1
|
Chen J, Vavricka CJ, Wei S, Nakazawa Y, Matsumoto Y, Chen H, Tang Y, Liang J, Chen J, Huang Y, Noguchi K, Hasunuma T, Guan H, Li J, Liao C, Han Q. 3,4-Dihydroxyphenylacetaldehyde synthase evolved an ordered structure to deliver oxygen to pyridoxal 5'-phosphate for cuticle assembly in the mosquito Aedes aegypti. Nat Commun 2025; 16:4486. [PMID: 40368886 PMCID: PMC12078590 DOI: 10.1038/s41467-025-59723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
3,4-Dihydroxyphenylacetaldehyde synthase (DHPAAS) catalyzes oxygen-dependent conversion of 3,4-dihydroxyphenylalanine (dopa) to 3,4-dihydroxyphenylacetaldehyde (DHPAA), a likely cross-linking agent precursor of the insect cuticle. In the current study, extensive in vivo experiments in Aedes aegypti show that DHPAAS is essential for abdominal integrity, egg development and cuticle structure formation. Solid-state 13C nuclear magnetic resonance analysis of the Ae. aegypti cuticle molecular structure shows chemical shifts of 115 to 145 ppm, suggesting the presence of catechols derived from DHPAA. The crystal structure of insect DHPAAS was then solved, revealing an active site that is divergent from that of the homologous enzyme dopa decarboxylase. In the DHPAAS crystal structure, stabilization of the flexible 320-350 region accompanies the positioning of the 350-360 loop relatively close to the catalytic Asn192 residue while the conserved active site residue Phe103 adopts an open conformation away from the active center; these distinct features participate in the formation of a specific hydrophobic tunnel which potentially facilitates delivery of oxygen to pyridoxal 5'-phosphate in the conversion of dopa to DHPAA.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Christopher J Vavricka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| | - Shuangshuang Wei
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yasumoto Nakazawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Yuri Matsumoto
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Huaqing Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
- Hainan Vocational University of Science and Technology, Haikou, Hainan, 571126, China
| | - Yu Tang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Jing Liang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Jiukai Chen
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Yaneng Huang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China
| | - Keiichi Noguchi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Huai Guan
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Jianyong Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Chenghong Liao
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China.
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan, 570228, China.
- Hainan International One Health Institute, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
2
|
Panda D, Maharana J, Sharma A, Wadavrao SB, Chowdhury A, Laskar MA, Modi MK, Choudhury MD. Identifying potent inhibitors for Mycobacterium tuberculosis MabA (FabG1). Mol Divers 2025:10.1007/s11030-025-11205-7. [PMID: 40358829 DOI: 10.1007/s11030-025-11205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
The surge in drug-resistant Mycobacterium tuberculosis (Mtb) strains poses formidable challenges for tuberculosis treatment, emphasizing the pressing need to explore novel therapeutic agents. Mycolic acids, essential for bacterial cell wall formation, are synthesized by two fatty acid synthase (FAS) systems: FAS-I and FAS-II. MabA, an enzyme in the FAS-II system, is vital in the second step of fatty acid biosynthesis and is responsible for the elongation of mycolic acids. In this study, we screened 1,792,771 compounds from seven different databases to screen prospective inhibitors of MabA, an emerging therapeutic target for Mtb. Using a combination of molecular docking, all-atom molecular dynamics simulations, and binding free energy calculations, we identified 48 novel lead compounds from five distinct classes that exhibit significant binding activity against MabA. Of these, 47 compounds demonstrated significantly higher MM/PBSA binding free energy than the only reported MabA inhibitor, compound 29. Altogether, our findings mark a significant advancement towards the rational design of novel therapeutics aimed at combating mycobacterial infections and overcoming drug resistance.
Collapse
Affiliation(s)
- Debashis Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
- DBT-APSCS&T Centre of Excellence for Bioresources and Sustainable Development, Kimin, Arunachal Pradesh, 791121, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Arjun Sharma
- Department of Chemistry and Biochemistry, Purdue University Fort Wayne, Fort Wayne, IN, 46805, USA
| | - Sachin B Wadavrao
- OBC Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, 500007, India
| | - Abhishek Chowdhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India
| | - Monjur Ahmed Laskar
- Bioinformatics and Computational Biology Centre, Assam University, Silchar, Assam, 788011, India
| | - Mahendra K Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Assam Down Town University, Guwahati, Assam, 781026, India
| | - Manabendra D Choudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, 788011, India.
- Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
3
|
Ji J, Lyman E. Lipid-GPCR interactions in an asymmetric plasma membrane model. Faraday Discuss 2025. [PMID: 40338606 PMCID: PMC12061045 DOI: 10.1039/d4fd00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 05/09/2025]
Abstract
We report simulations and analysis of the A2A adenosine receptor in its fully active state, in two different membrane environments. The first is a model in which the lipids are distributed asymmetrically according to recent lipidomics, simulations, and biophysical measurements, which together establish the distribution of lipids and cholesterol between the two leaflets. The second is the symmetrized version, which captures the membrane state following loss of lipid asymmetry. By comparing lipid-protein interactions between these two cases we show that solvation by phosphatidyl serine (PS) is insensitive to the loss of asymmetry-an abundance of positively charged sidechains around the cytoplasmic side of the receptor enriches solvation by PS in both membrane states. Cholesterol interactions are sensitive to the loss of asymmetry, with the abundance of cholesterol in the exoplasmic leaflet driving long-lived cholesterol interactions in the asymmetric state. However, one cholesterol interaction site on helix 6 is observed in both cases, and was also observed in earlier work with different membrane models, supporting its identification as a bona fide cholesterol binding site.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA.
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA.
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
4
|
Yu CWH, Fischer ES, Greener JG, Yang J, Zhang Z, Freund SMV, Barford D. Molecular mechanism of Mad2 conformational conversion promoted by the Mad2-interaction motif of Cdc20. Protein Sci 2025; 34:e70099. [PMID: 40143766 PMCID: PMC11947619 DOI: 10.1002/pro.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025]
Abstract
During mitosis, unattached kinetochores trigger the spindle assembly checkpoint by promoting the assembly of the mitotic checkpoint complex, a heterotetramer comprising Mad2, Cdc20, BubR1, and Bub3. Critical to this process is the kinetochore-mediated catalysis of an intrinsically slow conformational conversion of Mad2 from an open (O-Mad2) inactive state to a closed (C-Mad2) active state bound to Cdc20. These Mad2 conformational changes involve substantial remodeling of the N-terminal β1 strand and C-terminal β7/β8 hairpin. In vitro, the Mad2-interaction motif (MIM) of Cdc20 (Cdc20MIM) triggers the rapid conversion of O-Mad2 to C-Mad2, effectively removing the kinetic barrier for MCC assembly. How Cdc20MIM directly induces Mad2 conversion remains unclear. In this study, we demonstrate that the Cdc20MIM-binding site is inaccessible in O-Mad2. Time-resolved NMR and molecular dynamics simulations show how Mad2 conversion involves sequential conformational changes of flexible structural elements in O-Mad2, orchestrated by Cdc20MIM. Conversion is initiated by the β7/β8 hairpin of O-Mad2 transiently unfolding to expose a nascent Cdc20MIM-binding site. Engagement of Cdc20MIM to this site promotes the release of the β1 strand. We propose that initial conformational changes of the β7/β8 hairpin allow binding of Cdc20MIM to a transient intermediate state of Mad2, thereby lowering the kinetic barrier to Mad2 conversion.
Collapse
Affiliation(s)
- Conny W. H. Yu
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
EMBL European Bioinformatics InstituteWellcome Genome CampusHinxtonCB10 1SDUK
| | | | - Joe G. Greener
- MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
Monod BioSeattleWashingtonUS
| | - Jing Yang
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Ziguo Zhang
- MRC Laboratory of Molecular BiologyCambridgeUK
| | | | | |
Collapse
|
5
|
Luttens A, Cabeza de Vaca I, Sparring L, Brea J, Martínez AL, Kahlous NA, Radchenko DS, Moroz YS, Loza MI, Norinder U, Carlsson J. Rapid traversal of vast chemical space using machine learning-guided docking screens. NATURE COMPUTATIONAL SCIENCE 2025; 5:301-312. [PMID: 40082701 PMCID: PMC12021657 DOI: 10.1038/s43588-025-00777-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/04/2025] [Indexed: 03/16/2025]
Abstract
The accelerating growth of make-on-demand chemical libraries provides unprecedented opportunities to identify starting points for drug discovery with virtual screening. However, these multi-billion-scale libraries are challenging to screen, even for the fastest structure-based docking methods. Here we explore a strategy that combines machine learning and molecular docking to enable rapid virtual screening of databases containing billions of compounds. In our workflow, a classification algorithm is trained to identify top-scoring compounds based on molecular docking of 1 million compounds to the target protein. The conformal prediction framework is then used to make selections from the multi-billion-scale library, reducing the number of compounds to be scored by docking. The CatBoost classifier showed an optimal balance between speed and accuracy and was used to adapt the workflow for screens of ultralarge libraries. Application to a library of 3.5 billion compounds demonstrated that our protocol can reduce the computational cost of structure-based virtual screening by more than 1,000-fold. Experimental testing of predictions identified ligands of G protein-coupled receptors and demonstrated that our approach enables discovery of compounds with multi-target activity tailored for therapeutic effect.
Collapse
Affiliation(s)
- Andreas Luttens
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Israel Cabeza de Vaca
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - Leonard Sparring
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | - José Brea
- Innopharma Drug Screening and Pharmacogenomics Platform, BioFarma research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Leandro Martínez
- Innopharma Drug Screening and Pharmacogenomics Platform, BioFarma research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Nour Aldin Kahlous
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden
| | | | - Yurii S Moroz
- Enamine Ltd, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Chemspace LLC, Kyiv, Ukraine
| | - María Isabel Loza
- Innopharma Drug Screening and Pharmacogenomics Platform, BioFarma research group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Ulf Norinder
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Uppsala, Sweden.
| |
Collapse
|
6
|
Pousa S, Ramos-Bermúdez PE, Besada V, Cabrales-Rico A, Guirola Cruz O, Garay HE, Rodríguez-Mallón A, Zettl K, Wiśniewski JR, González LJ. Characterization by LC-MS/MS analysis of KLH vaccine conjugated with a tick antigen peptide. Analyst 2025; 150:1091-1102. [PMID: 39817672 DOI: 10.1039/d4an01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Keyhole limpet haemocyanins (KLH1 and KLH2) from Megathura crenulata, are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of Rhipicephalus sp. ticks using maleimide-thiol chemistry to obtain a broad-spectrum anti-tick vaccine. The resulting KLH1- and KLH2-Cys1pP0 conjugate vaccines were efficiently digested using the Multiple-Enzymatic Digestion Filter Aided Sample Preparation and analyzed by LC-MS/MS, enabling a sequence coverage of approximately 85% of both conjugates. Seventy-three and sixty-five percent of all lysine residues in KLH1 and KLH2, respectively, were partially conjugated to Cys1pP0. In the quaternary structures, we found no bias toward conjugation of lysine residues exposed to either the outer surface or the inner channel. The latter may not contribute to a protective humoral response because B cell entry into the inner channel is incompatible with the entrance hole diameter. The Cys-His thioether bonds in both KLHs were determined by identifying type 1 cross-linked peptides. New post-translational modifications undescribed for the KLH such as oxidized species, were identified. This is the first report of the identification of conjugation sites of two KLH-based vaccines. These results will help translate the KLH-based conjugates into well-characterized biotechnology products.
Collapse
Affiliation(s)
- Satomy Pousa
- Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
| | - Pablo E Ramos-Bermúdez
- Bioinformatics, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Vladimir Besada
- Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
| | - Ania Cabrales-Rico
- Purification and Analytic Group, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Osmany Guirola Cruz
- Bioinformatics, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Hilda Elisa Garay
- Laboratory of Peptide Synthesis, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Alina Rodríguez-Mallón
- Animal Biotechnology, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba
| | - Katharina Zettl
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Munich, Germany
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Munich, Germany
| | - Luis Javier González
- Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, 31 Avenue, Cubanacan, Playa, Havana, Cuba.
| |
Collapse
|
7
|
Lisacek F, Schnider B, Imberty A. Tools for structural lectinomics: From structures to lectomes. BBA ADVANCES 2025; 7:100154. [PMID: 40166736 PMCID: PMC11957679 DOI: 10.1016/j.bbadva.2025.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Lectins are ubiquitous proteins that interact with glycans in a variety of molecular processes and as such, also play a role in diseases, whether infectious, chronic or cancer-related. The systematic study of lectins is therefore essential, in particular for understanding cell-cell communication. Accumulated protein three-dimensional structural data in the past decades boosted advance in AI-based prediction and opened up new options to characterise lectins that are known to often be multimeric and multivalent. This article reviews the methods to obtain structures of lectins, the current data available for lectin 3D structures and their interactions, how this knowledge is used to classify these proteins and shows that the combination of an array of bioinformatics tools should make the prediction of binding specificity possible in a near future.
Collapse
Affiliation(s)
- Frédérique Lisacek
- SIB Swiss Institute of Bioinformatics CH-1227 Geneva, Switzerland
- Computer Science Department, UniGe CH-1227 Geneva, Switzerland
| | - Boris Schnider
- SIB Swiss Institute of Bioinformatics CH-1227 Geneva, Switzerland
- Computer Science Department, UniGe CH-1227 Geneva, Switzerland
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble, France
| |
Collapse
|
8
|
Demir H, Radauer C, Strobl MR, Scheurer S, Kinaciyan T, Bohle B. Cross-protection of allergen immunotherapy-induced antibodies to related allergens requires a high degree of structural identity. Allergy 2025; 80:785-794. [PMID: 39311416 PMCID: PMC11891415 DOI: 10.1111/all.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/20/2024] [Indexed: 03/11/2025]
Abstract
BACKGROUND In contrast to sublingual immunotherapy (SLIT) with recombinant Mal d 1 (rMal d 1-SLIT), SLIT with rBet v 1 (rBet v 1-SLIT) induced Mal d 1-cross-reactive antibodies without IgE-blocking activity. To elucidate whether the development of cross-protective IgG responses depends on the degree of molecular identity of allergens we compared the cross-reactivity, cross-blocking activity, and affinity of SLIT-induced antibodies with allergens of varying amino acid sequence identities to Bet v 1 and Mal d 1, namely Cor a 1.04 (hazelnut), Pru av 1 (cherry), and Dau c 1 (carrot). METHODS Allergen-specific antibodies were quantified by ELISA. IgE blocking was analyzed by inhibition of allergen-induced basophil activation and IgE-facilitated allergen-presentation to T cells. The affinity of SLIT-induced antibodies was studied by acidic dissociation ELISA and competition ELISA. Identical surface areas on allergens were predicted using an in-house designed script based on structural alignments. RESULTS rBet v 1-SLIT-induced IgG antibodies cross-reacted with all allergens except Dau c 1. rMal d 1-SLIT-induced antibodies predominantly cross-reacted with Pru av 1 and displayed significantly higher IgE blocking to Pru av 1 than rBet v 1-SLIT-induced antibodies. rMal d 1-SLIT-induced IgG1 showed higher affinity to Mal d 1 and Pru av 1. Surface analysis revealed 84% identical area on Mal d 1 and Pru av 1. Furthermore, we identified two surface areas potentially containing epitopes present on these allergens and absent on Bet v 1. CONCLUSION In summary, our findings suggest that a relatively high threshold of similarity is required to establish effective cross-blocking antibodies to related allergens. Apparently, the structural identity between Bet v 1 and Mal d 1 is below this threshold. Therefore, this study may explain why immunotherapy with birch pollen allergen often fails to reduce birch pollen-related apple allergy.
Collapse
Affiliation(s)
- Hilal Demir
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Maria R. Strobl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | | | - Tamar Kinaciyan
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Barbara Bohle
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
9
|
Wons E, Gucwa K, Lewandowska N, Wisniewska A, Kozlowski L, Mruk I. A transcription factor from the cryptic Escherichia coli Rac prophage controls both phage and host operons. Nucleic Acids Res 2025; 53:gkaf113. [PMID: 40037713 PMCID: PMC11879457 DOI: 10.1093/nar/gkaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025] Open
Abstract
Bacterial genomes are shaped by cryptic prophages, which are viral genomes integrated into the bacterial chromosome. Escherichia coli genomes have 10 prophages on average. Though usually inactive, prophage genes can profoundly impact host cell physiology. Among the phage genes in the E. coli chromosome, there are several putative transcription factors (TFs). These prophage TFs are predicted to control only phage promoters; however, their regulatory functions are not well characterized. The cohabitation of prophages and bacteria has led to conditions under which the majority of prophage genes are unexpressed, at least under normal growth conditions. We characterized a Rac prophage TF, YdaT, expression of which is normally inhibited by Rac TFs and, surprisingly, by the host global regulator OxyR. YdaT, when expressed, leads to a toxic phenotype manifested by drastic cell filamentation and cell death. We determined the binding sites and regulatory action for YdaT, finding two sites within the Rac locus, and one upstream of the host rcsA gene, which codes for the global regulator RcsA. The resulting increase in RcsA strongly impacts the bacterial RcsA/B regulon, which includes operons related to motility, capsule biosynthesis, colanic acid production, biofilm formation, and cell division. Our results provide novel insights into the host's genetic network, which appears to integrate YdaT in a complex manner, favoring its maintenance in the silenced state. The fact that the potentially toxic YdaT locus remains unmutated suggests its importance and potential benefits for the host, which may appear under stress conditions that are not yet known.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Natalia Lewandowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
10
|
Wang L, Wang Y, Zhang L, Zhao J, Wu S, Yang Z. Binding Mechanism of Inhibitors to CDK6 Deciphered by Multiple Independent Molecular Dynamics Simulations and Free Energy Predictions. Molecules 2025; 30:979. [PMID: 40076203 PMCID: PMC11901890 DOI: 10.3390/molecules30050979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) has been identified as a potential drug target in various types of cancers. In our current study, multiple independent molecular dynamics simulations of four separate replicates and computations of binding free energies are carried out to decipher the binding mechanisms of three inhibitors, LQQ, 6ZV, and 0RS, to CDK6. The dynamic analyses indicate that the presence of inhibitors influences conformational alterations, motion modes, and the internal dynamics of CDK6. Binding free energies computed using the molecular mechanics generalized Born surface area (MM-GBSA) approach with four GB models demonstrate that hydrophobic interactions play essential roles in inhibitor-CDK6 binding. The computations of residue-based free energy decomposition verify that the side chains of residues I19, K29, M54, P55, F98, H100, and L152 significantly contribute to inhibitor-CDK6 binding, revealing the critical interaction sites of inhibitors for CDK6. The information revealed in our current study can provide theoretical aids for development of potent inhibitors targeting the CDK family.
Collapse
Affiliation(s)
- Lifei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Yan Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Lulu Zhang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Shiliang Wu
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (L.W.); (Y.W.); (L.Z.); (J.Z.); (S.W.)
| | - Zhiyong Yang
- Department of Physics, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
11
|
Khandelwal NK, Gupta M, Kumar P, Balasubramani SG, Echeverria I, Stroud RM. Structural basis of disease mutation and substrate recognition by the human SLC2A9 transporter. Proc Natl Acad Sci U S A 2025; 122:e2418282122. [PMID: 39937868 PMCID: PMC11848319 DOI: 10.1073/pnas.2418282122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/10/2024] [Indexed: 02/14/2025] Open
Abstract
Urate provides ~50% of the reducing potential in human and primate plasma which is key to detoxifying reactive oxygen by-products of cellular metabolism. Urate is the endpoint of purine metabolism in primates, and its concentration in plasma is a balance between excretion from kidney and intestine, and subsequent reabsorption in and through cells of kidney proximal tubules to maintain a regulated concentration in plasma. SLC2A9 is the primary transporter that returns urate from the basolateral side of kidney tubule cells back to plasma. A shorter splice variant of SLC2A9 is directed to the apical surface where several transporters recapture urate from the tubule back into cells. Too high a concentration in plasma causes hyperuricemia, is linked to gout, and favors kidney stone formation. To understand the molecular basis of uric acid transport and the role of disease-causing mutations in SLC2A9, we determined structures of human SLC2A9 in its apo form, and its urate-bound form by cryo-EM, at resolution of 3.3 Å and 4.1 Å respectively. Both structures are captured in an inward open conformation. Using the inward-facing structure as a template we modeled the outward-facing conformation to understand the alternating access mechanism. Alternative salt bridge pairs on the cytoplasmic side suggest a mechanism that can balance the energetics of the inward open and outward open states. The location of disease-causing mutants suggests their role in impacting function. Our structures elucidate the molecular basis for urate selectivity and transport and provide a platform for future structure-based drug discovery aimed at reducing plasma urate levels in diseases of hyperuricemia and gout.
Collapse
Affiliation(s)
- Nitesh Kumar Khandelwal
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA94143
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA94143
| | - Paras Kumar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA94143
| | - Sree Ganesh Balasubramani
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA94158
| | - Ignacia Echeverria
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA94158
| | - Robert M. Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA94143
| |
Collapse
|
12
|
Zodda E, Pons M, DeMoya-Valenzuela N, Calvo-González C, Benítez-Rodríguez C, López-Ayllón BD, Hibot A, Zuin A, Crosas B, Cascante M, Montoya M, Pujol MD, Rubio-Martínez J, Thomson TM. Induction of the Inflammasome by the SARS-CoV-2 Accessory Protein ORF9b, Abrogated by Small-Molecule ORF9b Homodimerization Inhibitors. J Med Virol 2025; 97:e70145. [PMID: 39902616 DOI: 10.1002/jmv.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 02/05/2025]
Abstract
Viral accessory proteins play critical roles in viral escape from host innate immune responses and in viral inflammatory pathogenesis. Here we show that the SARS-CoV-2 accessory protein, ORF9b, but not other SARS-CoV-2 accessory proteins (ORF3a, ORF3b, ORF6, ORF7, ORF8, ORF9c, and ORF10), strongly activates inflammasome-dependent caspase-1 in A549 lung carcinoma cells and THP-1 monocyte-macrophage cells. Exposure to lipopolysaccharide (LPS) and ATP additively enhanced the activation of caspase-1 by ORF9b, suggesting that ORF9b and LPS follow parallel pathways in the activation of the inflammasome and caspase-1. Following rational in silico approaches, we have designed small molecules capable of inhibiting the homodimerization of ORF9b, which experimentally inhibited ORF9b-ORF9b homotypic interactions, caused mitochondrial eviction of ORF9b, inhibited ORF9b-induced activation of caspase-1 in A549 and THP-1 cells, cytokine release in THP-1 cells, and restored type I interferon (IFN-I) signaling suppressed by ORF9b in both cell models. These small molecules are first-in-class compounds targeting a viral accessory protein critical for viral-induced exacerbated inflammation and escape from innate immune responses, with the potential of mitigating the severe immunopathogenic damage induced by highly pathogenic coronaviruses and restoring antiviral innate immune responses curtailed by viral infection.
Collapse
Grants
- This work was funded by the Spanish National Research Council (CSIC, project numbers CSIC-COV19-006, CSIC-COV-19-201, CSIC-COV-19-117, SGL2103019, SGL2103015, 202020E079 and 202320E187 and LINCGLOBAL INCGL20009), the Catalan Agency for Management of University and Research Grants (AGAUR, 2020PANDE00048, 2021SGR1490, 2021SGR00350), the Spanish Ministry of Science (PID2021-123399OB-I00), the CSIC's Global Health Platform (PTI Salud Global), The Networked Center for Biomedical Research in Liver and Digestive Diseases (CIBER-EHD), the Spanish Structures and Excellence María de Maeztu program (CEX2021-001202-M), the European Commission-Next Generation EU (Regulation EU 2020/2094), and INDICASAT-AIP.
Collapse
Affiliation(s)
- Erika Zodda
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Mònica Pons
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Natàlia DeMoya-Valenzuela
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Theoretical and Computational Chemistry Research Institute (IQTCUB), Barcelona, Spain
| | - Cristina Calvo-González
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Cristina Benítez-Rodríguez
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Blanca D López-Ayllón
- Viral immunology Lab, Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Achraf Hibot
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Alice Zuin
- Regulation of the Proteasome Laboratory, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Bernat Crosas
- Regulation of the Proteasome Laboratory, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
| | - María Montoya
- Viral immunology Lab, Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - María D Pujol
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jaime Rubio-Martínez
- Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona, Spain
- Theoretical and Computational Chemistry Research Institute (IQTCUB), Barcelona, Spain
| | - Timothy M Thomson
- Laboratory of Cell Signaling and Cancer, Barcelona Institute for Molecular Biology, Spanish National Scientific Research Council (IBMB-CSIC), Barcelona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBER-EHD), Madrid, Spain
- High-Altitude Research Institute (IIA), Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), Panama City, Panama
| |
Collapse
|
13
|
Wang LL, Karim SU, Hand A, Brunkhorst R, Petersen M, Altman S, Liu Y, Zhang L, Bai F, Xiang SH. Identification of Benzothiophene-Derived Inhibitors of Flaviviruses by Targeting RNA-Dependent RNA Polymerase. Viruses 2025; 17:145. [PMID: 40006900 PMCID: PMC11861172 DOI: 10.3390/v17020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Flaviviruses such as Dengue, West Nile, and Zika viruses are mosquito-borne RNA viruses that can cause serious diseases in humans. To develop effective drugs for treating these viruses' infections, we create a new approach for developing common or shared drugs that may work for several different viral species of flaviviruses. It is based on the conserved RNA-dependent RNA polymerase (RdRp), which is the key enzyme for viral replication. We built up a common structure of RdRps (POLcon) from their consensus sequence. A conserved Triple-D structural motif was identified at the active site of POLcon that has been used for virtual compound screening. We have identified three inhibitors that have potent activities against Dengue, West Nile, and Zika viruses. All these three inhibitors are Benzothiophene derivatives. This is the first report of Benzothiophene-derived compounds as inhibitors for flaviviruses. Furthermore, our approach has provided a proof-of-concept that it is feasible to identify shared drugs for several different viral species of flaviviruses.
Collapse
Affiliation(s)
- Leah Liu Wang
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Aidan Hand
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ryan Brunkhorst
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mackenna Petersen
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Altman
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yi Liu
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Luwen Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
14
|
Arun D, Rath SL. Structural analysis of the impact of germline mutations of p16 in melanoma prone families. Mol Divers 2025:10.1007/s11030-024-11089-z. [PMID: 39821174 DOI: 10.1007/s11030-024-11089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Cyclin-dependent kinases (CDKs), play essential roles in cell cycle progression. CDK activity is controlled through phosphorylation and inhibition by CDK inhibitors, such as p16. Mutations in p16 can lead to diseases such as cancer. This study examines a series of p16 mutants and their molecular interactions with CDK4 using modelling, molecular dynamics simulations, and docking studies. Despite no significant structural changes in p16 due to mutation, the binding affinity was found to be affected, correlating with conservation scales. Simulations revealed that specific mutations, such as G23D, P114S, and A60V resulted in loss of binding to CDK4, while others like R24Q and G67R showed partial loss. Surface electrostatics emphasised the significance of a positive patch on the binding surface of p16 that faces the CDK4 which was directly impacted due to mutations. Additionally, the partial binding mutants were found to have a lower stability compare to the Wildtype p16/CDK4 complex through the free energy landscape calculations. These findings provide useful insights into the molecular mechanisms by which p16 mutations influence CDK4 binding, potentially informing therapeutic strategies.
Collapse
Affiliation(s)
- D Arun
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Soumya Lipsa Rath
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India.
| |
Collapse
|
15
|
Tommasin L, Carrer A, Nata FB, Frigo E, Fogolari F, Lippe G, Carraro M, Bernardi P. Adenine nucleotide translocator and ATP synthase cooperate in mediating the mitochondrial permeability transition. J Physiol 2025. [PMID: 39808538 DOI: 10.1113/jp287147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
The permeability transition (PT) is a permeability increase of the mitochondrial inner membrane causing mitochondrial swelling in response to matrix Ca2+. The PT is mediated by regulated channel(s), the PT pore(s) (PTP), which can be generated by at least two components, adenine nucleotide translocator (ANT) and ATP synthase. Whether these provide independent permeation pathways remains to be established. Here, we assessed the contribution of ANT to the PT based on the effects of the selective ANT inhibitors atractylate (ATR) and bongkrekate (BKA), which trigger and inhibit channel formation by ANT, respectively. BKA partially inhibited Ca2+-dependent PT and did not prevent the inducing effect of phenylarsine oxide, which was still present in mouse embryonic fibroblasts deleted for all ANT isoforms. The contribution of ANT to the PT emerged at pH 6.5 (a condition that inhibits ATP synthase channel opening) in the presence of ATR, which triggered mitochondrial swelling and elicited currents in patch-clamped mitoplasts. Unexpectedly, ANT-dependent PT at pH 6.5 could also be stimulated by benzodiazepine-423 [a selective ligand of the oligomycin sensitivity conferral protein (OSCP) subunit of ATP synthase], suggesting that the ANT channel is regulated by the peripheral stalk of ATP synthase. In keeping with docking simulations, ANT could be co-immunoprecipitated with ATP synthase subunits c and g, and oligomycin (which binds adjacent c subunits) decreased the association of ANT with subunit c. These results reveal a close cooperation between ANT and ATP synthase in the PT and open new perspectives in the study of this process. KEY POINTS: We have assessed the relative role of adenine nucleotide translocator (ANT) and ATP synthase in generating the mitochondrial permeability transition (PT). At pH 7.4, bongkrekate had little effect on Ca2+-dependent PT, and did not prevent the inducing effect of phenylarsine oxide, which was still present in mouse embryonic fibroblasts deleted for all ANT isoforms. The contribution of ANT emerged at pH 6.5 (which inhibits ATP synthase channel opening) in the presence of atractylate, which triggered mitochondrial swelling and elicited currents in patch-clamped mitoplasts. Benzodiazepine-423, a selective ligand of the oligomycin sensitivity conferral protein subunit of ATP synthase, stimulated ANT-dependent PT at pH 6.5, suggesting that the ANT channel is regulated by the peripheral stalk of ATP synthase. ANT could be co-immunoprecipitated with ATP synthase subunits c and g; oligomycin, which binds adjacent c subunits, decreased the association with subunit c, in keeping with docking simulations.
Collapse
Affiliation(s)
- Ludovica Tommasin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Carrer
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Elena Frigo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federico Fogolari
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Medicine, University of Udine, Udine, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Tettey-Matey A, Donati V, Cimmino C, Di Pietro C, Buratto D, Panarelli M, Reale A, Calistri A, Fornaini MV, Zhou R, Yang G, Zonta F, Marazziti D, Mammano F. A fully human IgG1 antibody targeting connexin 32 extracellular domain blocks CMTX1 hemichannel dysfunction in an in vitro model. Cell Commun Signal 2024; 22:589. [PMID: 39639332 PMCID: PMC11619691 DOI: 10.1186/s12964-024-01969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Connexins (Cxs) are fundamental in cell-cell communication, functioning as gap junction channels (GJCs) that facilitate solute exchange between adjacent cells and as hemichannels (HCs) that mediate solute exchange between the cytoplasm and the extracellular environment. Mutations in the GJB1 gene, which encodes Cx32, lead to X-linked Charcot-Marie-Tooth type 1 (CMTX1), a rare hereditary demyelinating disorder of the peripheral nervous system (PNS) without an effective cure or treatment. In Schwann cells, Cx32 HCs are thought to play a role in myelination by enhancing intracellular and intercellular Ca2+ signaling, which is crucial for proper PNS myelination. Single-point mutations (p.S85C, p.D178Y, p.F235C) generate pathological Cx32 HCs characterized by increased permeability ("leaky") or excessive activity ("hyperactive").We investigated the effects of abEC1.1-hIgG1, a fully human immunoglobulin G1 (hIgG1) monoclonal antibody, on wild-type (WT) and mutant Cx32D178Y HCs. Using HeLa DH cells conditionally co-expressing Cx and a genetically encoded Ca2+ biosensor (GCaMP6s), we demonstrated that mutant HCs facilitated 58% greater Ca2+ uptake in response to elevated extracellular Ca2+ concentrations ([Ca2+]ex) compared to WT HCs. abEC1.1-hIgG1 dose-dependently inhibited Ca2+ uptake, achieving a 50% inhibitory concentration (EC50) of ~ 10 nM for WT HCs and ~ 80 nM for mutant HCs. Additionally, the antibody suppressed DAPI uptake and ATP release. An atomistic computational model revealed that serine 56 (S56) of the antibody interacts with aspartate 178 (D178) of WT Cx32 HCs, contributing to binding affinity. Despite the p.D178Y mutation weakening this interaction, the antibody maintained binding to the mutant HC epitope at sub-micromolar concentrations.In conclusion, our study shows that abEC1.1-hIgG1 effectively inhibits both WT and mutant Cx32 HCs, highlighting its potential as a therapeutic approach for CMTX1. These findings expand the antibody's applicability for treating diseases associated with Cx HCs and inform the rational design of next-generation antibodies with enhanced affinity and efficacy against mutant HCs.
Collapse
Affiliation(s)
- Abraham Tettey-Matey
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Present Address, CNR Institute of Biophysics, Genoa, 16149, Italy
| | - Viola Donati
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Chiara Cimmino
- CNR Institute of Endocrinology and Experimental Oncology "G. Salvatore", Naples, 80131, Italy
- Present Address: Interdisciplinary Research Centre On Biomaterials, University of Naples Federico II, Naples, 80125, Italy
| | - Chiara Di Pietro
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy
| | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | | | - Alberto Reale
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua, 35131, Italy
| | | | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Francesco Zonta
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China.
| | - Daniela Marazziti
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, Monterotondo, Rome, 00015, Italy.
- Department of Physics and Astronomy "G. Galilei", University of Padua, Padua, 35131, Italy.
| |
Collapse
|
17
|
Mbogo I, Kawano C, Nakamura R, Tsuchiya Y, Villar-Briones A, Hirao Y, Yasuoka Y, Hayakawa E, Tomii K, Watanabe H. A transphyletic study of metazoan β-catenin protein complexes. ZOOLOGICAL LETTERS 2024; 10:20. [PMID: 39623505 PMCID: PMC11613877 DOI: 10.1186/s40851-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024]
Abstract
Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.
Collapse
Affiliation(s)
- Ivan Mbogo
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Sysmex Corporation, Ltd. 1-5-1, Chuo-ku, Kobe, 651-0073, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Project Planning and Implementation Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, 820-8502, Fukuoka, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
18
|
Yang Z, Li H, Luo M, Yi H, Han X, Liu E, Yao S, Hu Z. Identification of c.146G > A mutation in a Fabry patient and its correction by customized Cas9 base editors in vitro. Int J Biol Macromol 2024; 282:136922. [PMID: 39490876 DOI: 10.1016/j.ijbiomac.2024.136922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to reduced α-galactosidase (α-Gal A) activity. Current treatments, like enzyme replacement, have limitations affecting efficacy and patient outcomes. CRISPR/Cas9 genome editing tools may offer the potential to develop therapeutic strategy via correcting GLA mutations. In this study, we diagnosed a female FD patient with a missense mutation in exon 1 of the GLA gene (c.146G > A, p.R49H). Bioinformatic predictions and biochemical analyses in GLA-knockout cells revealed that this mutation significantly reduced α-Gal A stability and activity, confirming its pathogenicity. To correct this, we used adenine base editing. The mutation, along with a nearby bystander A, was efficiently edited by the traditional N-terminal adenine base editor. To avoid unwanted bystander editing, we developed a series of domain-inlaid base editors with the aim of narrowing editing window. The most effective variant, with deaminase inserted between the 947th and 948th residues of the RUVC3 domain, was further optimized by modifying linker rigidity. These adjustments shifted the editing window, eliminating bystander editing. Our findings clarify the pathogenic nature of a novel GLA mutation and demonstrate the potential of a customized base editor for therapeutic application in FD.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mei Luo
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Haonan Yi
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Xinyu Han
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Enze Liu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China.
| | - Zhangxue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
19
|
Pawar SV, Banini WSK, Shamsuddeen MM, Jumah TA, Dolling NNO, Tiamiyu A, Awe OI. Prostruc: an open-source tool for 3D structure prediction using homology modeling. Front Chem 2024; 12:1509407. [PMID: 39717221 PMCID: PMC11664737 DOI: 10.3389/fchem.2024.1509407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Homology modeling is a widely used computational technique for predicting the three-dimensional (3D) structures of proteins based on known templates,evolutionary relationships to provide structural insights critical for understanding protein function, interactions, and potential therapeutic targets. However, existing tools often require significant expertise and computational resources, presenting a barrier for many researchers. Methods Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. Integrating Biopython for sequence alignment, BLAST for template identification, and ProMod3 for structure generation, Prostruc streamlines complex workflows into a user-friendly interface. The tool enables researchers to input protein sequences, identify homologous templates from databases such as the Protein Data Bank (PDB), and generate high-quality 3D structures with minimal computational expertise. Prostruc implements a two-stage vSquarealidation process: first, it uses TM-align for structural comparison, assessing Root Mean Deviations (RMSD) and TM scores against reference models. Second, it evaluates model quality via QMEANDisCo to ensure high accuracy. Results The top five models are selected based on these metrics and provided to the user. Prostruc stands out by offering scalability, flexibility, and ease of use. It is accessible via a cloud-based web interface or as a Python package for local use, ensuring adaptability across research environments. Benchmarking against existing tools like SWISS-MODEL,I-TASSER and Phyre2 demonstrates Prostruc's competitive performance in terms of structural accuracy and job runtime, while its open-source nature encourages community-driven innovation. Discussion Prostruc is positioned as a significant advancement in homology modeling, making high-quality protein structure prediction more accessible to the scientific community.
Collapse
Affiliation(s)
- Shivani V. Pawar
- Department of Biotechnology and Bioinformatics, Deogiri College, Auranagabad, Maharashtra, India
| | - Wilson Sena Kwaku Banini
- Department of Theoretical and Applied Biology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Musa Muhammad Shamsuddeen
- Department of Public Health, Faculty of Health Sciences, National Open University of Nigeria, Abuja, Nigeria
| | - Toheeb A. Jumah
- School of Collective Intelligence, University Mohammed VI Polytechnic, Rabat, Morocco
| | - Nigel N. O. Dolling
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Abdulwasiu Tiamiyu
- School of Collective Intelligence, University Mohammed VI Polytechnic, Rabat, Morocco
| | - Olaitan I. Awe
- African Society for Bioinformatics and Computational Biology, Cape Town, South Africa
| |
Collapse
|
20
|
Cioffi M, Sharma T, Motsa BB, Bhattarai N, Gerstman BS, Stahelin RV, Chapagain PP. Ebola Virus Matrix Protein VP40 Single Mutations G198R and G201R Significantly Enhance Plasma Membrane Localization. J Phys Chem B 2024; 128:11335-11344. [PMID: 39326870 PMCID: PMC11586905 DOI: 10.1021/acs.jpcb.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Viral proteins frequently undergo single or multiple amino acid mutations during replication, which can significantly alter their functionality. The Ebola virus matrix protein VP40 is multifunctional but primarily responsible for creating the viral envelope by binding to the inner leaflet of the host cell plasma membrane (PM). Changes to the VP40 surface cationic charge via mutations can influence PM interactions, resulting in altered viral assembly and budding. A recent mutagenesis study evaluated the effects of several mutations and found that mutations G198R and G201R enhanced VP40 assembly at the PM and virus-like particle budding. These two mutations lie in the loop region of the C-terminal domain (CTD), which directly interacts with the PM. To understand the role of these mutations in PM localization at the molecular level, we performed both all-atom and coarse-grained molecular dynamics simulations using a dimer-dimer configuration of VP40, which contains the CTD-CTD interface. Our studies indicate that the location of mutations on the outer surface of the CTD regions can lead to changes in membrane binding orientation and degree of membrane penetration. Direct PI(4,5)P2 interactions with the mutated residues seem to further stabilize and pull VP40 into the PM, thereby enhancing interactions with numerous amino acids that were otherwise infrequently or completely inaccessible. These multiscale computational studies provide new insights at the atomic and molecular level as to how VP40-PM interactions are altered through single amino acid mutations. Given the high case fatality rates associated with Ebola virus disease in humans, it is essential to explore the mechanisms of viral assembly in the presence of mutations to mitigate the severity of the disease and understand the potential of future outbreaks.
Collapse
Affiliation(s)
- Michael
D. Cioffi
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Tej Sharma
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Balindile B. Motsa
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nisha Bhattarai
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Bernard S. Gerstman
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| | - Robert V. Stahelin
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- The
Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Prem P. Chapagain
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
| |
Collapse
|
21
|
Kishikawa JI, Nishida Y, Nakano A, Kato T, Mitsuoka K, Okazaki KI, Yokoyama K. Rotary mechanism of the prokaryotic V o motor driven by proton motive force. Nat Commun 2024; 15:9883. [PMID: 39567487 PMCID: PMC11579504 DOI: 10.1038/s41467-024-53504-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.8 Å cryo-EM structure of the Vo domain of V/A-ATPase from Thermus thermophilus, revealing precise orientations of glutamate (Glu) residues in the c12-ring. Three Glu residues face a water channel, with one forming a salt bridge with the Arginine in the stator (a/Arg). Molecular dynamics (MD) simulations show that protonation of specific Glu residues triggers unidirectional Brownian motion of the c12-ring towards ATP synthesis. When the key Glu remains unprotonated, the salt bridge persists, blocking rotation. These findings suggest that asymmetry in the protonation of c/Glu residues biases c12-ring movement, facilitating rotation and ATP synthesis.
Collapse
Affiliation(s)
- Jun-Ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki-Hashiuecho, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yui Nishida
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Atsuki Nakano
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, 567-0047, Japan
| | - Kei-Ichi Okazaki
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi, 444-8585, Japan.
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
22
|
Suteau V, Zuzic L, Hansen DH, Kjølbye LR, Sibilia P, Gourdin L, Briet C, Thomas M, Bourdeaud E, Tricoire-Leignel H, Schiøtt B, Carato P, Rodien P, Munier M. Effects and risk assessment of halogenated bisphenol A derivatives on human follicle stimulating hormone receptor: An interdisciplinary study. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135619. [PMID: 39217935 DOI: 10.1016/j.jhazmat.2024.135619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Halogenated bisphenol A (BPA) derivatives are produced during disinfection treatment of drinking water or are synthesized as flame retardants (TCBPA or TBBPA). BPA is considered as an endocrine disruptor especially on human follicle-stimulating hormone receptor (FSHR). Using a global experimental approach, we assessed the effect of halogenated BPA derivatives on FSHR activity and estimated the risk of halogenated BPA derivatives to the reproductive health of exposed populations. For the first time, we show that FSHR binds halogenated BPA derivatives, at 10 nM, a concentration lower than those requires to modulate the activity of nuclear receptors and/or steroidogenesis enzymes. Indeed, bioluminescence assays show that FSHR response is lowered up to 42.36 % in the presence of BPA, up to 32.79 % by chlorinated BPA derivatives and up to 27.04 % by brominated BPA derivatives, at non-cytotoxic concentrations and without modification of basal receptor activity. Moreover, molecular docking, molecular dynamics simulations, and site-directed mutagenesis experiments demonstrate that the halogenated BPA derivatives bind the FSHR transmembrane domain reducing the signal transduction efficiency which lowers the cellular cAMP production and in fine disrupts the physiological effect of FSH. The potential reproductive health risk of exposed individuals was estimated by comparing urinary concentrations (through a collection of human biomonitoring data) with the lowest effective concentrations derived from in vitro cell assays. Our results suggest a potentially high concern for the risk of inhibition of the FSHR pathway. This global approach based on FSHR activity could enable the rapid characterization of the toxicity of halogenated BPA derivatives (or other compounds) and assess the associated risk of exposure to these halogenated BPA derivatives.
Collapse
Affiliation(s)
- Valentine Suteau
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France
| | - Lorena Zuzic
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Paul Sibilia
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France
| | - Louis Gourdin
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Claire Briet
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Mickaël Thomas
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | - Eric Bourdeaud
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | | | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Pascal Carato
- Poitiers University, Ecology & Biology of Interactions Laboratory, CNRS UMR 7285, INSERM CIC1402, IHES Research Group, Poitiers, France
| | - Patrice Rodien
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France
| | - Mathilde Munier
- Angers University, MITOVASC, CarMe Team, CNRS UMR 6015, INSERM U1083, Angers, France; Department of Endocrinology, Diabetology and Nutrition, University Hospital Angers, Angers, France; Centre de Référence des Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, University Hospital Angers, Angers, France.
| |
Collapse
|
23
|
Fuchs RM, Reed JR, Connick JP, Paloncýová M, Šrejber M, Čechová P, Otyepka M, Eyer MK, Backes WL. Identification of the N-terminal residues responsible for the differential microdomain localization of CYP1A1 and CYP1A2. J Biol Chem 2024; 300:107891. [PMID: 39447873 PMCID: PMC11603000 DOI: 10.1016/j.jbc.2024.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The endoplasmic reticulum is organized into ordered regions enriched in cholesterol and sphingomyelin, and disordered microdomains characterized by more fluidity. Rabbit CYP1A1 and CYP1A2 localize into disordered and ordered microdomains, respectively. Previously, a CYP1A2 chimera containing the first 109 amino acids of CYP1A1 showed altered microdomain localization. The goal of this study was to identify specific residues responsible for CYP1A microdomain localization. Thus, CYP1A2 chimeras containing substitutions from homologous regions of CYP1A1 were expressed in HEK 293T/17 cells, and the localization was examined after solubilization with Brij 98. A CYP1A2 mutant with the three amino acids from CYP1A1 (VAG) at positions 27 to 29 of CYP1A2 was generated that showed a distribution pattern similar to those of CYP1A1/1A2 chimeras containing both the first 109 amino acids and the first 31 amino acids of CYP1A1 followed by remaining amino acids of CYP1A2. Similarly, the reciprocal substitution of three amino acids from CYP1A2 (AVR) into CYP1A1 resulted in a partial redistribution of the chimera into ordered microdomains. Molecular dynamic simulations indicate that the positive charges of the CYP1A1 and CYP1A2 linker regions between the N termini and catalytic domains resulted in different depths of immersion of the N termini in the membrane. The overlap of the distribution of positively charged residues in CYP1A2 (AVR) and negatively charged phospholipids was higher in the ordered than in the disordered microdomain. These findings identify three residues in the CYP1AN terminus as a novel microdomain-targeting motif of the P450s and provide a mechanistic explanation for the differential microdomain localization of CYP1A.
Collapse
Affiliation(s)
- Robert M Fuchs
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - James R Reed
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - J Patrick Connick
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Šrejber
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Petra Čechová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic; IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic
| | - Marilyn K Eyer
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA
| | - Wayne L Backes
- Department of Pharmacology and Experimental Therapeutics, and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center - New Orleans, New Orleans, Louisiana, USA.
| |
Collapse
|
24
|
Maguire SH, Mercer SR, Wiebe HA. Origin of Pressure Resistance in Deep-Sea Lactate Dehydrogenase. J Phys Chem B 2024; 128:10604-10614. [PMID: 39437425 DOI: 10.1021/acs.jpcb.4c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
High hydrostatic pressure has a dramatic effect on biochemical systems, as exposure to high pressure can result in structural perturbations ranging from dissociation of protein complexes to complete denaturation. The deep ocean presents an interesting paradox since it is teeming with life despite the high-pressure environment. This is due to evolutionary adaptations in deep-sea organisms, such as amino acid substitutions in their proteins, which aid in resisting the denaturing effects of pressure. However, the physicochemical mechanism by which these substitutions can induce pressure resistance remains unknown. Here, we use molecular dynamics simulations to study pressure-adapted lactate dehydrogenase from the deep-sea abyssal grenadier (Coryphaenoides armatus), in comparison with that of the shallow-water Atlantic cod (Gadus morhua). We examined structural, thermodynamic and volumetric contributions to pressure resistance, and report that the amino acid substitutions result in a decrease in volume of the deep-sea protein accompanied by a decrease in thermodynamic stability of the native protein. Our simulations at high pressure also suggest that differences in compressibility may be important for understanding pressure resistance in deep-sea proteins.
Collapse
Affiliation(s)
- Simon H Maguire
- Department of Chemistry, Vancouver Island University, Nanaimo V9R 5S5, Canada
| | - Savannah R Mercer
- Department of Chemistry, Vancouver Island University, Nanaimo V9R 5S5, Canada
| | - Heather A Wiebe
- Department of Chemistry, Vancouver Island University, Nanaimo V9R 5S5, Canada
- Department of Chemistry, University of Victoria, Victoria V8P 5C2, Canada
- Department of Chemistry, University of the Fraser Valley, Abbotsford V2S 7M7, Canada
| |
Collapse
|
25
|
Childers MC, Regnier M. Dynamics of the Pre-Powerstroke Myosin Lever Arm and the Effects of Omecamtiv Mecarbil. Int J Mol Sci 2024; 25:10425. [PMID: 39408754 PMCID: PMC11477208 DOI: 10.3390/ijms251910425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The binding of small molecules to sarcomeric myosin can elicit powerful effects on the chemomechanical cycle, making them effective therapeutics in the clinic and research tools at the benchtop. However, these myotropes can have complex effects that act on different phases of the crossbridge cycle and which depend on structural, dynamic, and environmental variables. While small molecule binding sites have been identified crystallographically and their effects on contraction studied extensively, small molecule-induced dynamic changes that link structure-function are less studied. Here, we use molecular dynamics simulations to explore how omecamtiv mecarbil (OM), a cardiac myosin-specific myotrope, alters the coordinated dynamics of the lever arm and the motor domain in the pre-powerstroke state. We show that the lever arm adopts a range of orientations and find that different lever arm orientations are accompanied by changes in the hydrogen bonding patterns near the converter. We find that the binding of OM to myosin reduces the conformational heterogeneity of the lever arm orientation and also adjusts the average lever arm orientation. Finally, we map out the distinct conformations and ligand-protein interactions adopted by OM. These results uncover some structural factors that govern the motor domain-tail orientations and the mechanisms by which OM primes the pre-powerstroke myosin heads.
Collapse
Affiliation(s)
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
26
|
Andrade-Pavón D, Gómez-García O, Villa-Tanaca L. Review and Current Perspectives on DNA Topoisomerase I and II Enzymes of Fungi as Study Models for the Development of New Antifungal Drugs. J Fungi (Basel) 2024; 10:629. [PMID: 39330389 PMCID: PMC11432948 DOI: 10.3390/jof10090629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Fungal infections represent a growing public health problem, mainly stemming from two phenomena. Firstly, certain diseases (e.g., AIDS and COVID-19) have emerged that weaken the immune system, leaving patients susceptible to opportunistic pathogens. Secondly, an increasing number of pathogenic fungi are developing multi-drug resistance. Consequently, there is a need for new antifungal drugs with novel therapeutic targets, such as type I and II DNA topoisomerase enzymes of fungal organisms. This contribution summarizes the available information in the literature on the biology, topology, structural characteristics, and genes of topoisomerase (Topo) I and II enzymes in humans, two other mammals, and 29 fungi (including Basidiomycetes and Ascomycetes). The evidence of these enzymes as alternative targets for antifungal therapy is presented, as is a broad spectrum of Topo I and II inhibitors. Research has revealed the genes responsible for encoding the Topo I and II enzymes of fungal organisms and the amino acid residues and nucleotide residues at the active sites of the enzymes that are involved in the binding mode of topoisomerase inhibitors. Such residues are highly conserved. According to molecular docking studies, antifungal Topo I and II inhibitors have good affinity for the active site of the respective enzymes. The evidence presented in the current review supports the proposal of the suitability of Topo I and II enzymes as molecular targets for new antifungal drugs, which may be used in the future in combined therapies for the treatment of infections caused by fungal organisms.
Collapse
Affiliation(s)
- Dulce Andrade-Pavón
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Omar Gómez-García
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala. Col. Sto. Tomás, Ciudad de México 11340, Mexico;
| |
Collapse
|
27
|
Li M, Lan X, Shi X, Zhu C, Lu X, Pu J, Lu S, Zhang J. Delineating the stepwise millisecond allosteric activation mechanism of the class C GPCR dimer mGlu5. Nat Commun 2024; 15:7519. [PMID: 39209876 PMCID: PMC11362167 DOI: 10.1038/s41467-024-51999-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Two-thirds of signaling hormones and one-third of approved drugs exert their effects by binding and modulating the G protein-coupled receptors (GPCRs) activation. While the activation mechanism for monomeric GPCRs has been well-established, little is known about GPCRs in dimeric form. Here, by combining transition pathway generation, extensive atomistic simulation-based Markov state models, and experimental signaling assays, we reveal an asymmetric, stepwise millisecond allosteric activation mechanism for the metabotropic glutamate receptor subtype 5 receptor (mGlu5), an obligate dimeric class C GPCR. The dynamic picture is presented that agonist binding induces dimeric ectodomains compaction, amplified by the precise association of the cysteine-rich domains, ultimately loosely bringing the intracellular 7-transmembrane (7TM) domains into proximity and establishing an asymmetric TM6-TM6 interface. The active inter-domain interface enhances their intra-domain flexibility, triggering the activation of micro-switches crucial for downstream signal transduction. Furthermore, we show that the positive allosteric modulator stabilizes both the active inter-domain 7TM interface and an open, extended intra-domain ICL2 conformation. This stabilization leads to the formation of a pseudo-cavity composed of the ICL2, ICL3, TM3, and C-terminus, which facilitates G protein coordination. Our strategy may be generalizable for characterizing millisecond events in other allosteric systems.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinchao Shi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xun Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
28
|
Zhang W, Liu K, Kong F, Ye T, Wang T. Multiple Functions of Compatible Solute Ectoine and Strategies for Constructing Overproducers for Biobased Production. Mol Biotechnol 2024; 66:1772-1785. [PMID: 37488320 DOI: 10.1007/s12033-023-00827-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes initially found in the hyperhalophilic bacterium Ectothiorhodospira halochloris, which inhabits the desert in Egypt. The habitat of ectoine producers implies the primary function of ectoine as a cytoprotectant against harsh conditions such as high salinity, drought, and high radiation. More extensive and in-depth studies have revealed the multiple functions of ectoine in its native producer bacterial cells and other types of cells and its biomolecular components (such as proteins and DNA) as a general protective agent. Its chemical properties as a bio-based amino acid derivative make it attractive for basic scientific research and related industries, such as the food/agricultural industry, cosmetic manufacturing, biologics, and therapeutic agent preparation. This article first discusses the functions and applications of ectoine and 5-hydroxyectoine. Subsequently, more emphasis was placed on advances in bio-based ectoine and/or 5-hydroxyectoine production. Strategies for developing more robust cell factories for highly efficient ectoine and/or 5-hydroxyectoine production are further discussed. We hope this review will provide a valuable reference for studies on the bio-based production of ectoine and 5-hydroxyectoine.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Kun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Fang Kong
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Tao Ye
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Tianwen Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China.
| |
Collapse
|
29
|
Azevedo LG, Sosa E, de Queiroz ATL, Barral A, Wheeler RJ, Nicolás MF, Farias LP, Do Porto DF, Ramos PIP. High-throughput prioritization of target proteins for development of new antileishmanial compounds. Int J Parasitol Drugs Drug Resist 2024; 25:100538. [PMID: 38669848 PMCID: PMC11068527 DOI: 10.1016/j.ijpddr.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Leishmaniasis, a vector-borne disease, is caused by the infection of Leishmania spp., obligate intracellular protozoan parasites. Presently, human vaccines are unavailable, and the primary treatment relies heavily on systemic drugs, often presenting with suboptimal formulations and substantial toxicity, making new drugs a high priority for LMIC countries burdened by the disease, but a low priority in the agenda of most pharmaceutical companies due to unattractive profit margins. New ways to accelerate the discovery of new, or the repositioning of existing drugs, are needed. To address this challenge, our study aimed to identify potential protein targets shared among clinically-relevant Leishmania species. We employed a subtractive proteomics and comparative genomics approach, integrating high-throughput multi-omics data to classify these targets based on different druggability metrics. This effort resulted in the ranking of 6502 ortholog groups of protein targets across 14 pathogenic Leishmania species. Among the top 20 highly ranked groups, metabolic processes known to be attractive drug targets, including the ubiquitination pathway, aminoacyl-tRNA synthetases, and purine synthesis, were rediscovered. Additionally, we unveiled novel promising targets such as the nicotinate phosphoribosyltransferase enzyme and dihydrolipoamide succinyltransferases. These groups exhibited appealing druggability features, including less than 40% sequence identity to the human host proteome, predicted essentiality, structural classification as highly druggable or druggable, and expression levels above the 50th percentile in the amastigote form. The resources presented in this work also represent a comprehensive collection of integrated data regarding trypanosomatid biology.
Collapse
Affiliation(s)
- Lucas G Azevedo
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Ezequiel Sosa
- Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Artur T L de Queiroz
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Aldina Barral
- Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| | - Leonardo P Farias
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | | | - Pablo Ivan P Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| |
Collapse
|
30
|
Faridi R, Yousaf R, Inagaki S, Olszewski R, Gu S, Morell RJ, Wilson E, Xia Y, Qaiser TA, Rashid M, Fenollar-Ferrer C, Hoa M, Riazuddin S, Friedman TB. Deafness DFNB128 Associated with a Recessive Variant of Human MAP3K1 Recapitulates Hearing Loss of Map3k1-Deficient Mice. Genes (Basel) 2024; 15:845. [PMID: 39062623 PMCID: PMC11276321 DOI: 10.3390/genes15070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Deafness in vertebrates is associated with variants of hundreds of genes. Yet, many mutant genes causing rare forms of deafness remain to be discovered. A consanguineous Pakistani family segregating nonsyndromic deafness in two sibships were studied using microarrays and exome sequencing. A 1.2 Mb locus (DFNB128) on chromosome 5q11.2 encompassing six genes was identified. In one of the two sibships of this family, a novel homozygous recessive variant NM_005921.2:c.4460G>A p.(Arg1487His) in the kinase domain of MAP3K1 co-segregated with nonsyndromic deafness. There are two previously reported Map3k1-kinase-deficient mouse models that are associated with recessively inherited syndromic deafness. MAP3K1 phosphorylates serine and threonine and functions in a signaling pathway where pathogenic variants of HGF, MET, and GAB1 were previously reported to be associated with human deafness DFNB39, DFNB97, and DFNB26, respectively. Our single-cell transcriptome data of mouse cochlea mRNA show expression of Map3k1 and its signaling partners in several inner ear cell types suggesting a requirement of wild-type MAP3K1 for normal hearing. In contrast to dominant variants of MAP3K1 associated with Disorders of Sex Development 46,XY sex-reversal, our computational modeling of the recessive substitution p.(Arg1487His) predicts a subtle structural alteration in MAP3K1, consistent with the limited phenotype of nonsyndromic deafness.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.O.); (S.G.); (M.H.)
| | - Shoujun Gu
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.O.); (S.G.); (M.H.)
| | - Robert J. Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Ying Xia
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Tanveer Ahmed Qaiser
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Sector G-8/3, Ravi Road, Islamabad 44000, Pakistan;
| | - Muhammad Rashid
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.O.); (S.G.); (M.H.)
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Center, Jinnah Burn and Reconstructive Surgery Center, University of Health Sciences, Lahore 54550, Pakistan;
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (R.F.); (R.Y.); (S.I.); (E.W.); (C.F.-F.)
| |
Collapse
|
31
|
Hu L, An K, Zhang Y, Bai C. Exploring the Activation Mechanism of the GPR183 Receptor. J Phys Chem B 2024; 128:6071-6081. [PMID: 38877985 DOI: 10.1021/acs.jpcb.4c02812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The G protein-coupled receptors (GPCRs) play a pivotal role in numerous biological processes as crucial cell membrane receptors. However, the dynamic mechanisms underlying the activation of GPR183, a specific GPCR, remain largely elusive. To address this, we employed computational simulation techniques to elucidate the activation process and key events associated with GPR183, including conformational changes from inactive to active state, binding interactions with the Gi protein complex, and GDP release. Our findings demonstrate that the association between GPR183 and the Gi protein involves the formation of receptor-specific conformations, the gradual proximity of the Gi protein to the binding pocket, and fine adjustments of the protein conformation, ultimately leading to a stable GPR183-Gi complex characterized by a high energy barrier. The presence of Gi protein partially promotes GPR183 activation, which is consistent with the observation of GPCR constitutive activity test experiments, thus illustrating the reliability of our calculations. Moreover, our study suggests the existence of a stable partially activated state preceding complete activation, providing novel avenues for future investigations. In addition, the relevance of GPR183 for various diseases, such as colitis, the response of eosinophils to Mycobacterium tuberculosis infection, antiviral properties, and pulmonary inflammation, has been emphasized, underscoring its therapeutic potential. Consequently, understanding the activation process of GPR183 through molecular dynamic simulations offers valuable kinetic insights that can aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Linfeng Hu
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Ke An
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| | - Yue Zhang
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
| | - Chen Bai
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, PR China
- Warshel Institute for Computational Biology, Shenzhen, Guangdong 518172, PR China
- Chenzhu (MoMeD) Biotechnology Co., Ltd, Hangzhou, Zhejiang 310005, PR China
| |
Collapse
|
32
|
Kaneko H, Korenaga R, Nakamura R, Kawai S, Ando T, Shiroishi M. Binding characteristics of the doxepin E/Z-isomers to the histamine H 1 receptor revealed by receptor-bound ligand analysis and molecular dynamics study. J Mol Recognit 2024:e3098. [PMID: 38924170 DOI: 10.1002/jmr.3098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.
Collapse
Affiliation(s)
- Hiroto Kaneko
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryunosuke Korenaga
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryota Nakamura
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
| | - Shinnosuke Kawai
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
| | - Tadashi Ando
- Department of Applied Electronics, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
33
|
Zhekova HR, Ramirez Echemendía DP, Sejdiu BI, Pushkin A, Tieleman DP, Kurtz I. Molecular dynamics simulations of lipid-protein interactions in SLC4 proteins. Biophys J 2024; 123:1705-1721. [PMID: 38760929 PMCID: PMC11214021 DOI: 10.1016/j.bpj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024] Open
Abstract
The SLC4 family of secondary bicarbonate transporters is responsible for the transport of HCO3-, CO32-, Cl-, Na+, K+, NH3, and H+, which are necessary for regulation of pH and ion homeostasis. They are widely expressed in numerous tissues throughout the body and function in different cell types with different membrane properties. Potential lipid roles in SLC4 function have been reported in experimental studies, focusing mostly on two members of the family: AE1 (Cl-/HCO3- exchanger) and NBCe1 (Na+-CO32-cotransporter). Previous computational studies of the outward-facing state of AE1 with model lipid membranes revealed enhanced protein-lipid interactions between cholesterol (CHOL) and phosphatidylinositol bisphosphate (PIP2). However, the protein-lipid interactions in other members of the family and other conformation states are still poorly understood and this precludes the detailed studies of a potential regulatory role for lipids in the SLC4 family. In this work, we performed coarse-grained and atomistic molecular dynamics simulations on three members of the SLC4 family with different transport modes: AE1, NBCe1, and NDCBE (an Na+-CO32-/Cl- exchanger), in model HEK293 membranes consisting of CHOL, PIP2, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. The recently resolved inward-facing state of AE1 was also included in the simulations. Lipid-protein contact analysis of the simulated trajectories was performed with the ProLint server, which provides a multitude of visualization tools for illustration of areas of enhanced lipid-protein contact and identification of putative lipid binding sites within the protein matrix. We observed enrichment of CHOL and PIP2 around all proteins with subtle differences in their distribution depending on the protein type and conformation state. Putative binding sites were identified for CHOL, PIP2, phosphatidylcholine, and sphingomyelin in the three studied proteins, and their potential roles in the SLC4 transport function, conformational transition, and protein dimerization are discussed.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Daniel P Ramirez Echemendía
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Besian I Sejdiu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander Pushkin
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Ira Kurtz
- Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Brain Research Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
34
|
Maharana J, Hwang SK, Singha DL, Panda D, Singh S, Okita TW, Modi MK. Exploring the structural assembly of rice ADP-glucose pyrophosphorylase subunits using MD simulation. J Mol Graph Model 2024; 129:108761. [PMID: 38552302 DOI: 10.1016/j.jmgm.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.
Collapse
Affiliation(s)
- Jitendra Maharana
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Dhanawantari L Singha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India; Department of Botany, Rabindranath Tagore University, Hojai, Assam, 782435, India
| | - Debashis Panda
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Salvinder Singh
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
35
|
Oliva B, Velasco J, Leila Berto G, Polikarpov I, Cristante de Oliveira L, Segato F. Recombinant cellobiose dehydrogenase from Thermothelomyces thermophilus: Its functional characterization and applicability in cellobionic acid production. BIORESOURCE TECHNOLOGY 2024; 402:130763. [PMID: 38692377 DOI: 10.1016/j.biortech.2024.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The fungus Thermothelomyces thermophilus is a thermotolerant microorganism that has been explored as a reservoir for enzymes (hydrolytic enzymes and oxidoreductases). The functional analysis of a recombinant cellobiose dehydrogenase (MtCDHB) from T. thermophilus demonstrated a thermophilic behavior, an optimal pH in alkaline conditions for inter-domain electron transfer, and catalytic activity on cellooligosaccharides with different degree of polymerization. Its applicability was evaluated to the sustainable production of cellobionic acid (CBA), a potential pharmaceutical and cosmetic ingredient rarely commercialized. Dissolving pulp was used as a disaccharide source for MtCDHB. Initially, recombinant exoglucanases (MtCBHI and MtCBHII) from T. thermophilus hydrolyzed the dissolving pulp, resulting in 87% cellobiose yield, which was subsequently converted into CBA by MtCDHB, achieving a 66% CBA yield after 24 h. These findings highlight the potential of MtCDHB as a novel approach to obtaining CBA through the bioconversion of a plant-based source.
Collapse
Affiliation(s)
- Bianca Oliva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Josman Velasco
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil; Biological Sciences Department, Universidad de los Andes, Bogotá DC, Colombia
| | - Gabriela Leila Berto
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - Leandro Cristante de Oliveira
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences (IBILCE) São Paulo State University "Júlio de Mesquita Filho" - Unesp - São José do Rio Preto, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
36
|
Pan D, Luo QJ, O Reilly AO, Yuan GR, Wang JJ, Dou W. Mutations of voltage-gated sodium channel contribute to pyrethroid resistance in Panonychus citri. INSECT SCIENCE 2024; 31:803-816. [PMID: 37650774 DOI: 10.1111/1744-7917.13266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Insecticide resistance in Panonychus citri is a major obstacle to mite control in citrus orchards. Pyrethroid insecticides are continually used to control mites in China, although resistance to pyrethroids has evolved in some populations. Here, the resistance to the pyrethroid fenpropathrin was investigated and 7 out of 8 field-collected populations of P. citri exhibited a high level of resistance, ranging from 171-fold to 15 391-fold higher than the susceptible (SS) comparison strain. Three voltage-gated sodium channel (VGSC) mutations were identified in the tested populations: L1031V, F1747L, and F1751I. Amplicon sequencing was used to evaluate the frequency of these mutations in the 19 field populations. L1031V and F1751I were present in all populations at frequencies of 11.6%-82.1% and 0.5%-31.8%, respectively, whereas the F1747L mutation was only present in 12 populations from Chongqing, Sichuan, Guangxi, and Yunnan provinces. Introduction of these mutations singly or in combination into transgenic flies significantly increased their resistance to fenpropathrin and these flies also exhibited reduced mortality after exposure to the pyrethroids permethrin and β-cypermethrin. Panonychus citri VGSC homology modeling and ligand docking indicate that F1747 and F1751 form direct binding contacts with pyrethroids, which are lost with mutation, whereas L1031 mutation may diminish pyrethroid effects through an allosteric mechanism. Overall, the results provide molecular markers for monitoring pest resistance to pyrethroids and offer new insights into the basis of pyrethroid actions on sodium channels.
Collapse
Affiliation(s)
- Deng Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiu-Juan Luo
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Andrias O O Reilly
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
37
|
Ito S, Matsunaga R, Nakakido M, Komura D, Katoh H, Ishikawa S, Tsumoto K. High-throughput system for the thermostability analysis of proteins. Protein Sci 2024; 33:e5029. [PMID: 38801228 PMCID: PMC11129621 DOI: 10.1002/pro.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Thermal stability of proteins is a primary metric for evaluating their physical properties. Although researchers attempted to predict it using machine learning frameworks, their performance has been dependent on the quality and quantity of published data. This is due to the technical limitation that thermodynamic characterization of protein denaturation by fluorescence or calorimetry in a high-throughput manner has been challenging. Obtaining a melting curve that derives solely from the target protein requires laborious purification, making it far from practical to prepare a hundred or more samples in a single workflow. Here, we aimed to overcome this throughput limitation by leveraging the high protein secretion efficacy of Brevibacillus and consecutive treatment with plate-scale purification methodologies. By handling the entire process of expression, purification, and analysis on a per-plate basis, we enabled the direct observation of protein denaturation in 384 samples within 4 days. To demonstrate a practical application of the system, we conducted a comprehensive analysis of 186 single mutants of a single-chain variable fragment of nivolumab, harvesting the melting temperature (Tm) ranging from -9.3 up to +10.8°C compared to the wild-type sequence. Our findings will allow for data-driven stabilization in protein design and streamlining the rational approaches.
Collapse
Affiliation(s)
- Sae Ito
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Ryo Matsunaga
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, School of EngineeringThe University of TokyoTokyoJapan
- The Institute of Medical ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
38
|
Juliá-Palacios N, Olivella M, Sigatullina Bondarenko M, Ibáñez-Micó S, Muñoz-Cabello B, Alonso-Luengo O, Soto-Insuga V, García-Navas D, Cuesta-Herraiz L, Andreo-Lillo P, Aguilera-Albesa S, Hedrera-Fernández A, González Alguacil E, Sánchez-Carpintero R, Martín Del Valle F, Jiménez González E, Cean Cabrera L, Medina-Rivera I, Perez-Ordoñez M, Colomé R, Lopez L, Engracia Cazorla M, Fornaguera M, Ormazabal A, Alonso-Colmenero I, Illescas KS, Balsells-Mejía S, Mari-Vico R, Duffo Viñas M, Cappuccio G, Terrone G, Romano R, Manti F, Mastrangelo M, Alfonsi C, de Siqueira Barros B, Nizon M, Gjerulfsen CE, Muro VL, Karall D, Zeiner F, Masnada S, Peterlongo I, Oyarzábal A, Santos-Gómez A, Altafaj X, García-Cazorla Á. L-serine treatment in patients with GRIN-related encephalopathy: a phase 2A, non-randomized study. Brain 2024; 147:1653-1666. [PMID: 38380699 DOI: 10.1093/brain/awae041] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
GRIN-related disorders are rare developmental encephalopathies with variable manifestations and limited therapeutic options. Here, we present the first non-randomized, open-label, single-arm trial (NCT04646447) designed to evaluate the tolerability and efficacy of L-serine in children with GRIN genetic variants leading to loss-of-function. In this phase 2A trial, patients aged 2-18 years with GRIN loss-of-function pathogenic variants received L-serine for 52 weeks. Primary end points included safety and efficacy by measuring changes in the Vineland Adaptive Behavior Scales, Bayley Scales, age-appropriate Wechsler Scales, Gross Motor Function-88, Sleep Disturbance Scale for Children, Pediatric Quality of Life Inventory, Child Behavior Checklist and the Caregiver-Teacher Report Form following 12 months of treatment. Secondary outcomes included seizure frequency and intensity reduction and EEG improvement. Assessments were performed 3 months and 1 day before starting treatment and 1, 3, 6 and 12 months after beginning the supplement. Twenty-four participants were enrolled (13 males/11 females, mean age 9.8 years, SD 4.8), 23 of whom completed the study. Patients had GRIN2B, GRIN1 and GRIN2A variants (12, 6 and 5 cases, respectively). Their clinical phenotypes showed 91% had intellectual disability (61% severe), 83% had behavioural problems, 78% had movement disorders and 58% had epilepsy. Based on the Vineland Adaptive Behavior Composite standard scores, nine children were classified as mildly impaired (cut-off score > 55), whereas 14 were assigned to the clinically severe group. An improvement was detected in the Daily Living Skills domain (P = 0035) from the Vineland Scales within the mild group. Expressive (P = 0.005), Personal (P = 0.003), Community (P = 0.009), Interpersonal (P = 0.005) and Fine Motor (P = 0.031) subdomains improved for the whole cohort, although improvement was mostly found in the mild group. The Growth Scale Values in the Cognitive subdomain of the Bayley-III Scale showed a significant improvement in the severe group (P = 0.016), with a mean increase of 21.6 points. L-serine treatment was associated with significant improvement in the median Gross Motor Function-88 total score (P = 0.002) and the mean Pediatric Quality of Life total score (P = 0.00068), regardless of severity. L-serine normalized the EEG pattern in five children and the frequency of seizures in one clinically affected child. One patient discontinued treatment due to irritability and insomnia. The trial provides evidence that L-serine is a safe treatment for children with GRIN loss-of-function variants, having the potential to improve adaptive behaviour, motor function and quality of life, with a better response to the treatment in mild phenotypes.
Collapse
Affiliation(s)
- Natalia Juliá-Palacios
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Mireia Olivella
- Bioinformatics and Bioimaging Group. Faculty of Science, Technology and Engineering, University of Vic-Central University of Catalonia, 08500 Vic, Spain
- Institute for Research and Innovation in Life and Health Sciences (IRIS-CC), University of Vic-Central University of Catalonia, 08500 Vic, Spain
| | - Mariya Sigatullina Bondarenko
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | | | - Beatriz Muñoz-Cabello
- Department of Pediatrics, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | - Olga Alonso-Luengo
- Department of Pediatrics, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain
| | | | - Deyanira García-Navas
- Department of Pediatric Neurology, Complejo Hospitalario Universitario de Cáceres, 10003 Cáceres, Spain
| | | | - Patricia Andreo-Lillo
- Neuropediatric Unit, Pediatric Department, University Hospital of Sant Joan d'Alacant, 03550 Sant Joan d'Alacant, Spain
| | - Sergio Aguilera-Albesa
- Paediatric Neurology Unit, Department of Pediatrics, Hospital Universitario de Navarra, 31008, Pamplona, Spain
| | - Antonio Hedrera-Fernández
- Child Neurology Unit, Pediatrics Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | | | | | | | | | - Ines Medina-Rivera
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Marta Perez-Ordoñez
- Child and Adolescent Mental Health Area, Psychiatry and Psychology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Roser Colomé
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Laura Lopez
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - María Engracia Cazorla
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Montserrat Fornaguera
- Department of Rehabilitation, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Aida Ormazabal
- Department of Clinical Biochemistry, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- European Reference Network for Hereditary Metabolic Diseases (MetabERN), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Itziar Alonso-Colmenero
- Pediatric Neurology Department, Hospital Sant Joan de Déu, Full Member of ERN EpiCare, Barcelona University, 08950 Barcelona, Spain
| | - Katia Sofía Illescas
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Sol Balsells-Mejía
- Department of Research Promotion and Management. Statistical Support, Hospital Sant Joan de Déu (HSJD), 08950 Barcelona, Spain
| | - Rosanna Mari-Vico
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Maria Duffo Viñas
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
- Child and Adolescent Mental Health Area, Psychiatry and Psychology, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Gerarda Cappuccio
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
- Telethon Institute of Genetics and Medicine, Department of Pediatrics, Pozzuoli, 80131 Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli 'Federico II', 80125 Naples, Italy
| | - Filippo Manti
- Department of Human Neuroscience, University of Rome La Sapienza, 00185 Roma, Lazio, Italy
| | - Mario Mastrangelo
- Department of Women and Child Health and Uroginecological Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Child Neurology and Psychiatry Unit, Department of Neuroscience/Mental Health, Azienda Ospedaliero-Universitaria Policlinico Umberto I, 00161 Rome, Italy
| | - Chiara Alfonsi
- Department of Human Neuroscience, University of Rome La Sapienza, 00185 Roma, Lazio, Italy
| | - Bruna de Siqueira Barros
- Núcleo de Estudos da Saúde do Adolescente, Programa de Pós-Graduação em Ciências Médicas, Universidade do Estado do Rio de Janeiro, Faculdade de Ciência Médicas, 56066 Rio de Janeiro, RJ, Brazil
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France
| | | | - Valeria L Muro
- Pediatric Neurology Unit, Hospital Britanico Buenos Aires, C1280AEB Buenos Aires, Argentina
| | - Daniela Karall
- Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Fiona Zeiner
- Clinic for Paediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Silvia Masnada
- Department of Child Neurology, V. Buzzi Children's Hospital, 20125 Milan, Italy
| | - Irene Peterlongo
- Department of Child Neurology, V. Buzzi Children's Hospital, 20125 Milan, Italy
| | - Alfonso Oyarzábal
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| | - Ana Santos-Gómez
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Xavier Altafaj
- Department of Biomedicine, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | - Ángeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Lab, Department of Neurology, Hospital Sant Joan de Déu-IRSJD, CIBERER and MetabERN, 08950 Barcelona, Spain
| |
Collapse
|
39
|
Ryu J, Barkal S, Yu T, Jankowiak M, Zhou Y, Francoeur M, Phan QV, Li Z, Tognon M, Brown L, Love MI, Bhat V, Lettre G, Ascher DB, Cassa CA, Sherwood RI, Pinello L. Joint genotypic and phenotypic outcome modeling improves base editing variant effect quantification. Nat Genet 2024; 56:925-937. [PMID: 38658794 PMCID: PMC11669423 DOI: 10.1038/s41588-024-01726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
CRISPR base editing screens enable analysis of disease-associated variants at scale; however, variable efficiency and precision confounds the assessment of variant-induced phenotypes. Here, we provide an integrated experimental and computational pipeline that improves estimation of variant effects in base editing screens. We use a reporter construct to measure guide RNA (gRNA) editing outcomes alongside their phenotypic consequences and introduce base editor screen analysis with activity normalization (BEAN), a Bayesian network that uses per-guide editing outcomes provided by the reporter and target site chromatin accessibility to estimate variant impacts. BEAN outperforms existing tools in variant effect quantification. We use BEAN to pinpoint common regulatory variants that alter low-density lipoprotein (LDL) uptake, implicating previously unreported genes. Additionally, through saturation base editing of LDLR, we accurately quantify missense variant pathogenicity that is consistent with measurements in UK Biobank patients and identify underlying structural mechanisms. This work provides a widely applicable approach to improve the power of base editing screens for disease-associated variant characterization.
Collapse
Affiliation(s)
- Jayoung Ryu
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sam Barkal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Martin Jankowiak
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yunzhuo Zhou
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Matthew Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Quang Vinh Phan
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhijian Li
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Manuel Tognon
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Computer Science Department, University of Verona, Verona, Italy
| | - Lara Brown
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael I Love
- Department of Genetics, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vineel Bhat
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Quebec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Christopher A Cassa
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Richard I Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Luca Pinello
- Molecular Pathology Unit, Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Gene Regulation Observatory, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Zhang Q, Fan S, Tang M, Wang C, Li X, Jin Y, Yang Z. Computation-Guided Rational Design of Cysteine-Less Protein Variants in Engineered hCGL. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9937-9946. [PMID: 38651303 DOI: 10.1021/acs.jafc.3c06821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The engineered human cystathionine-γ-lyase (hCGL) resulting in enhanced activity toward both cysteine and cystine unveils a potential robust antitumor activity. However, the presence of cysteine residues has the potential to induce oligomerization or incorrect disulfide bonding, which may decrease the bioavailability of biopharmaceuticals. Through a meticulous design process targeting the cysteine residues within engineered hCGL, a set of potential beneficial mutants were obtained by virtual screening employing Rosetta and ABACUS. Experimental measurements have revealed that most of the mutants showed increased activity toward both substrates l-Cys and CSSC. Furthermore, mutants C109V and C229D demonstrated Tm value increases of 8.2 and 1.8 °C, respectively. After an 80 min incubation at 60 °C, mutant C229D still maintained high residual activity. Unexpectedly, mutant C109V, displaying activity approximately 2-fold higher than the activity of wild type (WT) for both substrates, showed disappointing instability in plasma, which suggests that computational design still requires further consideration. Analysis of their structure and molecular dynamics (MD) simulation revealed the impact of hydrophobic interaction, hydrogen bonds, and near-attack conformation (NAC) stability on activity and stability. This study acquired information about mutants that exhibit enhanced activity or thermal resistance and serve as valuable guidance for subsequent specific cysteine modifications.
Collapse
Affiliation(s)
- Qian Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengjia Tang
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Chenyu Wang
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Xiaoxiao Li
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yuanyuan Jin
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhaoyong Yang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
41
|
Maurici N, Phan TM, Henty-Ridilla JL, Kim YC, Mittal J, Bah A. Uncovering the molecular interactions underlying MBD2 and MBD3 phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591564. [PMID: 38746378 PMCID: PMC11092444 DOI: 10.1101/2024.04.29.591564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Chromatin organization controls DNA's accessibility to regulatory factors to influence gene expression. Heterochromatin, or transcriptionally silent chromatin enriched in methylated DNA and methylated histone tails, self-assembles through multivalent interactions with its associated proteins into a condensed, but dynamic state. Liquid-liquid phase separation (LLPS) of key heterochromatin regulators, such as heterochromatin protein 1 (HP1), plays an essential role in heterochromatin assembly and function. Methyl-CpG-binding protein 2 (MeCP2), the most studied member of the methyl-CpG-binding domain (MBD) family of proteins, has been recently shown to undergo LLPS in the absence and presence of methylated DNA. These studies provide a new mechanistic framework for understanding the role of methylated DNA and its readers in heterochromatin formation. However, the details of the molecular interactions by which other MBD family members undergo LLPS to mediate genome organization and transcriptional regulation are not fully understood. Here, we focus on two MBD proteins, MBD2 and MBD3, that have distinct but interdependent roles in gene regulation. Using an integrated computational and experimental approach, we uncover the homotypic and heterotypic interactions governing MBD2 and MBD3 phase separation and DNA's influence on this process. We show that despite sharing the highest sequence identity and structural homology among all the MBD protein family members, MBD2 and MBD3 exhibit differing residue patterns resulting in distinct phase separation mechanisms. Understanding the molecular underpinnings of MBD protein condensation offers insights into the higher-order, LLPS-mediated organization of heterochromatin.
Collapse
|
42
|
Bernardes GPMDA, Serra GM, Silva LDSE, Martins MP, Perez LN, de Molfetta FA, Santos AV, Schneider MPC. Potential Involvement of the South American Lungfish Intelectin-2 in Innate-Associated Immune Modulation. Int J Mol Sci 2024; 25:4798. [PMID: 38732017 PMCID: PMC11084424 DOI: 10.3390/ijms25094798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 β-sheets: an anti-parallel β-sheet, a β-hairpin, and a disordered β-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.
Collapse
Affiliation(s)
| | - Gustavo Marques Serra
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| | - Lucas da Silva e Silva
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (G.P.M.d.A.B.); (L.d.S.e.S.); (M.P.C.S.)
| | - Maíra Pompeu Martins
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (G.P.M.d.A.B.); (L.d.S.e.S.); (M.P.C.S.)
| | - Louise Neiva Perez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Fábio Alberto de Molfetta
- Laboratory of Molecular Modeling, Exact and Natural Sciences Institute, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil;
| | - Maria Paula Cruz Schneider
- Laboratory of Genomics and Biotechnology, Biological Sciences Institute, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (G.P.M.d.A.B.); (L.d.S.e.S.); (M.P.C.S.)
| |
Collapse
|
43
|
Hutchinson K, Schlessinger A. Comprehensive Characterization of LAT1 Cholesterol-Binding Sites. J Chem Theory Comput 2024; 20:3349-3358. [PMID: 38597304 PMCID: PMC11913013 DOI: 10.1021/acs.jctc.3c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The human L-type amino acid transporter 1 (LAT1; SLC7A5), is an amino acid exchanger protein, primarily found in the blood-brain barrier, placenta, and testis, where it plays a key role in amino acid homeostasis. Cholesterol is an essential lipid that has been highlighted to play a role in regulating the activity of membrane transporters, such as LAT1, yet little is known about the molecular mechanisms driving this phenomenon. Here we perform a comprehensive computational analysis to investigate cholesterol's role in LAT1 structure and function, focusing on four cholesterol-binding sites (CHOL1-4) identified in a recent LAT1-apo inward-open conformation cryo-EM structure. Through a series of independent molecular dynamics (MD) simulations, molecular docking, MM/GBSA free energy calculations, and other analysis tools, we explored the interactions between LAT1 and cholesterol. Our findings suggest that CHOL3 forms the most stable and favorable interactions with LAT1. Principal component analysis (PCA) and center of mass (COM) distance assessments show that CHOL3 binding stabilizes the inward-open state of LAT1 by preserving the spatial arrangement of the hash and bundle domains. Additionally, we propose an alternative cholesterol-binding site for originally assigned CHOL1. Overall, this study improves the understanding of cholesterol's modulatory effect on LAT1 and proposes candidate sites for the discovery of future allosteric ligands with rational design.
Collapse
Affiliation(s)
- Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
44
|
Yamagata A, Ito K, Suzuki T, Dohmae N, Terada T, Shirouzu M. Structural basis for antiepileptic drugs and botulinum neurotoxin recognition of SV2A. Nat Commun 2024; 15:3027. [PMID: 38637505 PMCID: PMC11026379 DOI: 10.1038/s41467-024-47322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| | - Kaori Ito
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
45
|
Gucwa K, Wons E, Wisniewska A, Jakalski M, Dubiak Z, Kozlowski LP, Mruk I. Lethal perturbation of an Escherichia coli regulatory network is triggered by a restriction-modification system's regulator and can be mitigated by excision of the cryptic prophage Rac. Nucleic Acids Res 2024; 52:2942-2960. [PMID: 38153127 PMCID: PMC11014345 DOI: 10.1093/nar/gkad1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial gene regulatory networks orchestrate responses to environmental challenges. Horizontal gene transfer can bring in genes with regulatory potential, such as new transcription factors (TFs), and this can disrupt existing networks. Serious regulatory perturbations may even result in cell death. Here, we show the impact on Escherichia coli of importing a promiscuous TF that has adventitious transcriptional effects within the cryptic Rac prophage. A cascade of regulatory network perturbations occurred on a global level. The TF, a C regulatory protein, normally controls a Type II restriction-modification system, but in E. coli K-12 interferes with expression of the RacR repressor gene, resulting in de-repression of the normally-silent Rac ydaT gene. YdaT is a prophage-encoded TF with pleiotropic effects on E. coli physiology. In turn, YdaT alters expression of a variety of bacterial regulons normally controlled by the RcsA TF, resulting in deficient lipopolysaccharide biosynthesis and cell division. At the same time, insufficient RacR repressor results in Rac DNA excision, halting Rac gene expression due to loss of the replication-defective Rac prophage. Overall, Rac induction appears to counteract the lethal toxicity of YdaT. We show here that E. coli rewires its regulatory network, so as to minimize the adverse regulatory effects of the imported C TF. This complex set of interactions may reflect the ability of bacteria to protect themselves by having robust mechanisms to maintain their regulatory networks, and/or suggest that regulatory C proteins from mobile operons are under selection to manipulate their host's regulatory networks for their own benefit.
Collapse
Affiliation(s)
- Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Aleksandra Wisniewska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Marcin Jakalski
- 3P-Medicine Laboratory, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Zuzanna Dubiak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Lukasz Pawel Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| |
Collapse
|
46
|
Tandiana R, Barletta GP, Soler MA, Fortuna S, Rocchia W. Computational Mutagenesis of Antibody Fragments: Disentangling Side Chains from ΔΔ G Predictions. J Chem Theory Comput 2024; 20:2630-2642. [PMID: 38445482 DOI: 10.1021/acs.jctc.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The development of highly potent antibodies and antibody fragments as binding agents holds significant implications in fields such as biosensing and biotherapeutics. Their binding strength is intricately linked to the arrangement and composition of residues at the binding interface. Computational techniques offer a robust means to predict the three-dimensional structure of these complexes and to assess the affinity changes resulting from mutations. Given the interdependence of structure and affinity prediction, our objective here is to disentangle their roles. We aim to evaluate independently six side-chain reconstruction methods and ten binding affinity estimation techniques. This evaluation was pivotal in predicting affinity alterations due to single mutations, a key step in computational affinity maturation protocols. Our analysis focuses on a data set comprising 27 distinct antibody/hen egg white lysozyme complexes, each with crystal structures and experimentally determined binding affinities. Using six different side-chain reconstruction methods, we transformed each structure into its corresponding mutant via in silico single-point mutations. Subsequently, these structures undergo minimization and molecular dynamics simulation. We therefore estimate ΔΔG values based on the original crystal structure, its energy-minimized form, and the ensuing molecular dynamics trajectories. Our research underscores the critical importance of selecting reliable side-chain reconstruction methods and conducting thorough molecular dynamics simulations to accurately predict the impact of mutations. In summary, our study demonstrates that the integration of conformational sampling and scoring is a potent approach to precisely characterizing mutation processes in single-point mutagenesis protocols and crucial for computational antibody design.
Collapse
Affiliation(s)
- Rika Tandiana
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
| | - German P Barletta
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
- The Abdus Salam International Centre for Theoretical Physics─ICTP, Strada Costiera 11, 34151 Trieste, Italy
| | - Miguel Angel Soler
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Universita' di Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Sara Fortuna
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
| | - Walter Rocchia
- Computational MOdelling of NanosCalE and BioPhysical SysTems─CONCEPT Lab Istituto Italiano di Tecnologia (IIT), Via Melen-83, B Block, 16152 Genoa, Italy
| |
Collapse
|
47
|
Nishio S, Emori C, Wiseman B, Fahrenkamp D, Dioguardi E, Zamora-Caballero S, Bokhove M, Han L, Stsiapanava A, Algarra B, Lu Y, Kodani M, Bainbridge RE, Komondor KM, Carlson AE, Landreh M, de Sanctis D, Yasumasu S, Ikawa M, Jovine L. ZP2 cleavage blocks polyspermy by modulating the architecture of the egg coat. Cell 2024; 187:1440-1459.e24. [PMID: 38490181 PMCID: PMC10976854 DOI: 10.1016/j.cell.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Following the fertilization of an egg by a single sperm, the egg coat or zona pellucida (ZP) hardens and polyspermy is irreversibly blocked. These events are associated with the cleavage of the N-terminal region (NTR) of glycoprotein ZP2, a major subunit of ZP filaments. ZP2 processing is thought to inactivate sperm binding to the ZP, but its molecular consequences and connection with ZP hardening are unknown. Biochemical and structural studies show that cleavage of ZP2 triggers its oligomerization. Moreover, the structure of a native vertebrate egg coat filament, combined with AlphaFold predictions of human ZP polymers, reveals that two protofilaments consisting of type I (ZP3) and type II (ZP1/ZP2/ZP4) components interlock into a left-handed double helix from which the NTRs of type II subunits protrude. Together, these data suggest that oligomerization of cleaved ZP2 NTRs extensively cross-links ZP filaments, rigidifying the egg coat and making it physically impenetrable to sperm.
Collapse
Affiliation(s)
- Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chihiro Emori
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Benjamin Wiseman
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisa Dioguardi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Marcel Bokhove
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Blanca Algarra
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Mayo Kodani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Rachel E Bainbridge
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kayla M Komondor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | | | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
48
|
Gerovac M, Chihara K, Wicke L, Böttcher B, Lavigne R, Vogel J. Phage proteins target and co-opt host ribosomes immediately upon infection. Nat Microbiol 2024; 9:787-800. [PMID: 38443577 PMCID: PMC10914614 DOI: 10.1038/s41564-024-01616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Bacteriophages must seize control of the host gene expression machinery to replicate. To bypass bacterial anti-phage defence systems, this host takeover occurs immediately upon infection. A general understanding of phage mechanisms for immediate targeting of host transcription and translation processes is lacking. Here we introduce an integrative high-throughput approach to uncover phage-encoded proteins that target the gene expression machinery of Pseudomonas aeruginosa immediately upon infection with the jumbo phage ΦKZ. By integrating biochemical, genetic and structural analyses, we identify an abundant and conserved phage factor ΦKZ014 that targets the large ribosomal subunit by binding the 5S ribosomal RNA, and rapidly promotes replication in several clinical isolates. ΦKZ014 is among the earliest ΦKZ proteins expressed after infection and remains bound to ribosomes during the entire translation cycle. Our study provides a strategy to decipher molecular components of phage-mediated host takeover and argues that phage genomes represent an untapped discovery space for proteins that modulate the host gene expression machinery.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Kotaro Chihara
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Laura Wicke
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Bettina Böttcher
- Biocenter and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Jörg Vogel
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
| |
Collapse
|
49
|
Zhang Y, Wu K, Li Y, Wu S, Warshel A, Bai C. Predicting Mutational Effects on Ca 2+-Activated Chloride Conduction of TMEM16A Based on a Simulation Study. J Am Chem Soc 2024; 146:4665-4679. [PMID: 38319142 DOI: 10.1021/jacs.3c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The dysfunction and defects of ion channels are associated with many human diseases, especially for loss-of-function mutations in ion channels such as cystic fibrosis transmembrane conductance regulator mutations in cystic fibrosis. Understanding ion channels is of great current importance for both medical and fundamental purposes. Such an understanding should include the ability to predict mutational effects and describe functional and mechanistic effects. In this work, we introduce an approach to predict mutational effects based on kinetic information (including reaction barriers and transition state locations) obtained by studying the working mechanism of target proteins. Specifically, we take the Ca2+-activated chloride channel TMEM16A as an example and utilize the computational biology model to predict the mutational effects of key residues. Encouragingly, we verified our predictions through electrophysiological experiments, demonstrating a 94% prediction accuracy regarding mutational directions. The mutational strength assessed by Pearson's correlation coefficient is -0.80 between our calculations and the experimental results. These findings suggest that the proposed methodology is reliable and can provide valuable guidance for revealing functional mechanisms and identifying key residues of the TMEM16A channel. The proposed approach can be extended to a broad scope of biophysical systems.
Collapse
Affiliation(s)
- Yue Zhang
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kang Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Yuqing Li
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Song Wu
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
- Chenzhu Biotechnology Co., Ltd., Hangzhou 310005, China
| |
Collapse
|
50
|
Hariharan P, Shi Y, Katsube S, Willibal K, Burrows ND, Mitchell P, Bakhtiiari A, Stanfield S, Pardon E, Kaback HR, Liang R, Steyaert J, Viner R, Guan L. Mobile barrier mechanisms for Na +-coupled symport in an MFS sugar transporter. eLife 2024; 12:RP92462. [PMID: 38381130 PMCID: PMC10942615 DOI: 10.7554/elife.92462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Yuqi Shi
- Thermo Fisher ScientificSan JoseUnited States
| | - Satoshi Katsube
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Katleen Willibal
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Nathan D Burrows
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | - Patrick Mitchell
- Division of CryoEM and Bioimaging, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator LaboratoryMenlo ParkUnited States
| | | | - Samantha Stanfield
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - H Ronald Kaback
- Department of Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech UniversityLubbockUnited States
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2BrusselsBelgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2BrusselsBelgium
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of MedicineLubbockUnited States
| |
Collapse
|