1
|
Itagaki R, Nakada A, Suzuki H, Tomita O, Chang HC, Abe R. Phase-Migrating Z-Scheme Charge Transportation Enables Photoredox Catalysis Harnessing Water as an Electron Source. J Am Chem Soc 2025. [PMID: 40252029 DOI: 10.1021/jacs.5c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Z-schematic photocatalytic reactions are of considerable interest because of their potential for application to reductive molecular conversions to value-added chemicals using water as an electron source. However, most demonstrations of Z-scheme photocatalysis have been limited to overall water splitting. In particular, it has been basically impossible to couple the reduction of "water-insoluble compounds" with water oxidation by conventional Z-scheme systems in aqueous solution. In this work, an unconventional Z-scheme electron transportation system with a "phase-migrating" redox mediator is constructed that enables photocatalytic conversion of water-insoluble compounds by using water as an electron/proton source. In a dichloroethane (DCE)/water biphasic solution, a molecular Ir(III) complex acts as a photoredox catalyst for the reductive coupling of benzyl bromide by using ferrocene (Fc) as an electron donor in the DCE phase. On the other side, an aqueous dispersion of a Bi4TaO8Cl semiconductor loaded with a (Fe,Ru)Ox cocatalyst photocatalyzed water oxidation using ferrocenium (Fc+) as an electron acceptor. Because the partition coefficients of Fc+/Fc are significantly different, the Fc+ and Fc generated by photoinduced electron transfer in each reaction could be selectively extracted to the opposite liquid phase. Spontaneous phase migration enables direction-selective electron transport across the organic/water interface that connects the reduction and oxidation reactions in the separated reaction phase. Eventually, photocatalytic reductive conversion of "water-insoluble" organic compounds using "water as the electron/proton source" was demonstrated through the step-by-step Z-scheme photocatalysis with the phase-migrating Fc+/Fc electron transportation.
Collapse
Affiliation(s)
- Ren Itagaki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akinobu Nakada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Osamu Tomita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
2
|
Zhu Z, Li Z, Liu Z, Gu C, Zhang Q, Wang L. Advanced Development of High-Entropy Alloys in Catalytic Applications. SMALL METHODS 2025:e2500411. [PMID: 40231615 DOI: 10.1002/smtd.202500411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Indexed: 04/16/2025]
Abstract
Conventional alloys have long been limited by their simple compositions, which make it difficult to meet the requirements of modern catalysis applications. In contrast, high-entropy alloys (HEAs), characterized by multi-principal elements in near-equimolar ratios, have become a transformative paradigm in materials science since their inception in 2004. The unique core effects of HEAs, including the high-entropy effect, severe-lattice distortion effect, sluggish-diffusion effect, and cocktail effect, endow them with superior catalytic properties of activity, selectivity, and durability. However, with the rapid advanced development of HEAs, a comprehensive review of their applications in catalysis is imperative to foster a deeper understanding. In this review, the catalytic capability of HEAs, commencing from the entropy-driven mechanism and core effects of HEAs is systematically explored. Then, their applications are comprehensively analyzed in diverse fields, including energy conversion, chemical industries, and environmental remediation, emphasizing their remarkable capabilities in catalytic applications. Finally, pivotal challenges are outlined in synthesis methods, mechanistic elucidation, and green manufacturing, and propose future directions such as database establishment and machine-learning-assisted design. By addressing knowledge gaps and inspiring innovative strategies, this review aims to accelerate the translation of HEAs into practical solutions for a sustainable energy and environmental future.
Collapse
Affiliation(s)
- Zeqi Zhu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Flexible Electronics, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Zijun Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Flexible Electronics, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Zihe Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Flexible Electronics, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Flexible Electronics, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| | - Qingfeng Zhang
- Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) & State Key Laboratory of Flexible Electronics, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Di Y, Wang Z, Wang G, Wang J. Electrocatalytic CO 2 Reduction Empowered by 2D Hexagonal Transition Metal Borides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500977. [PMID: 40168183 DOI: 10.1002/advs.202500977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Indexed: 04/03/2025]
Abstract
Electrocatalysis holds immense promise for producing high-value chemicals and fuels through the carbon dioxide reduction reaction (CO2RR), advancing global sustainability and carbon neutrality. However, conventional electrocatalysts based on transition metals are often limited by significant overpotentials. Since the discovery of the first hexagonal MAB (h-MAB) phase, Ti2InB2, and its 2D derivative in 2019, 2D hexagonal transition metal borides (h-MBenes) have emerged as promising candidates for various electrochemical applications. This study presents the first theoretical investigation into the CO2RR catalytic properties of pristine h-MBenes (h-MB) and their ─O (h-MBO) and ─OH (h-MBOH) terminated counterparts, focusing on metals such as Sc, Ti, V, Zr, Nb, Hf, and Ta. These results reveal while h-MB and h-MBO exhibit poor catalytic performance due to overly strong or weak interactions with CO2, h-MBOH shows great promise. Notably, ScBOH, TiBOH, and ZrBOH display exceptionally low limiting potentials (UL) of -0.46, -0.53, and -0.64 V, respectively. These findings uncover the unique role of ─OH in tuning the electronic properties of h-MBenes, thereby optimizing intermediate adsorption, which prevents excessive binding and enhances catalytic efficiency. This research offers valuable insights into the potential of h-MBenes as highly efficient CO2RR catalysts, underscoring their versatility and significant prospects for electrochemical applications.
Collapse
Affiliation(s)
- Yaxin Di
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zhiqi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Guangqiu Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
4
|
Ashley B, Mathew S, Sajjad M, Zhu Y, Novikovs N, Baslé A, Marles-Wright J, Campopiano DJ. Rational engineering of a thermostable α-oxoamine synthase biocatalyst expands the substrate scope and synthetic applicability. Commun Chem 2025; 8:78. [PMID: 40082705 PMCID: PMC11906848 DOI: 10.1038/s42004-025-01448-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Carbon-carbon bond formation is one of the key pillars of organic synthesis. Green, selective and efficient biocatalytic methods for such are therefore highly desirable. The α-oxoamine synthases (AOSs) are a class of pyridoxal 5'-phosphate (PLP)-dependent, irreversible, carbon-carbon bond-forming enzymes, which have been limited previously by their narrow substrate specificity and requirement of acyl-CoA thioester substrates. We recently characterized a thermophilic enzyme from Thermus thermophilus (ThAOS) with a much broader substrate scope and described its use in a chemo-biocatalytic cascade process to generate pyrroles in good yields and timescales. Herein, we report the structure-guided engineering of ThAOS to arrive at variants able to use a greatly expanded range of amino acid and simplified N-acetylcysteamine (SNAc) acyl-thioester substrates. The crystal structure of the improved ThAOS V79A variant with a bound PLP:L-penicillamine external aldimine ligand, provides insight into the properties of the engineered biocatalyst.
Collapse
Affiliation(s)
- Ben Ashley
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Sam Mathew
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Mariyah Sajjad
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Yaoyi Zhu
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Nikita Novikovs
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK
| | - Arnaud Baslé
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Marles-Wright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, UK.
| |
Collapse
|
5
|
Azhagapillai P, Gopalsamy K, Othman I, Alhatti NI, Haija MA, Ashraf SS. Immobilization of soybean peroxidase enzyme on hierarchical zeolite-ordered mesoporous carbon nanocomposite and its activity. RSC Adv 2025; 15:5781-5794. [PMID: 39980993 PMCID: PMC11840808 DOI: 10.1039/d4ra07503j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/16/2025] [Indexed: 02/22/2025] Open
Abstract
Immobilization of enzymes on inorganic supports such as silica and carbon materials is an effective approach for chemical surface modification. In this work, hierarchical zeolite (HZ-SAPO's) materials were fabricated by a modified method, and mesoporous carbon (CMK-3) was synthesized using the SBA-15 mesoporous silica as a template. A variety of biocatalysts was prepared using HZ-SAPO with CMK to furnish the nanocomposite biocatalyst. The functionalization of amine group with APTES was done which was further immobilized by Soybean Peroxidase (SBP) enzyme. The material was subjected to a comprehensive characterization process utilizing numerous systematic methods, including X-ray diffraction, N2 adsorption-desorption isotherms, Raman spectroscopy, scanning electron microscopy, high-resolution transmittance electron microscopy, and attenuated total reflectance Fourier transform infrared spectroscopy. The pH effect on the immobilized enzyme was examined and compared to that of SBP. Further, the assessment of repeated usability of immobilized SBP with successive cycles was carried out.
Collapse
Affiliation(s)
- Prabhu Azhagapillai
- Department of Chemistry, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Department of Biological Sciences, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Karthikeyan Gopalsamy
- Department of Chemistry and Biotechnology, Baikal School of BRICS, Irkutsk National Research Technical University 83, Lermontov Street 664074 Irkutsk Russian Federation
| | - Israa Othman
- Department of Chemistry, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Nada I Alhatti
- Department of Biological Sciences, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biological Sciences, Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University P. O. Box 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
6
|
Ha K, Ryu S, Trinh CT. Alpha-ketoacid decarboxylases: Diversity, structures, reaction mechanisms, and applications for biomanufacturing of platform chemicals and fuels. Biotechnol Adv 2025; 81:108531. [PMID: 39955038 DOI: 10.1016/j.biotechadv.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In living cells, alpha-ketoacid decarboxylases (KDCs, EC 4.1.1.-) are a class of enzymes that convert alpha-ketoacids into aldehydes through decarboxylation. These aldehydes serve as either drop-in chemicals or precursors for the biosynthesis of alcohols, carboxylic acids, esters, and alkanes. These compounds play crucial roles in cellular metabolism and fitness and the bioeconomy, facilitating the sustainable and renewable biomanufacturing of platform chemicals and fuels. This review explores the diversity and classification of KDCs, detailing their structures, mechanisms, and functions. We highlight recent advancements in repurposing KDCs to enhance their efficiency and robustness for biomanufacturing. Additionally, we present modular KDC-dependent metabolic pathways for the microbial biosynthesis of aldehydes, alcohols, carboxylic acids, esters, and alkanes. Finally, we discuss recent developments in the modular cell engineering technology that can potentially be applied to harness the diversity of KDC-dependent pathways for biomanufacturing platform chemicals and fuels.
Collapse
Affiliation(s)
- Khanh Ha
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
7
|
Grajales-Hernández DA, Roca M, Moliner V, López-Gallego F. Active Site Engineering of a Glycerol Dehydrogenase Improves its Oxidative Activity and Scope Toward Glycerol Derivatives. Chemistry 2025; 31:e202403735. [PMID: 39665443 DOI: 10.1002/chem.202403735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Regioselective oxidation of glyceryl alkyl ethers is of utmost importance for the fabrication of substituted hydroxy ketones and enantiopure 1,2-diols as green solvents and pharmaceutical building blocks, respectively. An engineered glycerol dehydrogenase from Bacillus stearothermophilus was described to perform the regioselective oxidation of alkyl glycerol ethers, identifying position 252 as key for accepting larger substrates than glycerol. In this work, we further engineer that position through partial saturation mutagenesis to broaden the substrate scope toward other glycerol derivatives, improving enzyme kinetics and minimizing product inhibition. In particular, the BsGlyDH-L252S variant becomes the most efficient biocatalyst for the deracemization of alkyl glyceryl ethers in a two-step, one-pot immobilized system. The discovery and use of these alternative mutants of GlyDH opens the road to more applications and increases the enzymatic toolbox for the modifications of glyceryl ethers.
Collapse
Affiliation(s)
- Daniel A Grajales-Hernández
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, Donostia-San Sebastián, 20014, Spain
| | - Maite Roca
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Vicent Moliner
- Institute of Advanced Materials (INAM), Universitat Jaume I, Av. Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, Donostia-San Sebastián, 20014, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, Bilbao, 48013, Spain
| |
Collapse
|
8
|
Raffaini G, Ganazzoli F. From Molecules to Materials, Devices and Processes: The Chemical Basis of Novel Technologies. Molecules 2025; 30:357. [PMID: 39860226 PMCID: PMC11767922 DOI: 10.3390/molecules30020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This Special Issue was launched in connection with the joint XIII National Congress of AICIng (the Italian Association of Chemistry for Engineering) and the II National Congress of the Division of Chemistry for the Technologies of the Italian Chemical Society, held at the Politecnico di Milano (Italy) from 25 to 28 June 2023 [...].
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
| | - Fabio Ganazzoli
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
| |
Collapse
|
9
|
Wohlgemuth R. Enzyme Catalysis for Sustainable Value Creation Using Renewable Biobased Resources. Molecules 2024; 29:5772. [PMID: 39683928 DOI: 10.3390/molecules29235772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Enzyme catalysis was traditionally used by various human cultures to create value long before its basic concepts were uncovered. This was achieved by transforming the raw materials available from natural resources into useful products. Tremendous scientific and technological progress has been made globally in understanding what constitutes an enzyme; what reactions enzymes can catalyze; and how to search, develop, apply, and improve enzymes to make desired products. The useful properties of enzymes as nature's preferred catalysts, such as their high selectivity, diversity, and adaptability, enable their optimal function, whether in single or multiple reactions. Excellent opportunities for the resource-efficient manufacturing of compounds are provided by the actions of enzymes working in reaction cascades and pathways within the same reaction space, like molecular robots along a production line. Enzyme catalysis plays an increasingly prominent role in industrial innovation and responsible production in various areas, such as green and sustainable chemistry and industrial or white biotechnology. Sources of inspiration include current manufacturing or supply chain challenges, the treasure of natural enzymes, and opportunities to engineer tailor-made enzymes. Making the best use of the power of enzyme catalysis is essential for changing how current products are manufactured; how renewable biobased resources can replace fossil-based resources; and improving the safety, health, and environmental aspects of manufacturing processes to support cleaner and more sustainable production.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
10
|
Jain A, Teshima M, Buryska T, Romeis D, Haslbeck M, Döring M, Sieber V, Stavrakis S, de Mello A. High-Throughput Absorbance-Activated Droplet Sorting for Engineering Aldehyde Dehydrogenases. Angew Chem Int Ed Engl 2024; 63:e202409610. [PMID: 39087463 PMCID: PMC11586695 DOI: 10.1002/anie.202409610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Recent decades have seen a dramatic increase in the commercial use of biocatalysts, transitioning from energy-intensive traditional chemistries to more sustainable methods. Current enzyme engineering techniques, such as directed evolution, require the generation and testing of large mutant libraries to identify optimized variants. Unfortunately, conventional screening methods are unable to screen such large libraries in a robust and timely manner. Droplet-based microfluidic systems have emerged as a powerful high-throughput tool for library screening at kilohertz rates. Unfortunately, almost all reported systems are based on fluorescence detection, restricting their use to a limited number of enzyme types that naturally convert fluorogenic substrates or require the use of surrogate substrates. To expand the range of enzymes amenable to evolution using droplet-based microfluidic systems, we present an absorbance-activated droplet sorter that allows droplet sorting at kilohertz rates without the need for optical monitoring of the microfluidic system. To demonstrate the utility of the sorter, we rapidly screen a 105-member aldehyde dehydrogenase library towards D-glyceraldehyde using a NADH mediated coupled assay that generates WST-1 formazan as the colorimetric product. We successfully identify a variant with a 51 % improvement in catalytic efficiency and a significant increase in overall activity across a broad substrate spectrum.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Mariko Teshima
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Dennis Romeis
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Magdalena Haslbeck
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Manuel Döring
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
| | - Volker Sieber
- Chemistry of Biogenic ResourcesTechnical University of Munich, Campus Straubing for Biotechnology and SustainabilitySchulgasse 1694315StraubingGermany
- Catalytic Research CenterTechnical University of MunichErnst-Otto-Fischer-Straße 185748GarchingGermany
- School of Chemistry and Molecular BiosciencesThe University of Queensland68 Copper RoadSt. Lucia4072, QueenslandAustralia
- SynBioFoundry@TUMTechnical University of MunichSchulgasse 2294315StraubingGermany
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| | - Andrew de Mello
- Institute for Chemical and Bioengineering, Department of Chemistry & Applied BiosciencesETH ZürichVladimir Prelog Weg 18093ZürichSwitzerland
| |
Collapse
|
11
|
Li X, Liu M, Li W, Wang X, Wang S, Yin H, Yan N, Jin X, Yang C. Toward Sustainable Utilization and Production of Tartaric Acid. CHEM REC 2024; 24:e202400099. [PMID: 39520318 DOI: 10.1002/tcr.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Indexed: 11/16/2024]
Abstract
Global efforts toward establishing a circular carbon economy have guided research interests towards exploring renewable technologies that can replace environmentally harmful fossil fuel-based production routes. In this context, sugar-based bio-derived substrates have been identified as renewable molecules for future implementation in chemical industries. Tartaric acid, a special C4 bio-compound with two hydroxyl and carboxylic groups in the structure, displays great potential for the food, polymer, and pharmaceutical industries due to its unique biological reactivity and performance-enhancing properties. To this point, there has yet to be a comprehensive literature review and perspective on the applications and synthesis of tartaric acid. As such, we have conducted a detailed and thorough outlook and discussion in terms of biological activity, organic synthesis, catalysis, structural characterization and synthetic routes. Lastly, we provide a critical discussion on the applications and synthesis of tartaric acid to give our insights into developing sustainable chemical technologies for the future.
Collapse
Affiliation(s)
- Xiran Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Wenhan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Xin Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Shiyu Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Haoran Yin
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| |
Collapse
|
12
|
Naim M, Mohammat MF, Mohd Ariff PNA, Uzir MH. Biocatalytic approach for the synthesis of chiral alcohols for the development of pharmaceutical intermediates and other industrial applications: A review. Enzyme Microb Technol 2024; 180:110483. [PMID: 39033578 DOI: 10.1016/j.enzmictec.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Biocatalysis has emerged as a strong tool for the synthesis of active pharmaceutical ingredients (APIs). In the early twentieth century, whole cell biocatalysis was used to develop the first industrial biocatalytic processes, and the precise work of enzymes was unknown. Biocatalysis has evolved over the years into an essential tool for modern, cost-effective, and sustainable pharmaceutical manufacturing. Meanwhile, advances in directed evolution enable the rapid production of process-stable enzymes with broad substrate scope and high selectivity. Large-scale synthetic pathways incorporating biocatalytic critical steps towards >130 APIs of authorized pharmaceuticals and drug prospects are compared in terms of steps, reaction conditions, and scale with the corresponding chemical procedures. This review is designed on the functional group developed during the reaction forming alcohol functional groups. Some important biocatalyst sources, techniques, and challenges are described. A few APIs and their utilization in pharmaceutical drugs are explained here in this review. Biocatalysis has provided shorter, more efficient, and more sustainable alternative pathways toward existing small molecule APIs. Furthermore, non-pharmaceutical applications of biocatalysts are also mentioned and discussed. Finally, this review includes the future outlook and challenges of biocatalysis. In conclusion, Further research and development of promising enzymes are required before they can be used in industry.
Collapse
Affiliation(s)
- Mohd Naim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Mohd Fazli Mohammat
- Centre for Chemical Synthesis & Polymer Technology, Institute of Science (IoS), Kompleks Inspirasi, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan 40450, Malaysia.
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Mohamad Hekarl Uzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| |
Collapse
|
13
|
Pavliuk MV, Böhm M, Wilhelmsen J, Hardt S, Land H, Tian H. Photobiocatalytic CO 2 reduction into CO by organic nanorod-carbon monoxide dehydrogenase assemblies: surfactant matters. Chem Sci 2024:d4sc03154g. [PMID: 39328197 PMCID: PMC11421036 DOI: 10.1039/d4sc03154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Photobiocatalytic CO2 reduction represents an attractive approach for conversion of solar light and abundant resources to value-added chemicals. However, the design of suitable systems requires a detailed understanding of the interaction between the artificial photosensitizer and biocatalyst interface. In this work, we investigate the effect of surfactant charge utilized in the preparation of a phenoxazine-based organic molecule nanorod photosensitizer on the interaction with the carbon monoxide dehydrogenase II from Carboxydothermus hydrogenoformans within biohybrid assemblies for sacrificially driven photobiocatalytic CO2 reduction into CO. Electrophoretic mobility shift assay in conjunction with cryogenic electron microscopy (Cryo-EM) and detailed physicochemical characterization are conducted to understand the interaction at the biohybrid interface in order to suggest a strategy for future functionalization of nanoparticles that fulfills the needs of the biocatalyst for green fuel production.
Collapse
Affiliation(s)
- Mariia V Pavliuk
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| | - Maximilian Böhm
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University Uppsala Sweden
| | - Janna Wilhelmsen
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| | - Steffen Hardt
- Leiden Institute of Chemistry, Energy and Sustainability - Catalysis and Surface Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Henrik Land
- Department of Chemistry - Ångström Laboratory, Molecular Biomimetics, Uppsala University Uppsala Sweden
| | - Haining Tian
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University Uppsala Sweden
| |
Collapse
|
14
|
Tocco D, Joshi M, Mastrangelo R, Fratini E, Salis A, Hartmann M. A green approach to encapsulate proteins and enzymes within crystalline lanthanide-based Tb and Gd MOFs. Dalton Trans 2024; 53:14171-14181. [PMID: 39044548 DOI: 10.1039/d4dt01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In this work, bovine serum albumin (BSA) and Aspergillus sp. laccase (LC) were encapsulated in situ within two lanthanide-based MOFs (TbBTC and GdBTC) through a green one-pot synthesis (almost neutral aqueous solution, T = 25 °C, and atmospheric pressure) in about 1 h. Pristine MOFs and protein-encapsulated MOFs were characterized through wide angle X-ray scattering, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopies. The location of immobilized BSA molecules, used as a model protein, was investigated through small angle X-ray scattering. BSA occurs both on the inner and on the outer surface of the MOFs. LC@TbBTC, and LC@GdBTC samples were also characterized in terms of specific activity, kinetic parameters, and storage stability both in water and acetate buffer. The specific activity of LC@TbBTC was almost twice that of LC@GdBTC (10.8 μmol min-1 mg-1vs. 6.6 μmol min-1 mg-1). Both biocatalysts showed similar storage stabilities retaining ∼60% of their initial activity after 7 days and ∼20% after 21 days. LC@TbBTC dispersed in acetate buffer exhibited a higher storage stability than LC@GdBTC. Additionally, terbium-based MOFs showed interesting luminescent properties. Together, these findings suggest that TbBTC and GdBTC are promising supports for the in situ immobilization of proteins and enzymes.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences & CSGI, University of Cagliari, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy.
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Madhura Joshi
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" & CSGI, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences & CSGI, University of Cagliari, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
15
|
Gueddari-Aourir A, Alonso-Moreno C, Zafrilla JE, Canales-Vázquez J, Ayuso-Yuste MC, Villaseñor E, García-Yuste S. An innovative environmental tool to evaluate the sustainability of anthropogenic processes: the tetrahedron approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34495-0. [PMID: 39088171 DOI: 10.1007/s11356-024-34495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
The Tetrahedron approach is a new environmental tool adapted to assess the sustainability of anthropogenic processes. This tool is based on a four-step methodology that includes (a) the identification of critical parameters, (b) evaluation through the Tetrahedron Parameter Global Evaluator, (c) construction of a tetrahedron diagram based on the final scores and (d) quantitative estimation of the global sustainability. The Tetrahedron incorporates various aspects of sustainability, including economic, social and environmental factors, and provides a comprehensive framework for evaluating the impact of human activities. This article presents the methodology and application of the Tetrahedron in determining the sustainability of five case studies: CO2 capture, unconventional methanol production, the Solvay process, CO2-alcoholic fermentation process strategy and the CO2-Rumen fermentation process strategy. The results demonstrate the Tetrahedron as an effective and reliable tool to quantify the sustainability of anthropogenic processes and to promote sustainable practices across various industries and sectors. The Tetrahedron offers several advantages over other environmental assessment tools, including holistic approach, simplicity and flexibility.
Collapse
Affiliation(s)
- Abdessamad Gueddari-Aourir
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Castilla-La Mancha, Avda. Camilo Jose Cela, 10, 13071, Ciudad Real, Spain.
| | - Carlos Alonso-Moreno
- Departamento de Química Inorgánica, Orgánica y Bioquímica-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Castilla-La Mancha, Avda. Camilo Jose Cela, 10, 13071, Ciudad Real, Spain
- Unidad nanoDrug, Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Av. Dr. Jose Maria Sánchez Ibáñez s/n, 02071, Albacete, Spain
| | - Jorge Enrique Zafrilla
- Departamento de Análisis Económico y Finanzas, Facultad de Ciencias Económicas y Empresariales, Universidad de Castilla-La Mancha, Plaza de La Universidad, 1, 02071, Albacete, Spain
| | - Jesús Canales-Vázquez
- Instituto de Energías Renovables, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Paseo de La Investigación, 1, 02071, Albacete, Spain
| | - María Concepción Ayuso-Yuste
- Ingeniería del Medio Agronómico y Forestal, Producción Vegetal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez S/N, 06007, Badajoz, Spain
- Instituto Universitario de Investigación de Recursos Agrarios. Universidad de Extremadura, Avda. de Elvas, S/N, 06071, Badajoz, Spain
| | - Elena Villaseñor
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain
| | - Santiago García-Yuste
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain
| |
Collapse
|
16
|
Di Teodoro A, Herrera M, Rincon L, Gude JJ, Camacho O. A Hybrid Control Framework for Chemical Processes with Long Time Delay: Theory and Experiments. ACS OMEGA 2024; 9:32469-32480. [PMID: 39100333 PMCID: PMC11292832 DOI: 10.1021/acsomega.3c10514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
This paper proposes a hybrid control framework based on internal model concepts, sliding mode control methodology, and fractional-order calculus theory. As a result, a modified Smith predictor (SP) is proposed for nonlinear systems with significant delays. The particular predictive approach enhances the sliding mode control (SMC) controller's transient responses for dead-time processes, and the SMC gives the predictive structure robustness for model mismatches by combining the previous methods with fractional order concepts; the result is a dynamical sliding mode controller. A numerical example is considered to evaluate the performance of the proposed approach, where a step change, external disturbance, and parametric uncertainty test are performed. A real application in the TCLab Arduino kit is presented; the proposed method presented good performance with a little amount of chattering, and in the disturbance rejection case, the overshoot increased with an aggressive response; in both cases, better tuning parameters can improve the process response and the controller action.
Collapse
Affiliation(s)
- Antonio Di Teodoro
- Colegio
de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Marco Herrera
- Colegio
de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Luis Rincon
- Colegio
de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Juan J. Gude
- Department
of Computing, Electronics and Communication Technologies, Faculty
of Engineering, University of Deusto, Bilbao 48007, Spain
| | - Oscar Camacho
- Colegio
de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| |
Collapse
|
17
|
Fong JK, Mathieu Y, Vo MT, Bellemare A, Tsang A, Brumer H. Expansion of Auxiliary Activity Family 5 sequence space via biochemical characterization of six new copper radical oxidases. Appl Environ Microbiol 2024; 90:e0101424. [PMID: 38953370 PMCID: PMC11267884 DOI: 10.1128/aem.01014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.
Collapse
Affiliation(s)
- Jessica K. Fong
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Minh Tri Vo
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Annie Bellemare
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Zhong C, Nidetzky B. Bottom-Up Synthesized Glucan Materials: Opportunities from Applied Biocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400436. [PMID: 38514194 DOI: 10.1002/adma.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Indexed: 03/23/2024]
Abstract
Linear d-glucans are natural polysaccharides of simple chemical structure. They are comprised of d-glucosyl units linked by a single type of glycosidic bond. Noncovalent interactions within, and between, the d-glucan chains give rise to a broad variety of macromolecular nanostructures that can assemble into crystalline-organized materials of tunable morphology. Structure design and functionalization of d-glucans for diverse material applications largely relies on top-down processing and chemical derivatization of naturally derived starting materials. The top-down approach encounters critical limitations in efficiency, selectivity, and flexibility. Bottom-up approaches of d-glucan synthesis offer different, and often more precise, ways of polymer structure control and provide means of functional diversification widely inaccessible to top-down routes of polysaccharide material processing. Here the natural and engineered enzymes (glycosyltransferases, glycoside hydrolases and phosphorylases, glycosynthases) for d-glucan polymerization are described and the use of applied biocatalysis for the bottom-up assembly of specific d-glucan structures is shown. Advanced material applications of the resulting polymeric products are further shown and their important role in the development of sustainable macromolecular materials in a bio-based circular economy is discussed.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, Graz, 8010, Austria
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, Graz, 8010, Austria
| |
Collapse
|
19
|
Sudar M, Milčić N, Česnik Katulić M, Szekrenyi A, Hernández K, Fekete M, Wardenga R, Majerić Elenkov M, Qi Y, Charnock S, Vasić-Rački Đ, Fessner WD, Clapés P, Findrik Blažević Z. Cascade enzymatic synthesis of a statin side chain precursor - the role of reaction engineering in process optimization. RSC Adv 2024; 14:21158-21173. [PMID: 38966813 PMCID: PMC11223575 DOI: 10.1039/d4ra01633e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
Statins are an important class of drugs used to lower blood cholesterol levels and are often used to combat cardiovascular disease. In view of the importance of safe and reliable supply and production of statins in modern medicine and the global need for sustainable processes, various biocatalytic strategies for their synthesis have been investigated. In this work, a novel biocatalytic route to a statin side chain precursor was investigated in a one-pot cascade reaction starting from the protected alcohol N-(3-hydroxypropyl)-2-phenylacetamide, which is oxidized to the corresponding aldehyde in the first reaction step, and then reacts with two equivalents of acetaldehyde to form the final product N-(2-((2S,4S,6S)-4,6-dihydroxytetrahydro-2H-pyran-2-yl)ethyl)-2-phenylacetamide (phenylacetamide-lactol). To study this complex reaction, an enzyme reaction engineering approach was used, i.e. the kinetics of all reactions occurring in the cascade (including side reactions) were determined. The obtained kinetic model together with the simulations gave an insight into the system and indicated the best reactor mode for the studied reaction, which was fed-batch with acetaldehyde feed to minimize its negative effect on the enzyme activity during the reaction. The mathematical model of the process was developed and used to simulate different scenarios and to find the reaction conditions (enzyme and coenzyme concentration, substrate feed concentration and flow rate) at which the highest yield of phenylacetamide-lactol (75%) can be obtained. In the end, our goal was to show that this novel cascade route is an interesting alternative for the synthesis of the statin side chain precursor and that is why we also calculated an initial estimate of the potential value addition.
Collapse
Affiliation(s)
- Martina Sudar
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Nevena Milčić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Morana Česnik Katulić
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Anna Szekrenyi
- Technische Universität Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Karel Hernández
- Institute of Advanced Chemistry of Catalonia, Biotransformation and Bioactive Molecules Group, IQAC-CSIC Jordi Girona 18-26 08034 Barcelona Spain
| | - Melinda Fekete
- Enzymicals AG Walther-Rathenau-Straße 49b 17489 Greifswald Germany
- piCHEM Forschungs-und Entwicklungs GmbH Parkring 3 8074 Raaba-Grambach Austria
| | - Rainer Wardenga
- Enzymicals AG Walther-Rathenau-Straße 49b 17489 Greifswald Germany
| | | | - Yuyin Qi
- Prozomix Ltd Haltwhistle Northumberland NE49 9HA UK
| | | | - Đurđa Vasić-Rački
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| | - Wolf-Dieter Fessner
- Technische Universität Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Pere Clapés
- Institute of Advanced Chemistry of Catalonia, Biotransformation and Bioactive Molecules Group, IQAC-CSIC Jordi Girona 18-26 08034 Barcelona Spain
| | - Zvjezdana Findrik Blažević
- University of Zagreb Faculty of Chemical Engineering and Technology Savska c. 16 HR-10000 Zagreb Croatia +385 1 4597 133 +385 1 4597 157 +385 1 4597 101
| |
Collapse
|
20
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
21
|
Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Commun Chem 2024; 7:132. [PMID: 38858478 PMCID: PMC11165005 DOI: 10.1038/s42004-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
An emerging concept and platform, the electrochemical Leaf (e-Leaf), offers a radical change in the way tandem (multi-step) catalysis by enzyme cascades is studied and exploited. The various enzymes are loaded into an electronically conducting porous material composed of metallic oxide nanoparticles, where they achieve high concentration and crowding - in the latter respect the environment resembles that found in living cells. By exploiting efficient electron tunneling between the nanoparticles and one of the enzymes, the e-Leaf enables the user to interact directly with complex networks, rendering simultaneous the abilities to energise, control and observe catalysis. Because dispersion of intermediates is physically suppressed, the output of the cascade - the rate of flow of chemical steps and information - is delivered in real time as electrical current. Myriad enzymes of all major classes now become effectively electroactive in a technology that offers scalability between micro-(analytical, multiplex) and macro-(synthesis) levels. This Perspective describes how the e-Leaf was discovered, the steps in its development so far, and the outlook for future research and applications.
Collapse
Affiliation(s)
| | - Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
22
|
Elisée E, Ducrot L, Méheust R, Bastard K, Fossey-Jouenne A, Grogan G, Pelletier E, Petit JL, Stam M, de Berardinis V, Zaparucha A, Vallenet D, Vergne-Vaxelaire C. A refined picture of the native amine dehydrogenase family revealed by extensive biodiversity screening. Nat Commun 2024; 15:4933. [PMID: 38858403 PMCID: PMC11164908 DOI: 10.1038/s41467-024-49009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Native amine dehydrogenases offer sustainable access to chiral amines, so the search for scaffolds capable of converting more diverse carbonyl compounds is required to reach the full potential of this alternative to conventional synthetic reductive aminations. Here we report a multidisciplinary strategy combining bioinformatics, chemoinformatics and biocatalysis to extensively screen billions of sequences in silico and to efficiently find native amine dehydrogenases features using computational approaches. In this way, we achieve a comprehensive overview of the initial native amine dehydrogenase family, extending it from 2,011 to 17,959 sequences, and identify native amine dehydrogenases with non-reported substrate spectra, including hindered carbonyls and ethyl ketones, and accepting methylamine and cyclopropylamine as amine donor. We also present preliminary model-based structural information to inform the design of potential (R)-selective amine dehydrogenases, as native amine dehydrogenases are mostly (S)-selective. This integrated strategy paves the way for expanding the resource of other enzyme families and in highlighting enzymes with original features.
Collapse
Affiliation(s)
- Eddy Elisée
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Laurine Ducrot
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Raphaël Méheust
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Aurélie Fossey-Jouenne
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Louis Petit
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Mark Stam
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Véronique de Berardinis
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Anne Zaparucha
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - David Vallenet
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
| | - Carine Vergne-Vaxelaire
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
23
|
Matera A, Dulak K, Werner H, Sordon S, Huszcza E, Popłoński J. Investigation on production and reaction conditions of sucrose synthase based glucosylation cascade towards flavonoid modification. Bioorg Chem 2024; 146:107287. [PMID: 38503024 DOI: 10.1016/j.bioorg.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Hanna Werner
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
24
|
Wang Y, Liang J, Liu S, Wang Q, Zhang Y, Tian Y, Ke Z, Su Q, Pang S. Selective Adsorbent Design with Multifunctional Surfaces: Innovating Solutions for Heterogeneous Catalysis in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9265-9279. [PMID: 38636094 DOI: 10.1021/acs.langmuir.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Heterogeneous catalytic systems with water as the solvent often have the disadvantage of cross-contamination, while concerns about the purification and workup of the aqueous phase after reactions are rare in the lab or industry. In this context, designing and developing the functional selective solid adsorbent and revealing the adsorption mechanism can provide a new strategy and guidelines for constructing supported heterogeneous catalysts to address these issues. Herein, we report the stable composite adsorbent (Fe/ATP@PPy: magnetic Fe3O4/attapulgite with the polypyrrole shell) that features an integrated multifunctional surface, which can effectively tune the selective adsorption processes for Cu2+, Co2+, and Ni2+ ions and nitrobenzene via the cooperative chemisorption/physisorption in an aqueous system. The adsorption experiments showed that Fe/ATP@PPy displayed significantly higher adsorption selectivity for Ni2+ than Cu2+ and Co2+ ions, especially which exhibited an approximate 100.00% removal for both Ni2+ ions and nitrobenzene in the mixture system with a low concentration. Furthermore, combined tracking adsorption of Ni2+ ions and X-ray photoelectron spectroscopy characterization confirmed that the effective adsorption occurs via ion transfer coordination; the pathway was further validated at the molecular level through theoretical modeling. In addition, the selective adsorption mechanism was proposed based on the adsorption experiment, characterization, and the corresponding density functional theory calculation.
Collapse
Affiliation(s)
- Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Junxi Liang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Shimin Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Qing Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Yujing Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yu Tian
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Zhengang Ke
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Qiong Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Shaofeng Pang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Chemical Engineering Institute, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| |
Collapse
|
25
|
Haala F, Dielentheis-Frenken MRE, Brandt FM, Karmainski T, Blank LM, Tiso T. DoE-based medium optimization for improved biosurfactant production with Aureobasidium pullulans. Front Bioeng Biotechnol 2024; 12:1379707. [PMID: 38511129 PMCID: PMC10953688 DOI: 10.3389/fbioe.2024.1379707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Polyol lipids (a.k.a. liamocins) produced by the polyextremotolerant, yeast-like fungus Aureobasidium pullulans are amphiphilic molecules with high potential to serve as biosurfactants. So far, cultivations of A. pullulans have been performed in media with complex components, which complicates further process optimization due to their undefined composition. In this study, we developed and optimized a minimal medium, focusing on biosurfactant production. Firstly, we replaced yeast extract and peptone in the best-performing polyol lipid production medium to date with a vitamin solution, a trace-element solution, and a nitrogen source. We employed a design of experiments approach with a factor screening using a two-level-factorial design, followed by a central composite design. The polyol lipid titer was increased by 56% to 48 g L-1, and the space-time yield from 0.13 to 0.20 g L-1 h-1 in microtiter plate cultivations. This was followed by a successful transfer to a 1 L bioreactor, reaching a polyol lipid concentration of 41 g L-1. The final minimal medium allows the investigation of alternative carbon sources and the metabolic pathways involved, to pinpoint targets for genetic modifications. The results are discussed in the context of the industrial applicability of this robust and versatile fungus.
Collapse
Affiliation(s)
| | | | | | | | | | - Till Tiso
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Tkaczenko H, Hetmański T, Kamiński P, Kurhaluk N. Can blood morphology, oxidative stress, and cholinesterase activity determine health status of pigeon Columba livia f. urbana? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19927-19945. [PMID: 38367111 DOI: 10.1007/s11356-024-32296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Environmental studies in Northern Poland are example of the functioning of ecophysiological relationships under anthropogenic impact. The aim of our studies was to investigate sex-dependent effects on the alterations in the concentration of chemical elements in soil samples collected from habitats of feral pigeon Columba livia f. urbana from Northern Poland, as well as feathers, biomarkers of oxidative stress, antioxidant defense, and total cholinesterase activity in tissues (liver, kidney, brain). Concentration of Si, Zn, and Pb in feathers of pigeons was significant. The levels of Si and Zn were higher in feathers of females from non-polluted, while higher Pb levels were found only in females from polluted areas (p = 0.000). This was confirmed by MANOVA of biomarkers of antioxidant defense, elements concentration, and revealing the order of effects: tissue type > environment > sex. Erythrocytes of males living in polluted areas were more fragile to hemolytic agents resulting in a higher percentage of hemolyzed erythrocytes. The effects of polluted environment on the level of carbonyl derivatives of oxidatively modified proteins compared to the effects of sex were more pronounced in the case of kidney (p = 0.000) and hepatic tissues (p = 0.000). Polluted areas were associated with significant increase in SOD activity in the brain and hepatic tissues of pigeons (p = 0.000). Health status of feral pigeons is significantly different in conditions of environmental destabilization.
Collapse
Affiliation(s)
- Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200, Słupsk, PL, Poland
| | - Tomasz Hetmański
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200, Słupsk, PL, Poland
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094, Bydgoszcz, PL, Poland
- Department of Biotechnology, Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516, Zielona Góra, PL, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200, Słupsk, PL, Poland.
| |
Collapse
|
27
|
Qin Z, Zhou Y, Li Z, Höhne M, Bornscheuer UT, Wu S. Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase. Angew Chem Int Ed Engl 2024; 63:e202314566. [PMID: 37947487 DOI: 10.1002/anie.202314566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Collapse
Affiliation(s)
- Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Yi Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Matthias Höhne
- Institute of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623, Berlin, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| |
Collapse
|
28
|
Procopio D, Siciliano C, Di Gioia ML. Reactive deep eutectic solvents for EDC-mediated amide synthesis. Org Biomol Chem 2024; 22:1400-1408. [PMID: 38126479 DOI: 10.1039/d3ob01673k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The sustainability of amide bond formation is an ever-present topic in the pharmaceutical industry, as it represents the common motif in many clinically approved drugs. Despite many procedures for accomplishing eco-friendly amide synthesis having been developed, this transformation still remains a contemporary challenge. Herein, we report a greener approach for amide synthesis by using Reactive Deep Eutectic Solvents (RDESs) acting as both the reaction medium and reactants. The procedure not only avoids the use of hazardous solvents but also provides operationally simple product recovery with high purity and efficiency, without chromatographic purification. This approach was efficiently applied to the synthesis of a key intermediate in the production of an active pharmaceutical ingredient like atenolol. The green metrics of the gram-scale procedure were compared to the conventional industrial strategy showing an advancement in the greening of amide synthesis.
Collapse
Affiliation(s)
- Debora Procopio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Arcavacata of Rende, Italy.
| |
Collapse
|
29
|
Ali A, Naveed A, Maroń A, Younis MA, Moradian JM, Yousaf B, Aziz T, Ali RN, Ahmad N, Alomar SY, Zheqiang F, Guo L. Copolymerization of ethylene and isoprene via silicon bridge metallocene [rac-Me 2Si(2-Me-4-Ph-Ind) 2ZrCl 2] catalyst: A new way to control the composition and microstructure of copolymers. CHEMOSPHERE 2024; 347:140700. [PMID: 37977533 DOI: 10.1016/j.chemosphere.2023.140700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The copolymerization of ethylene (E) with isoprene (Ip) was performed catalyzed by a symmetrical catalyst exhibiting a silicon bridge [rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2 with the combination of borate/TIBA activator. The effect of cocatalyst, Ip concentration, and polymerization temperature on the activity, molecular weight (Mw), distribution (MWD), comonomer composition, chain structure (regio- and stereoselectivity), and resulting side reactions were logically addressed. Gel-permeation chromatography (GPC) was used to characterize the Mw and polydispersity, while nuclear magnetic resonance (NMR) was employed for the chain structure of the polymers. The catalytic activity was significantly lower by increasing the Ip concentration in the feed, and the isoprene content in resulting polymers was lower under the reaction condition, leading to higher activity. Insertion of isoprene units in polymer structure demonstrates the higher regioselectivity for the 3,4 connections than the 1,4 connections and is expected to be a high-resistance polymer against acids. The MWD presented monomodal even with a higher concentration (1.44 mol/L) and did not appear as low Mw peaks of Ip. The Mw was higher with a broader MWD when purely TIBA was used as a cocatalyst, and it significantly reduced and presented a narrowed MWD with TEA in the cocatalyst. The higher efficiency of the catalyst for the higher insertion of Ip (C=C double bond) effectively modifies the polymer backbone. It is expected to be a promising candidate for easily degradable and favorable solutions for solving environmental problems caused by PE. wastes.
Collapse
Affiliation(s)
- Amjad Ali
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-600, Poland; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ahmad Naveed
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Anna Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, Katowice, 40-600, Poland
| | - Muhammad Adnan Younis
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, PR China
| | | | - Balal Yousaf
- Department of Technologies and Installations for West Management, Faculty of Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Tariq Aziz
- School of Engineering Yunqi Campus, Westlake University, Hangzhou, Zhejiang, 310024, PR China
| | - Rai Nauman Ali
- Laboratory of Inorganic Materials for Sustainable Energy Technologies, Mohammed IV Polytechnic University, Benguirer, Morocco
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Suliman Yousef Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Fan Zheqiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
30
|
Ostermeier L, Ascani M, Gajardo-Parra N, Sadowski G, Held C, Winter R. Leveraging liquid-liquid phase separation and volume modulation to regulate the enzymatic activity of formate dehydrogenase. Biophys Chem 2024; 304:107128. [PMID: 37922819 DOI: 10.1016/j.bpc.2023.107128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Engineering of reaction media is an exciting alternative for modulating kinetic properties of biocatalytic reactions. We addressed the combined effect of an aqueous two-phase system (ATPS) and high hydrostatic pressure on the kinetics of the Candida boidinii formate dehydrogenase-catalyzed oxidation of formate to CO2. Pressurization was found to lead to an increase of the binding affinity (decrease of KM, respectively) and a decrease of the turnover number, kcat. The experimental approach was supported using thermodynamic modeling with the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) equation of state to predict the liquid-liquid phase separation and the molecular crowding effect of the ATPS on the kinetic properties. The ePC-SAFT was able to quantitatively predict the KM-values of the substrate in both phases at 1 bar as well as up to a pressure of 1000 bar. The framework presented enables significant advances in bioprocess engineering, including the design of processes with significantly fewer experiments and trial-and-error approaches.
Collapse
Affiliation(s)
- Lena Ostermeier
- Department of Chemistry and Chemical, Biology, Physical Chemistry I, TU Dortmund University, 44227 Dortmund, Germany
| | - Moreno Ascani
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Nicolás Gajardo-Parra
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany.
| | - Roland Winter
- Department of Chemistry and Chemical, Biology, Physical Chemistry I, TU Dortmund University, 44227 Dortmund, Germany.
| |
Collapse
|
31
|
Seyyedi SR, Kowsari E, Ramakrishna S, Gheibi M, Chinnappan A. Marine plastics, circular economy, and artificial intelligence: A comprehensive review of challenges, solutions, and policies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118591. [PMID: 37423188 DOI: 10.1016/j.jenvman.2023.118591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Global plastic production is rapidly increasing, resulting in significant amounts of plastic entering the marine environment. This makes marine litter one of the most critical environmental concerns. Determining the effects of this waste on marine animals, particularly endangered organisms, and the health of the oceans is now one of the top environmental priorities. This article reviews the sources of plastic production, its entry into the oceans and the food chain, the potential threat to aquatic animals and humans, the challenges of plastic waste in the oceans, the existing laws and regulations in this field, and strategies. Using conceptual models, this study looks at a circular economy framework for energy recovery from ocean plastic wastes. It does this by drawing on debates about AI-based systems for smart management. In the last sections of the present research, a novel soft sensor is designed for the prediction of accumulated ocean plastic waste based on social development features and the application of machine learning computations. Plus, the best scenario of ocean plastic waste management with a concentration on both energy consumption and greenhouse gas emissions is discussed using USEPA-WARM modeling. Finally, a circular economy concept and ocean plastic waste management policies are modeled based on the strategies of different countries. We deal with green chemistry and the replacement of plastics derived from fossil sources.
Collapse
Affiliation(s)
- Seyed Reza Seyyedi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore.
| | - Mohammad Gheibi
- Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amutha Chinnappan
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|
32
|
Xiao Y, Shen C, Xiong Z, Ding Y, Liu L, Zhang W, Wu YA. Comprehensive Study Addressing the Challenge of Efficient Electrocatalytic Biomass Upgrading of 5-(Hydroxymethyl)Furfural (HMF) with a CH 3 NH 2 Ionic Liquid on Metal-Embedded Mo 2 B 2 MBene Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302271. [PMID: 37328440 DOI: 10.1002/smll.202302271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/15/2023] [Indexed: 06/18/2023]
Abstract
Amine-containing derivatives are important intermediates in drug manufacturing; sustainable synthesis of amine compounds from green carbon-based biomass derivatives has attracted increasing attention, especially the reductive amination of biomass molecules via electrochemical upgrading. To achieve efficient reductive amination of 5-(hydroxymethyl)furfural (HMF) via electrocatalytic biomass upgrading, this work proposes a new HMF biomass upgrading strategy based on metal supported on Mo2 B2 MBene nanosheets using a density functional theory comprehensive study. HMF and methylamine (CH3 CH2 ) can be reduced to 5-(hydroxymethyl) aldiminefurfural (HMMAMF) via electrocatalytic biomass upgrading, which is identified as a promising technology to produce pharmaceutical intermediates. Based on the proposed reaction mechanisms of HMF reductive amination, this work performs a systematic study of HMF amination to HMMAMF using an atomic model simulation method. This study aims to design a high-efficiency catalyst based on Mo2 B2 @TM nanosheets via the reductive amination of 5-HMF and provide insights into the intrinsic relation between thermochemical and material electronic properties and the role of dopant metals. This work establishes the Gibbs free energy profiles of each reaction HMF Biomass Upgrading on Mo2 B2 systems and obtained the limiting potentials of the rate-determining step, which included the kinetic stability of dopants, HMF adsorbability, and the catalytic activity and selectivity of the hydrogen evolution reaction or surface oxidation. Furthermore, charge transfer, d-band center (εd ), and material property (φ) descriptors are applied to establish a linear correlation to determine promising candidate catalysts for reductive amination of HMF. The candidates Mo2 B2 @Cr, Mo2 B2 @Zr, Mo2 B2 @Nb, Mo2 B2 @Ru, Mo2 B2 @Rh, and Mo2 B2 @Os are suitable high-efficiency catalysts for HMF amination. This work may contribute to the experimental application of biomass upgrading catalysts for biomass energy and guide the future development of biomass conversion strategies and utilization.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Chen Shen
- Institute of Materials Science, TU Darmstadt, 64287, Darmstadt, Germany
| | - Zhengwei Xiong
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yingchun Ding
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Li Liu
- Laboratory of New Energy and Materials, Xinjiang Institute of Engineering, Urumqi, 830091, China
| | - Weibin Zhang
- Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, 650500, China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
33
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [DOI: https:/doi.10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90–100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging’s mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin’s antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
34
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [PMID: 37764246 PMCID: PMC10535768 DOI: 10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
35
|
Khiari O, Bouzemi N, Sánchez-Montero JM, Alcántara AR. Easy and Versatile Technique for the Preparation of Stable and Active Lipase-Based CLEA-like Copolymers by Using Two Homofunctional Cross-Linking Agents: Application to the Preparation of Enantiopure Ibuprofen. Int J Mol Sci 2023; 24:13664. [PMID: 37686470 PMCID: PMC10487927 DOI: 10.3390/ijms241713664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
An easy and versatile method was designed and applied successfully to obtain access to lipase-based cross-linked-enzyme aggregate-like copolymers (CLEA-LCs) using one-pot, consecutive cross-linking steps using two types of homobifunctional cross-linkers (glutaraldehyde and putrescine), mediated with amine activation through pH alteration (pH jump) as a key step in the process. Six lipases were utilised in order to assess the effectiveness of the technique, in terms of immobilization yields, hydrolytic activities, thermal stability and application in kinetic resolution. A good retention of catalytic properties was found for all cases, together with an important thermal and storage stability improvement. Particularly, the CLEA-LCs derived from Candida rugosa lipase showed an outstanding behaviour in terms of thermostability and capability for catalysing the enantioselective hydrolysis of racemic ibuprofen ethyl ester, furnishing the eutomer (S)-ibuprofen with very high conversion and enantioselectivity.
Collapse
Affiliation(s)
- Oussama Khiari
- Eco Compatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry, Badji Mokhtar University, Annaba 23000, Algeria; (O.K.); (N.B.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| | - Nassima Bouzemi
- Eco Compatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry, Badji Mokhtar University, Annaba 23000, Algeria; (O.K.); (N.B.)
| | - José María Sánchez-Montero
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| |
Collapse
|
36
|
Orsy G, Forró E. Lipase-Catalyzed Strategies for the Preparation of Enantiomeric THIQ and TH βC Derivatives: Green Aspects. Molecules 2023; 28:6362. [PMID: 37687191 PMCID: PMC10490024 DOI: 10.3390/molecules28176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This report reviews the most important lipase-catalyzed strategies for the preparation of pharmaceutically and chemically important tetrahydroisoquinoline and tetrahydro-β-carboline enantiomers through O-acylation of the primary hydroxy group, N-acylation of the secondary amino group, and COOEt hydrolysis of the corresponding racemic compounds with simple molecular structure, which have been reported during the last decade. A brief introduction describes the importance and synthesis of tetrahydroisoquinoline and tetrahydro-β-carboline derivatives, and it formulates the objectives of this compilation. The strategies are presented in chronological order, classified according to function of the reaction type, as kinetic and dynamic kinetic resolutions, in the main text. These reactions result in the desired products with excellent ee values. The pharmacological importance of the products together with their synthesis is given in the main text. The enzymatic hydrolysis of the hydrochloride salts as racemates of the starting amino carboxylic esters furnished the desired enantiomeric amino carboxylic acids quantitatively. The enzymatic reactions, performed in tBuOMe or H2O as usable solvents, and the transformations carried out in a continuous-flow system, indicate clear advantages, including atom economy, reproducibility, safer solvents, short reaction time, rapid heating and compression vs. shaker reactions. These features are highlighted in the main text.
Collapse
Affiliation(s)
- György Orsy
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
37
|
Nidetzky B, Kim BG. Editorial overview: Efficient systems of biocatalytic production promote the development of chemical biotechnology. Curr Opin Biotechnol 2023; 82:102950. [PMID: 37224598 DOI: 10.1016/j.copbio.2023.102950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), Graz, Austria.
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering and BIO-MAX Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
38
|
Orsy G, Shahmohammadi S, Forró E. A Sustainable Green Enzymatic Method for Amide Bond Formation. Molecules 2023; 28:5706. [PMID: 37570676 PMCID: PMC10419938 DOI: 10.3390/molecules28155706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A sustainable enzymatic strategy for the preparation of amides by using Candida antarctica lipase B as the biocatalyst and cyclopentyl methyl ether as a green and safe solvent was devised. The method is simple and efficient and it produces amides with excellent conversions and yields without the need for intensive purification steps. The scope of the reaction was extended to the preparation of 28 diverse amides using four different free carboxylic acids and seven primary and secondary amines, including cyclic amines. This enzymatic methodology has the potential to become a green and industrially reliable process for direct amide synthesis.
Collapse
Affiliation(s)
- György Orsy
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (G.O.); (S.S.)
| | - Sayeh Shahmohammadi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (G.O.); (S.S.)
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Enikő Forró
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (G.O.); (S.S.)
| |
Collapse
|
39
|
Pinheiro BB, Saibi S, Haroune L, Rios NS, Gonçalves LRB, Cabana H. Genipin and glutaraldehyde based laccase two-layers immobilization with improved properties: New biocatalysts with high potential for enzymatic removal of trace organic contaminants. Enzyme Microb Technol 2023; 169:110261. [PMID: 37269616 DOI: 10.1016/j.enzmictec.2023.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
This research proposes the preparation of a two-layer laccase biocatalyst using genipin or/and glutaraldehyde as cross-linking agents. The multilayer biocatalysts were prepared using different combinations of genipin and glutaraldehyde in the individual preparation of the first and second laccase layers. First, chitosan was treated with genipin or glutaraldehyde, followed by the immobilization of the first laccase layer to form a single-layer biocatalyst. Then, the immobilized laccases were coated once again with genipin or glutaraldehyde, and a new laccase layer was immobilized onto the system, resulting in the final two-layer biocatalyst. Compared to the single-layer biocatalysts, catalytic activity increased 1.7- and 3.4-fold when glutaraldehyde coating was used to prepare the second laccase layer. However, adding a second layer did not always produce more active biocatalysts, since the two-layer biocatalysts prepared with genipin (GenLacGenLac and GluLacGenLac) presented a decrease in activity of 65% and 28%, respectively. However, these two-layer biocatalysts prepared with genipin maintained 100% of their initial activity after 5 cycles of ABTS oxidation. Nevertheless, the two-layer, genipin-coated biocatalyst resulted in a higher removal of trace organic contaminants, since it removed 100% of mefenamic acid and 66% of acetaminophen, compared with the glutaraldehyde-coated biocatalyst, which removed 20% of mefenamic acid, and 18% of acetaminophen.
Collapse
Affiliation(s)
- Bruna B Pinheiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455-760 Fortaleza, CE, Brazil; Université de Sherbrooke Water Research Group, Environmental Engineering Laboratory, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Sabrina Saibi
- Université de Sherbrooke Water Research Group, Environmental Engineering Laboratory, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Lounès Haroune
- Department of Chemistry, Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | - Nathália Saraiva Rios
- Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Luciana R B Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455-760 Fortaleza, CE, Brazil
| | - Hubert Cabana
- Université de Sherbrooke Water Research Group, Environmental Engineering Laboratory, Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada.
| |
Collapse
|
40
|
Yang T, Pan L, Wu W, Pan X, Xu M, Zhang X, Rao Z. N20D/N116E Combined Mutant Downward Shifted the pH Optimum of Bacillus subtilis NADH Oxidase. BIOLOGY 2023; 12:522. [PMID: 37106723 PMCID: PMC10135872 DOI: 10.3390/biology12040522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Cofactor regeneration is indispensable to avoid the addition of large quantities of cofactor NADH or NAD+ in oxidation-reduction reactions. Water-forming NADH oxidase (Nox) has attracted substantive attention as it can oxidize cytosolic NADH to NAD+ without concomitant accumulation of by-products. However, its applications have some limitations in some oxidation-reduction processes when its optimum pH is different from its coupled enzymes. In this study, to modify the optimum pH of BsNox, fifteen relevant candidates of site-directed mutations were selected based on surface charge rational design. As predicted, the substitution of this asparagine residue with an aspartic acid residue (N22D) or with a glutamic acid residue (N116E) shifts its pH optimum from 9.0 to 7.0. Subsequently, N20D/N116E combined mutant could not only downshift the pH optimum of BsNox but also significantly increase its specific activity, which was about 2.9-fold at pH 7.0, 2.2-fold at pH 8.0 and 1.2-fold at pH 9.0 that of the wild-type. The double mutant N20D/N116E displays a higher activity within a wide range of pH from 6 to 9, which is wider than the wide type. The usability of the BsNox and its variations for NAD+ regeneration in a neutral environment was demonstrated by coupling with a glutamate dehydrogenase for α-ketoglutaric acid (α-KG) production from L-glutamic acid (L-Glu) at pH 7.0. Employing the variation N20D/N116E as an NAD+ regeneration coenzyme could shorten the process duration; 90% of L-Glu were transformed into α-KG within 40 min vs. 70 min with the wild-type BsNox for NAD+ regeneration. The results obtained in this work suggest the promising properties of the BsNox variation N20D/N116E are competent in NAD+ regeneration applications under a neutral environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
41
|
Ghasemi S, Yousefi M, Nikseresht A. Comparison of covalent and in situ immobilization of Candida antarctica lipase A on a flexible nanoporous material. 3 Biotech 2023; 13:99. [PMID: 36866325 PMCID: PMC9971526 DOI: 10.1007/s13205-023-03522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
In this study, Candida antarctica lipase A, which has a unique applicability for the conversion of highly branched and bulky substrates, was subjected to immobilization on the flexible nanoporous MIL-53(Fe) by two approaches: covalent coupling and in situ immobilization method. The pre-synthesized support under ultrasound irradiation was incubated with N,N-dicyclohexylcarbodiimide to mediate the covalent attachment between the carboxylic groups on the support surface and amino groups of enzyme molecules. The in situ immobilization in which the enzyme molecules directly were embedded into the metal-organic framework was performed under mild operating conditions in a facile one-step manner. Both immobilized derivatives of the enzyme were characterized by scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, FT-IR spectra, and energy-dispersive X-ray spectroscopy. In the in situ immobilization method, the enzyme molecules were efficiently encapsulated within the support with a high loading capacity (220 ± 5 mg/g support). On the other hand, the covalent attachment resulted in immobilizing much lower concentrations of the enzyme (20 ± 2.2 mg/g support). Although both immobilized derivatives of lipase showed broader pH and temperature tolerance relative to the soluble enzyme, the biocatalyst, which was prepared through in situ method, was more stable at elevated temperatures than the covalently immobilized lipase. Furthermore, in situ immobilized derivatives of Candida antarctica lipase A could be efficiently reused for at least eight cycles (> 70% of retained activity). In contrast, its covalently immobilized counterpart showed a drastic decrease in activity after five cycles (less than 10% of retained activity at the end of 6 rounds).
Collapse
Affiliation(s)
- Saba Ghasemi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ahmad Nikseresht
- Department of Chemistry, Payame Noor University (PNU), PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
42
|
Kemper G, Hölscher M, Leitner W. Pd(II)-catalyzed carboxylation of aromatic C─H bonds with CO 2. SCIENCE ADVANCES 2023; 9:eadf2966. [PMID: 36735781 PMCID: PMC9897662 DOI: 10.1126/sciadv.adf2966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The carboxylation of nonactivated C─H bonds provides an attractive yet hitherto largely elusive chemical process to synthesize carboxylic acids by incorporation of CO2 into the chemical value chain. Here, we report on the realization of such a reaction using simple and nonactivated arenes as starting materials. A computationally designed Pd(II) complex acts as organometallic single-component catalyst, and apart from a base, necessary for thermodynamic stabilization of the intermediates, no other additives or coreagents are required. Turnover numbers up to 102 and high regioselectivities are achieved. The potential of this catalytic reaction for "green chemistry" is demonstrated by the synthesis of veratric acid, an intermediate for pharmaceutical production, from CO2 and veratrol.
Collapse
Affiliation(s)
- Gregor Kemper
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Hardy JG, Stowell AF, Mumford CI, Piacentini MG, Cronin J, Hadley C, Hendry L, Skandalis A, Verma S, Saltalippi M. Special Issue: Enabling Research in Smart Sustainable Plastic Packaging. POLYM INT 2022. [DOI: 10.1002/pi.6455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John G. Hardy
- Department of Chemistry Lancaster University Lancaster Lancashire LA1 4YB UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Materials Science Institute Lancaster University Lancaster Lancashire LA1 4YW UK
| | - Alison F. Stowell
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Future Cities Research Institute Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Clare I. Mumford
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Maria G. Piacentini
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - James Cronin
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Charlotte Hadley
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Linda Hendry
- Department of Management Science, Lancaster University Management School Lancaster University LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Alexandros Skandalis
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Savita Verma
- Department of Management Science Lancaster University Management School, Lancaster University LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Matteo Saltalippi
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| |
Collapse
|
44
|
Matera A, Dulak K, Sordon S, Waśniewski K, Huszcza E, Popłoński J. Evaluation of double expression system for co-expression and co-immobilization of flavonoid glucosylation cascade. Appl Microbiol Biotechnol 2022; 106:7763-7778. [PMID: 36334126 PMCID: PMC9668961 DOI: 10.1007/s00253-022-12259-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
Glucosylation cascade consisting of Leloir glycosyltransferase and sucrose synthase with in situ regeneration system of expensive and low available nucleotide sugars is a game-changing strategy for enzyme-based production of glycoconjugates of relevant natural products. We designed a stepwise approach including co-expression and one-step purification and co-immobilization on glass-based EziG resins of sucrose synthase from Glycine max (GmSuSy) with promiscuous glucosyltransferase YjiC from Bacillus licheniformis to produce efficient, robust, and versatile biocatalyst suited for preparative scale flavonoid glucosylation. The undertaken investigations identified optimal reaction conditions (30 °C, pH 7.5, and 10 mM Mg2+) and the best-suited carrier (EziG Opal). The prepared catalyst exhibited excellent reusability, retaining up to 96% of initial activity after 12 cycles of reactions. The semi-preparative glucosylation of poorly soluble isoflavone Biochanin A resulted in the production of 73 mg Sissotrin (Biochanin A 7-O-glucoside). Additionally, the evaluation of the designed double-controlled, monocistronic expression system with two independently induced promoters (rhaBAD and trc) brought beneficial information for dual-expression plasmid design. KEY POINTS: • Simultaneous and titratable expression from two independent promoters is possible, although full control over the expression is limited. • Designed catalyst managed to glucosylate poorly soluble isoflavone. • The STY of Sissotrin using the designed catalyst reached 0.26 g/L∙h∙g of the resin.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Kacper Waśniewski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
45
|
da Rocha TN, Morellon-Sterlling R, Rocha-Martin J, Bolivar JM, Gonçalves LRB, Fernandez-Lafuente R. Immobilization of Penicillin G Acylase on Vinyl Sulfone-Agarose: An Unexpected Effect of the Ionic Strength on the Performance of the Immobilization Process. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217587. [PMID: 36364414 PMCID: PMC9654356 DOI: 10.3390/molecules27217587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.
Collapse
Affiliation(s)
- Thays N. da Rocha
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Chemical Engineering Department, Campus do Pici, Federal University of Ceará, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Morellon-Sterlling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Departamento de Biología Molecular, Campus UAM-CSIC, Universidad Autónoma de Madrid, Darwin 2, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, 28040 Madrid, Spain
| | - Juan M. Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., 28040 Madrid, Spain
| | - Luciana R. B. Gonçalves
- Chemical Engineering Department, Campus do Pici, Federal University of Ceará, Bloco 709, Fortaleza CEP 60440-900, CE, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain
- Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +34-91594804
| |
Collapse
|
46
|
Ren C, Zhang H, Chen Z, Gao J, Yang M, Yuan Z, Li X. A Novel Utilization of Water Extract of Suaeda Salsa in the Pd/C Catalyzed Suzuki-Miyaura Coupling Reaction. Molecules 2022; 27:molecules27196623. [PMID: 36235160 PMCID: PMC9573658 DOI: 10.3390/molecules27196623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Using biomass-derived solvents in various organic reactions is challenging for the fine chemicals industry. We herein report a Pd/C catalyzed Suzuki-Miyaura reaction in water extract of suaeda salsa (WES) without using external phosphine ligand, base, and organic solvent. The cross-coupling reactions were carried out in a basic WES medium with a broad substrate scope and wide functional group tolerance. Furthermore, the high purity of solid biaryl products can be obtained by column chromatography or filtration.
Collapse
Affiliation(s)
- Changyue Ren
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Hang Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Zhengjun Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Jie Gao
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi 563003, China
- Correspondence: (J.G.); (Z.Y.); (X.L.)
| | - Mingyan Yang
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi 563003, China
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi 563003, China
- Correspondence: (J.G.); (Z.Y.); (X.L.)
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi 563003, China
- Correspondence: (J.G.); (Z.Y.); (X.L.)
| |
Collapse
|
47
|
de Gonzalo G, Alcántara AR, Domínguez de María P, Sánchez-Montero JM. Biocatalysis for the asymmetric synthesis of Active Pharmaceutical Ingredients (APIs): this time is for real. Expert Opin Drug Discov 2022; 17:1159-1171. [PMID: 36045591 DOI: 10.1080/17460441.2022.2114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Biocatalysis has emerged as a powerful and useful strategy for the synthesis of active pharmaceutical ingredients (APIs). The outstanding developments in molecular biology techniques allow nowadays the screening, large-scale production, and designing of biocatalysts, adapting them to desired reactions. Many enzymes can perform reactions both in aqueous and non-aqueous media, broadening even further the opportunities to integrate them in complex pharmaceutical multi-step syntheses. AREAS COVERED This paper showcases several examples of biocatalysis in the pharmaceutical industry, covering examples of different enzymes, such as lipases, oxidoreductases, and transaminases, to deliver active drugs through complex synthetic routes. Examples are critically discussed in terms of reaction conditions, motivation for using an enzyme, and how biocatalysts can be integrated in multi-step syntheses. When possible, biocatalytic routes are benchmarked with chemical reactions. EXPERT OPINION The reported enzymatic examples are performed with high substrate loadings (>100 g L-1) and with excellent selectivity, making them inspiring strategies for present and future industrial applications. The combination of powerful molecular biology techniques with the needs of the pharmaceutical industry can be aligned, creating promising platforms for synthesis under more sustainable conditions.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
48
|
A Convenient U-Shape Microreactor for Continuous Flow Biocatalysis with Enzyme-Coated Magnetic Nanoparticles-Lipase-Catalyzed Enantiomer Selective Acylation of 4-(Morpholin-4-yl)butan-2-ol. Catalysts 2022. [DOI: 10.3390/catal12091065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study implements a convenient microreactor for biocatalysis with enzymes immobilized on magnetic nanoparticles (MNPs). The enzyme immobilized onto MNPs by adsorption or by covalent bonds was lipase B from Candida antarctica (CaLB). The MNPs for adsorption were obtained by covering the magnetite core with a silica shell and later with hexadecyltrimethoxysilane, while for covalent immobilization, the silica-covered MNPs were functionalized by a layer forming from mixtures of hexadecyl- and 3-(2-aminoethylamino)propyldimethoxymethylsilanes in 16:1 molar ratio, which was further activated with neopentyl glycol diglycidyl ether (NGDE). The resulting CaLB-MNPs were tested in a convenient continuous flow system, created by 3D printing to hold six adjustable permanent magnets beneath a polytetrafluoroethylene tube (PTFE) to anchor the MNP biocatalyst inside the tube reactor. The anchored CaLB-MNPs formed reaction chambers in the tube for passing the fluid through and above the MNP biocatalysts, thus increasing the mixing during the fluid flow and resulting in enhanced activity of CaLB on MNPs. The enantiomer selective acylation of 4-(morpholin-4-yl)butan-2-ol (±)-1, being the chiral alcohol constituent of the mucolytic drug Fedrilate, was carried out by CaLB-MNPs in the U-shape reactor. The CaLB-MNPs in the U-shape reactor were compared in batch reactions to the lyophilized CaLB and to the CaLB-MNPs using the same reaction composition, and the same amounts of CaLB showed similar or higher activity in flow mode and superior activity as compared to the lyophilized powder form. The U-shape permanent magnet design represents a general and easy-to-access implementation of MNP-based flow microreactors, being useful for many biotransformations and reducing costly and time-consuming downstream processes.
Collapse
|
49
|
Chang X, Chen X, Lu S, Zhao Y, Ma Y, Zhang D, Yang L, Sun P. Electrochemical [3+2] Cycloaddition of Anilines and 1,3‐Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqiang Chang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Xingyu Chen
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | - Sixian Lu
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Yifan Zhao
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | | | | | - Lan Yang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Peng Sun
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| |
Collapse
|
50
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|