1
|
Sood A, Munir M, Syed O, Mehta V, Kaur R, Kumar A, Sridhar A, Sood A, Gupta R. An update on the safety of lanreotide autogel for the treatment of patients with neuroendocrine tumors. Expert Opin Drug Saf 2024; 23:949-957. [PMID: 38847075 DOI: 10.1080/14740338.2024.2365823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) are a rare group of tumors originating from neuroendocrine cells in various organs. They include neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), which differ in biological behavior and prognosis. NETs are usually well-differentiated and slow-growing, while NECs are poorly differentiated and more aggressive. Management of NETs often involves somatostatin analogs like octreotide and lanreotide to control tumor growth and alleviate symptoms, especially in well-differentiated NETs. Lanreotide is used to control tumor growth, and both lanreotide and octreotide alleviate symptoms. Treatment approaches may vary depending on the specific type and grade of the neuroendocrine neoplasm. AREAS COVERED This review provides an update on the safety of lanreotide autogel in treating patients with NETs, through a comprehensive review of clinical trials, post-marketing surveillance, real-world evidence, and its safety profile. Specific adverse events, side effects, and potential risks associated with lanreotide autogel are discussed, along with risk mitigation strategies and recommendations for patient monitoring. EXPERT OPINION The findings highlight the overall safety of lanreotide autogel in managing NETs, focusing on its efficacy in controlling hormone secretion, tumor progression, and symptom management. New safety concerns and precautions are also addressed to help healthcare providers make informed decisions when prescribing lanreotide autogel.
Collapse
Affiliation(s)
- Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Malak Munir
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Omar Syed
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Vidhi Mehta
- Department of Medicine, Mercy Catholic Medical Center, Darby, PA, USA
| | - Ravleen Kaur
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Arathi Kumar
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Archana Sridhar
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Akshit Sood
- Department of Medicine, Navjivan General and Maternity Hospital, Jalandhar, Punjab, India
| | - Rahul Gupta
- Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| |
Collapse
|
2
|
Chandrasekaran K, Sundaram S, Balasubramanian S. INSM1 expression in neuroendocrine tumors in a tertiary care hospital. J Cancer Res Ther 2024; 20:811-816. [PMID: 39023587 DOI: 10.4103/jcrt.jcrt_2329_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 07/20/2024]
Abstract
AIM Neuroendocrine tumors are heterogenous group of neoplasms that includes benign and malignant tumors that originate from neuroendocrine or nonneuroendocrine organs. Insulinoma-associated protein 1 (INSM1) is a zinc finger transcription factor originally isolated from subtraction library of human insulinoma. The main aim was to study the INSM1 expression in a spectrum of neuroendocrine tumors and a limited spectrum of nonneuroendocrine tumors. MATERIALS AND METHODS A total of 100 cases of which 57 neuroendocrine neoplasms and 43 nonneuroendocrine neoplasms were included in the study. Immunohistochemistry (IHC) was done and expression patterns of INSM1 were analyzed. Pituitary adenoma, medullary carcinoma of thyroid, pheochromocytoma lung, gastrointestinal, and pancreatic neuroendocrine tumors were the neuroendocrine tumors that were included in the study. Papillary carcinoma of thyroid, gastrointestinal adenocarcinoma, lung adenocarcinoma, and squamous cell carcinoma were the nonneuroendocrine tumors that were included in the study. Depending upon the tissue availability, comparison of INSM1 with synaptophysin and chromogranin was also done in few neuroendocrine tumors. RESULTS All the 57 neuroendocrine tumors showed positive expression for INSM1 and all the nonneuroendocrine tumors were negative for INSM1. This study is statistically significant. CONCLUSION Our study suggests that INSM1 is a diagnostic marker for neuroendocrine tumors with high degree of sensitivity and specificity. The study is significant and suggests that INSM1- IHC shows nuclear positivity in a spectrum of neuroendocrine tumors. Being a nuclear marker, interpretation is easy and more reliable than the cytoplasmic markers. INSM1 has a stronger positivity than synaptophysin and chromogranin in the present study especially for small cell carcinoma lung. Hence, INSM1 may be included in the routine panel for neuroendocrine tumors along with synaptophysin and chromogranin.
Collapse
Affiliation(s)
- Kundhavai Chandrasekaran
- Department of Pathology, Chettinad Hospital and Research Institute, Kelambakkam, Chengalpattu District, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Subalakshmi Balasubramanian
- Department of Pathology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Sharobim M, Matkovic E, Schwalbe M, Matkowskyj KA. Pathologic Features of Miscellaneous Foregut Malignancies. Cancer Treat Res 2024; 192:49-66. [PMID: 39212915 DOI: 10.1007/978-3-031-61238-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neuroendocrine neoplasms are a heterogeneous group of tumors that can occur in almost any organ and share a common neuroendocrine phenotype.
Collapse
Affiliation(s)
- Mark Sharobim
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Eduard Matkovic
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
4
|
Zhang F, Chen J, Li Y, Ye J, Wang C. Neuronal Scaffold Protein ARMS Interacts with Synaptotagmin-4 C2AB through the Ankyrin Repeat Domain with an Unexpected Mode. Int J Mol Sci 2023; 24:16993. [PMID: 38069318 PMCID: PMC10707181 DOI: 10.3390/ijms242316993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
The ankyrin repeat-rich membrane spanning (ARMS), a transmembrane neuronal scaffold protein, plays a fundamental role in neuronal physiology, including neuronal development, polarity, differentiation, survival and angiogenesis, through interactions with diverse partners. Previous studies have shown that the ARMS negatively regulates brain-derived neurotrophic factor (BDNF) secretion by interacting with Synaptotagmin-4 (Syt4), thereby affecting neurogenesis and the development and function of the nervous system. However, the molecular mechanisms of the ARMS/Syt4 complex assembly remain unclear. Here, we confirmed that the ARMS directly interacts with Syt4 through its N-terminal ankyrin repeats 1-8. Unexpectedly, both the C2A and C2B domains of Syt4 are necessary for binding with the ARMS. We then combined the predicted complex structural models from AlphaFold2 with systematic biochemical analyses using point mutagenesis to underline the molecular basis of ARMS/Syt4 complex formation and to identify two conserved residues, E15 and W72, of the ARMS, as essential residues mediating the assembly of the complex. Furthermore, we showed that ARMS proteins are unable to interact with Syt1 or Syt3, indicating that the interaction between ARMS and Syt4 is specific. Taken together, the findings from this study provide biochemical details on the interaction between the ARMS and Syt4, thereby offering a biochemical basis for the further understanding of the potential mechanisms and functional implications of the ARMS/Syt4 complex formation, especially with regard to the modulation of BDNF secretion and associated neuropathies.
Collapse
Affiliation(s)
- Fa Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiasheng Chen
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yahong Li
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jin Ye
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
5
|
Beydağı G, Alan Selçuk N, Kabasakal L. Alpha Peptide Receptor Radionuclide Therapy in Neuroendocrine Tumors. NUCLEAR MEDICINE SEMINARS 2023; 9:109-115. [DOI: 10.4274/nts.galenos.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Arévalo JC, Deogracias R. Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 2023; 13:biom13050789. [PMID: 37238659 DOI: 10.3390/biom13050789] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.
Collapse
Affiliation(s)
- Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rubén Deogracias
- Department of Cell Biology and Pathology, Institute of Neurosciences of Castille and Leon (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
7
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
8
|
Stevenson TK, Moore SJ, Murphy GG, Lawrence DA. Tissue Plasminogen Activator in Central Nervous System Physiology and Pathology: From Synaptic Plasticity to Alzheimer's Disease. Semin Thromb Hemost 2021; 48:288-300. [DOI: 10.1055/s-0041-1740265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractTissue plasminogen activator's (tPA) fibrinolytic function in the vasculature is well-established. This specific role for tPA in the vasculature, however, contrasts with its pleiotropic activities in the central nervous system. Numerous physiological and pathological functions have been attributed to tPA in the central nervous system, including neurite outgrowth and regeneration; synaptic and spine plasticity; neurovascular coupling; neurodegeneration; microglial activation; and blood–brain barrier permeability. In addition, multiple substrates, both plasminogen-dependent and -independent, have been proposed to be responsible for tPA's action(s) in the central nervous system. This review aims to dissect a subset of these different functions and the different molecular mechanisms attributed to tPA in the context of learning and memory. We start from the original research that identified tPA as an immediate-early gene with a putative role in synaptic plasticity to what is currently known about tPA's role in a learning and memory disorder, Alzheimer's disease. We specifically focus on studies demonstrating tPA's involvement in the clearance of amyloid-β and neurovascular coupling. In addition, given that tPA has been shown to regulate blood–brain barrier permeability, which is perturbed in Alzheimer's disease, this review also discusses tPA-mediated vascular dysfunction and possible alternative mechanisms of action for tPA in Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shannon J. Moore
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
9
|
Filippi L, Cianni R, Schillaci O, Bagni O. Molecular and Metabolic Imaging of Hepatic Neuroendocrine Tumors Following Radioembolization with 90Y-microspheres. Curr Med Imaging 2020; 16:545-552. [PMID: 32484088 DOI: 10.2174/1573405615666190114150038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 11/22/2022]
Abstract
Liver is the predominant site of metastatization for neuroendocrine tumors (NETs). Up to 75% of patients affected by intestinal NETs present liver metastases at diagnosis. For hepatic NET, surgery represents the most effective approach but is often unfeasible due to the massive involvement of multifocal disease. In such cases, chemotherapy, peptide receptor radionuclide therapy and loco-regional treatments may represent alternative therapeutic options. In particular, radioembolization with 90Y-microspheres has been introduced as a novel technique for treating hepatic malignant lesions, combining the principles of embolization and radiation therapy. In order to evaluate the response to 90Y-radioembolization, standard radiologic criteria have been demonstrated to present several limitations. 18Fluoro-deoxyglucose (FDG) Positron Emission Tomography (PET) is routinely used for monitoring the response to therapy in oncology. Nevertheless, NETs often present low glycolytic activity thus the conventional 18FDG PET may not be adequate for these tumors. For many years, somatostatin receptor scintigraphy (SRS) with 111In-pentetreotide has been used for diagnosis and staging of NETs. More recently, three 68Ga-DOTA-compounds have been developed and introduced for the imaging of NETs with PET technology. The aim of the present paper was to review the existing literature concerning the application of different metabolic and molecular probes for the imaging evaluation of hepatic NETs following 90Y-RE.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, Latina 04100, Italy
| | - Roberto Cianni
- Department of Interventional Radiology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Viale Oxford 81, Rome 00133, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Via Canova 3, Latina 04100, Italy
| |
Collapse
|
10
|
Stevenson TK, Lawrence DA. Characterization of Tissue Plasminogen Activator Expression and Trafficking in the Adult Murine Brain. eNeuro 2018; 5:ENEURO.0119-18.2018. [PMID: 30090852 PMCID: PMC6080846 DOI: 10.1523/eneuro.0119-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is an immediate-early gene important for regulating physiological processes like synaptic plasticity and neurovascular coupling. It has also been implicated in several pathological processes including blood-brain barrier (BBB) permeability, seizure progression, and stroke. These varied reports suggest that tPA is a pleiotropic mediator whose actions are highly compartmentalized in space and time. The specific localization of tPA, therefore, can provide useful information about its function. Accordingly, the goal of this study was to provide a detailed characterization of tPA's regional, cellular, and subcellular localization in the brain. To achieve this, two new transgenic mouse lines were utilized: (1) a PlatβGAL reporter mouse, which houses the β-galactosidase gene in the tPA locus and (2) a tPABAC-Cerulean mouse, which has a cerulean-fluorescent protein fused in-frame to the tPA C-terminus. Using these two transgenic reporters, we show that while tPA is expressed throughout most regions of the adult murine brain, it appears to be preferentially targeted to fiber tracts in the limbic system. In the hippocampus, confocal microscopy revealed tPA-Cerulean (tPA-Cer) puncta localized to giant mossy fiber boutons (MFBs) and astrocytes in stratum lucidum. With amplification of the tPA-Cer signal, somatically localized tPA was also observed in the stratum oriens (SO)/alveus layer of both CA1 and CA3 subfields. Coimmunostaining of tPA-Cer and interneuronal markers indicates that these tPA-positive cell bodies belong to a subclass of somatostatin (SST)/oriens-lacunosum moleculare (O-LM) interneurons. Together, these data imply that tPA's localization is differentially regulated, suggesting that its neuromodulatory effects may be compartmentalized and specialized to cell type.
Collapse
Affiliation(s)
- Tamara K. Stevenson
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Daniel A. Lawrence
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017; 19:991-1002. [PMID: 29091800 PMCID: PMC5678742 DOI: 10.1016/j.neo.2017.09.002] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
This review covers the diverse topic of neuroendocrine neoplasms (NENs), a relatively rare and heterogeneous tumor type, comprising ~2% of all malignancies, with a prevalence of <200,000 in the United States, which makes it an orphan disease (Basu et al., 2010).1 For functional purposes, NENs are divided into two groups on the basis of clinical behavior, histology, and proliferation rate: well differentiated (low grade to intermediate grade) neuroendocrine tumors and poorly differentiated (high grade) neuroendocrine carcinoma (Bosman et al., 2010)2; this histological categorization/dichotomization is highly clinically relevant with respect to impact on treatment and prognosis even though it is not absolute since a subset of tumors with a low-grade appearance behaves similarly to high-grade lesions. Given the relative dearth of evidenced-based literature about this orphan disease as a whole (Modlin et al., 2008),3 since the focus of most articles is on particular anatomic subtypes of NENs (i.e., gastroenteropancreatic or pulmonary), the purpose of this review is to summarize the presentation, pathophysiology, staging, current standard of care treatments, and active areas of current research.
Collapse
Affiliation(s)
- Bryan Oronsky
- EpicentRx Inc, 4445 Eastgate Mall, Suite 200, San Diego, CA 92121, USA.
| | - Patrick C Ma
- West Virginia University, Mary Babb Randolph Cancer Center, 8901 Wisconsin Ave., PO Box 9162, Morgantown, WV 26506, USA
| | - Daniel Morgensztern
- Washington University School of Medicine, Division of Oncology, 660 S. Euclid, Box 8056, St. Louis, MO 63110, USA
| | - Corey A Carter
- Walter Reed National Military Medical Center, 8901 Wisconsin Ave., Bethesda, MD 20889, USA
| |
Collapse
|
12
|
Robinson BJ, Stanisavljevic B, Silverman MA, Scalettar BA. Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis. Biophys J 2017; 111:852-863. [PMID: 27558728 DOI: 10.1016/j.bpj.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
Dense-core vesicles (DCVs) are regulated secretory organelles found in many types of neurons. In neurons of the hippocampus, their cargo includes proteins that mediate several pivotal processes, including differentiation and synaptic plasticity. Motivated by interest in DCV distribution and its impact on cargo action, we have used fluorescence microscopy and statistical analysis to develop a quantitative model of the subcellular organization of DCVs in hippocampal neurons that are spontaneously active (their most prevalent state). We also have tested the functionally motivated hypothesis that these organelles are synaptically enriched. Variance-to-mean ratio, frequency distribution, and Moran's autocorrelation analyses reveal that DCV distribution along shafts, and within synapses, follows Poisson statistics, establishing that stochastically dictated organization sustains cargo function. Occupancy in boutons exceeds that at nearby extrasynaptic axonal sites by approximately threefold, revealing significant local presynaptic enrichment. Widespread stochastic organization is consistent with the emerging functional importance of synaptically and extrasynaptically localized DCVs. Presynaptic enrichment is consistent with the established importance of protecting presynaptic sites from depletion of DCV cargo. These results enhance understanding of the link between DCV organization and mechanisms of cargo action, and they reinforce the emerging theme that randomness is a prevalent aspect of synaptic organization and composition.
Collapse
Affiliation(s)
- Benjamin J Robinson
- Department of Physics, Lewis & Clark College, Portland, Oregon; Department of Mathematics, Lewis & Clark College, Portland, Oregon
| | - Bogdan Stanisavljevic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bethe A Scalettar
- Department of Physics, Lewis & Clark College, Portland, Oregon; Program in Biochemistry and Molecular Biology, Lewis & Clark College, Portland, Oregon.
| |
Collapse
|
13
|
Scalettar BA, Shaver D, Kaech S, Lochner JE. Super-resolution imaging of neuronal dense-core vesicles. J Vis Exp 2014. [PMID: 25046659 DOI: 10.3791/51394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Detection of fluorescence provides the foundation for many widely utilized and rapidly advancing microscopy techniques employed in modern biological and medical applications. Strengths of fluorescence include its sensitivity, specificity, and compatibility with live imaging. Unfortunately, conventional forms of fluorescence microscopy suffer from one major weakness, diffraction-limited resolution in the imaging plane, which hampers studies of structures with dimensions smaller than ~250 nm. Recently, this limitation has been overcome with the introduction of super-resolution fluorescence microscopy techniques, such as photoactivated localization microscopy (PALM). Unlike its conventional counterparts, PALM can produce images with a lateral resolution of tens of nanometers. It is thus now possible to use fluorescence, with its myriad strengths, to elucidate a spectrum of previously inaccessible attributes of cellular structure and organization. Unfortunately, PALM is not trivial to implement, and successful strategies often must be tailored to the type of system under study. In this article, we show how to implement single-color PALM studies of vesicular structures in fixed, cultured neurons. PALM is ideally suited to the study of vesicles, which have dimensions that typically range from ~50-250 nm. Key steps in our approach include labeling neurons with photoconvertible (green to red) chimeras of vesicle cargo, collecting sparsely sampled raw images with a super-resolution microscopy system, and processing the raw images to produce a high-resolution PALM image. We also demonstrate the efficacy of our approach by presenting exceptionally well-resolved images of dense-core vesicles (DCVs) in cultured hippocampal neurons, which refute the hypothesis that extrasynaptic trafficking of DCVs is mediated largely by DCV clusters.
Collapse
Affiliation(s)
- Bethe A Scalettar
- Department of Physics, Lewis & Clark College; Program in Biochemistry and Molecular Biology, Lewis & Clark College;
| | - Daniel Shaver
- Program in Biochemistry and Molecular Biology, Lewis & Clark College
| | - Stefanie Kaech
- Jungers Center for Neuroscience Research, Oregon Health & Science University
| | - Janis E Lochner
- Program in Biochemistry and Molecular Biology, Lewis & Clark College; Department of Chemistry, Lewis & Clark College
| |
Collapse
|
14
|
Sonderegger P, Matsumoto-Miyai K. Activity-controlled proteolytic cleavage at the synapse. Trends Neurosci 2014; 37:413-23. [PMID: 24969462 DOI: 10.1016/j.tins.2014.05.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022]
Abstract
Activity-controlled enzymatic cleavage of proteins on the surface of synaptic membranes or in the synaptic or perisynaptic interstitial compartment represents a direct way to regulate synaptic structure, function, and number. Extracellular proteolysis at synapses was initially understood to be plasticity enabling by freeing synapses from the constraints provided by the extracellular matrix. However, recent observations indicate that at least part of the extracellular protein cleavage results in activation of previously cryptic functions that regulate adaptive changes of synapses and neuronal circuits. Here, we focus on peptidases with distinct localization and function at synapses combined with regulation by neuronal and synaptic activity, and evaluate their function in the context of developmental and/or adult synaptic plasticity.
Collapse
Affiliation(s)
- Peter Sonderegger
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Kazumasa Matsumoto-Miyai
- Department of Neurophysiology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Akita 010-8543, Japan; Kansai University of Nursing and Health Sciences, 1456-4 Shizuki, Awaji, Hyogo 656-2131, Japan
| |
Collapse
|
15
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|