membrane and chemical inhibition (including oxidative stress and interaction of CNPs with biomacromolecules). Finally, the current knowledge gaps and further research needs in identifying the toxicological risk factors of CNPs under realistic environmental conditions are highlighted, which might improve predictions about their potential environmental influences. This review aims to provide new insights into cost-effectiveness of control options and management practices to prevent environmental risks from CNPs exposure.
Collapse
Affiliation(s)
- Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
17
|
Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, Stromberg AJ, Dozier AK, Graham UM. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020; 14:827-846. [DOI: 10.1080/17435390.2020.1770887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael T. Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Matthew L. Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A. Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
- CDC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
18
|
Graham UM, Dozier AK, Oberdörster G, Yokel RA, Molina R, Brain JD, Pinto JM, Weuve J, Bennett DA. Tissue Specific Fate of Nanomaterials by Advanced Analytical Imaging Techniques - A Review. Chem Res Toxicol 2020; 33:1145-1162. [PMID: 32349469 PMCID: PMC7774012 DOI: 10.1021/acs.chemrestox.0c00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A variety of imaging and analytical methods have been developed to study nanoparticles in cells. Each has its benefits, limitations, and varying degrees of expense and difficulties in implementation. High-resolution analytical scanning transmission electron microscopy (HRSTEM) has the unique ability to image local cellular environments adjacent to a nanoparticle at near atomic resolution and apply analytical tools to these environments such as energy dispersive spectroscopy and electron energy loss spectroscopy. These tools can be used to analyze particle location, translocation and potential reformation, ion dispersion, and in vivo synthesis of second-generation nanoparticles. Such analyses can provide in depth understanding of tissue-particle interactions and effects that are caused by the environmental "invader" nanoparticles. Analytical imaging can also distinguish phases that form due to the transformation of "invader" nanoparticles in contrast to those that are triggered by a response mechanism, including the commonly observed iron biomineralization in the form of ferritin nanoparticles. The analyses can distinguish ion species, crystal phases, and valence of parent nanoparticles and reformed or in vivo synthesized phases throughout the tissue. This article will briefly review the plethora of methods that have been developed over the last 20 years with an emphasis on the state-of-the-art techniques used to image and analyze nanoparticles in cells and highlight the sample preparation necessary for biological thin section observation in a HRSTEM. Specific applications that provide visual and chemical mapping of the local cellular environments surrounding parent nanoparticles and second-generation phases are demonstrated, which will help to identify novel nanoparticle-produced adverse effects and their associated mechanisms.
Collapse
Affiliation(s)
- Uschi M Graham
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 5555 Ridge Avenue, Cincinnati, Ohio 45213, United States
- Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40506, United States
| | - Alan K Dozier
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 5555 Ridge Avenue, Cincinnati, Ohio 45213, United States
| | - Günter Oberdörster
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, United States
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, 789 South Limestone, Lexington, Kentucky 40506, United States
| | - Ramon Molina
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Joseph D Brain
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Jayant M Pinto
- Department of Surgery, The University of Chicago Medicine, 5841 S. Maryland Avenue, Chicago, Illinois 60637, United States
| | - Jennifer Weuve
- School of Public Health, Department of Epidemiology, Boston University, 715 Albany Street, The Talbot Building, T3E & T4E, Boston, Massachusetts 02118, United States
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, 1725 W. Harrison Street, Suite 1118, Chicago, Illinois 60612, United States
| |
Collapse
|
19
|
Casals E, Zeng M, Parra-Robert M, Fernández-Varo G, Morales-Ruiz M, Jiménez W, Puntes V, Casals G. Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907322. [PMID: 32329572 DOI: 10.1002/smll.201907322] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Antioxidant nanoparticles have recently gained tremendous attention for their enormous potential in biomedicine. However, discrepant reports of either medical benefits or toxicity, and lack of reproducibility of many studies, generate uncertainties delaying their effective implementation. Herein, the case of cerium oxide is considered, a well-known catalyst in the petrochemistry industry and one of the first antioxidant nanoparticles proposed for medicine. Like other nanoparticles, it is now described as a promising therapeutic alternative, now as threatening to health. Sources of these discrepancies and how this analysis helps to overcome contradictions found for other nanoparticles are summarized and discussed. For the context of this analysis, what has been reported in the liver is reviewed, where many diseases are related to oxidative stress. Since well-dispersed nanoparticles passively accumulate in liver, it represents a major testing field for the study of new nanomedicines and their clinical translation. Even more, many contradictory works have reported in liver either cerium-oxide-associated toxicity or protection against oxidative stress and inflammation. Based on this, finally, the intention is to propose solutions to design improved nanoparticles that will work more precisely in medicine and safely in society.
Collapse
Affiliation(s)
- Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Marina Parra-Robert
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Manuel Morales-Ruiz
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| | - Wladimiro Jiménez
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Departament of Biomedicine, University of Barcelona, Barcelona, 08036, Spain
| | - Víctor Puntes
- Vall d'Hebron Research Institute (VHIR), Barcelona, 08035, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC, The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
- Working Group for the Biochemical Assessment of Hepatic Disease-SEQC ML, Barcelona, 08036, Spain
| |
Collapse
|
20
|
Butterfield AD, Wang B, Wu P, Hardas SS, Unrine JM, Grulke EA, Cai J, Klein JB, Pierce WM, Yokel RA, Sultana R. Plasma and Serum Proteins Bound to Nanoceria: Insights into Pathways by which Nanoceria may Exert Its Beneficial and Deleterious Effects In Vivo. JOURNAL OF NANOMEDICINE & NANOTECHNOLOGY 2020; 11:546. [PMID: 34589268 PMCID: PMC8478346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA degradation, and hormonal. The principal implications of this study are: 1) The protein corona may positively or negatively affect nanoceria cellular uptake, subsequent organ bioprocessing, and effects; and 2) Nanoceria adsorption may alter protein structure and function, including pro- and inflammatory effects. Consequently, prior to their use as therapeutic agents, better understanding of the effects of nanoceria protein coating is warranted.
Collapse
Affiliation(s)
- Allan D Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;,Correspondence to: Professor D. Allan Butterfield, Department of Chemistry, University of Kentucky Lexington, KY 40506, USA, Tel: (859) 257-3184;
| | - Binghui Wang
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Peng Wu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Sarita S. Hardas
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jason M. Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Eric A. Grulke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Jian Cai
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jon B. Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - William M. Pierce
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Robert A. Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
21
|
Plakhova TV, Romanchuk AY, Butorin SM, Konyukhova AD, Egorov AV, Shiryaev AA, Baranchikov AE, Dorovatovskii PV, Huthwelker T, Gerber E, Bauters S, Sozarukova MM, Scheinost AC, Ivanov VK, Kalmykov SN, Kvashnina KO. Towards the surface hydroxyl species in CeO 2 nanoparticles. NANOSCALE 2019; 11:18142-18149. [PMID: 31555787 DOI: 10.1039/c9nr06032d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding the complex chemistry of functional nanomaterials is of fundamental importance. Controlled synthesis and characterization at the atomic level is essential to gain deeper insight into the unique chemical reactivity exhibited by many nanomaterials. Cerium oxide nanoparticles have many industrial and commercial applications, resulting from very strong catalytic, pro- and anti-oxidant activity. However, the identity of the active species and the chemical mechanisms imparted by nanoceria remain elusive, impeding the further development of new applications. Here, we explore the behavior of cerium oxide nanoparticles of different sizes at different temperatures and trace the electronic structure changes by state-of-the-art soft and hard X-ray experiments combined with computational methods. We confirm the absence of the Ce(iii) oxidation state at the surface of CeO2 nanoparticles, even for particles as small as 2 nm. Synchrotron X-ray absorption experiments at Ce L3 and M5 edges, combined with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) and theoretical calculations demonstrate that in addition to the nanoceria charge stability, the formation of hydroxyl groups at the surface profoundly affects the chemical performance of these nanomaterials.
Collapse
Affiliation(s)
- Tatiana V Plakhova
- Lomonosov Moscow State University, Department of Chemistry, Leninskije Gory 1, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang B, Chen Y, Shi J. Nanocatalytic Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901778. [PMID: 31328844 DOI: 10.1002/adma.201901778] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/16/2019] [Indexed: 05/24/2023]
Abstract
Catalysis and medicine are often considered as two independent research fields with their own respective scientific phenomena. Promoted by recent advances in nanochemistry, large numbers of nanocatalysts, such as nanozymes, photocatalysts, and electrocatalysts, have been applied in vivo to initiate catalytic reactions and modulate biological microenvironments for generating therapeutic effects. The rapid growth of research in biomedical applications of nanocatalysts has led to the concept of "nanocatalytic medicine," which is expected to promote the further advance of such a subdiscipline in nanomedicine. The high efficiency and selectivity of catalysis that chemists strived to achieve in the past century can be ingeniously translated into high efficacy and mitigated side effects in theranostics by using "nanocatalytic medicine" to steer catalytic reactions for optimized therapeutic outcomes. Here, the rationale behind the construction of nanocatalytic medicine is eludicated based on the essential reaction factors of catalytic reactions (catalysts, energy input, and reactant). Recent advances in this burgeoning field are then comprehensively presented and the mechanisms by which catalytic nanosystems are conferred with theranostic functions are discussed in detail. It is believed that such an emerging catalytic therapeutic modality will play a more important role in the field of nanomedicine.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
23
|
Wagener S, Jungnickel H, Dommershausen N, Fischer T, Laux P, Luch A. Determination of Nanoparticle Uptake, Distribution, and Characterization in Plant Root Tissue after Realistic Long-Term Exposure to Sewage Sludge Using Information from Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5416-5426. [PMID: 30964664 DOI: 10.1021/acs.est.8b07222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanoparticles (NPs) in numerous products and their potential accumulation causes major concern for humans and the environment. Until now, the uptake of NPs in plant tissue was mostly shown under greenhouse conditions at high doses and short exposure periods. Here, we present results on the uptake of particulate silver (Ag) and cerium dioxide (CeO2) in the tissues of Triticum aestivum, Brassica napus, and Hordeum vulgare, after exposure to sewage sludge treated with nano-Ag (NM300 K at 1.8 and 7.0 mg/kg sludge per dm soil) and nano-CeO2 (NM212 at 10 and 50 mg/kg sludge per dm soil). All plants were cultivated in a rural area near the German town Schmallenberg according to the common regional crop rotation on outdoor lysimeters. The highest concentrations measured were 86.4 mg/kg for Ag ( Hordeum vulgare) and 94 mg/kg for Ce ( Triticum sativum). Analysis of plant samples revealed the presence of Ag mainly in its ionic form. However, the occurrence of nano- and larger sized particles of Ag and CeO2 was observed as well. Quantitative shares of the particulate fraction of the total element concentration were estimated up to 22.4% for Ag and up to 85.1% for CeO2. A high abundance of particle agglomerates in the phloem suggests upward transport of the nanoparticles to other plant parts. A small number of agglomerates in the xylem suggests a downward transport and subsequent accumulation in the root phloem. Exemplary investigations of Brassica napus root exposed to nano-CeO2 revealed no accumulation of the pristine material in the cell nucleus; however, CePO4 was found. The presence of this substance points to a dissolution of the low soluble CeO2 in planta and subsequent precipitation. Furthermore, for the first time, mixed NP-salt agglomerates, composed of Ca3PO4+ and K3SO4+ NPs, could be observed within Brassica napus root tissue.
Collapse
Affiliation(s)
- Sandra Wagener
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Harald Jungnickel
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Nils Dommershausen
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Thomas Fischer
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Peter Laux
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| | - Andreas Luch
- Department of Chemical and Product Safety , German Federal Institute for Risk Assessment (BfR) , Max-Dohrn-Strasse 8-10 , D-10589 , Berlin , Germany
| |
Collapse
|
24
|
Grulke EA, Beck MJ, Yokel RA, Unrine JM, Graham UM, Hancock ML. Surface-controlled dissolution rates: a case study of nanoceria in carboxylic acid solutions. ENVIRONMENTAL SCIENCE. NANO 2019; 6:1478-1492. [PMID: 31372227 PMCID: PMC6675026 DOI: 10.1039/c9en00222g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticle dissolution in local milieu can affect their ecotoxicity and therapeutic applications. For example, carboxylic acid release from plant roots can solubilize nanoceria in the rhizosphere, affecting cerium uptake in plants. Nanoparticle dispersions were dialyzed against ten carboxylic acid solutions for up to 30 weeks; the membrane passed cerium-ligand complexes but not nanoceria. Dispersion and solution samples were analyzed for cerium by inductively coupled plasma mass spectrometry (ICP-MS). Particle size and shape distributions were measured by transmission electron microscopy (TEM). Nanoceria dissolved in all carboxylic acid solutions, leading to cascades of progressively smaller nanoparticles and producing soluble products. The dissolution rate was proportional to nanoparticle surface area. Values of the apparent dissolution rate coefficients varied with the ligand. Both nanoceria size and shape distributions were altered by the dissolution process. Density functional theory (DFT) estimates for some possible Ce(IV) products showed that their dissolution was thermodynamically favored. However, dissolution rate coefficients did not generally correlate with energy of formation values. The surface-controlled dissolution model provides a quantitative measure for nanoparticle dissolution rates: further studies of dissolution cascades should lead to improved understanding of mechanisms and processes at nanoparticle surfaces.
Collapse
Affiliation(s)
- Eric A. Grulke
- Chemical & Materials Engineering, University of
Kentucky
| | - Matthew J. Beck
- Chemical & Materials Engineering, University of
Kentucky
- Center for Computational Sciences, University of
Kentucky
| | | | | | | | | |
Collapse
|
25
|
Yokel RA, Hancock ML, Grulke EA, Unrine JM, Dozier AK, Graham UM. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution. Nanotoxicology 2019; 13:455-475. [PMID: 30729879 PMCID: PMC6609459 DOI: 10.1080/17435390.2018.1553251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Ligands that accelerate nanoceria dissolution may greatly affect its fate and effects. This project assessed the carboxylic acid contribution to nanoceria dissolution in aqueous, acidic environments. Nanoceria has commercial and potential therapeutic and energy storage applications. It biotransforms in vivo. Citric acid stabilizes nanoceria during synthesis and in aqueous dispersions. In this study, citrate-stabilized nanoceria dispersions (∼4 nm average primary particle size) were loaded into dialysis cassettes whose membranes passed cerium salts but not nanoceria particles. The cassettes were immersed in iso-osmotic baths containing carboxylic acids at pH 4.5 and 37 °C, or other select agents. Cerium atom material balances were conducted for the cassette and bath by sampling of each chamber and cerium quantitation by ICP-MS. Samples were collected from the cassette for high-resolution transmission electron microscopy observation of nanoceria size. In carboxylic acid solutions, nanoceria dissolution increased bath cerium concentration to >96% of the cerium introduced as nanoceria into the cassette and decreased nanoceria primary particle size in the cassette. In solutions of citric, malic, and lactic acids and the ammonium ion ∼15 nm, ceria agglomerates persisted. In solutions of other carboxylic acids, some select nanoceria agglomerates grew to ∼1 micron. In carboxylic acid solutions, dissolution half-lives were 800-4000 h; in water and horseradish peroxidase they were ≥55,000 h. Extending these findings to in vivo and environmental systems, one expects acidic environments containing carboxylic acids to degrade nanoceria by dissolution; two examples would be phagolysosomes and in the plant rhizosphere.
Collapse
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | | | - Eric A. Grulke
- Chemical & Materials Engineering, University of Kentucky, Lexington, KY
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY
- CDC/NIOSH, Cincinnati, OH
| |
Collapse
|
26
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
27
|
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
28
|
Sims CM, Maier RA, Johnston-Peck AC, Gorham JM, Hackley VA, Nelson BC. Approaches for the quantitative analysis of oxidation state in cerium oxide nanomaterials. NANOTECHNOLOGY 2019; 30:085703. [PMID: 30240366 PMCID: PMC6351072 DOI: 10.1088/1361-6528/aae364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cerium oxide nanomaterials (nanoceria, CNMs) are receiving increased attention from the research community due to their unique chemical properties, most prominent of which is their ability to alternate between the Ce3+ and Ce4+ oxidation states. While many analytical techniques and methods have been employed to characterize the amounts of Ce3+ and Ce4+ present (Ce3+/Ce4+ ratio) within nanoceria materials, to-date no studies have used multiple complementary analytical tools (orthogonal analysis) with technique-independent oxidation state controls for quantitative determinations of the Ce3+/Ce4+ ratio. Here, we describe the development of analytical methods measuring the oxidation states of nanoceria analytes using technique-independent Ce3+ (CeAlO3:Ge) and Ce4+ (CeO2) control materials, with a particular focus on x-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) approaches. The developed methods were demonstrated in characterizing a suite of commercial nanoceria products, where the two techniques (XPS and EELS) were found to be in good agreement with respect to Ce3+/Ce4+ ratio. Potential sources of artifacts and discrepancies in the measurement results were also identified and discussed, alongside suggestions for interpreting oxidation state results using the different analytical techniques. The results should be applicable towards producing more consistent and reproducible oxidation state analyses of nanoceria materials.
Collapse
Affiliation(s)
- Christopher M. Sims
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Russell A. Maier
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Aaron C. Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Justin M. Gorham
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Vincent A. Hackley
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Bryant C. Nelson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
29
|
Gajdosechova Z, Mester Z. Recent trends in analysis of nanoparticles in biological matrices. Anal Bioanal Chem 2019; 411:4277-4292. [PMID: 30762098 DOI: 10.1007/s00216-019-01620-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
The need to assess the human and environmental risks of nanoparticles (NPs) has prompted an adaptation of existing techniques and the development of new ones. Nanoparticle analysis poses a great challenge as the analytical information has to consider both physical (e.g. size and shape) and chemical (e.g. elemental composition) state of the analyte. Furthermore, one has to contemplate the transformation of NPs during the sample preparation and provide sufficient information about the new species derived from such alteration. Traditional techniques commonly used for NP analysis such as microscopy and light scattering are still frequently used for NPs in simple matrices; however, they have limitations in the analysis of complex environmental and biological samples. On the other hand, recent improvements in data acquisition frequencies and reduction of settling time of ICP-MS brought inorganic mass spectrometry into the forefront of NPs analysis. However, with the increasing demand of analytical information related to NPs, emerging techniques such as enhanced darkfield hyperspectral imaging, nano-SIMS and mass cytometry are in their way to fill the gaps. This trend review presents and discusses the state-of-the-art analytical techniques and sample preparation methods for NP analysis in biological matrices. Graphical abstract ᅟ.
Collapse
Affiliation(s)
| | - Zoltan Mester
- NRC Metrology, 1200 Montreal Road, Ottawa, ON, K1A0R6, Canada
| |
Collapse
|
30
|
Klocke C, Sherina V, Graham UM, Gunderson J, Allen JL, Sobolewski M, Blum JL, Zelikoff JT, Cory-Slechta DA. Enhanced cerebellar myelination with concomitant iron elevation and ultrastructural irregularities following prenatal exposure to ambient particulate matter in the mouse. Inhal Toxicol 2018; 30:381-396. [PMID: 30572762 DOI: 10.1080/08958378.2018.1533053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Accumulating evidence indicates the developing central nervous system (CNS) is a target of air pollution toxicity. Epidemiological reports increasingly demonstrate that exposure to the particulate matter (PM) fraction of air pollution during neurodevelopment is associated with an increased risk of neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD). These observations are supported by animal studies demonstrating prenatal exposure to concentrated ambient PM induces neuropathologies characteristic of ASD, including ventriculomegaly and aberrant corpus callosum (CC) myelination. Given the role of the CC and cerebellum in ASD etiology, this study tested whether prenatal exposure to concentrated ambient particles (CAPs) produced pathological features in offspring CC and cerebella consistent with ASD. Analysis of cerebellar myelin density revealed male-specific hypermyelination in CAPs-exposed offspring at postnatal days (PNDs) 11-15 without alteration of cerebellar area. Atomic absorption spectroscopy (AAS) revealed elevated iron (Fe) in the cerebellum of CAPs-exposed female offspring at PNDs 11-15, which connects with previously observed elevated Fe in the female CC. The presence of Fe inclusions, along with aluminum (Al) and silicon (Si) inclusions, were confirmed at nanoscale resolution in the CC along with ultrastructural myelin sheath damage. Furthermore, RNAseq and gene ontology (GO) enrichment analyses revealed cerebellar gene expression was significantly affected by sex and prenatal CAPs exposure with significant enrichment in inflammation and transmembrane transport processes that could underlie observed myelin and metal pathologies. Overall, this study highlights the ability of PM exposure to disrupt myelinogenesis and elucidates novel molecular targets of PM-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Carolyn Klocke
- a Department of Environmental Medicine , University of Rochester School of Medicine , Rochester , NY , USA
| | - Valeriia Sherina
- b Department of Biostatistics and Computational Biology , University of Rochester School of Medicine , Rochester , NY , USA
| | - Uschi M Graham
- c Department of Pharmaceutical Sciences , University of Kentucky , Lexington , KY , USA
| | - Jakob Gunderson
- a Department of Environmental Medicine , University of Rochester School of Medicine , Rochester , NY , USA
| | - Joshua L Allen
- a Department of Environmental Medicine , University of Rochester School of Medicine , Rochester , NY , USA
| | - Marissa Sobolewski
- a Department of Environmental Medicine , University of Rochester School of Medicine , Rochester , NY , USA
| | - Jason L Blum
- d Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Judith T Zelikoff
- d Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Deborah A Cory-Slechta
- a Department of Environmental Medicine , University of Rochester School of Medicine , Rochester , NY , USA
| |
Collapse
|
31
|
Abstract
In this chapter, we highlight the applications of electron microscopes (EMs) in nanotoxicity assessment. EMs can provide detailed information about the size and morphology of nanomaterials (NMs), their localization in cells and tissues, the nano-bio interactions, as well as the ultrastructural changes induced by NMs exposure. Here, we share with the readers how we prepare the tissue sample, and the different types of EMs used among the nanotoxicologists. It is possible to deploy conventional EMs along or in combination with other analytical techniques, such as electron energy loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDS or EDX), and TEM-assisted scanning transmission X-ray microscopy (STXM), toward further elemental and chemical characterization. Appropriate images are inserted to illustrate throughout this chapter.
Collapse
|
32
|
Papavasiliou J, Vakros J, Avgouropoulos G. Impact of acid treatment of CuO-CeO2 catalysts on the preferential oxidation of CO reaction. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Modrzynska J, Berthing T, Ravn-Haren G, Kling K, Mortensen A, Rasmussen RR, Larsen EH, Saber AT, Vogel U, Loeschner K. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS One 2018; 13:e0202477. [PMID: 30125308 PMCID: PMC6101382 DOI: 10.1371/journal.pone.0202477] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Recent findings show that cerium oxide (CeO2) nanoparticles may undergo in vivo-induced size transformation with the formation of smaller particles that could result in a higher translocation following pulmonary exposure compared to virtually insoluble particles, like titanium dioxide (TiO2). Therefore, we compared liver deposition of CeO2 and TiO2 nanoparticles of similar primary sizes 1, 28 or 180 days after intratracheal instillation of 162 μg of NPs in female C57BL/6 mice. Mice exposed to 162 μg CeO2 or TiO2 nanoparticles by intravenous injection or oral gavage were included as reference groups to assess the amount of NPs that reach the liver bypassing the lungs and the translocation of NPs from the gastrointestinal tract to the liver, respectively. Pulmonary deposited CeO2 nanoparticles were detected in the liver 28 and 180 days post-exposure and TiO2 nanoparticles 180 days post-exposure as determined by darkfield imaging and by the quantification of Ce and Ti mass concentration by inductively coupled plasma-mass spectrometry (ICP-MS). Ce and Ti concentrations increased over time and 180 days post-exposure the translocation to the liver was 2.87 ± 3.37% and 1.24 ± 1.98% of the initial pulmonary dose, respectively. Single particle ICP-MS showed that the size of CeO2 nanoparticles in both lung and liver tissue decreased over time. No nanoparticles were detected in the liver following oral gavage. Our results suggest that pulmonary deposited CeO2 and TiO2 nanoparticles translocate to the liver with similar calculated translocation rates despite their different chemical composition and shape. The observed particle size distributions of CeO2 nanoparticles indicate in vivo processing over time both in lung and liver. The fact that no particles were detected in the liver following oral exposure showed that direct translocation of nanoparticles from lung to the systemic circulation was the most important route of translocation for pulmonary deposited particles.
Collapse
Affiliation(s)
- Justyna Modrzynska
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Gitte Ravn-Haren
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kirsten Kling
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Alicja Mortensen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Rie R. Rasmussen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Erik H. Larsen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne T. Saber
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Katrin Loeschner
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
34
|
Carlander U, Moto TP, Desalegn AA, Yokel RA, Johanson G. Physiologically based pharmacokinetic modeling of nanoceria systemic distribution in rats suggests dose- and route-dependent biokinetics. Int J Nanomedicine 2018; 13:2631-2646. [PMID: 29750034 PMCID: PMC5936012 DOI: 10.2147/ijn.s157210] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cerium dioxide nanoparticles (nanoceria) are increasingly being used in a variety of products as catalysts, coatings, and polishing agents. Furthermore, their antioxidant properties make nanoceria potential candidates for biomedical applications. To predict and avoid toxicity, information about their biokinetics is essential. A useful tool to explore such associations between exposure and internal target dose is physiologically based pharmacokinetic (PBPK) modeling. The aim of this study was to test the appropriateness of our previously published PBPK model developed for intravenous (IV) administration when applied to various sizes of nanoceria and to exposure routes relevant for humans. METHODS Experimental biokinetic data on nanoceria (obtained from various exposure routes, sizes, coatings, doses, and tissues sampled) in rats were collected from the literature and also obtained from the researchers. The PBPK model was first calibrated and validated against IV data for 30 nm citrate coated ceria and then recalibrated for 5 nm ceria. Finally, the model was modified and tested against inhalation, intratracheal (IT) instillation, and oral nanoceria data. RESULTS The PBPK model adequately described nanoceria time courses in various tissues for 5 nm ceria given IV. The time courses of 30 nm ceria were reasonably well predicted for liver and spleen, whereas the biokinetics in other tissues were not well captured. For the inhalation, IT instillation, and oral exposure routes, re-optimization was difficult due to low absorption and, hence, low and variable nanoceria tissue levels. Moreover, the nanoceria properties and exposure conditions varied widely among the inhalation, IT instillation, and oral studies, making it difficult to assess the importance of different factors. CONCLUSION Overall, our modeling efforts suggest that nanoceria biokinetics depend largely on the exposure route and dose.
Collapse
Affiliation(s)
- Ulrika Carlander
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Tshepo Paulsen Moto
- Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Anteneh Assefa Desalegn
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Gunnar Johanson
- Unit of Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
35
|
Graham UM, Yokel RA, Dozier AK, Drummy L, Mahalingam K, Tseng MT, Birch E, Fernback J. Analytical High-resolution Electron Microscopy Reveals Organ-specific Nanoceria Bioprocessing. Toxicol Pathol 2018; 46:47-61. [PMID: 29145781 PMCID: PMC5954437 DOI: 10.1177/0192623317737254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is the first utilization of advanced analytical electron microscopy methods, including high-resolution transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, electron energy loss spectroscopy, and energy-dispersive X-ray spectroscopy mapping to characterize the organ-specific bioprocessing of a relatively inert nanomaterial (nanoceria). Liver and spleen samples from rats given a single intravenous infusion of nanoceria were obtained after prolonged (90 days) in vivo exposure. These advanced analytical electron microscopy methods were applied to elucidate the organ-specific cellular and subcellular fate of nanoceria after its uptake. Nanoceria is bioprocessed differently in the spleen than in the liver.
Collapse
Affiliation(s)
- Uschi M Graham
- 1 Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Academic Medical Center, Lexington, Kentucky, USA
- 2 National Institute of Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Robert A Yokel
- 1 Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Academic Medical Center, Lexington, Kentucky, USA
| | - Alan K Dozier
- 2 National Institute of Occupational Safety and Health, Cincinnati, Ohio, USA
| | | | | | - Michael T Tseng
- 4 Department of Anatomical Sciences and Neurobiology, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Eileen Birch
- 2 National Institute of Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Joseph Fernback
- 2 National Institute of Occupational Safety and Health, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas KH, Haase A, Hund-Rinke K, Jakubowski N, Kearns P, Lampen A, Rauscher H, Schoonjans R, Störmer A, Thielmann A, Mühle U, Luch A. Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 2018; 92:121-141. [PMID: 29273819 PMCID: PMC5773666 DOI: 10.1007/s00204-017-2144-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.
Collapse
Affiliation(s)
- Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Christian Riebeling
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Otto Creutzenberg
- Department of Inhalation Toxicology, Fraunhofer-Institute for Toxicology and Experimental Medicine (ITEM), Nikolai Fuchs Strasse 1, 30625, Hannover, Germany
| | - Astrid Epp
- Department of Risk Communication, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Valérie Fessard
- Laboratoire de Fougères, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 10B Rue Claude Bourgelat, 35306, Fougères Cedex, France
| | - Karl-Heinz Haas
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Kerstin Hund-Rinke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf Dem Aberg 1, 57392, Schmallenberg, Germany
| | - Norbert Jakubowski
- Division 1.1 Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Peter Kearns
- OECD Environment, Health and Safety Division 2, rue Andre-Pascal, 75775, Paris Cedex 16, France
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Hubert Rauscher
- Joint Research Centre (JRC) of the European Commission, Directorate Health, Consumers and Reference Materials, Via E. Fermi, 2749, 21027, Ispra, Italy
| | - Reinhilde Schoonjans
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1a, 43126, Parma, Italy
| | - Angela Störmer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Strasse 35, 85354, Freising, Germany
| | - Axel Thielmann
- Fraunhofer Institute for Systems and Innovation Research ISI, Breslauer Strasse 48, 76139, Karlsruhe, Germany
| | - Uwe Mühle
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Winterbergstr. 28, 01277, Dresden, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
37
|
Merrifield RC, Arkill KP, Palmer RE, Lead JR. A High Resolution Study of Dynamic Changes of Ce 2O 3 and CeO 2 Nanoparticles in Complex Environmental Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8010-8016. [PMID: 28618231 DOI: 10.1021/acs.est.7b01130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ceria nanoparticles (NPs) rapidly and easily cycle between Ce(III) and Ce(IV) oxidation states, making them prime candidates for commercial and other applications. Increased commercial use has resulted in increased discharge to the environment and increased associated risk. Once in complex media such as environmental waters or toxicology exposure media, the same redox transformations can occur, causing altered behavior and effects compared to the pristine NPs. This study used high resolution scanning transmission electron microscopy and electron energy loss spectroscopy to investigate changes in structure and oxidation state of small, polymer-coated ceria suspensions in complex media. NPs initially in either the III or IV oxidation states, but otherwise identical, were used. Ce(IV) NPs were changed to mixed (III, IV) NPs at high ionic strengths, while the presence of natural organic macromolecules (NOM) stabilized the oxidation state and increased crystallinity. The Ce(III) NPs remained as Ce(III) at high ionic strengths, but were modified by the presence of NOM, causing reduced crystallinity and degradation of the NPs. Subtle changes to NP properties upon addition to environmental or ecotoxicology media suggest that there may be small but important effects on fate and effects of NPs compared to their pristine form.
Collapse
Affiliation(s)
- Ruth C Merrifield
- Department of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, U.K
- Center for Environmental Nanoscience and Risk, University of South Carolina , Columbia, South Carolina United States
| | - Kenton P Arkill
- School of Medicine, University of Nottingham , Nottingham, U.K
- CSIC UPV/EHU and PiE, University of the Basque Country , Lejona, Spain
| | - Richard E Palmer
- Nanoscale Physics Research Laboratory, Physics and Astronomy, University of Birmingham , Birmingham, U.K
| | - Jamie R Lead
- Department of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, U.K
- Center for Environmental Nanoscience and Risk, University of South Carolina , Columbia, South Carolina United States
| |
Collapse
|
38
|
Spielman-Sun E, Lombi E, Donner E, Howard D, Unrine JM, Lowry GV. Impact of Surface Charge on Cerium Oxide Nanoparticle Uptake and Translocation by Wheat (Triticum aestivum). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7361-7368. [PMID: 28575574 DOI: 10.1021/acs.est.7b00813] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticle (NP) physiochemical properties, including surface charge, affect cellular uptake, translocation, and tissue localization. To evaluate the influence of surface charge on NP uptake by plants, wheat seedlings were hydroponically exposed to 20 mg/L of ∼4 nm CeO2 NPs functionalized with positively charged, negatively charged, and neutral dextran coatings. Fresh, hydrated roots and leaves were analyzed at various time points over 34 h using fluorescence X-ray absorption near-edge spectroscopy to provide laterally resolved spatial distribution and speciation of Ce. A 15-20% reduction from Ce(IV) to Ce(III) was observed in both roots and leaves, independent of NP surface charge. Because of its higher affinity with negatively charged cell walls, CeO2(+) NPs adhered to the plant roots the strongest. After 34 h, CeO2(-), and CeO2(0) NP exposed plants had higher Ce leaf concentrations than the plants exposed to CeO2(+) NPs. Whereas Ce was found mostly in the leaf veins of the CeO2(-) NP exposed plant, Ce was found in clusters in the nonvascular leaf tissue of the CeO2(0) NP exposed plant. These results provide important information for understanding mechanisms responsible for plant uptake, transformation, and translocation of NPs, and suggest that NP coatings can be designed to target NPs to specific parts of plants.
Collapse
Affiliation(s)
- Eleanor Spielman-Sun
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Enzo Lombi
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Daryl Howard
- Australian Synchrotron , Clayton, Victoria 3168 Australia
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky , Lexington, Kentucky 40546, United States
| | - Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
39
|
Rzigalinski BA, Carfagna CS, Ehrich M. Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1444. [PMID: 27860449 PMCID: PMC5422143 DOI: 10.1002/wnan.1444] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
Abstract
Cerium oxide nanoparticles have widespread use in the materials industry, and have recently come into consideration for biomedical use due to their potent regenerative antioxidant properties. Given that the brain is one of the most highly oxidative organs in the body, it is subject to some of the greatest levels of oxidative stress, particularly in neurodegenerative disease. Therefore, cerium oxide nanoparticles are currently being investigated for efficacy in several neurodegenerative disorders and have shown promising levels of neuroprotection. This review discusses the basis for cerium oxide nanoparticle use in neurodegenerative disease and its hypothesized mechanism of action. The review focuses on an up-to-date summary of in vivo work with cerium oxide nanoparticles in animal models of neurodegenerative disease. Additionally, we examine the current state of information regarding biodistribution, toxicity, and safety for cerium oxide nanoparticles at the in vivo level. Finally, we discuss future directions that are necessary if this nanopharmaceutical is to move up from the bench to the bedside. WIREs Nanomed Nanobiotechnol 2017, 9:e1444. doi: 10.1002/wnan.1444 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Charles S Carfagna
- Molecular Materials Discovery Center, Macromolecular Innovations Institute, Blacksburg, VA, USA
| | - Marion Ehrich
- Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|
40
|
Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H, Kock H, Tentschert J, Tlili A, Schäffer A, Sips AJAM, Yokel RA, Luch A. Biokinetics of Nanomaterials: the Role of Biopersistence. NANOIMPACT 2017; 6:69-80. [PMID: 29057373 PMCID: PMC5645051 DOI: 10.1016/j.impact.2017.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
Collapse
Affiliation(s)
- Peter Laux
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Christian Riebeling
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andy M Booth
- SINTEF Materials and Chemistry, Trondheim N-7465, Norway
| | - Joseph D Brain
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Josephine Brunner
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Otto Creutzenberg
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Inhalation Toxicology, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | - Irina Estrela-Lopis
- Institute of Medical Physics & Biophysics, Leipzig University, Härtelstraße 16, 04107 Leipzig, Germany
| | - Thomas Gebel
- German Federal Institute for Occupational Safety and Health (BAuA), Friedrich-Henkel-Weg 1-25, 44149 Dortmund, Germany
| | - Gunnar Johanson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Heiko Kock
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of Inhalation Toxicology, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ahmed Tlili
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Adriënne J A M Sips
- National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
41
|
Naz S, Beach J, Heckert B, Tummala T, Pashchenko O, Banerjee T, Santra S. Cerium oxide nanoparticles: a ‘radical’ approach to neurodegenerative disease treatment. Nanomedicine (Lond) 2017; 12:545-553. [DOI: 10.2217/nnm-2016-0399] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite advances in understanding the factors that cause many neurodegenerative diseases (NDs), no current therapies have yielded significant results. Cerium oxide nanoparticles (CeONPs) have recently emerged as therapeutics for the treatment of NDs due to their antioxidant properties. This report summarizes the recent findings regarding CeONPs in treatment of various NDs, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke and amyotrophic lateral sclerosis. Interest in CeONPs as a potential nanomedicine for NDs has increased due to: their ability to alter signaling pathways, small diameter allowing passage through the blood–brain barrier and scavenging of reactive oxygen species. Due to these properties, CeONPs could eventually revolutionize existing treatments for NDs.
Collapse
Affiliation(s)
- Shuguftha Naz
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - James Beach
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Blaze Heckert
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Tanuja Tummala
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Oleksandra Pashchenko
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Tuhina Banerjee
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, KS 66762, USA
| |
Collapse
|
42
|
Graham UM, Jacobs G, Yokel RA, Davis BH, Dozier AK, Birch ME, Tseng MT, Oberdörster G, Elder A, DeLouise L. From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:71-100. [PMID: 28168666 PMCID: PMC6376403 DOI: 10.1007/978-3-319-47754-1_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and response are related in a non-linear manner. Nanoscale alterations are monitored using high-resolution imaging combined with in situ elemental analysis and emphasis is placed on the importance of the precision of characterization. The result is an in-depth understanding of the starting particles, the particle transformation in a biological environment, and the physiological response.
Collapse
Affiliation(s)
- Uschi M Graham
- University of Kentucky, Lexington, KY, USA.
- CDC/NIOSH DART, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine. Antioxidants (Basel) 2016; 5:E15. [PMID: 27196936 PMCID: PMC4931536 DOI: 10.3390/antiox5020015] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.
Collapse
Affiliation(s)
- Bryant C Nelson
- Material Measurement Laboratory-Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Monique E Johnson
- Material Measurement Laboratory-Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Marlon L Walker
- Material Measurement Laboratory-Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Kathryn R Riley
- Material Measurement Laboratory-Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Christopher M Sims
- Material Measurement Laboratory-Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
44
|
Abstract
Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs). Due to their unique chemical and physical properties, graphene and its derivatives have found important places in their respective application fields, yet they are being found to have cytotoxic and genotoxic effects too. Since the discovery of graphene, a number of researches are being conducted to find out the toxic potential of GFNs to different cell and animal models, finding their suitability for being used in new and varied innovative fields. This paper presents a systematic review of the research done on GFNs and gives an insight into the mode and action of these nanosized moieties. The paper also emphasizes on the recent and up-to-date developments in research on GFNs and their nanocomposites for their toxic effects.
Collapse
Affiliation(s)
- Zorawar Singh
- Department of Zoology, Khalsa College, Amritsar, Punjab, India
| |
Collapse
|
45
|
Makinose Y, Taniguchi T, Katsumata KI, Okada K, Matsushita N. Facet control of ceria nanocrystals synthesized by an oleate-modified hydrothermal method. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2015.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Song W, Soo Lee S, Savini M, Popp L, Colvin VL, Segatori L. Ceria nanoparticles stabilized by organic surface coatings activate the lysosome-autophagy system and enhance autophagic clearance. ACS NANO 2014; 8:10328-10342. [PMID: 25315655 DOI: 10.1021/nn505073u] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cerium oxide nanoparticles (nanoceria) are widely used in a variety of industrial applications including UV filters and catalysts. The expanding commercial scale production and use of ceria nanoparticles have inevitably increased the risk of release of nanoceria into the environment as well as the risk of human exposure. The use of nanoceria in biomedical applications is also being currently investigated because of its recently characterized antioxidative properties. In this study, we investigated the impact of ceria nanoparticles on the lysosome-autophagy system, the main catabolic pathway that is activated in mammalian cells upon internalization of exogenous material. We tested a battery of ceria nanoparticles functionalized with different types of biocompatible coatings (N-acetylglucosamine, polyethylene glycol and polyvinylpyrrolidone) expected to have minimal effect on lysosomal integrity and function. We found that ceria nanoparticles promote activation of the transcription factor EB, a master regulator of lysosomal function and autophagy, and induce upregulation of genes of the lysosome-autophagy system. We further show that the array of differently functionalized ceria nanoparticles tested in this study enhance autophagic clearance of proteolipid aggregates that accumulate as a result of inefficient function of the lysosome-autophagy system. This study provides a mechanistic understanding of the interaction of ceria nanoparticles with the lysosome-autophagy system and demonstrates that ceria nanoparticles are activators of autophagy and promote clearance of autophagic cargo. These results provide insights for the use of nanoceria in biomedical applications, including drug delivery. These findings will also inform the design of engineered nanoparticles with safe and precisely controlled impact on the environment and the design of nanotherapeutics for the treatment of diseases with defective autophagic function and accumulation of lysosomal storage material.
Collapse
Affiliation(s)
- Wensi Song
- Departments of †Chemical and Biomolecular Engineering, ‡Chemistry, §Biochemistry and Cell Biology, and ⊥Bioengineering, Rice University , Houston, Texas 77005, United States
| | | | | | | | | | | |
Collapse
|
47
|
Yokel RA, Hussain S, Garantziotis S, Demokritou P, Castranova V, Cassee FR. The Yin: An adverse health perspective of nanoceria: uptake, distribution, accumulation, and mechanisms of its toxicity. ENVIRONMENTAL SCIENCE. NANO 2014; 1:406-428. [PMID: 25243070 PMCID: PMC4167411 DOI: 10.1039/c4en00039k] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This critical review evolved from a SNO Special Workshop on Nanoceria panel presentation addressing the toxicological risks of nanoceria: accumulation, target organs, and issues of clearance; how exposure dose/concentration, exposure route, and experimental preparation/model influence the different reported effects of nanoceria; and how can safer by design concepts be applied to nanoceria? It focuses on the most relevant routes of human nanoceria exposure and uptake, disposition, persistence, and resultant adverse effects. The pulmonary, oral, dermal, and topical ocular exposure routes are addressed as well as the intravenous route, as the latter provides a reference for the pharmacokinetic fate of nanoceria once introduced into blood. Nanoceria reaching the blood is primarily distributed to mononuclear phagocytic system organs. Available data suggest nanoceria's distribution is not greatly affected by dose, shape, or dosing schedule. Significant attention has been paid to the inhalation exposure route. Nanoceria distribution from the lung to the rest of the body is less than 1% of the deposited dose, and from the gastrointestinal tract even less. Intracellular nanoceria and organ burdens persist for at least months, suggesting very slow clearance rates. The acute toxicity of nanoceria is very low. However, large/accumulated doses produce granuloma in the lung and liver, and fibrosis in the lung. Toxicity, including genotoxicity, increases with exposure time; the effects disappear slowly, possibly due to nanoceria's biopersistence. Nanoceria may exert toxicity through oxidative stress. Adverse effects seen at sites distal to exposure may be due to nanoceria translocation or released biomolecules. An example is elevated oxidative stress indicators in the brain, in the absence of appreciable brain nanoceria. Nanoceria may change its nature in biological environments and cause changes in biological molecules. Increased toxicity has been related to greater surface Ce3+, which becomes more relevant as particle size decreases and the ratio of surface area to volume increases. Given its biopersistence and resulting increased toxicity with time, there is a risk that long-term exposure to low nanoceria levels may eventually lead to adverse health effects. This critical review provides recommendations for research to resolve some of the many unknowns of nanoceria's fate and adverse effects.
Collapse
Affiliation(s)
- Robert A Yokel
- Pharmaceutical Sciences, University of Kentucky, US ; Graduate Center for Toxicology, University of Kentucky, US
| | - Salik Hussain
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, US
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, National Institutes of Health, US
| | | | - Vincent Castranova
- National Institute for Occupational Safety and Health, US ; West Virginia University School of Pharmacy, Morgantown, WV, US
| | - Flemming R Cassee
- Centre for Sustainability, Environmental & Health, National Institute for Public Health and the Environment, Bilthoven, the Netherlands ; Institute of Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|