1
|
Liu X, Zhang Y, Wen Z, Hao Y, Banks CA, Cesare J, Bhattacharya S, Arvindekar S, Lange JJ, Xie Y, Garcia BA, Slaughter BD, Unruh JR, Viswanath S, Florens L, Workman JL, Washburn MP. An integrated structural model of the DNA damage-responsive H3K4me3 binding WDR76:SPIN1 complex with the nucleosome. Proc Natl Acad Sci U S A 2024; 121:e2318601121. [PMID: 39116123 PMCID: PMC11331135 DOI: 10.1073/pnas.2318601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Serial capture affinity purification (SCAP) is a powerful method to isolate a specific protein complex. When combined with cross-linking mass spectrometry and computational approaches, one can build an integrated structural model of the isolated complex. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone reader that recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to a previous SCAP analysis of the SPIN1:SPINDOC complex, histones and the H3K4me3 mark were enriched with the WDR76:SPIN1 complex. Next, interaction network analysis of copurifying proteins and microscopy analysis revealed a potential role of the WDR76:SPIN1 complex in the DNA damage response. Since we detected 149 pairs of cross-links between WDR76, SPIN1, and histones, we then built an integrated structural model of the complex where SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Finally, we used the powerful Bayesian Integrative Modeling approach as implemented in the Integrative Modeling Platform to build a model of WDR76 and SPIN1 bound to the nucleosome.
Collapse
Affiliation(s)
- Xingyu Liu
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Zhihui Wen
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Yan Hao
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Joseph Cesare
- Stowers Institute for Medical Research, Kansas City, MO64110
- Medical Scientist Training Program, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS66150
| | | | - Shreyas Arvindekar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | | | - Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University St. Louis School of Medicine, St. Louis, MO63110
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University St. Louis School of Medicine, St. Louis, MO63110
| | | | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, MO64110
| | - Shruthi Viswanath
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore560065, India
| | | | | | | |
Collapse
|
2
|
Xie S, Saba L, Jiang H, Bringas OR, Oghbaie M, Stefano LD, Sherman V, LaCava J. Multiparameter screen optimizes immunoprecipitation. Biotechniques 2024; 76:145-152. [PMID: 38425263 PMCID: PMC11091867 DOI: 10.2144/btn-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Immunoprecipitation (IP) coupled with mass spectrometry effectively maps protein-protein interactions when genome-wide, affinity-tagged cell collections are used. Such studies have recorded significant portions of the compositions of physiological protein complexes, providing draft 'interactomes'; yet many constituents of protein complexes still remain uncharted. This gap exists partly because high-throughput approaches cannot optimize each IP. A key challenge for IP optimization is stabilizing in vivo interactions during the transfer from cells to test tubes; failure to do so leads to the loss of genuine interactions during the IP and subsequent failure to detect. Our high-content screening method explores the relationship between in vitro chemical conditions and IP outcomes, enabling rapid empirical optimization of conditions for capturing target macromolecular assemblies.
Collapse
Affiliation(s)
- Shaoshuai Xie
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen, 9713AV, The Netherlands
| | - Leila Saba
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen, 9713AV, The Netherlands
| | - Hua Jiang
- Laboratory of Cellular & Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Omar R Bringas
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen, 9713AV, The Netherlands
| | - Mehrnoosh Oghbaie
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen, 9713AV, The Netherlands
- Laboratory of Cellular & Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Luciano Di Stefano
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen, 9713AV, The Netherlands
| | - Vadim Sherman
- High Energy Physics Instrument Shop, The Rockefeller University, New York, NY 10065, USA
| | - John LaCava
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, Groningen, 9713AV, The Netherlands
- Laboratory of Cellular & Structural Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
3
|
Genceroglu MY, Cavdar C, Manioglu S, Bayraktar H. Genetically Encoded Fluorescent Probe for Detection of Heme-Induced Conformational Changes in Cytochrome c. BIOSENSORS 2023; 13:890. [PMID: 37754124 PMCID: PMC10526477 DOI: 10.3390/bios13090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Cytochrome c (Cytc) is a key redox protein for energy metabolism and apoptosis in cells. The activation of Cytc is composed of several steps, including its transfer to the mitochondrial membrane, binding to cytochrome c heme lyase (CCHL) and covalent attachment to heme. The spectroscopic methods are often applied to study the structural changes of Cytc. However, they require the isolation of Cytc from cells and have limited availability under physiological conditions. Despite recent studies to elucidate the tightly regulated folding mechanism of Cytc, the role of these events and their association with different conformational states remain elusive. Here, we provide a genetically encoded fluorescence method that allows monitoring of the conformational changes of Cytc upon binding to heme and CCHL. Cerulean and Venus fluorescent proteins attached at the N and C terminals of Cytc can be used to determine its unfolded, intermediate, and native states by measuring FRET amplitude. We found that the noncovalent interaction of heme in the absence of CCHL induced a shift in the FRET signal, indicating the formation of a partially folded state. The higher concentration of heme and coexpression of CCHL gave rise to the recovery of Cytc native structure. We also found that Cytc was weakly associated with CCHL in the absence of heme. As a result, a FRET-based fluorescence approach was demonstrated to elucidate the mechanism of heme-induced Cytc conformational changes with spatiotemporal resolution and can be applied to study its interaction with small molecules and other protein partners in living cells.
Collapse
Affiliation(s)
- Mehmet Yunus Genceroglu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| | - Cansu Cavdar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| | - Selen Manioglu
- Biomedical Science and Engineering Program, Koç University, Istanbul 34450, Turkey
| | - Halil Bayraktar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34467, Turkey
| |
Collapse
|
4
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Sendo S, Kiosses WB, Yang S, Wu DJ, Lee DWK, Liu L, Aschner Y, Vela AJ, Downey GP, Santelli E, Bottini N. Clustering of phosphatase RPTPα promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sci Signal 2023; 16:eabn8668. [PMID: 37402225 PMCID: PMC10544828 DOI: 10.1126/scisignal.abn8668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Receptor-type protein phosphatase α (RPTPα) promotes fibroblast-dependent arthritis and fibrosis, in part, by enhancing the activation of the kinase SRC. Synovial fibroblasts lining joint tissue mediate inflammation and tissue damage, and their infiltration into adjacent tissues promotes disease progression. RPTPα includes an ectodomain and two intracellular catalytic domains (D1 and D2) and, in cancer cells, undergoes inhibitory homodimerization, which is dependent on a D1 wedge motif. Through single-molecule localization and labeled molecule interaction microscopy of migrating synovial fibroblasts, we investigated the role of RPTPα dimerization in the activation of SRC, the migration of synovial fibroblasts, and joint damage in a mouse model of arthritis. RPTPα clustered with other RPTPα and with SRC molecules in the context of actin-rich structures. A known dimerization-impairing mutation in the wedge motif (P210L/P211L) and the deletion of the D2 domain reduced RPTPα-RPTPα clustering; however, it also unexpectedly reduced RPTPα-SRC association. The same mutations also reduced recruitment of RPTPα to actin-rich structures and inhibited SRC activation and cellular migration. An antibody against the RPTPα ectodomain that prevented the clustering of RPTPα also inhibited RPTPα-SRC association and SRC activation and attenuated fibroblast migration and joint damage in arthritic mice. A catalytically inactivating RPTPα-C469S mutation protected mice from arthritis and reduced SRC activation in synovial fibroblasts. We conclude that RPTPα clustering retains it to actin-rich structures to promote SRC-mediated fibroblast migration and can be modulated through the extracellular domain.
Collapse
Affiliation(s)
- Sho Sendo
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - William B. Kiosses
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Shen Yang
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dennis J. Wu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel W. K. Lee
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Lin Liu
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Yael Aschner
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Allison J. Vela
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Gregory P. Downey
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
- Department of Biomedical Research, National Jewish Health, Denver, Colorado
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Eugenio Santelli
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Nunzio Bottini
- Dept. of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Medicine, Kao Autoimmunity Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. In vivo quantitative FRET small animal imaging: Intensity versus lifetime-based FRET. BIOPHYSICAL REPORTS 2023; 3:100110. [PMID: 37251213 PMCID: PMC10209493 DOI: 10.1016/j.bpr.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the three-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated-intensified charge-coupled device, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of a near-infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI-FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required nine measurements (six of which are used for calibration) acquired from three mice, MFLI-FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, New York
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
7
|
Somayaji H, Scholes GD. Waveguided energy transfer in pseudo-two-dimensional systems. J Chem Phys 2023; 158:2895247. [PMID: 37290084 DOI: 10.1063/5.0145540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Resonance energy transfer (RET) is an important and ubiquitous process whereby energy is transferred from a donor chromophore to an acceptor chromophore without contact via Coulombic coupling. There have been a number of recent advances exploiting the quantum electrodynamics (QED) framework for RET. Here, we extend the QED RET theory to investigate whether real photon exchange can allow for excitation transfer over very long distances if the exchanged photon is waveguided. To study this problem, we consider RET in two spatial dimensions. We derive the RET matrix element using QED in two dimensions, consider an even greater confinement by deriving the RET matrix element for a two-dimensional waveguide using ray theory, and compare the resulting RET elements in 3D and 2D and for the 2D waveguide. We see greatly enhanced RET rates over long distances for both the 2D and 2D waveguide systems and see a great preference for transverse photon mediated transfer in the 2D waveguide system.
Collapse
Affiliation(s)
- Hrishikesh Somayaji
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
8
|
Smith JT, Sinsuebphon N, Rudkouskaya A, Michalet X, Intes X, Barroso M. in vivo quantitative FRET small animal imaging: intensity versus lifetime-based FRET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525411. [PMID: 36747671 PMCID: PMC9900789 DOI: 10.1101/2023.01.24.525411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Förster Resonance Energy Transfer (FRET) microscopy is used in numerous biophysical and biomedical applications to monitor inter- and intramolecular interactions and conformational changes in the 2-10 nm range. FRET is currently being extended to in vivo optical imaging, its main application being in quantifying drug-target engagement or drug release in animal models of cancer using organic dye or nanoparticle-labeled probes. Herein, we compared FRET quantification using intensity-based FRET (sensitized emission FRET analysis with the 3-cube approach using an IVIS imager) and macroscopic fluorescence lifetime (MFLI) FRET using a custom system using a time-gated ICCD, for small animal optical in vivo imaging. The analytical expressions and experimental protocols required to quantify the product f D E of the FRET efficiency E and the fraction of donor molecules involved in FRET, f D , are described in detail for both methodologies. Dynamic in vivo FRET quantification of transferrin receptor-transferrin binding was acquired in live intact nude mice upon intravenous injection of near infrared-labeled transferrin FRET pair and benchmarked against in vitro FRET using hybridized oligonucleotides. Even though both in vivo imaging techniques provided similar dynamic trends for receptor-ligand engagement, we demonstrate that MFLI FRET has significant advantages. Whereas the sensitized emission FRET approach using the IVIS imager required 9 measurements (6 of which are used for calibration) acquired from three mice, MFLI FRET needed only one measurement collected from a single mouse, although a control mouse might be needed in a more general situation. Based on our study, MFLI therefore represents the method of choice for longitudinal preclinical FRET studies such as that of targeted drug delivery in intact, live mice.
Collapse
Affiliation(s)
- Jason T. Smith
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Elephas, 1 Erdman Pl., Madison, WI 53705, USA
| | - Nattawut Sinsuebphon
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Present address: Assistive Technology and Medical Devices Research Center, National Science and Technology Development Agency, 12120 Pathum Thani, Thailand
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, University of California at Los Angeles, Los Angeles, California, CA 90095, USA
| | - Xavier Intes
- Center for Modeling, Simulation and Imaging in Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
9
|
Liu X, Zhang Y, Wen Z, Hao Y, Banks CAS, Lange JJ, Cesare J, Bhattacharya S, Slaughter BD, Unruh JR, Florens L, Workman JL, Washburn MP. Serial Capture Affinity Purification and Integrated Structural Modeling of the H3K4me3 Binding and DNA Damage Related WDR76:SPIN1 Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526478. [PMID: 36778327 PMCID: PMC9915617 DOI: 10.1101/2023.01.31.526478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
WDR76 is a multifunctional protein involved in many cellular functions. With a diverse and complicated protein interaction network, dissecting the structure and function of specific WDR76 complexes is needed. We previously demonstrated the ability of the Serial Capture Affinity Purification (SCAP) method to isolate specific complexes by introducing two proteins of interest as baits at the same time. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone marker reader that specifically recognizes trimethylated histone H3 lysine4 (H3K4me3). In contrast to the SCAP analysis of the SPIN1:SPINDOC complex, H3K4me3 was copurified with the WDR76:SPIN1 complex. In combination with crosslinking mass spectrometry, we built an integrated structural model of the complex which revealed that SPIN1 recognized the H3K4me3 epigenetic mark while interacting with WDR76. Lastly, interaction network analysis of copurifying proteins revealed the potential role of the WDR76:SPIN1 complex in the DNA damage response. Teaser In contrast to the SPINDOC/SPIN1 complex, analyses reveal that the WDR76/SPIN1 complex interacts with core histones and is involved in DNA damage.
Collapse
|
10
|
Alam SR, Mahadevan MS, Periasamy A. Detecting RNA-Protein Interactions With EGFP-Cy3 FRET by Acceptor Photobleaching. Curr Protoc 2023; 3:e689. [PMID: 36821783 DOI: 10.1002/cpz1.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Förster Resonance Energy Transfer (FRET) is a great tool for cell biologists to investigate molecular interactions in live specimens. FRET is a distance-dependent phenomenon which can detect molecular interactions at distances between 1-10 nm. Several FRET approaches are reported in the literature for live and fixed cells to study protein-protein interactions; this protocol provides details of acceptor photobleaching as a FRET method to study RNA-Protein interactions. Cy3-labeled RNA foci (FRET acceptors) are photobleached at the intra-cellular site of interest (the nuclei) and the intensity of the EGFP-tagged proteins (FRET donors) at that same site are measured pre- and post- photobleaching. In principle, FRET is detected if the intensity of EGFP increases after photobleaching of Cy3. This protocol describes necessary steps and appropriate controls to conduct FRET measurements by the acceptor photobleaching method. Successful applications of this protocol will provide data to support the conclusion that EGFP-labeled proteins directly interact with Cy3-labeled RNA at the site of photobleaching. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: FRET in fixed cells Alternate Protocol: FRET in live cells.
Collapse
Affiliation(s)
- Shagufta Rehman Alam
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, Virginia
| | - Ammasi Periasamy
- W. M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, Virginia.,Departments of Biology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
11
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
12
|
Kalita S, Kalita S, Kawa AH, Shill S, Gupta A, Kumar S, Mandal B. Copper Chelating Cyclic Peptidomimetic Inhibits Aβ Fibrillogenesis. RSC Med Chem 2022; 13:761-774. [PMID: 35814930 PMCID: PMC9215124 DOI: 10.1039/d2md00019a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Misfolding of amyloid- peptide (A) and its subsequent aggregation into toxic oligomers is one of the leading causes of Alzheimer's disease (AD). As a therapeutic approach, cyclic peptides have been...
Collapse
|
13
|
Lv X, Jin K, Sun G, Ledesma-Amaro R, Liu L. Microscopy imaging of living cells in metabolic engineering. Trends Biotechnol 2021; 40:752-765. [PMID: 34799183 DOI: 10.1016/j.tibtech.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/23/2023]
Abstract
Microscopy imaging of living cells is becoming a pivotal, noninvasive, and highly specific tool in metabolic engineering to visualize molecular dynamics in industrial microorganisms. This review describes the different microscopy methods, from fluorescence to super resolution, with application in microbial bioengineering. Firstly, the role and importance of microscopy imaging is analyzed in the context of strain design. Then, the advantages and disadvantages of different microscopy technologies are discussed, including confocal laser scanning microscopy (CLSM), spatial light interference microscopy (SLIM), and super-resolution microscopy, followed by their applications in synthetic biology. Finally, the future perspectives of live-cell imaging and their potential to transform microbial systems are analyzed. This review provides theoretical guidance and highlights the importance of microscopy in understanding and engineering microbial metabolism.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
14
|
Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc Natl Acad Sci U S A 2021; 118:2025932118. [PMID: 34493662 PMCID: PMC8449344 DOI: 10.1073/pnas.2025932118] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/β2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.
Collapse
|
15
|
Liu Z, Luo Z, Chen H, Yin A, Sun H, Zhuang Z, Chen T. Optical section structured illumination-based Förster resonance energy transfer imaging. Cytometry A 2021; 101:264-272. [PMID: 34490985 DOI: 10.1002/cyto.a.24500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is an important tool suitable for studying molecular interactions in living cells. Optical section structured illumination microscopy (OS-SIM), like confocal microscopy, has about 200 nm spatial resolution. In this report, we performed quantitative 3-cube FRET imaging in OS-SIM mode and widefield microscopy (WF) mode, respectively, for living cells expressing FRET constructs consisting of Cerulean (C, donor) and Venus (V, acceptor). OS-SIM images exhibited higher resolution than WF images. Four spectral crosstalk coefficients measured under OS-SIM mode are consistent with those measured under WF mode. Similarly, the system calibration factors G and k measured under OS-SIM mode were consistent with those measured under WF mode. The measured FRET efficiency (E) values of C32V and C17V as well as C5V constructs, standard FRET plasmids, in living Hela cells were E C 32 V OSF = 0.32 ± 0.02 , E C 17 V OSF = 0.38 ± 0.02 , and E C 5 V OSF = 0.45 ± 0.03 , and the measured acceptor-to-donor concentration ratios ( R c ) were R C 32 V OSF = 1.07 ± 0.03 , R C 17 V OSF = 1.09 ± 0.03 , and R C 5 V OSF = 1.02 ± 0.04 , consistent with the reported values. Collectively, our data demonstrates that OS-SIM can be integrated into FRET microscopy to build an OS-SIM-FRET with confocal microscopy-like resolution.
Collapse
Affiliation(s)
- Zhi Liu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zewei Luo
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Ao Yin
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Han Sun
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zhengfei Zhuang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, China
| |
Collapse
|
16
|
Yin A, Sun H, Chen H, Liu Z, Tang Q, Yuan Y, Tu Z, Zhuang Z, Chen T. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids. Cytometry A 2021; 99:632-640. [PMID: 33491868 DOI: 10.1002/cyto.a.24316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Three-cube Förster resonance energy transfer (FRET) method is the most extensively applied approach for live-cell FRET quantification. Reliable measurements of calibration factors are crucial for quantitative FRET measurement. We here proposed a modified TA-G method (termed as mTA-G) to simultaneously obtain the FRET-sensitized quenching transition factor (G) and extinction coefficients ratio (γ) between donor and acceptor. mTA-G method includes four steps: (1) predetermining the ratio ranges of the sensitized emission of acceptor (FC ) to the donor excitation and donor channel image (IDD [(DA])) for all FRET plasmids; (2) culturing the cells which express every FRET plasmid in one dish respectively; (3) distinguishing and marking the cells expressing different FRET plasmids by detecting their FC /IDD (DA) values; (4) linearly fitting FC /IAA (DA) (acceptor excitation and acceptor channel image) to IDD (DA)/IAA (DA) for different kinds of cells. We implemented mTA-G method by imaging tandem constructs cells with different FRET efficiency cultured in one dish on different days, and obtained consistent G and γ values. mTA-G method not only circumvents switchover of different culture dishes but also keep the constant imaging conditions, exhibiting excellent robustness, and thus will expands the biological applications of quantitative FRET analysis in living cells.
Collapse
Affiliation(s)
- Ao Yin
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Han Sun
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhi Liu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qiling Tang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ye Yuan
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhuang Tu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengfei Zhuang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Kan A, Liu X, Xu X, Zhang N, Jiang W. A bimolecular i-motif mediated FRET strategy for imaging protein homodimerization on a living tumor cell surface. Chem Commun (Camb) 2020; 56:13405-13408. [PMID: 33035284 DOI: 10.1039/d0cc05607c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A bimolecular i-motif mediated FRET strategy was developed based on the proximity-induced folding of two identical cytosine-rich DNA strands. This strategy affords a FRET signal that is highly matched to the dimerization event, and enabled accurate and dynamic in situ imaging of Met homodimerization on a living tumor cell surface.
Collapse
Affiliation(s)
- Ailing Kan
- School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals: A biological perspective of the history of FRET. Cell Signal 2020; 75:109769. [PMID: 32898611 DOI: 10.1016/j.cellsig.2020.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Fӧrster resonance energy transfer (FRET) has been described for more than a century. FRET has become a mainstay for the study of protein localization in living cells and tissues. It has also become widely used in the fields that comprise cellular signaling. FRET-based probes have been developed to monitor second messenger signals, the phosphorylation state of peptides and proteins, and subsequent cellular responses. Here, we discuss the milestones that led to FRET becoming a widely used tool for the study of biological systems: the theoretical description of FRET, the insight to use FRET as a molecular ruler, and the isolation and genetic modification of green fluorescent protein (GFP). Each of these milestones were critical to the development of a myriad of FRET-based probes and reporters in common use today. FRET-probes offer a unique opportunity to interrogate second messenger signals and subsequent protein phosphorylation - and perhaps the most effective approach for study of cAMP/PKA pathways. As such, FRET probes are widely used in the study of intracellular signaling pathways. Yet, somehow, the potential of FRET-based probes to provide windows through which we can visualize complex cellular signaling systems has not been fully reached. Hence we conclude by discussing the technical challenges to be overcome if FRET-based probes are to live up to their potential for the study of complex signaling networks.
Collapse
Affiliation(s)
- J Deal
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - D J Pleshinger
- Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S C Johnson
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
19
|
Szabó Á, Nagy P. I Am the Alpha and the …Gamma, and the G. Calibration of Intensity-Based FRET Measurements. Cytometry A 2020; 99:369-371. [PMID: 32790096 DOI: 10.1002/cyto.a.24206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Szabó Á, Szendi-Szatmári T, Szöllősi J, Nagy P. Quo vadis FRET? Förster's method in the era of superresolution. Methods Appl Fluoresc 2020; 8:032003. [PMID: 32521530 DOI: 10.1088/2050-6120/ab9b72] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the theoretical foundations of Förster resonance energy transfer (FRET) were laid in the 1940s as part of the quantum physical revolution of the 20th century, it was only in the 1970s that it made its way to biology as a result of the availability of suitable measuring and labeling technologies. Thanks to its ease of application, FRET became widely used for studying molecular associations on the nanometer scale. The development of superresolution techniques at the turn of the millennium promised an unprecedented insight into the structure and function of molecular complexes. Without downplaying the significance of superresolution microscopies this review expresses our view that FRET is still a legitimate tool in the armamentarium of biologists for studying molecular associations since it offers distinct advantages and overcomes certain limitations of superresolution approaches.
Collapse
Affiliation(s)
- Ágnes Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary. MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem square 1, 4032 Debrecen, Hungary
| | | | | | | |
Collapse
|
21
|
Hermal F, Frisch B, Specht A, Bourel-Bonnet L, Heurtault B. Development and characterization of layer-by-layer coated liposomes with poly(L-lysine) and poly(L-glutamic acid) to increase their resistance in biological media. Int J Pharm 2020; 586:119568. [PMID: 32592900 DOI: 10.1016/j.ijpharm.2020.119568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/10/2023]
Abstract
Multilayered coated liposomes were prepared using the layer-by-layer (LbL) technique in an effort to improve their stability in biological media. The formulation strategy was based on the alternate deposition of two biocompatible and biodegradable polyelectrolytes - poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA) - on negatively charged small unilamellar vesicles (SUVs). Some parameters of the formulation process were optimized such as the polyelectrolyte concentration and the purification procedure. This optimized procedure has allowed the development of very homogeneous formulations of liposomes coated with up to 6 layers of polymers (so-called layersomes). The coating was characterized by dynamic light scattering (DLS), zeta potential measurements and Förster resonance energy transfer (FRET) between two fluorescently labeled polyelectrolytes. Studies on the stability of the formulations at 4 °C in a buffered solution have shown that most structures are stable over 1 month without impacting their encapsulation capacity. In addition, fluorophore release experiments have demonstrated a better resistance of the layersomes in the presence of a non-ionic detergent (Triton™ X-100) as well as in the presence of phospholipase A2 and human plasma. In conclusion, new multilayered liposomes have been developed to increase the stability of conventional liposomes in biological environments.
Collapse
Affiliation(s)
- Florence Hermal
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Benoît Frisch
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Alexandre Specht
- CNM Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Line Bourel-Bonnet
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| | - Béatrice Heurtault
- 3BIO Team, UMR 7199, Université de Strasbourg/CNRS, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
22
|
Yang J, Gong Z, Lu YB, Xu CJ, Wei TF, Yang MS, Zhan TW, Yang YH, Lin L, Liu J, Tang C, Zhang WP. FLIM-FRET-Based Structural Characterization of a Class-A GPCR Dimer in the Cell Membrane. J Mol Biol 2020; 432:4596-4611. [PMID: 32553728 DOI: 10.1016/j.jmb.2020.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022]
Abstract
Class-A G protein-coupled receptors (GPCRs) are known to homo-dimerize in the membrane. Yet, methods to characterize the structure of GPCR dimer in the native environment are lacking. Accordingly, the molecular basis and functional relevance of the class-A GPCR dimerization remain unclear. Here, we present the dimeric structural model of GPR17 in the cell membrane. The dimer mainly involves transmembrane helix 5 (TM5) at the interface, with F229 in TM5, a critical residue. An F229A mutation makes GPR17 monomeric regardless of the expression level of the receptor. Monomeric mutants of GPR17 display impaired ERK1/2 activation and cannot be properly internalized upon agonist treatment. Conversely, the F229C mutant is cross-linked as a dimer and behaves like wild-type. Importantly, the GPR17 dimer structure has been modeled using sparse inter-protomer FRET distance restraints obtained from fluorescence lifetime imaging microscopy. The same approach can be applied to characterizing the interactions of other important membrane proteins in the cell.
Collapse
Affiliation(s)
- Ju Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yun-Bi Lu
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chan-Juan Xu
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao-Feng Wei
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng-Shi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Tian-Wei Zhan
- Department of Thoracic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Yu-Hong Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Li Lin
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianfeng Liu
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Chun Tang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| | - Wei-Ping Zhang
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
23
|
Cao R, Wallrabe H, Siller K, Periasamy A. Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues. Methods Appl Fluoresc 2020; 8:024001. [PMID: 31972557 DOI: 10.1088/2050-6120/ab6f25] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasingly, the auto-fluorescent coenzymes NAD(P)H and FAD are being tracked by multi-photon fluorescence lifetime microscopy (FLIM) and used as versatile markers for changes in mammalian metabolism. The cellular redox state of different cell model systems, organoids and tissue sections is investigated in a range of pathologies where the metabolism is disrupted or reprogrammed; the latter is particularly relevant in cancer biology. Yet, the actual optimized process of acquiring images by FLIM, execute a correct lifetime fitting procedure and subsequent processing and analysis can be challenging for new users. Questions remain of how to optimize FLIM experiments, whether any potential photo-bleaching affects FLIM results and whether fixed specimens can be used in experiments. We have broken down the multi-step sequence into best-practice application of FLIM for NAD(P)H and FAD imaging, with images generated by a time-correlated-single-photon-counting (TCSPC) system, fitted with Becker & Hickl software and further processed with open-source ImageJ/Fiji and Python software.
Collapse
Affiliation(s)
- Ruofan Cao
- The W.M. Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA, United States of America
| | | | | | | |
Collapse
|
24
|
Skruzny M, Pohl E, Abella M. FRET Microscopy in Yeast. BIOSENSORS 2019; 9:E122. [PMID: 31614546 PMCID: PMC6956097 DOI: 10.3390/bios9040122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules. We aim to provide a practical guide on suitable FRET techniques, fluorescent proteins, and experimental setups available for successful FRET experiments in yeasts.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
| | - Emma Pohl
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
25
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
26
|
Cost A, Khalaji S, Grashoff C. Genetically Encoded FRET‐Based Tension Sensors. ACTA ACUST UNITED AC 2019; 83:e85. [DOI: 10.1002/cpcb.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anna‐Lena Cost
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry Martinsried Germany
- Department of Quantitative Cell Biology, Institute of Molecular Cell BiologyUniversity of Münster Münster Germany
| | - Samira Khalaji
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry Martinsried Germany
- Department of Quantitative Cell Biology, Institute of Molecular Cell BiologyUniversity of Münster Münster Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry Martinsried Germany
- Department of Quantitative Cell Biology, Institute of Molecular Cell BiologyUniversity of Münster Münster Germany
| |
Collapse
|
27
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
28
|
Rudenko LK, Wallrabe H, Periasamy A, Siller KH, Svindrych Z, Seward ME, Best MN, Bloom GS. Intraneuronal Tau Misfolding Induced by Extracellular Amyloid-β Oligomers. J Alzheimers Dis 2019; 71:1125-1138. [PMID: 31524157 PMCID: PMC7464573 DOI: 10.3233/jad-190226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abnormal folding and aggregation of the microtubule-associated protein, tau, is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD). Although normal tau is an intrinsically disordered protein, it does exhibit tertiary structure whereby the N- and C-termini are often in close proximity to each other and to the contiguous microtubule-binding repeat domains that extend C-terminally from the middle of the protein. Unfolding of this paperclip-like conformation might precede formation of toxic tau oligomers and filaments, like those found in AD brain. While there are many ways to monitor tau aggregation, methods to monitor changes in tau folding are not well established. Using full length human 2N4R tau doubly labeled with the Förster resonance energy transfer (FRET) compatible fluorescent proteins, Venus and Teal, on the N- and C-termini, respectively (Venus-Tau-Teal), intensity and lifetime FRET measurements were able to distinguish folded from unfolded tau in living cells independently of tau-tau intermolecular interactions. When expression was restricted to low levels in which tau-tau aggregation was minimized, Venus-Tau-Teal was sensitive to microtubule binding, phosphorylation, and pathogenic oligomers. Of particular interest is our finding that amyloid-β oligomers (AβOs) trigger Venus-Tau-Teal unfolding in cultured mouse neurons. We thus provide direct experimental evidence that AβOs convert normally folded tau into a conformation thought to predominate in toxic tau aggregates. This finding provides further evidence for a mechanistic connection between Aβ and tau at seminal stages of AD pathogenesis.
Collapse
Affiliation(s)
- Lauren K. Rudenko
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Horst Wallrabe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- W.M.Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ammasi Periasamy
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- W.M.Keck Center for Cellular Imaging, University of Virginia, Charlottesville, VA, USA
| | - Karsten H. Siller
- Advanced Research Computing Services, University of Virginia, Charlottesville, VA, USA
| | - Zdenek Svindrych
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Matthew E. Seward
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Merci N. Best
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - George S. Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
29
|
Hoischen C, Monajembashi S, Weisshart K, Hemmerich P. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies. Front Oncol 2018; 8:125. [PMID: 29888200 PMCID: PMC5980967 DOI: 10.3389/fonc.2018.00125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Collapse
|
30
|
Kato K, Furuhashi T, Kato K, Oda A, Kurimoto E. The assembly mechanism of coiled-coil domains of the yeast cargo receptors Emp46p/47p and the mutational alteration of pH-dependency of complex formation. J Biochem 2018; 163:441-446. [PMID: 29361014 DOI: 10.1093/jb/mvy011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
The coiled-coil domains of the putative yeast cargo receptors Emp46p and Emp47p are responsible for their complex-formation in the Endoplasmic Reticulum. In vitro experiments using coiled-coil domains (Emp46pcc/47pcc) have indicated that formation of the hetero-complex is pH-dependent and that amino acid Glu303 of Emp46pcc is a key residue in this process. In this study, we investigated the effects of various mutations on complex formation and discovered the mechanism for its pH-dependency, which is that dissociation of the complex at low pH arises mainly from stabilization of Emp46pcc itself. Moreover, destabilization by the introduction of a histidine residue in Emp46pcc to repel a lysine residue in Emp47pcc, caused an upward shift in the pH profile of complex formation. Another mutation in Emp46pcc, a proline to an alanine (P291A), increased the stability of the helical structure, especially at low pH and shifted the transition pH upward. Combination of these pH-shifting mutations had an additive effect on the pH profile of complex formation. Thus, we successfully constructed coiled-coils that can react to a wide range of pH, encompassing more appropriate values for use in sensing physiological pH changes in the cell.
Collapse
Affiliation(s)
- Koichi Kato
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Takahisa Furuhashi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.,Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Eiji Kurimoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| |
Collapse
|
31
|
Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep 2018; 8:79. [PMID: 29311591 PMCID: PMC5758727 DOI: 10.1038/s41598-017-18634-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Multiphoton FLIM microscopy offers many opportunities to investigate processes in live cells, tissue and animal model systems. For redox measurements, FLIM data is mostly published by cell mean values and intensity-based redox ratios. Our method is based entirely on FLIM parameters generated by 3-detector time domain microscopy capturing autofluorescent signals of NAD(P)H, FAD and novel FLIM-FRET application of Tryptophan and NAD(P)H-a2%/FAD-a1% redox ratio. Furthermore, image data is analyzed in segmented cells thresholded by 2 × 2 pixel Regions of Interest (ROIs) to separate mitochondrial oxidative phosphorylation from cytosolic glycolysis in a prostate cancer cell line. Hundreds of data points allow demonstration of heterogeneity in response to intervention, identity of cell responders to treatment, creating thereby different sub-populations. Histograms and bar charts visualize differences between cells, analyzing whole cell versus mitochondrial morphology data, all based on discrete ROIs. This assay method allows to detect subtle differences in cellular and tissue responses, suggesting an advancement over means-based analyses.
Collapse
|
32
|
Miura K. An Overview of Current Methods to Confirm Protein-Protein Interactions. Protein Pept Lett 2018; 25:728-733. [PMID: 30129399 PMCID: PMC6204658 DOI: 10.2174/0929866525666180821122240] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The research field of protein-protein interactions is interdisciplinary and specialized field that spans all aspects of biology, physics and chemistry. Therefore, in order to discuss the protein-protein interaction in detail and rigorously, it is desirable to integrate knowledge and methods of many related fields including boundary areas such as biochemistry, biophysics and physical chemistry in addition to biology, physics and chemistry. OBJECTIVE The purpose of this review is to overview current methods to confirm protein-protein interactions. Furthermore, I discuss future prospects of methodology based on current status. RESULTS It is often necessary to integrate, combine and validate multiple results from various methods to understand protein-protein interactions in detail. CONCLUSION It might be desirable for the addition of tags, labeling, and immobilization to solid phases to be unnecessary, and to obtain information on affinity, kinetics, and structure via the analytical method for protein-protein interactions. Therefore, I argue that novel methods based on principles that have already been sufficiently studied in physics or chemistry, but insufficiently applied to the life sciences, should be established to further develop the study of protein-protein interactions.
Collapse
Affiliation(s)
- Kenji Miura
- Address correspondence to this author at the Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan; Tel: +81 4 2995 1754; E-mail:
| |
Collapse
|
33
|
Bassard JE, Halkier BA. How to prove the existence of metabolons? PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:211-227. [PMID: 29755303 PMCID: PMC5932110 DOI: 10.1007/s11101-017-9509-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/19/2017] [Indexed: 05/21/2023]
Abstract
Sequential enzymes in biosynthetic pathways are organized in metabolons. It is challenging to provide experimental evidence for the existence of metabolons as biosynthetic pathways are composed of highly dynamic protein-protein interactions. Many different methods are being applied, each with strengths and weaknesses. We will present and evaluate several techniques that have been applied in providing evidence for the orchestration of the biosynthetic pathways of cyanogenic glucosides and glucosinolates in metabolons. These evolutionarily related pathways have ER-localized cytochromes P450 that are proposed to function as anchoring site for assembly of the enzymes into metabolons. Additionally, we have included commonly used techniques, even though they have not been used (yet) on these two pathways. In the review, special attention will be given to less-exploited fluorescence-based methods such as FCS and FLIM. Ultimately, understanding the orchestration of biosynthetic pathways may contribute to successful engineering in heterologous hosts.
Collapse
Affiliation(s)
- Jean-Etienne Bassard
- Plant Biochemistry Laboratory, Center for Synthetic Biology, VILLUM Research Center “Plant Plasticity”, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Abstract
The ligand-regulated structure and biochemistry of nuclear receptor complexes are commonly determined by in vitro studies of isolated receptors, cofactors, and their fragments. However, in the living cell, the complexes that form are governed not just by the relative affinities of isolated cofactors for the receptor but also by the cell-specific sequestration or concentration of subsets of competing or cooperating cofactors, receptors, and other effectors into distinct subcellular domains and/or their temporary diversion into other cellular activities. Most methods developed to understand nuclear receptor function in the cellular environment involve the direct tagging of the nuclear receptor or its cofactors with fluorescent proteins (FPs) and the tracking of those FP-tagged factors by fluorescence microscopy. One of those approaches, Förster resonance energy transfer (FRET) microscopy, quantifies the transfer of energy from a higher energy "donor" FP to a lower energy "acceptor" FP attached to a single protein or to interacting proteins. The amount of FRET is influenced by the ligand-induced changes in the proximities and orientations of the FPs within the tagged nuclear receptor complexes, which is an indicator of the structure of the complexes, and by the kinetics of the interaction between FP-tagged factors. Here, we provide a guide for parsing information about the structure and biochemistry of nuclear receptor complexes from FRET measurements in living cells.
Collapse
Affiliation(s)
- Fred Schaufele
- Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA, 94143-0540, USA.
| |
Collapse
|
35
|
Abstract
Fluorescence lifetime (FLT) is a robust intrinsic property and material constant of fluorescent matter. Measuring this important physical indicator has evolved from a laboratory curiosity to a powerful and established technique for a variety of applications in drug discovery, medical diagnostics and basic biological research. This distinct trend was mainly driven by improved and meanwhile affordable laser and detection instrumentation on the one hand, and the development of suitable FLT probes and biological assays on the other. In this process two essential working approaches emerged. The first one is primarily focused on high throughput applications employing biochemical in vitro assays with no requirement for high spatial resolution. The second even more dynamic trend is the significant expansion of assay methods combining highly time and spatially resolved fluorescence data by fluorescence lifetime imaging. The latter approach is currently pursued to enable not only the investigation of immortal tumor cell lines, but also specific tissues or even organs in living animals. This review tries to give an actual overview about the current status of FLT based bioassays and the wide range of application opportunities in biomedical and life science areas. In addition, future trends of FLT technologies will be discussed.
Collapse
Affiliation(s)
- Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, D-64295 Darmstadt, Germany
| |
Collapse
|
36
|
Pylypenko O, Welz T, Tittel J, Kollmar M, Chardon F, Malherbe G, Weiss S, Michel CIL, Samol-Wolf A, Grasskamp AT, Hume A, Goud B, Baron B, England P, Titus MA, Schwille P, Weidemann T, Houdusse A, Kerkhoff E. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. eLife 2016; 5. [PMID: 27623148 PMCID: PMC5021521 DOI: 10.7554/elife.17523] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence for a coupling of actin assembly and myosin motor activity in cells. However, mechanisms for recruitment of actin nucleators and motors on specific membrane compartments remain unclear. Here we report how Spir actin nucleators and myosin V motors coordinate their specific membrane recruitment. The myosin V globular tail domain (MyoV-GTD) interacts directly with an evolutionarily conserved Spir sequence motif. We determined crystal structures of MyoVa-GTD bound either to the Spir-2 motif or to Rab11 and show that a Spir-2:MyoVa:Rab11 complex can form. The ternary complex architecture explains how Rab11 vesicles support coordinated F-actin nucleation and myosin force generation for vesicle transport and tethering. New insights are also provided into how myosin activation can be coupled with the generation of actin tracks. Since MyoV binds several Rab GTPases, synchronized nucleator and motor targeting could provide a common mechanism to control force generation and motility in different cellular processes.
Collapse
Affiliation(s)
- Olena Pylypenko
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Tobias Welz
- University Hospital Regensburg, Regensburg, Germany
| | - Janine Tittel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martin Kollmar
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Florian Chardon
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Gilles Malherbe
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Sabine Weiss
- University Hospital Regensburg, Regensburg, Germany
| | | | | | | | - Alistair Hume
- University of Nottingham, Nottingham, United Kingdom
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | - Bruno Baron
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, Paris, France.,CNRS, UMR 3528, Paris, France
| | - Patrick England
- Institut Pasteur, Biophysics of Macromolecules and their Interactions, Paris, France.,CNRS, UMR 3528, Paris, France
| | - Margaret A Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Anne Houdusse
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France
| | | |
Collapse
|
37
|
Zhang J, Zhang L, Chai L, Yang F, Du M, Chen T. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells. Micron 2016; 88:7-15. [DOI: 10.1016/j.micron.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 11/15/2022]
|
38
|
Zhang Y, Chen Y, Li DDU. Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images. OPTICS EXPRESS 2016; 24:13894-905. [PMID: 27410552 DOI: 10.1364/oe.24.013894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fast deconvolution is an essential step to calibrate instrument responses in big fluorescence lifetime imaging microscopy (FLIM) image analysis. This paper examined a computationally effective least squares deconvolution method based on Laguerre expansion (LSD-LE), recently developed for clinical diagnosis applications, and proposed new criteria for selecting Laguerre basis functions (LBFs) without considering the mutual orthonormalities between LBFs. Compared with the previously reported LSD-LE, the improved LSD-LE allows to use a higher laser repetition rate, reducing the acquisition time per measurement. Moreover, we extended it, for the first time, to analyze bi-exponential fluorescence decays for more general FLIM-FRET applications. The proposed method was tested on both synthesized bi-exponential and realistic FLIM data for studying the endocytosis of gold nanorods in Hek293 cells. Compared with the previously reported constrained LSD-LE, it shows promising results.
Collapse
|
39
|
Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. Current Approaches Toward Quantitative Mapping of the Interactome. Front Genet 2016; 7:74. [PMID: 27200083 PMCID: PMC4854875 DOI: 10.3389/fgene.2016.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes. Disease is often caused by perturbation of PPIs, as recently indicated by studies of missense mutations. To understand the associations of proteins and to unravel the global picture of PPIs in the cell, different experimental detection techniques for PPIs have been established. Genetic and biochemical methods such as the yeast two-hybrid system or affinity purification-based approaches are well suited to high-throughput, proteome-wide screening and are mainly used to obtain qualitative results. However, they have been criticized for not reflecting the cellular situation or the dynamic nature of PPIs. In this review, we provide an overview of various genetic methods that go beyond qualitative detection and allow quantitative measuring of PPIs in mammalian cells, such as dual luminescence-based co-immunoprecipitation, Förster resonance energy transfer or luminescence-based mammalian interactome mapping with bait control. We discuss the strengths and weaknesses of different techniques and their potential applications in biomedical research.
Collapse
Affiliation(s)
| | - Philipp Trepte
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| | | | | | - Erich E Wanker
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| |
Collapse
|
40
|
Zhang Z, Xu Y, Xie Z, Li X, He ZH, Peng XX. Association–Dissociation of Glycolate Oxidase with Catalase in Rice: A Potential Switch to Modulate Intracellular H 2 O 2 Levels. MOLECULAR PLANT 2016; 9:737-748. [PMID: 26900141 DOI: 10.1016/j.molp.2016.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/17/2016] [Accepted: 02/08/2016] [Indexed: 05/20/2023]
|
41
|
Marinović M, Šoštar M, Filić V, Antolović V, Weber I. Quantitative imaging of Rac1 activity in Dictyostelium cells with a fluorescently labelled GTPase-binding domain from DPAKa kinase. Histochem Cell Biol 2016; 146:267-79. [DOI: 10.1007/s00418-016-1440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 02/06/2023]
|
42
|
Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors. Anal Bioanal Chem 2016; 408:2717-25. [DOI: 10.1007/s00216-016-9406-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 01/11/2023]
|
43
|
Tunc-Ozdemir M, Fu Y, Jones AM. Cautions in Measuring In Vivo Interactions Using FRET and BiFC in Nicotiana benthamiana. Methods Mol Biol 2016; 1363:155-74. [PMID: 26577788 DOI: 10.1007/978-1-4939-3115-6_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bimolecular fluorescence complementation (BiFC) and Förster Resonance Energy Transfer (FRET) are two widely used techniques to investigate protein-protein interactions and subcellular compartmentalization of proteins in complexes. As of January 2015, there were 805 publications retrieved by PUBMED with the query "bimolecular fluorescence complementation" and 11,327 publications retrieved with the query "fluorescence resonance energy transfer". Only a few of these publications describe studies of plant cells. Given the importance and popularity of these techniques, applying them correctly is crucial but unfortunately many studies lack proper controls and verifications. We describe (1) BiFC and FRET problems that are frequently encountered at different stages of the protocols, (2) how to use appropriate controls, and (3) how to apply plant transformation and imaging procedures. We provide step-by-step protocols for the beginner to obtain high quality, artifact-free BiFC and FRET data.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, CB#3280, 120 South Road, Chapel Hill, NC, 27599, USA
| | - Yan Fu
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, CB#3280, 120 South Road, Chapel Hill, NC, 27599, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall, CB#3280, 120 South Road, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
44
|
Hertel F, Mo GCH, Duwé S, Dedecker P, Zhang J. RefSOFI for Mapping Nanoscale Organization of Protein-Protein Interactions in Living Cells. Cell Rep 2015; 14:390-400. [PMID: 26748717 DOI: 10.1016/j.celrep.2015.12.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/04/2015] [Accepted: 12/06/2015] [Indexed: 11/27/2022] Open
Abstract
It has become increasingly clear that protein-protein interactions (PPIs) are compartmentalized in nanoscale domains that define the biochemical architecture of the cell. Despite tremendous advances in super-resolution imaging, strategies to observe PPIs at sufficient resolution to discern their organization are just emerging. Here we describe a strategy in which PPIs induce reconstitution of fluorescent proteins (FPs) that are capable of exhibiting single-molecule fluctuations suitable for stochastic optical fluctuation imaging (SOFI). Subsequently, spatial maps of these interactions can be resolved in super-resolution in living cells. Using this strategy, termed reconstituted fluorescence-based SOFI (refSOFI), we investigated the interaction between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the pore-forming channel subunit ORAI1, a crucial process in store-operated Ca(2+) entry (SOCE). Stimulating SOCE does not appear to change the size of existing STIM1/ORAI1 interaction puncta at the ER-plasma membrane junctions, but results in an apparent increase in the number of interaction puncta.
Collapse
Affiliation(s)
- Fabian Hertel
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gary C H Mo
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sam Duwé
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
45
|
The interaction affinity between vascular cell adhesion molecule-1 (VCAM-1) and very late antigen-4 (VLA-4) analyzed by quantitative FRET. PLoS One 2015; 10:e0121399. [PMID: 25793408 PMCID: PMC4368157 DOI: 10.1371/journal.pone.0121399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Very late antigen-4 (VLA-4), a member of integrin superfamily, interacts with its major counter ligand vascular cell adhesion molecule-1 (VCAM-1) and plays an important role in leukocyte adhesion to vascular endothelium and immunological synapse formation. However, irregular expressions of these proteins may also lead to several autoimmune diseases and metastasis cancer. Thus, quantifying the interaction affinity of the VCAM-1/VLA-4 interaction is of fundamental importance in further understanding the nature of this interaction and drug discovery. In this study, we report an ‘in solution’ steady state organic fluorophore based quantitative fluorescence resonance energy transfer (FRET) assay to quantify this interaction in terms of the dissociation constant (Kd). We have used, in our FRET assay, the Alexa Fluor 488-VLA-4 conjugate as the donor, and Alexa Fluor 546-VCAM-1 as the acceptor. From the FRET signal analysis, Kd of this interaction was determined to be 41.82 ± 2.36 nM. To further confirm our estimation, we have employed surface plasmon resonance (SPR) technique to obtain Kd = 39.60 ± 1.78 nM, which is in good agreement with the result obtained by FRET. This is the first reported work which applies organic fluorophore based ‘in solution’ simple quantitative FRET assay to obtain the dissociation constant of the VCAM-1/VLA-4 interaction, and is also the first quantification of this interaction. Moreover, the value of Kd can serve as an indicator of abnormal protein-protein interactions; hence, this assay can potentially be further developed into a drug screening platform of VLA-4/VCAM-1 as well as other protein-ligand interactions.
Collapse
|
46
|
Miller KE, Kim Y, Huh WK, Park HO. Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. J Mol Biol 2015; 427:2039-2055. [PMID: 25772494 DOI: 10.1016/j.jmb.2015.03.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/09/2022]
Abstract
Complex protein networks are involved in nearly all cellular processes. To uncover these vast networks of protein interactions, various high-throughput screening technologies have been developed. Over the last decade, bimolecular fluorescence complementation (BiFC) assay has been widely used to detect protein-protein interactions (PPIs) in living cells. This technique is based on the reconstitution of a fluorescent protein in vivo. Easy quantification of the BiFC signals allows effective cell-based high-throughput screenings for protein binding partners and drugs that modulate PPIs. Recently, with the development of large screening libraries, BiFC has been effectively applied for genome-wide PPI studies and has uncovered novel protein interactions, providing new insight into protein functions. In this review, we describe the development of reagents and methods used for BiFC-based screens in yeast, plants, and mammalian cells. We also discuss the advantages and drawbacks of these methods and highlight the application of BiFC in large-scale studies.
Collapse
Affiliation(s)
- Kristi E Miller
- Molecular Cellular Developmental Biology Program, Ohio State University, OH, USA
| | - Yeonsoo Kim
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hay-Oak Park
- Molecular Cellular Developmental Biology Program, Ohio State University, OH, USA
| |
Collapse
|
47
|
Flynn DC, Bhagwat AR, Brenner MH, Núñez MF, Mork BE, Cai D, Swanson JA, Ogilvie JP. Pulse-shaping based two-photon FRET stoichiometry. OPTICS EXPRESS 2015; 23:3353-72. [PMID: 25836193 PMCID: PMC4394757 DOI: 10.1364/oe.23.003353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.
Collapse
Affiliation(s)
- Daniel C. Flynn
- Macromolecular Science and Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI 48109
USA
| | - Amar R. Bhagwat
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109
USA
| | - Meredith H. Brenner
- Applied Physics Program, University of Michigan, 450 Church St., Ann Arbor, MI 48109
USA
| | - Marcos F. Núñez
- Biophysics Program, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
USA
| | - Briana E. Mork
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109
USA
| | - Dawen Cai
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109
USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109
USA
| | - Joel A. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109
USA
| | - Jennifer P. Ogilvie
- Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109
USA
| |
Collapse
|
48
|
Abstract
Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the in vitro cell-based analysis of subcellular processes and in vivo study of disease mechanisms in small animal models. In particular, the application of Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM), well-known techniques widely used in microscopy, to the optical imaging assay toolbox, will have a significant impact in the molecular study of protein-protein interactions during cancer progression. This review article describes the application of FLIM-FRET to the field of optical imaging and addresses their various applications, both current and potential, to anti-cancer drug delivery and cancer research.
Collapse
Affiliation(s)
- Shilpi Rajoria
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| | - Lingling Zhao
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Biomedical imaging Center and Department of Biomedical Engineering, Troy, NY 12180
| | - Margarida Barroso
- Albany Medical College, The Center for Cardiovascular Sciences, Albany, NY, 12208
| |
Collapse
|
49
|
Edidin M. Light and life in Baltimore--and beyond. Biophys J 2015; 108:466-70. [PMID: 25650914 DOI: 10.1016/j.bpj.2014.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022] Open
Abstract
Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores.
Collapse
Affiliation(s)
- Michael Edidin
- Biology Department, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
50
|
Cost AL, Ringer P, Chrostek-Grashoff A, Grashoff C. How to Measure Molecular Forces in Cells: A Guide to Evaluating Genetically-Encoded FRET-Based Tension Sensors. Cell Mol Bioeng 2014; 8:96-105. [PMID: 25798203 PMCID: PMC4361753 DOI: 10.1007/s12195-014-0368-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022] Open
Abstract
The ability of cells to sense and respond to mechanical forces is central to a wide range of biological processes and plays an important role in numerous pathologies. The molecular mechanisms underlying cellular mechanotransduction, however, have remained largely elusive because suitable methods to investigate subcellular force propagation were missing. Here, we review recent advances in the development of biosensors that allow molecular force measurements. We describe the underlying principle of currently available techniques and propose a strategy to systematically evaluate new Förster resonance energy transfer (FRET)-based biosensors.
Collapse
Affiliation(s)
- Anna-Lena Cost
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Germany
| | - Pia Ringer
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Germany
| | - Anna Chrostek-Grashoff
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Germany
| | - Carsten Grashoff
- Group of Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152 Germany
| |
Collapse
|