1
|
Gupta M, Cilkiz M, Ibrahim MMA, Athrey G. Gut Microbiome-Brain Crosstalk in the Early Life of Chicken Reveals the Circadian Regulation of Key Metabolic and Immune Signaling Processes. Microorganisms 2025; 13:789. [PMID: 40284627 PMCID: PMC12029235 DOI: 10.3390/microorganisms13040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Circadian rhythms are innate biological systems that control everyday behavior and physiology. Furthermore, bilateral interaction between the host's circadian rhythm and the gut microbes influences a variety of health ramifications, including metabolic diseases, obesity, and mental health including GALT physiology and the microbiome population. Therefore, we are studying the correlation between differential gene expression in the chicken brain and microbiota abundance during circadian rhythms. To understand this, we raised freshly hatched chicks under two photoperiod treatments: normal photoperiod (NP = 12/12 LD) and extended photoperiod (EP 23/1 LD). The chicks were randomly assigned to one of two treatments. After 21 days of circadian entrainment, the chicks were euthanized at nine time points spaced six hours apart over 48 h to characterize the brain transcriptomes. Each sample's RNA was extracted, and 36 mRNA libraries were generated and sequenced using Illumina technology, followed by data processing, count data generation, and differential gene expression analysis. We generated an average of 17.5 million reads per library for 237.9 M reads. When aligned to the Galgal6 reference genome, 11,867 genes had detectable expression levels, with a common dispersion value of 0.105. To identify the genes that follow 24 h rhythms, counts per million data were performed in DiscoRhythm. We discovered 577 genes with Cosinor and 417 with the JTK cycle algorithm that exhibit substantial rhythms. We used weighted gene co-expression network analysis (WGCNA) to analyze the correlation between differentially expressed genes and microbiota abundance. The most enriched pathways included aldosterone-regulated sodium reabsorption, endocrine and other factor-regulated calcium reabsorption, GABAergic synapse, oxidative phosphorylation, serotonergic synapse, dopaminergic synapse and circadian entrainment. This study builds on our previous study, and adds new findings about the specific interactions and co-regulation of the brain transcriptome and the gut microbiota. The interaction between gut microbiota and host gene expression highlights the potential benefits of microbiome-modulation approaches to improve gut health and performance in poultry.
Collapse
Affiliation(s)
- Mridula Gupta
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX 77843, USA;
| | - Mustafa Cilkiz
- Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Mohamed M. A. Ibrahim
- Department of Laser Applications in Metrology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences, Cairo University, Giza 12613, Egypt;
| | - Giridhar Athrey
- Department of Poultry Science, Texas A&M University, 2472 TAMU, College Station, TX 77843, USA;
- Faculty of Ecology & Evolutionary Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Jia G, Song E, Huang Q, Chen M, Liu G. Mitochondrial fusion protein: a new therapeutic target for lung injury diseases. Front Physiol 2025; 16:1500247. [PMID: 40177356 PMCID: PMC11962016 DOI: 10.3389/fphys.2025.1500247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Mitochondria are essential organelles responsible for cellular energy supply. The maintenance of mitochondrial structure and function relies heavily on quality control systems, including biogenesis, fission, and fusion. Mitochondrial fusion refers to the interconnection of two similar mitochondria, facilitating the exchange of mitochondrial DNA, metabolic substrates, proteins, and other components. This process is crucial for rescuing damaged mitochondria and maintaining their normal function. In mammals, mitochondrial fusion involves two sequential steps: outer membrane fusion, regulated by mitofusin 1 and 2 (MFN1/2), and inner membrane fusion, mediated by optic atrophy 1 (OPA1). Dysfunction in mitochondrial fusion has been implicated in the development of various acute and chronic lung injuries. Regulating mitochondrial fusion, maintaining mitochondrial dynamics, and improving mitochondrial function are effective strategies for mitigating lung tissue and cellular damage. This study reviews the expression and regulatory mechanisms of mitochondrial fusion proteins in lung injuries of different etiologies, explores their relationship with lung injury diseases, and offers a theoretical foundation for developing novel therapeutic approaches targeting mitochondrial fusion proteins in lung injury.
Collapse
Affiliation(s)
- Guiyang Jia
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Erqin Song
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guoyue Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Jing D, Yu JK, Chen HP, Dong LL, Li W, Li ZY, Zhou JS. Cholesterol Accumulation Enhances Cigarette Smoke-Induced Airway Epithelial Inflammation. Int J Chron Obstruct Pulmon Dis 2025; 20:411-423. [PMID: 40008109 PMCID: PMC11853124 DOI: 10.2147/copd.s495306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background Statins, commonly used to lower cholesterol, have been shown to have anti-inflammatory effects in respiratory disease models. Disorders of cholesterol metabolism can cause damage to cells and tissues, and further lead to the development of a variety of diseases. However, the role of cholesterol metabolism in cigarette smoke-induced airway epithelial inflammation is unclear. The present study aims to explore this question. Methods Human bronchial epithelial cells (HBEs) were stimulated with cigarette smoke extract (CSE) and mice were exposed to CS as models. The expression of cholesterol content and cholesterol metabolism-related molecules such as Sterol Regulatory Element-Binding Protein 2 (SREBP2), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), ATP Binding Cassette Transporter A1 (ABCA1), and ATP Binding Cassette Transporter G1 (ABCG1) were detected by cholesterol assay kits and immunohistochemistry (IHC) in vivo, and were detected by cholesterol assay kits, Western blot (WB), and quantitative real-time polymerase chain reaction (Q-PCR) in vitro. Cholesterol metabolism molecules related siRNAs, inhibitors or agonists were used to intervene the Cholesterol levels in HBE. The mRNA level and protein level of interleukin IL-6 and IL-8 were detected by RT-qPCR and enzyme-linked immunosorbent assay (ELISA). Cellular reactive oxygen species (ROS) levels were detected by reactive oxygen species assay kits. Results We found that cigarette smoke exposure inhibited cholesterol efflux by decreasing the expression of ABCA1, thereby increasing cholesterol accumulation in airway epithelial cells, which promotes the production of reactive oxygen species and promotes the secretion of inflammatory cytokines, ultimately aggravating cigarette smoke-induced airway inflammation. Reducing intracellular cholesterol content by inhibiting intracellular synthesis and promoting increased efflux can reduce the cigarette smoke-induced airway epithelial inflammatory factors secretion. Conclusion In conclusion, cholesterol accumulation plays an important role in cigarette smoke-induced airway inflammation and may provide new targets in the treatment of this disease in the future.
Collapse
Affiliation(s)
- Du Jing
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yuyao People’s Hospital of Zhejiang Province, Ningbo, People’s Republic of China
| | - Jin-Kang Yu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hai-Pin Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ling-Ling Dong
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhou-Yang Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jie-Sen Zhou
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Liu X, Zhang L, Li L, Hou J, Qian M, Zheng N, Liu Y, Song Y. Transcriptomic profiles of single-cell autophagy-related genes (ATGs) in lung diseases. Cell Biol Toxicol 2025; 41:40. [PMID: 39920481 PMCID: PMC11805875 DOI: 10.1007/s10565-025-09990-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/03/2025] [Indexed: 02/09/2025]
Abstract
Autophagy related genes (ATGs) play essential roles in maintaining cellular functions, although biological and pathological alterations of ATG phenotypes remain poorly understood. To address this knowledge gap, we utilized the single-cell sequencing technology to elucidate the transcriptomic atlas of ATGs in lung diseases, with a focus on lung epithelium and lymphocytes. This study conducted a comprehensive investigation into RNA profiles of ATGs in the lung tissues obtained from healthy subjects and patients with different lung diseases through single-cell RNA sequencing (scRNA-seq), including COVID-19 related acute lung damage, idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), systemic sclerosis (SSC), and lung adenocarcinoma (LUAD). Our findings revealed significant variations of ATGs expression across lung epithelial cell subsets, e.g., over-expression of MAPK8 in basal cells, ATG10 in club cells, and BCL2 in a goblet cell subset. The changes of autophagy-related pathways varied between lung epithelial and lymphocyte subsets. We identified the disease-associated changes in ATG expression, including significant alterations in BCL2, BCL2L1, PRKCD, and PRKCQ in inflammatory lung diseases (COPD and IPF), and MAP2K7, MAPK3, and RHEB in lung cancer (LUAD), as compared to normal lung tissues. Key ligand-receptor pairs (e.g., CD6-ALCAM, CD99-CD99) and signaling pathways (e.g., APP, CD74) might serve as biomarkers for lung diseases. To evaluate ATGs responses to external challenges, we examined ATGs expression in different epithelial cell lines exposed to cigarette smoking extract (CSE), lysophosphatidylcholine (lysoPC), lipopolysaccharide (LPS), and cholesterol at various doses and durations. Notable changes were observed in CFLAR, EIF2S1, PPP2CA, and PPP2CB in A549 and H1299 against CSE and LPS. The heterogeneity of ATGs expression was dependent on cell subsets, pathologic conditions, and challenges, as well as varied among cellular phenotypes, functions, and behaviors, and the severity of lung diseases. In conclusion, our data might provide new insights into the roles of ATGs in epithelial biology and pulmonary disease pathogenesis, with implications for disease progression and prognosis.
Collapse
Affiliation(s)
- Xuanqi Liu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
5
|
Zhan Y, Huang Q, Deng Z, Chen S, Yang R, Zhang J, Zhang Y, Peng M, Wu J, Gu Y, Zeng Z, Xie J. DNA hypomethylation-mediated upregulation of GADD45B facilitates airway inflammation and epithelial cell senescence in COPD. J Adv Res 2025; 68:201-214. [PMID: 38342401 PMCID: PMC11785585 DOI: 10.1016/j.jare.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaheng Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maocuo Peng
- Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhilin Zeng
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Jia X, Liu S, Sun C, Zhu M, Yuan Q, Wang M, Xu T, Wang Z, Chen Z, Huang M, Ji N, Zhang M. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117518. [PMID: 39667326 DOI: 10.1016/j.ecoenv.2024.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The persistent airway inflammation is the main characteristic of chronic obstructive pulmonary disease (COPD), typically caused by an indoor environment pollution cigarette smoke (CS). METTL16 is an m6A methyltransferase that has been proven to be closely associated with the occurrence of various diseases. However, its exact role in smoking-induced COPD remains to be investigated. In this study, we found that the level of METTL16 was aberrantly decreased in lung tissues of COPD smokers. Similarly, murine model induced by CS and lung epithelial cell model induced by cigarette smoke extract (CSE) also confirmed this discovery. Moreover, in the Mettl16-deficient (Mettl16+/-) mice challenged with CS, airway inflammation was aggravated. To identify the potential target genes and regulatory pathways through METTL16, methylated RNA immunoprecipitation sequencing (meRIP-seq), RNA sequencing (RNA-seq) and metabolomic profiling were used. Knockdown of METTL16 significantly reduced the stability of glutamic-oxaloacetic transaminase 2 (GOT2) and downregulated its expression through m6A modification, while reprogramed glutamine metabolism in lung epithelial cells. Significant reduction in inflammation levels was observed in the 3-month COPD murine model fed a glutamine-supplemented diet. Mechanistically, METTL16 could regulate lung epithelial mitochondrial function by participating in the reprogramming of glutamine metabolism. Our study characterized the role of the METTL16/GOT2/glutamine axis in the occurrence and development of COPD, and emphasized the potential value of METTL16 and glutamine in the therapy of chronic airway inflammation in smoking-induced COPD.
Collapse
Affiliation(s)
- Xinyu Jia
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Liu
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Chunan Sun
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Manni Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Liu X, Liu Y, Rao Q, Mei Y, Xing H, Gu R, Mou J, Chen M, Ding F, Xie W, Tang K, Tian Z, Wang M, Qiu S, Wang J. Targeting Fatty Acid Metabolism Abrogates the Differentiation Blockade in Preleukemic Cells. Cancer Res 2024; 84:4233-4245. [PMID: 39264725 DOI: 10.1158/0008-5472.can-23-3861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Metabolism plays a key role in the maintenance of normal hematopoietic stem cells (HSC) and in the development of leukemia. A better understanding of the metabolic characteristics and dependencies of preleukemic cells could help identify potential therapeutic targets to prevent leukemic transformation. As AML1-ETO, one of the most frequent fusion proteins in acute myeloid leukemia that is encoded by a RUNX1::RUNX1T1 fusion gene, is capable of generating preleukemic clones, in this study, we used a conditional Runx1::Runx1t1 knockin mouse model to evaluate preleukemic cell metabolism. AML1-ETO expression resulted in impaired hematopoietic reconstitution and increased self-renewal ability. Oxidative phosphorylation and glycolysis decreased significantly in these preleukemic cells accompanied by increased HSC quiescence and reduced cell cycling. Furthermore, HSCs expressing AML1-ETO exhibited an increased requirement for fatty acids through metabolic flux. Dietary lipid deprivation or loss of the fatty acid transporter FATP3 by targeted deletion using CRISPR/Cas9 partially restored differentiation. These findings reveal the unique metabolic profile of preleukemic cells and propose FATP3 as a potential target for disrupting leukemogenesis. Significance: Fatty acid metabolism is required for maintenance of preleukemic cells but dispensable for normal hematopoiesis, indicating that dietary lipid deprivation or inhibiting fatty acid uptake may serve as potential strategies to prevent leukemogenesis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yu Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yihan Mei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Manling Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fan Ding
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wanqing Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
8
|
Ma Y, Wang Y, Xie A, Wang L, Zhang Y, Tao M, Deng X, Bao Z, Yu R. Activation of LXR signaling ameliorates apoptosis of alveolar epithelial cells in Bronchopulmonary dysplasia. Respir Res 2024; 25:399. [PMID: 39511537 PMCID: PMC11545640 DOI: 10.1186/s12931-024-03031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND AND PURPOSES Liver X receptors (LXRs) are specialized nuclear receptors essential for maintaining cholesterol homeostasis, modulating LXR activity could have therapeutic potential in lung diseases. Bronchopulmonary dysplasia (BPD) is a chronic lung disease characterized by impaired alveolar development, in which apoptosis of alveolar epithelial cells is a key contributing factor. The current research focuses on exploring the potential mechanism by which the LXR pathway regulating alveolar epithelial type II cell apoptosis in response to hyperoxia exposure. METHODS BPD infants and non-BPD preterm infants were enrolled to measure serum total cholesterol (TC) levels. To further investigate the role of cholesterol metabolism in BPD, a neonatal rat model of BPD was established, and in vitro studies were conducted using mouse lung epithelial cells (MLE12). These experiments aimed to explore the impact of hyperoxia on cholesterol metabolism and assess the effects of LXR agonist intervention. RESULTS Elevated serum TC levels in BPD infants were observed, accompanied by lung cholesterol overload in BPD rats. Hyperoxia exposure also led to intracellular cholesterol accumulation in MLE12 cells, which may be attributed to the downregulated LXR signaling pathway. Activation of the LXR pathway prevented apoptosis and mitochondrial dysfunction in MLE12 cell. In BPD rats, intervention with the LXR agonist restored alveolar architecture and reduced alveolar epithelial type II cell apoptosis, which was associated with decreased oxidative stress and lung cholesterol accumulation. CONCLUSIONS Disrupted cholesterol metabolism and impaired homeostasis in premature infants may contribute to the development of BPD. Targeting LXR signaling may provide potential therapeutic targets in BPD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yizhe Ma
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Yameng Wang
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Anni Xie
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Luchun Wang
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Yuqiong Zhang
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Mingyan Tao
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Xianhui Deng
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China
| | - Zhidan Bao
- Department of Pediatrics, Jiangyin People's Hospital of Nantong University, Jiangyin, China.
| | - Renqiang Yu
- Department of Neonatology, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Wu Q, Fu J, Zhang C, Liu Z, Shi J, Feng Z, Wang K, Li L. Causal relationship between Lipdome and Chronic Obstructive Pulmonary Disease and Asthma: Mendelian randomization. 3 Biotech 2024; 14:249. [PMID: 39328502 PMCID: PMC11424600 DOI: 10.1007/s13205-024-04071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Genetic risk significantly influence susceptibility and heterogeneity of chronic obstructive pulmonary disease (COPD) and asthma, and increasing evidence suggests their close association with lipdome. However, their causal relationship remains unclear. In this study, we conducted a two-sample MR (Mendelian randomization) analysis using publicly available large-scale genome-wide association studies (GWAS) data to evaluate the causal impact of lipdome on COPD and asthma. The inverse variance weighted (IVW) method served as the primary analysis method, and multiple sensitivity and heterogeneity tests were performed to assess the reliability of the results. Finally, a Meta-analysis was conducted on lipdome with significant causal relationships to validate the robustness of the results. Our findings suggest that Sterol ester (27:1/18:2), Phosphatidylcholine (15:0_18:2), (16:0_18:2), (16:0_20:2), (17:0_18:2), (18:1_18:1), (18:1_18:2), (18:1_20:2), Triacylglycerol (54:3), and (56:4) levels are protective factors for COPD, while levels of Phosphatidylcholine (16:0_22:5), (18:0_20:4), and (O-16:0_20:4) are risk factors for COPD. Meta-analysis of lipids causally related to COPD also indicates significant results. Phosphatidylcholine (16:0_20:4), (16:0_22:5), and (18:0_20:4) levels are risk factors for asthma, while Phosphatidylcholine (18:1_18:2), (18:1_20:2), and Sphingomyelin (d38:1) levels are protective factors for asthma. However, the lack of statistical significance in the Meta-analysis may be due to heterogeneity in research methods and data statistics. This study indicates that 4 lipdome species have significant correlations with COPD and asthma. Phosphatidylcholine (18:1_18:2) and (18:1_20:2) are protective factors, while Phosphatidylcholine (16:0_22:5) and (18:0_20:4) are risk factors. Additionally, due to differences in molecular subtypes, phosphatidylcholine, sterol ester, and triacylglycerol exhibit differential effects on the diseases.
Collapse
Affiliation(s)
- Qiong Wu
- College of Humanities and Management, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, 410208 Hunan People’s Republic of China
| | - Jingmin Fu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, 410208 Hunan People’s Republic of China
| | - Cheng Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan People’s Republic of China
| | - Zhuolin Liu
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan People’s Republic of China
| | - Jianing Shi
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, 410208 Hunan People’s Republic of China
| | - Zhiying Feng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, 410208 Hunan People’s Republic of China
| | - Kangyu Wang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Changsha, 410208 Hunan People’s Republic of China
| | - Ling Li
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Xueshi Road 300, Yuelu District, Changsha, 410208 Hunan People’s Republic of China
| |
Collapse
|
10
|
Hu J, Zhu Z, Zhang Z, Hu H, Yang Q. Blockade of STARD3-mediated cholesterol transport alleviates diabetes-induced podocyte injury by reducing mitochondrial cholesterol accumulation. Life Sci 2024; 349:122722. [PMID: 38754814 DOI: 10.1016/j.lfs.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
AIMS Steroidogenic acute regulatory (StAR)-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that facilitates cholesterol transport between cellular organelles. Cholesterol accumulation in podocytes directly contributes to the pathogenesis of albuminuria and renal injury under the condition of diabetic kidney disease (DKD). The aim of this study is to determine the role of STARD3 on the intracellular distribution of cholesterol within podocytes. METHODS In vivo and in vitro models of diabetes were performed. The protein levels of STARD3, Niemann-Pick disease type C1 (NPC1), and Niemann-Pick disease type C2 (NPC2) were respectively detected by western blot analysis, immunohistochemistry, and immunofluorescence. Filipin staining was used to evaluate the subcellular localization of cholesterol in podocytes. Mitochondrial damage was evaluated using JC-1 (CBIC2) and ROS (reactive oxygen species) assays. KEY FINDINGS Upregulation of STARD3 under diabetes and hyperglycemia increases cholesterol transport from the late endosomal/lysosomal (LE/LY) to mitochondria, leading to mitochondrial cholesterol accumulation and cell injury in podocytes. Conversely, downregulating STARD3 expression attenuated mitochondrial cholesterol accumulation, and improved mitochondrial homeostasis. SIGNIFICANCE STARD3 may govern intracellular cholesterol transport in podocytes, subsequently leading to regulation of mitochondrial metabolism. Therefore, targeting STARD3 emerges as a potential therapeutic strategy to mitigate diabetes-induced mitochondrial cholesterol accumulation and associated injury in podocytes.
Collapse
Affiliation(s)
- Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
11
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
12
|
Yan F, Zhang L, Duan L, Li L, Liu X, Liu Y, Qiao T, Zeng Y, Fang H, Wu D, Wang X. Roles of glutamic pyruvate transaminase 2 in reprogramming of airway epithelial lipidomic and metabolomic profiles after smoking. Clin Transl Med 2024; 14:e1679. [PMID: 38706045 PMCID: PMC11070440 DOI: 10.1002/ctm2.1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.
Collapse
Affiliation(s)
- Furong Yan
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Linlin Zhang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Lian Duan
- Department of Pediatric SurgeryFaculty of Pediatricsthe Seventh Medical Center of PLA General HospitalBeijingChina
| | - Liyang Li
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Tiankui Qiao
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
| | - Yiming Zeng
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Hao Fang
- Department of AnesthesiologyShanghai Geriatic Medical CenterShanghaiChina
- Department of AnesthesiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Duojiao Wu
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Duan R, Huang K, Yu T, Chang C, Chu X, Huang Y, Zheng Z, Ma L, Li B, Yang T. Interleukin-2/anti-interleukin-2 complex attenuates inflammation in a mouse COPD model by expanding CD4 + CD25 + Foxp3 + regulatory T cells. Int Immunopharmacol 2024; 131:111849. [PMID: 38503017 DOI: 10.1016/j.intimp.2024.111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Chronic, nonspecific inflammation of the alveoli and airways is an important pathological feature of chronic obstructive pulmonary disease (COPD), while sustained inflammatory reactions can cause alveolar damage. Regulatory T cells (Tregs) inhibit inflammation, whereas the interleukin-2/anti-interleukin-2 complex (IL-2C) increases the number of Tregs; however, whether the IL-2C has a therapeutic role in COPD remains unknown. Therefore, this study investigated whether IL-2C alleviates lung inflammation in COPD by increasing the number of Tregs. EXPERIMENTAL APPROACH A mouse COPD model was created by exposing mice to lipopolysaccharides (LPS) and cigarette smoke (CS), and the effects of IL-2C treatment on COPD were evaluated. The number of Tregs in the spleen and lung, pulmonary pathological changes, and inflammatory damage were examined through flow cytometry, histopathology, and immunofluorescence, respectively. KEY RESULTS IL-2C increased the number of Treg cells in the spleen and lungs after exposure to CS and LPS, reduced the number of T helper 17 (Th17) cells in lung tissue, and improved the Th17/Treg balance. IL-2C decreased the number of inflammatory cells and reduced the levels of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, CCL5, KC, and MCP-1 in bronchoalveolar lavage fluid and serum. IL-2C significantly reduced the pathological scores for lung inflammation, as well as decreased airway mucus secretion and infiltration of neutrophils and macrophages in the lungs. The depletion of Tregs using anti-CD25 antibodies eliminated the beneficial effects of IL-2C. CONCLUSIONS AND IMPLICATIONS IL-2C is a potential therapeutic agent for alleviating excessive inflammation in the lungs of patients with COPD.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Tao Yu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenli Chang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Chu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Yuhang Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhoude Zheng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Linxi Ma
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Baicun Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| |
Collapse
|
14
|
Yang J, Shen X, Qin M, Zhou P, Huang FH, You Y, Wang L, Wu JM. Suppressing inflammatory signals and apoptosis-linked sphingolipid metabolism underlies therapeutic potential of Qing-Jin-Hua-Tan decoction against chronic obstructive pulmonary disease. Heliyon 2024; 10:e24336. [PMID: 38318072 PMCID: PMC10839876 DOI: 10.1016/j.heliyon.2024.e24336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1β and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1β and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1β, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1β, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Xin Shen
- Department of Traditional Chinese Pharmacy, Chengdu First People's Hospital, Chengdu 610041, PR China
| | - Mi Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Ping Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Jian-Ming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China
| |
Collapse
|
15
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Wang H, Lu F, Tian Y, Zhang S, Han S, Fu Y, Li J, Feng P, Shi Z, Chen H, Hou H. Evaluation of toxicity of heated tobacco products aerosol and cigarette smoke to BEAS-2B cells based on 3D biomimetic chip model. Toxicol In Vitro 2024; 94:105708. [PMID: 37806364 DOI: 10.1016/j.tiv.2023.105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
It is still a controversial topic about evaluating whether heated tobacco products (HTP) really reduce harm, which involves the choice of an experimental model. Here, a three-dimensional (3D) biomimetic chip model was used to evaluate the toxicity of aerosols came from HTP and smoke produced by cigarettes (Cig). Based on cell-related experiments, we found that the toxicity of Cig smoke extract diluted four times was also much higher than that of undiluted HTP, showing higher oxidative stress response and cause mitochondrial dysfunction. Meanwhile, both tobacco products all affect the tricarboxylic acid cycle (TCA), which is manifested by a significant decrease in the mRNA expression of TCA key rate-limiting enzymes. Summarily, 3D Biomimetic chip technology can be used as an ideal model to evaluate HTP. It can provide important data for tobacco risk assessment when 3D chip model was used. Our experimental results showed that HTP may be less harmful than tobacco cigarettes, but it does show significant cytotoxicity with the increase of dose. Therefore, the potential clinical effects of HTP on targeted organs such as lung should be further studied.
Collapse
Affiliation(s)
- Hongjuan Wang
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Fengjun Lu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Yushan Tian
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Sen Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shulei Han
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Yaning Fu
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Jun Li
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China
| | - Pengxia Feng
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Zhihao Shi
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China
| | - Huan Chen
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| | - Hongwei Hou
- China National Tobacco Quality Supervision &Test Center, Zhengzhou, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, China; Beijing Institute of Life Science and Technology, Beijing, China; Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, China.
| |
Collapse
|
17
|
Li Z, Li X, Feng B, Xue J, Zhao J, Zhu Q, Liu K, Xie F, Xie J. Combining a lung microfluidic chip exposure model with transcriptomic analysis to evaluate the inflammation in BEAS-2B cells exposed to cigarette smoke. Anal Chim Acta 2024; 1287:342049. [PMID: 38182364 DOI: 10.1016/j.aca.2023.342049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Typically, in vitro studies on the exposure of complex gaseous substances are performed in multi-well plate experiments by trapping and redissolving them, which could introduce potential bias into the results due to the use of inadequate trapping methods. Therefore, a more effective method is to expose complex gaseous substances in gaseous form online, such as using microfluidic chips in experiments. To address these challenges, we introduce a methodology that integrates a self-designed bionic-lung chip with transcriptome analysis to assess the impact of cigarette smoke (CS) exposure on changes in BEAS-2B cells cultured on-chip. RESULTS After the microfluidic chip underwent online gas exposure, total RNA was extracted via in situ cell lysis, and RNA-Seq transcriptome analysis was conducted. And the RNA-Seq findings revealed the significant involvement of the MAPK signaling pathway associated with the inflammatory response in the cellular effects induced by CS exposure. Moreover, the validation of inflammatory response-related biomarkers through in situ fluorescence corroborated the outcomes of the transcriptome analysis. Besides, the experiment involving the inhibition of inflammation by DEX on the microfluidic chip provided additional confirmation of the previous experimental findings. SIGNIFICANT In this study, we present an analytical strategy that combines microfluidic-based CS in situ exposure method with RNA-Seq technology. This strategy offers an experimental scheme for in situ exposure to complex gases, transcriptome analysis, and in situ fluorescence detection. Through the integration of the comprehensiveness of transcriptome analysis with the chip's direct and intuitive in situ fluorescence detection with the stability and reliability of RT-PCR and Western blot experiments, we have successfully addressed the challenges associated with in vitro risk assessment for online exposure to complex gaseous substances.
Collapse
Affiliation(s)
- Zezhi Li
- Beijing Technology and Business University, Beijing 100048, PR China; Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China.
| | - Boyang Feng
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Jingxian Xue
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Junwei Zhao
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China
| | - Qingqing Zhu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China; Beijing Life Science Academy, Beijing 102209, PR China.
| |
Collapse
|
18
|
Pramanik S, Sil AK. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch 2024; 476:59-74. [PMID: 37910205 DOI: 10.1007/s00424-023-02870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The formation of foam cells, lipid-loaded macrophages, is the hallmark event of atherosclerosis. Since cigarette smoking is a risk factor for developing atherosclerosis, the current study investigated the effects of cigarette smoke extract (CSE) on different events like expressions of genes involved in lipid influx and efflux, lipophagy, etc., that play vital roles in foam cell formation. The accumulation of lipids after CSE treatment U937 macrophage cells was examined by staining lipids with specific dyes: Oil red O and BODIPY493/503. Results showed an accumulation of lipids in CSE-treated cells, confirming foam cell formation by CSE treatment. To decipher the mechanism, the levels of CD36, an ox-LDL receptor, and ABCA1, an exporter of lipids, were examined in CSE-treated and -untreated U937 cells by real-time PCR and immunofluorescence analysis. Consistent with lipid accumulation, an increased level of CD36 and a reduction in ABCA1 were observed in CSE-treated cells. Moreover, CSE treatment caused inhibition of lipophagy-mediated lipid degradation by blocking lipid droplets (LDs)-lysosome fusion and increasing the lysosomal pH. CSE also impaired mitochondrial lipid oxidation. Thus, the present study demonstrates that CSE treatment affects lipid homeostasis by altering its influx and efflux, lysosomal degradation, and mitochondrial utilization, leading to the formation of lipid-loaded foam cells. Moreover, the current study also showed that the leucine supplement caused a significant reduction of CSE-induced foam cell formation in vitro. Thus, the current study provides insight into CS-induced atherosclerosis and an agent to combat the disease.
Collapse
Affiliation(s)
- Soudipta Pramanik
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019.
| |
Collapse
|
19
|
Liu X, Zhang L, Zhu B, Liu Y, Li L, Hou J, Qian M, Zheng N, Zeng Y, Chen C, Goel A, Wang X. Role of GSDM family members in airway epithelial cells of lung diseases: a systematic and comprehensive transcriptomic analysis. Cell Biol Toxicol 2023; 39:2743-2760. [PMID: 37462807 DOI: 10.1007/s10565-023-09799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/05/2023] [Indexed: 12/03/2023]
Abstract
Gasdermin (GSDM) family, the key executioners of pyroptosis, play crucial roles in anti-pathogen and anti-tumor immunities, although little is known about the expression of GSDM in lung diseases at single-cell resolution, especially in lung epithelial cells. We comprehensively investigated the transcriptomic profiles of GSDM members in various lung tissues from healthy subjects or patients with different lung diseases at single cell level, e.g., chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), lung adenocarcinoma (LUAD), or systemic sclerosis (SSC). The expression of GSDM members varied among pulmonary cell types (immune cells, structural cells, and especially epithelial cells) and even across lung diseases. Regarding disease-associated specificities, we found that GSDMC or GSDMD altered significantly in ciliated epithelia of COPD or LUAD, GSDMD in mucous, club, and basal cells of LUAD and GSDMC in mucous epithelia of para-tumor tissue, as compared with the corresponding epithelia of other diseases. The phenomic specificity of GSDM in lung cancer subtypes was noticed by comparing with 15 non-pulmonary cancers and para-cancer samples. GSDM family gene expression changes were also observed in different lung epithelial cell lines (e.g., HBE, A549, H1299, SPC-1, or H460) in responses to external challenges, including lipopolysaccharide (LPS), lysophosphatidylcholine (lysoPC), cigarette smoking extract (CSE), cholesterol, and AR2 inhibitor at various doses or durations. GSDMA is rarely expressed in those cell lines, while GSDMB and GSDMC are significantly upregulated in human lung epithelia. Our data indicated that the heterogeneity of GSDM member expression exists at different cells, pathologic conditions, challenges, probably dependent upon cell biological phenomes, functions, and behaviors, upon cellular responses to external changes, and the nature and severity of lung disease. Thus, the deep exploration of GSDM phenomes may provide new insights into understanding the single-cell roles in the tissue, regulatory roles of the GSDM family in the pathogenesis, and potential values of biomarker identification and development.
Collapse
Affiliation(s)
- Xuanqi Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China
| | - Linlin Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China
| | - Yifei Liu
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiayun Hou
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Mengjia Qian
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Chengshui Chen
- Quzhou Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, China.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Shanghai, China.
| |
Collapse
|
20
|
Wu W, Li Z, Wang Y, Huang C, Zhang T, Zhao H. Advances in metabolomics of chronic obstructive pulmonary disease. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:223-230. [PMID: 39171278 PMCID: PMC11332835 DOI: 10.1016/j.pccm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 08/23/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with limited airflow. COPD is characterized by chronic bronchitis and emphysema, and is often accompanied by malnutrition with fatigue, muscle weakness, and an increased risk of infection. Although the pulmonary function test is used as the gold criterion for diagnosing COPD, it is unable to identify early COPD or classify the subtypes, thereby impeding early intervention and the precise diagnosis of COPD. Recent evidence suggests that metabolic dysfunction, such as changes in lipids, amino acids, glucose, nucleotides, and microbial metabolites in the lungs and intestine, have a great potential for diagnosing COPD in the early stage. However, a comprehensive summary of these metabolites and their effects on COPD is still lacking. This review summarizes the metabolites that are changed in COPD and highlights some promising early diagnostic markers and therapeutic targets. We emphasize that intensified dietary management may be among the most feasible methods to improve metabolism in the body.
Collapse
Affiliation(s)
- Wenqian Wu
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yongqiang Wang
- Department of Respiratory and Critical Care Medicine, 302 Hospital of China Guizhou Aviation Industry Group, An Shun, Guizhou 561000, China
| | - Chuan Huang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
21
|
Jiang C, Peng M, Dai Z, Chen Q. Screening of Lipid Metabolism-Related Genes as Diagnostic Indicators in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2739-2754. [PMID: 38046983 PMCID: PMC10693249 DOI: 10.2147/copd.s428984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
Objective It has been observed that local and systemic disorders of lipid metabolism occur during the development of chronic obstructive pulmonary disease (COPD), but no specific mechanism has yet been identified. Methods The mRNA microarray dataset GSE76925 of COPD patients was downloaded from the Gene Expression Omnibus database and screened for differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from the Kyoto Encyclopedia of Genes and Genomes database and Molecular Signature Database. The DEGs were intersected with LMRGs to obtain differentially expressed lipid metabolism-related genes (DeLMRGs). GO enrichment analysis and KEGG pathway analysis were performed on DeLMRGs, and protein-protein interaction networks were constructed and screened to identify hub genes. The GSE8581 validation set and further ELISA experiments were used to validate key DeLMRG expression. Results Differential analysis of dataset GSE76925 identified 587 DEGs, of which 62 genes were up-regulated and 525 were down-regulated. Taking the intersection of 587 DEGs with 1102 LMRGs, 20 DeLMRGs were obtained, including 1 up-regulated gene and 19 down-regulated genes. 10 hub genes were screened by cytohubba plugin, including 9 down-regulated genes PLA2G4A, HPGDS, LEP, PTGES3, LEPR, PLA2G2D, MED21, SPTLC1 and BCHE, as well as the only up-regulated gene PLA2G7. Validation of the identified 10 DeLMRGs using the validation set GSE8581 revealed that BCHE and PLA2G7 expression levels differed between the two groups. We further constructed the ceRNA network of BCHE and PLA2G7. Cell experiments also showed that PLA2G7 expression was up-regulated and BCHE expression was down-regulated in CSE-treated RAW264.7 and THP-1 cells. Conclusion Based on a comprehensive bioinformatic analysis of lipid metabolism genes, we identified BCHE and PLA2G7 as potentially significant biomarkers of COPD. These biomarkers may represent promising targets for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
22
|
Henning Y, Willbrand K, Larafa S, Weißenberg G, Matschke V, Theiss C, Görtz GE, Matschke J. Cigarette smoke causes a bioenergetic crisis in RPE cells involving the downregulation of HIF-1α under normoxia. Cell Death Discov 2023; 9:398. [PMID: 37880219 PMCID: PMC10600121 DOI: 10.1038/s41420-023-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is the most common blinding disease in the elderly population. However, there are still many uncertainties regarding the pathophysiology at the molecular level. Currently, impaired energy metabolism in retinal pigment epithelium (RPE) cells is discussed as one major hallmark of early AMD pathophysiology. Hypoxia-inducible factors (HIFs) are important modulators of mitochondrial function. Moreover, smoking is the most important modifiable risk factor for AMD and is known to impair mitochondrial integrity. Therefore, our aim was to establish a cell-based assay that enables us to investigate how smoking affects mitochondrial function in conjunction with HIF signaling in RPE cells. For this purpose, we treated a human RPE cell line with cigarette smoke extract (CSE) under normoxia (21% O2), hypoxia (1% O2), or by co-treatment with Roxadustat, a clinically approved HIF stabilizer. CSE treatment impaired mitochondrial integrity, involving increased mitochondrial reactive oxygen species, disruption of mitochondrial membrane potential, and altered mitochondrial morphology. Treatment effects on cell metabolism were analyzed using a Seahorse Bioanalyzer. Mitochondrial respiration and ATP production were impaired in CSE-treated cells under normoxia. Surprisingly, CSE-treated RPE cells also exhibited decreased glycolytic rate under normoxia, causing a bioenergetic crisis, because two major metabolic pathways that provide ATP were impaired by CSE. Downregulation of glycolytic rate was HIF-dependent because HIF-1α, the α-subunit of HIF-1, was downregulated by CSE on the protein level, especially under normoxia. Moreover, hypoxia incubation and treatment with Roxadustat restored glycolytic flux. Taken together, our in vitro model provides interesting insights into HIF-dependent regulation of glycolysis under normoxic conditions, which will enable us to investigate signaling pathways involved in RPE metabolism in health and disease.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Katrin Willbrand
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Safa Larafa
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gesa Weißenberg
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Fu H, Liu X, Shi L, Wang L, Fang H, Wang X, Song D. Regulatory roles of Osteopontin in lung epithelial inflammation and epithelial-telocyte interaction. Clin Transl Med 2023; 13:e1381. [PMID: 37605313 PMCID: PMC10442477 DOI: 10.1002/ctm2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Lung epithelial cells play important roles in lung inflammation and injury, although mechanisms remain unclear. Osteopontin (OPN) has essential roles in epithelial damage and repair and in lung cancer biological behaviours. Telocyte (TC) is a type of interstitial cell that interacts with epithelial cells to alleviate acute inflammation and lung injury. The present studies aim at exploring potential mechanisms by which OPN regulates the epithelial origin lung inflammation and the interaction of epithelial cells with TCs in acute and chronic lung injury. METHODS The lung disease specificity of OPN and epithelial inflammation were defined by bioinformatics. We evaluated the regulatory roles of OPN in OPN-knockdown or over-expressed bronchial epithelia (HBEs) challenged with cigarette smoke extracts (CSE) or in animals with genome OPN knockout (gKO) or lung conditional OPN knockout (cKO). Acute lung injury and chronic obstructive pulmonary disease (COPD) were induced by smoking or lipopolysaccharide (LPS). Effects of OPN on PI3K subunits and ERK were assessed using the inhibitors. Spatialization and distribution of OPN, OPN-positive epithelial subtypes, and TCs were defined by spatial transcriptomics. The interaction between HBEs and TCs was assayed by the co-culture system. RESULTS Levels of OPN expression increased in smokers, smokers with COPD, and smokers with COPD and lung cancer, as compared with healthy nonsmokers. LPS and/or CSE induced over-production of cytokines from HBEs, dependent upon the dysfunction of OPN. The severity of lung inflammation and injury was significantly lower in OPN-gKO or OPN-cKO mice. HBEs transferred with OPN enhanced the expression of phosphoinositide 3-kinase (PI3K)CA/p110α, PIK3CB/p110β, PIK3CD/p110δ, PIK3CG/p110γ, PIK3R1, PIK3R2 or PIK3R3. Spatial locations of OPN and OPN-positive epithelial subtypes showed the tight contact of airway epithelia and TCs. Epithelial OPN regulated the epithelial communication with TCs, and the down-regulation of OPN induced more alterations in transcriptomic profiles than the up-regulation. CONCLUSION Our data evidenced that OPN regulated lung epithelial inflammation, injury, and cell communication between epithelium and TCs in acute and chronic lung injury. The conditional control of lung epithelial OPN may be an alternative for preventing and treating epithelial-origin lung inflammation and injury.
Collapse
Affiliation(s)
- Huirong Fu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Lin Shi
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Lingyan Wang
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Department of AnesthesiologyShanghai Geriatric Medical CenterShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Department of Pulmonary MedicineShanghai Xuhui Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
24
|
Kononov S, Azarova I, Klyosova E, Bykanova M, Churnosov M, Solodilova M, Polonikov A. Lipid-Associated GWAS Loci Predict Antiatherogenic Effects of Rosuvastatin in Patients with Coronary Artery Disease. Genes (Basel) 2023; 14:1259. [PMID: 37372439 PMCID: PMC10298211 DOI: 10.3390/genes14061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
We have shown that lipid-associated loci discovered by genome-wide association studies (GWAS) have pleiotropic effects on lipid metabolism, carotid intima-media thickness (CIMT), and CAD risk. Here, we investigated the impact of lipid-associated GWAS loci on the efficacy of rosuvastatin therapy in terms of changes in plasma lipid levels and CIMT. The study comprised 116 CAD patients with hypercholesterolemia. CIMT, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were measured at baseline and after 6 and 12 months of follow-up, respectively. Genotyping of fifteen lipid-associated GWAS loci was performed by the MassArray-4 System. Linear regression analysis adjusted for sex, age, body mass index, and rosuvastatin dose was used to estimate the phenotypic effects of polymorphisms, and p-values were calculated through adaptive permutation tests by the PLINK software, v1.9. Over one-year rosuvastatin therapy, a decrease in CIMT was linked to rs1689800, rs4846914, rs12328675, rs55730499, rs9987289, rs11220463, rs16942887, and rs881844 polymorphisms (Pperm < 0.05). TC change was associated with rs55730499, rs11220463, and rs6065906; LDL-C change was linked to the rs55730499, rs1689800, and rs16942887 polymorphisms; and TG change was linked to polymorphisms rs838880 and rs1883025 (Pperm < 0.05). In conclusion, polymorphisms rs1689800, rs55730499, rs11220463, and rs16942887 were found to be predictive markers for multiple antiatherogenic effects of rosuvastatin in CAD patients.
Collapse
Affiliation(s)
- Stanislav Kononov
- Department of Internal Medicine No. 2, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Marina Bykanova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
25
|
The Relationship of Cholesterol Responses to Mitochondrial Dysfunction and Lung Inflammation in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020253. [PMID: 36837454 PMCID: PMC9958740 DOI: 10.3390/medicina59020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Hyperlipidemia is frequently reported in chronic obstructive pulmonary disease (COPD) patients and is linked to the progression of the disease and its comorbidities. Hypercholesterolemia leads to cholesterol accumulation in many cell types, especially immune cells, and some recent studies suggest that cholesterol impacts lung epithelial cells' inflammatory responses and mitochondrial responses. Several studies also indicate that targeting cholesterol responses with either statins or liver X receptor (LXR) agonists may be plausible means of improving pulmonary outcomes. Equally, cholesterol metabolism and signaling are linked to mitochondrial dysfunction and inflammation attributed to COPD progression. Here, we review the current literature focusing on the impact of cigarette smoke on cholesterol levels, cholesterol efflux, and the influence of cholesterol on immune and mitochondrial responses within the lungs.
Collapse
|
26
|
Park SS, Perez Perez JL, Perez Gandara B, Agudelo CW, Rodriguez Ortega R, Ahmed H, Garcia-Arcos I, McCarthy C, Geraghty P. Mechanisms Linking COPD to Type 1 and 2 Diabetes Mellitus: Is There a Relationship between Diabetes and COPD? Medicina (B Aires) 2022; 58:medicina58081030. [PMID: 36013497 PMCID: PMC9415273 DOI: 10.3390/medicina58081030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients frequently suffer from multiple comorbidities, resulting in poor outcomes for these patients. Diabetes is observed at a higher frequency in COPD patients than in the general population. Both type 1 and 2 diabetes mellitus are associated with pulmonary complications, and similar therapeutic strategies are proposed to treat these conditions. Epidemiological studies and disease models have increased our knowledge of these clinical associations. Several recent genome-wide association studies have identified positive genetic correlations between lung function and obesity, possibly due to alterations in genes linked to cell proliferation; embryo, skeletal, and tissue development; and regulation of gene expression. These studies suggest that genetic predisposition, in addition to weight gain, can influence lung function. Cigarette smoke exposure can also influence the differential methylation of CpG sites in genes linked to diabetes and COPD, and smoke-related single nucleotide polymorphisms are associated with resting heart rate and coronary artery disease. Despite the vast literature on clinical disease association, little direct mechanistic evidence is currently available demonstrating that either disease influences the progression of the other, but common pharmacological approaches could slow the progression of these diseases. Here, we review the clinical and scientific literature to discuss whether mechanisms beyond preexisting conditions, lifestyle, and weight gain contribute to the development of COPD associated with diabetes. Specifically, we outline environmental and genetic confounders linked with these diseases.
Collapse
Affiliation(s)
- Sangmi S. Park
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Jessica L. Perez Perez
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Christina W. Agudelo
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Romy Rodriguez Ortega
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Itsaso Garcia-Arcos
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
| | - Cormac McCarthy
- University College Dublin School of Medicine, Education and Research Centre, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.S.P.); (J.L.P.P.); (B.P.G.); (C.W.A.); (R.R.O.); (H.A.); (I.G.-A.)
- Correspondence: ; Tel.: +1-718-270-3141
| |
Collapse
|
27
|
Li L, Liu Y, Liu X, Zheng N, Gu Y, Song Y, Wang X. Regulatory roles of external cholesterol in human airway epithelial mitochondrial function through STARD3 signalling. Clin Transl Med 2022; 12:e902. [PMID: 35678098 PMCID: PMC9178408 DOI: 10.1002/ctm2.902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypercholesterolemia is found in patients with chronic lung inflammation, during which airway epithelial cells play important roles in maintenance of inflammatory responses to pathogens. The present study aims at molecular mechanisms by which cholesterol changes airway epithelial sensitivity in response to smoking. METHODS Human bronchial epithelial cells (HBEs) were stimulated with cigarette smoke extract (CSE) and mice were exposed to CS/lipopolysaccharide (LPS) as models in vitro and in vivo. Severe COPD patients and healthy volunteers were also enrolled and the level of cholesterol in plasma was detected by metabolomics. Filipin III and elisa kits were used to stain free cholesterol. Mitochondrial function was detected by mitotracker green, mitotracker green, and Seahorse. Mitochondrial morphology was detected by high content screening and electron microscopy. The mRNA and protein levels of mitochondrial dynamics-related proteins were detected by RT-qPCR and Western blot,respectively. BODIPY 493/503 was used to stain lipid droplets. Lipidomics was used to detect intracellular lipid components. The mRNA level of interleukin (IL)-6 and IL-8 were detected by RT-qPCR. RESULTS We found that the cholesterol overload was associated with chronic obstructive pulmonary disease (COPD) and airway epithelia-driven inflammation, evidenced by hypercholesterolemia in patients with COPD and preclinical models, alteration of lipid metabolism-associated genes in CSE-induced airway epithelia and production of ILs. External cholesterol altered airway epithelial sensitivity of inflammation in response to CSE, through the regulation of STARD3-MFN2 pathway, cholesterol re-distribution, altered transport and accumulation of cholesterol, activities of lipid transport regulators and disorder of mitochondrial function and dynamics. MFN2 down-regulation increased airway epithelial sensitivity and production of ILs after smoking, at least partially by injuring fatty acid oxidation and activating mTOR phosphorylation. CONCLUSIONS Our data provide new insights for understanding molecular mechanisms of cholesterol-altered airway epithelial inflammation and for developing diagnostic biomarkers and therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Xuanqi Liu
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yutong Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|