1
|
Megala G, Kavitha M. Folate from probiotic bacteria and its therapeutic applications. Arch Microbiol 2025; 207:124. [PMID: 40249393 DOI: 10.1007/s00203-025-04327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/19/2025]
Abstract
Folate, an essential water soluble vitamin B9 that cannot be synthesized naturally by the bodily function. Dietary sources or probiotic-folates are the two biological modes for acquiring the target vitamin which aids DNA synthesis and repair. Probiotics are known for their divergent health benefits and have garnered significant interest. Particularly in microbial strains that produce folate offers a promising way to enhance the level of folate. Notably, folate-producing probiotic strain includes Lactiplantibacillus, Lactococcus, Bifidobacterium, and Streptococcus. As an emerging source of health benefits, folate producing probiotics helps in improving the gut microbiota for overall well-being of human body. On the other side, chemically synthesized folic acid were not highly advantageous as they lacks absorption, conversion and excretion. Hence, usage of microbial-folate are safer as it can easily undergo absorption and reduces severe side effects. The present review mainly focus on folate one-carbon metabolism, its significance in human health, folate deficiency and malabsorption, adverse effects and folate synthesis from probiotic bacterial strains, and also toxicological impacts. In particular, the beneficiary role of these probiotic strains were found to be associated with therapeutic applications in several diseases such as autoimmune disorder, metabolic disorders, and cardiovascular diseases (CVDs), wound healing, drug delivery and cancer.
Collapse
Affiliation(s)
- G Megala
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Das A, Mitra A, Sarkar S, Ghosh S, Bandyopadhyay D, Chattopadhyay S. Arsenic unsettles the cerebellar balance between neurodegeneration and neurogenesis: reversal by folic acid. Apoptosis 2025; 30:710-733. [PMID: 39720976 DOI: 10.1007/s10495-024-02054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/26/2024]
Abstract
Arsenic-mediated neurodegenerative disorders affect millions of individuals globally, but the specific impact of environmental arsenic on adult cerebellar degeneration and neurogenesis is incompletely understood. Of particular concern is arsenic-induced apoptosis-driven neurodegeneration. Our major objective was to investigate the molecular signaling intricacies associated with arsenic-induced death of cerebellar neurons and to propose folic acid as a possible intervention. Swiss albino mice were treated with sodium arsenite (orally: 0.05 mg/L) and folic acid (orally:10 mg/kg) for 28 days. We observed that arsenic caused noticeable cell loss with morphological alterations in cerebellum, which was remarkably restored by folic acid. Arsenic-induced morphological alterations consequently perturbed transcriptional activities of neural stem cell factors-SOX2 and KLF9, which resulted in the suppression of pro-neurogenic mediators NeuroD1, Neurogenin2, calbindin and NeuN. Interestingly, folic acid reversed the expression of these critical pro-neurogenic mediators to mitigate these degenerative changes to promote neurogenesis. Delving deep, we found that folic acid rescued arsenic-exposed cerebellum from severe oxidative and pro-inflammatory insults by increasing antioxidants like SOD, Catalase, GSH, upregulating Nrf2 and downregulating M1 macrophages, JNK, NF-κB, and STAT3 activities. For the first time, we are reporting that arsenic induced a G1/S cell cycle arrest and triggered apoptosis in mouse cerebellum by activating the p53-p21 axis, downregulating CDKs and instigated p21-mediated suppression of SOX2 transcriptional activity. Folic acid abated such alterations by modulating the p53/p21/SOX2 axis. Collectively, the anti-apoptotic and pro-neurogenic effects of folic acid present it as a promising therapeutic candidate, warranting further research into its efficacy against metal-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
- Department of Physiology, Trivenidevi Bhalotia College, Kazi Nazrul University, Raniganj, West Bengal, 713347, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
- Department of Physiology, Ananda Chandra College, University of North Bengal, Jalpaiguri, West Bengal, 735101, India
| | | | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata, 700098, India.
- UCSTA, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, India.
| |
Collapse
|
3
|
Miao Z, Chang D, Du X, Sun C. Berberrubine protects against cisplatin-induced ototoxicity by promoting folate biosynthesis. Front Pharmacol 2025; 15:1496917. [PMID: 39850559 PMCID: PMC11754208 DOI: 10.3389/fphar.2024.1496917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Objective This research investigated the possible shielding properties of BB (Berberrubine) against the harmful auditory effects of cisplatin, preliminarily delving into the underlying mechanisms responsible for this protection. Methods HEI-OC1 cell viability was determined using a Cell Counting Kit-8 (CCK-8). The impact of BB on cochlear hair cells was studied through in vitro cochlear explants culture. Apoptosis levels were measured through Annexin V-PI, Cleaved Caspase-3, and TUNEL staining. The level of ROS (reactive oxygen species) was measured through the application of DCFH-DA, MitoSOX, and JC-1 fluorescent dyes for staining. Immunofluorescence analysis of cochlear samples from mice was conducted to quantify the hair cell count, and concurrently, ABR (Auditory Brainstem Response) testing was utilized to evaluate auditory function. The mechanism of action of BB was explored using RNA-Seq and qRT-PCR analysis. Results BB significantly improved cell survival rates under cisplatin treatment, reduced levels of apoptotic markers (TUNEL, Cleaved Caspase-3, Annexin V-PI), decreased ROS and MitoSOX levels, and improved JC-1 signals in both HEI-OC1 cells and cochlear hair cells in cochlear explants culture. Animal studies demonstrated that treatment with BB enhanced the survival of cochlear hair cells, reduced hearing impairment caused by cisplatin in mice. RNA-seq and qRT-PCR analysis revealed that BB influenced the expression levels of multiple genes (Ccnd2, Reln, Pgf, Mylk3, Ppplr12c, Thbsl), by promoting folate biosynthesis for hearing protection. Conclusion Our findings suggest that BB protects against cisplatin-induced hearing damage by enhancing folate biosynthesis, decreasing intracellular ROS levels, and inhibiting apoptosis.
Collapse
Affiliation(s)
| | | | | | - Changling Sun
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Song J, Lan R, Yin D, Wang L, Gong H. Influence of different forms of folic acid supplementation on pregnancy outcomes under various exposure factors. Technol Health Care 2025; 33:343-351. [PMID: 39269865 DOI: 10.3233/thc-241034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND Folic acid supplementation has been shown to provide benefits in preventing neural tube defects and other birth defects, as well as reducing adverse pregnancy outcomes. OBJECTIVE This study aimed to examine the impact of various folic acid supplementation methods on pregnancy. METHODS TaqMan-MGB technology was used to detect polymorphisms in the folate metabolism-related genes, MTHFR C677T and A1298C. Blood-related biochemical indicators, including HCY levels and history of adverse pregnancy, were examined in relation to different exposure factors (MTHFR gene polymorphism, HCY levels, and adverse pregnancy history) and their impact on pregnancy outcomes. Various forms of folic acid intervention were implemented in a population with an adverse pregnancy history and high HCY levels to analyze the effects of reducing HCY levels and improving pregnancy outcomes. RESULTS Exposure factors, such as adverse pregnancy history, HCY, and medium-to-high risk of gene metabolism, were closely associated with pregnancy outcomes. Interestingly, methylfolate efficiently reduced the serum HCY levels. More importantly, the methylfolate group exhibited a significantly lower incidence of adverse pregnancies than the synthetic folic acid group. CONCLUSION In this study, the risk factors, including adverse pregnancy history, HCY, and medium-to-high risk of gene metabolism, were confirmed to lead to the poorer pregnancy outcomes in our cohort. 5-methyltetrahydrofolate may be an effective approach for decreasing the incidence of adverse pregnancy outcomes.
Collapse
|
5
|
Ekundayo BE, Adewale OB, Obafemi TO. Neuroprotective Effects of Folic Acid: A Review. J Diet Suppl 2024; 22:345-363. [PMID: 39648692 DOI: 10.1080/19390211.2024.2436842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Folic acid also known as folate and vitamin B9 is of the class of B complex vitamins. It is crucial for homeostatic function of the biological system and is not endogenously produced. It is medically approved for the treatment of megaloblastic anemia. Neurological conditions describe a class of disease conditions that affect the brain, spinal cord and nerves impacting several important functions such as cognition, movement, emotion and sensation. They can arise from a number of causes which may include one or more of genetic factors, infections, injuries, toxins and degenerative process. Homocysteine, a neurotoxic amino acid converted by folic acid has been identified in the pathology of many neurological conditions while folic acid on the other hand has been investigated multiple times for its neuroprotective function and mechanism. Folic acid is involved in the neutralization of homocysteine to its nontoxic form. This article highlights some of the reports of the neuroprotective effect of folic acid against homocysteine toxicity, neurodegenerative diseases, neuropsychiatric conditions, fetal and neonatal neuronal health.
Collapse
Affiliation(s)
| | | | - Tajudeen Olabisi Obafemi
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
6
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Kong AX, Johnson M, Eno AF, Pham K, Zhang P, Geng Y. Proteome-wide reverse molecular docking reveals folic acid receptor as a mediator of PFAS-induced neurodevelopmental toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623082. [PMID: 39605555 PMCID: PMC11601370 DOI: 10.1101/2024.11.11.623082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of long-lasting chemicals with widespread use and environmental persistence that have been increasingly studied for their detrimental impacts to human and animal health. Several major PFAS species are linked to neurodevelopmental toxicity. For example, epidemiological studies have associated prenatal exposure to perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) with autism risk. However, the neurodevelopmental toxicities of major PFAS species have not been systematically evaluated in an animal model, and the molecular mechanisms underlying these toxicities have remained elusive. Using a high-throughput zebrafish social behavioral model, we screened six major PFAS species currently under regulation by the Environmental Protection Agency (EPA), including PFOA, PFNA, perfluorooctane sulfonate (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorobutane sulfonate (PFBS), and hexafluoropropylene oxide dimer acid ammonium salt (GenX). We found that embryonic exposure to PFNA, PFOA, and PFOS induced social deficits in zebrafish, recapitulating one of the hallmark behavioral deficits in autistic individuals. To uncover protein targets of the six EPA-regulated PFAS, we screened a virtual library containing predicted binding pockets of over 80% of the 3D human proteome through reverse molecular docking. We found that folate receptor beta (FR-β, encoded by the gene FOLR2) interacts strongly with PFNA, PFOA, and PFOS but to a lesser degree with PFHxS, PFBS, and GenX, correlating positively with their in vivo toxicity. Embryonic co-exposure to folic acid rescued social deficits induced by PFAS. The folic acid pathway has been implicated in autism, indicating a novel molecular mechanism for PFAS in autism etiology.
Collapse
Affiliation(s)
- Ally Xinyi Kong
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Maja Johnson
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Aiden F Eno
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Khoa Pham
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Ping Zhang
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| | - Yijie Geng
- Department of Environmental and Occupational Health Sciences, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Zhang L, Peng Y, Kong Y, Zhang X, Li Z, Jia H. The unique presentation of the relationship between red blood cell folate and appendicular skeletal muscle mass: a cross-sectional study. Sci Rep 2024; 14:27263. [PMID: 39516506 PMCID: PMC11549303 DOI: 10.1038/s41598-024-76693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The overconsumption of folic acid has been associated with deleterious health effects; however, the extant body of research on this matter remains controversial. The principal objective of our investigation was to scrutinize the correlation between red blood cell (RBC) folate levels and appendicular skeletal muscle mass (ASM) among adult individuals. A total of 4117 adults aged over 20 years were included. The weighted prevalence of low muscle mass status (LMMS) was 14.50%. The correlation between RBC folate and ASM showed an inverted U-shaped curve. When the RBC folate concentration is below 500 nmol/L, ASM increases with increasing RBC folate concentration. However, when the RBC folate level exceeds 500 nmol/L, ASM decreases with increased RBC folate level. After correcting multiple confounding factors, a positive correlation was found between RBC folate and LMMS (p < 0.001). Compared with the RBC folate first quartile, the multivariable-adjusted ORs and 95% CIs of the second quartile, third quartile, and highest quartile were 1.08(0.81-1.44), 1.06(0.79-1.43), and 1.96(1.47-2.61), respectively. Our research suggested that excessive levels of RBC folate may be associated with an increased risk of LMMS in adults. Thus, being more cautious when considering folic acid supplementation is recommended.
Collapse
Affiliation(s)
- Liangchuan Zhang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Yating Peng
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Yuan Kong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Xue Zhang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Zetian Li
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China
| | - Hong Jia
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longman District, Luzhou City, 646000, Sichuan Province, China.
- Science and Technology Department, Southwest Medical University, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
9
|
Liu S, Yao J, Lin L, Lan X, Wu L, He X, Kong N, Li Y, Deng Y, Xie J, Zhu H, Wu X, Li Z, Xiong L, Wang Y, Ren J, Qiu X, Zhao W, Gao Y, Chen Y, Su F, Zhou Y, Rao W, Zhang J, Hou G, Huang L, Li L, Liu X, Nie C, Luo L, Zhao M, Liu Z, Chen F, Lin S, Zhao L, Fu Q, Jiang D, Yin Y, Xu X, Wang J, Yang H, Wang R, Niu J, Wei F, Jin X, Liu S. Genome-wide association study of maternal plasma metabolites during pregnancy. CELL GENOMICS 2024; 4:100657. [PMID: 39389015 PMCID: PMC11602615 DOI: 10.1016/j.xgen.2024.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/05/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Metabolites are key indicators of health and therapeutic targets, but their genetic underpinnings during pregnancy-a critical period for human reproduction-are largely unexplored. Using genetic data from non-invasive prenatal testing, we performed a genome-wide association study on 84 metabolites, including 37 amino acids, 24 elements, 13 hormones, and 10 vitamins, involving 34,394 pregnant Chinese women, with sample sizes ranging from 6,394 to 13,392 for specific metabolites. We identified 53 metabolite-gene associations, 23 of which are novel. Significant differences in genetic effects between pregnant and non-pregnant women were observed for 16.7%-100% of these associations, indicating gene-environment interactions. Additionally, 50.94% of genetic associations exhibited pleiotropy among metabolites and between six metabolites and eight pregnancy phenotypes. Mendelian randomization revealed potential causal relationships between seven maternal metabolites and 15 human traits and diseases. These findings provide new insights into the genetic basis of maternal plasma metabolites during pregnancy.
Collapse
Affiliation(s)
| | - Jilong Yao
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | - Liang Lin
- BGI Genomics, Shenzhen 518083, China
| | - Xianmei Lan
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Wu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China; Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | - Xuelian He
- Genetic and Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Hubei, Wuhan, China
| | | | - Yan Li
- BGI Research, Shenzhen 518083, China
| | - Yuqing Deng
- Peking University Shenzhen Hospital, Shenzhen 518035, Guangdong, China
| | - Jiansheng Xie
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | | | - Xiaoxia Wu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China; Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China; Department of Obstetrics, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, Shenzhen 518000, Guangdong China
| | - Zilong Li
- BGI Research, Shenzhen 518083, China
| | - Likuan Xiong
- Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, Guangdong, China
| | - Yuan Wang
- BGI Genomics, Shenzhen 518083, China
| | - Jinghui Ren
- Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen 518020, Guangdong, China
| | | | - Weihua Zhao
- Shenzhen Second People Hospital, Shenzhen 518035, Guangdong, China
| | - Ya Gao
- BGI Research, Shenzhen 518083, China
| | - Yuanqing Chen
- Nanshan Medical Group Headquarters of Shenzhen, Shenzhen 518000, Guangdong, China
| | | | - Yun Zhou
- Luohu People's Hospital of Shenzhen, Shenzhen 518001, Guangdong, China
| | | | - Jing Zhang
- Shenzhen Nanshan Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China
| | | | - Liping Huang
- Shenzhen Baoan District Shajing People's Hospital, Shenzhen 518104, Guangdong, Chinas
| | - Linxuan Li
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhong Liu
- Shenzhen Longhua District Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chao Nie
- BGI Research, Shenzhen 518083, China
| | - Liqiong Luo
- The People's Hospital of Longhua-Shenzhen, Shenzhen 518109, Guangdong, China
| | - Mei Zhao
- BGI Genomics, Shenzhen 518083, China
| | - Zengyou Liu
- Shenzhen Nanshan People's Hospital, Shenzhen 518052, Guangdong, China
| | | | - Shengmou Lin
- The University of Hong Kong - Shenzhen Hospital, Shenzhen 518038, Guangdong, China
| | | | - Qingmei Fu
- Baoan People's Hospital of Shen Zhen, Shenzhen 518100, Guangdong, China
| | - Dan Jiang
- BGI Genomics, Shenzhen 518083, China
| | - Ye Yin
- BGI, Shenzhen 518083, China
| | - Xun Xu
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | | | - Huanming Yang
- BGI Research, Shenzhen 518083, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, Shenzhen, China
| | - Rong Wang
- BGI Genomics, Shenzhen 518083, China
| | - Jianmin Niu
- Shenzhen Maternity & Child Healthcare Hospital, Shenzhen 518000, Guangdong, China.
| | - Fengxiang Wei
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, Guangdong, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China.
| | - Siqi Liu
- BGI Research, Shenzhen 518083, China; BGI Genomics, Shenzhen 518083, China.
| |
Collapse
|
10
|
Zhou G, Zhang M, Sun X, Huang T, Hou K, Zhou S, Yin J, Guan L. EGCG induces degradation of active folate in serum via H 2O 2 generation, while L-ascorbic acid effectively reverses this effect. Biochem Biophys Rep 2024; 38:101719. [PMID: 38708422 PMCID: PMC11066525 DOI: 10.1016/j.bbrep.2024.101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Empirical studies have indicated that excessive tea consumption may potentially decrease folate levels within the human body. The main active component in green tea, epigallocatechin gallate (EGCG), significantly reduces the concentration of 5-methyltetrahydrofolate (5-MTHF) in both solution and serum. However, our findings also demonstrate that the pro-degradation effect of EGCG on 5-MTHF can be reversed by L-ascorbic acid (AA). Subsequent investigations suggest that EGCG could potentially expedite the degradation of 5-MTHF by generating hydrogen peroxide. In summary, excessive tea intake may lead to reduced folate levels in the bloodstream, yet timely supplementation of AA could potentially safeguard folate from degradation.
Collapse
Affiliation(s)
- Guangbin Zhou
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mengmeng Zhang
- Dalian Boyuan Medical Technology Co., Ltd, Dalian, 116000, China
| | - Xiaoyu Sun
- Dalian Boyuan Medical Technology Co., Ltd, Dalian, 116000, China
- Liaoning Provincial Key Laboratory of Clinical Oncology Metabolomics, Jinzhou Medical University, Jinzhou, 121001, China
| | - Ting Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Kun Hou
- Dalian Boyuan Medical Technology Co., Ltd, Dalian, 116000, China
| | - Siqi Zhou
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jun Yin
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Liping Guan
- Dalian Boyuan Medical Technology Co., Ltd, Dalian, 116000, China
- Dalian Runsheng Kangtai Medical Laboratory Co., Ltd, Dalian, 116000, China
| |
Collapse
|
11
|
Seyoum Tola F. The concept of folic acid supplementation and its role in prevention of neural tube defect among pregnant women: PRISMA. Medicine (Baltimore) 2024; 103:e38154. [PMID: 38728462 PMCID: PMC11081602 DOI: 10.1097/md.0000000000038154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Folic acid is the synthetic form of vitamin B9, found in supplements and fortified foods, while folate occurs naturally in foods. Folic acid and its derivatives are extremely important in the synthesis of nucleic acids (DNA and ribose nucleic acid [RNA]) and different proteins. It acts as a coenzyme for the transfer of 1 carbon in the biosynthesis of purine, pyrimidine, and amino acids. Folic acid is critically important in rapidly proliferating tissues, including fetus and trophoblastic tissue to prevent neural tube defect (NTD). The main objective of this review is to identify the role of folic acid to prevent NTD among pregnancy mothers. Electronic databases including Web of Science, Google Scholar, MEDLINE, Scopus, and Cochrane library used to systematically search without limitation of publication date and status. In pregnancy, the first trimester is a significant time for neural tube closure. Decreased blood folic acid levels inhibit DNA replication, repair, RNA synthesis, histone and DNA methylation, methionine production, and homocysteine remethylation reactions that cause NTDs in pregnancy. Therefore, folic acid supplementation is critically important for childbearing mothers before conception and in the first trimester pregnancy. As a result, women are recommended to take 400 microgram FA/day from preconception until the end of the first trimester to prevent NTD-affected pregnancies. This allows the developing neural tissue to acquire critical mass and provides the preferred rostrocaudal orientation so that these divisions contribute to the elongation of the developing neural tube in embryos.
Collapse
Affiliation(s)
- Fikadu Seyoum Tola
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Ambo University, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
13
|
Hou X, Lu Z, Yu T, Zhang Y, Yao Q, Zhang C, Niu Y, Liang Q. Two maize homologs of mammalian proton-coupled folate transporter, ZmMFS_1-62 and ZmMFS_1-73, are essential to salt and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108623. [PMID: 38626656 DOI: 10.1016/j.plaphy.2024.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.
Collapse
Affiliation(s)
- Xiaowan Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Zhiwei Lu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Taifei Yu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
14
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
15
|
Dreha-Kulaczewski S, Sahoo P, Preusse M, Gkalimani I, Dechent P, Helms G, Hofer S, Steinfeld R, Gärtner J. Folate receptor α deficiency - Myelin-sensitive MRI as a reliable biomarker to monitor the efficacy and long-term outcome of a new therapeutic approach. J Inherit Metab Dis 2024; 47:387-403. [PMID: 38200656 DOI: 10.1002/jimd.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Cerebral folate transport deficiency, caused by a genetic defect in folate receptor α, is a devastating neurometabolic disorder that, if untreated, leads to epileptic encephalopathy, psychomotor decline and hypomyelination. Currently, there are limited data on effective dosage and duration of treatment, though early diagnosis and therapy with folinic acid appears critical. The aim of this long-term study was to identify new therapeutic approaches and novel biomarkers for assessing efficacy, focusing on myelin-sensitive MRI. Clinical, biochemical, structural and quantitative MRI parameters of seven patients with genetically confirmed folate receptor α deficiency were acquired over 13 years. Multimodal MRI approaches comprised MR-spectroscopy (MRS), magnetization transfer (MTI) and diffusion tensor imaging (DTI) sequences. Patients started oral treatment immediately following diagnosis or in an interval of up to 2.5 years. Escalation to intravenous and intrathecal administration was performed in the absence of effects. Five patients improved, one with a presymptomatic start of therapy remained symptom-free, and one with inconsistent treatment deteriorated. While CSF 5-methyltetrahydrofolate and MRS parameters normalized immediately after therapy initiation, myelin-sensitive MTI and DTI measures correlated with gradual clinical improvement and ongoing myelination under therapy. Early initiation of treatment at sufficient doses, considering early intrathecal applications, is critical for favorable outcome. The majority of patients showed clinical improvements that correlated best with MTI parameters, allowing individualized monitoring of myelination recovery. Presymptomatic therapy seems to ensure normal development and warrants newborn screening. Furthermore, the quantitative parameters of myelin-sensitive MRI for therapy assessments can now be used for hypomyelination disorders in general.
Collapse
Affiliation(s)
- Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Prativa Sahoo
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Preusse
- Kinderkrankenhaus Amsterdamer Strasse, Klinik für Kinder- und Jugendmedizin, Köln, Germany
| | - Irini Gkalimani
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Dechent
- MR-Research in Neuroscience, Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Gunther Helms
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Sabine Hofer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Steinfeld
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Socha MW, Flis W, Wartęga M. Epigenetic Genome Modifications during Pregnancy: The Impact of Essential Nutritional Supplements on DNA Methylation. Nutrients 2024; 16:678. [PMID: 38474806 PMCID: PMC10934520 DOI: 10.3390/nu16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Pregnancy is an extremely stressful period in a pregnant woman's life. Currently, women's awareness of the proper course of pregnancy and its possible complications is constantly growing. Therefore, a significant percentage of women increasingly reach for various dietary supplements during gestation. Some of the most popular substances included in multi-ingredient supplements are folic acid and choline. Those substances are associated with positive effects on fetal intrauterine development and fewer possible pregnancy-associated complications. Recently, more and more attention has been paid to the impacts of specific environmental factors, such as diet, stress, physical activity, etc., on epigenetic modifications, understood as changes occurring in gene expression without the direct alteration of DNA sequences. Substances such as folic acid and choline may participate in epigenetic modifications by acting via a one-carbon cycle, leading to the methyl-group donor formation. Those nutrients may indirectly impact genome phenotype by influencing the process of DNA methylation. This review article presents the current state of knowledge on the use of folic acid and choline supplementation during pregnancy, taking into account their impacts on the maternal-fetal unit and possible pregnancy outcomes, and determining possible mechanisms of action, with particular emphasis on their possible impacts on epigenetic modifications.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
17
|
Balashova OA, Panoutsopoulos AA, Visina O, Selhub J, Knoepfler PS, Borodinsky LN. Noncanonical function of folate through folate receptor 1 during neural tube formation. Nat Commun 2024; 15:1642. [PMID: 38388461 PMCID: PMC10883926 DOI: 10.1038/s41467-024-45775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Folate supplementation reduces the occurrence of neural tube defects (NTDs), birth defects consisting in the failure of the neural tube to form and close. The mechanisms underlying NTDs and their prevention by folate remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. FOLR1 knockdown in neural organoids and in Xenopus laevis embryos leads to NTDs that are rescued by pteroate, a folate precursor that is unable to participate in metabolism. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein, molecule essential for apical endocytosis and turnover of C-cadherin in neural plate cells. In addition, folates increase Ca2+ transient frequency, suggesting that folate and FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.
Collapse
Affiliation(s)
- Olga A Balashova
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
| | - Alexios A Panoutsopoulos
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Olesya Visina
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jacob Selhub
- Tufts-USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Paul S Knoepfler
- Department of Cell Biology & Human Anatomy, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
18
|
Kanellopoulos AK, Costello S, Mainardi F, Koshibu K, Deoni S, Schneider N. Dynamic Interplay between Social Brain Development and Nutrient Intake in Young Children. Nutrients 2023; 15:3754. [PMID: 37686785 PMCID: PMC10490067 DOI: 10.3390/nu15173754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Myelination of the brain structures underlying social behavior in humans is a dynamic process that parallels the emergence of social-emotional development and social skills in early life. Of the many genetic and environmental factors regulating the myelination processes, nutrition is considered as a critical and modifiable early-life factor for establishing healthy social brain networks. However, the impact of nutrition on the longitudinal development of social brain myelination remains to be fully understood. This study examined the interplay between childhood nutrient intake and social brain development across the first 5 years of life. Myelin-sensitive neuroimaging and food-intake data were analyzed in 293 children, 0.5 to 5 years of age, and explored for dynamic patterns of nutrient-social brain myelin associations. We found three data-driven age windows with specific nutrient correlation patterns, 63 individual nutrient-myelin correlations, and six nutrient combinations with a statistically significant predictive value for social brain myelination. These results provide novel insights into the impact of specific nutrient intakes on early brain development, in particular social brain regions, and suggest a critical age-sensitive opportunity to impact these brain regions for potential longer-term improvements in socio-emotional development and related executive-function and critical-thinking skills.
Collapse
Affiliation(s)
- Alexandros K. Kanellopoulos
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sarah Costello
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Fabio Mainardi
- Data Science Group, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Kyoko Koshibu
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| | - Sean Deoni
- Advanced Baby Imaging Lab, Rhode Island Hospital, 1 Hoppin Street, Providence, RI 20903, USA
- Department of Radiology, Warren Alpert Medical School of Brown University, 222 Richmond St., Providence, RI 02912, USA
- Spinn Neuroscience, Seattle, WA 98275, USA
| | - Nora Schneider
- Brain Health Department, Nestlé Institute of Health Sciences, Société des Produits Nestlé SA, Vers-Chez-les-Blanc, 1000 Lausanne, Switzerland
| |
Collapse
|
19
|
Sijilmassi O, López Alonso JM, Del Río Sevilla A, Barrio Asensio MDC. Multispectral Imaging Method for Rapid Identification and Analysis of Paraffin-Embedded Pathological Tissues. J Digit Imaging 2023; 36:1663-1674. [PMID: 37072579 PMCID: PMC10406798 DOI: 10.1007/s10278-023-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
The study of the interaction between light and biological tissue is of great help in the identification of diseases as well as structural alterations in tissues. In the present study, we have developed a tissue diagnostic technique by using multispectral imaging in the visible spectrum combined with principal component analysis (PCA). We used information from the propagation of light through paraffin-embedded tissues to assess differences in the eye tissues of control mouse embryos compared to mouse embryos whose mothers were deprived of folic acid (FA), a crucial vitamin necessary for the growth and development of the fetus. After acquiring the endmembers from the multispectral images, spectral unmixing was used to identify the abundances of those endmembers in each pixel. For each acquired image, the final analysis was performed by performing a pixel-by-pixel and wavelength-by-wavelength absorbance calculation. Non-negative least squares (NNLS) were used in this research. The abundance maps obtained for the first endmember revealed vascular alterations (vitreous and choroid) in the embryos with maternal FA deficiency. However, the abundance maps obtained for the third endmember showed alterations in the texture of some tissues such as the lens and retina. Results indicated that multispectral imaging applied to paraffin-embedded tissues enhanced tissue visualization. Using this method, first, it can be seen tissue damage location and then decide what kind of biological techniques to apply.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- Faculty of Optics and Optometry, Anatomy and Embryology Department, Universidad Complutense de Madrid, Madrid, Spain.
- Optics Department, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain.
| | - José-Manuel López Alonso
- Optics Department, Faculty of Optics and Optometry, Universidad Complutense De Madrid, Madrid, Spain
| | - Aurora Del Río Sevilla
- Faculty of Optics and Optometry, Anatomy and Embryology Department, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
20
|
Balashova OA, Panoutsopoulos AA, Visina O, Selhub J, Knoepfler PS, Borodinsky LN. Non-canonical function of folate/folate receptor 1 during neural tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549718. [PMID: 37503108 PMCID: PMC10370062 DOI: 10.1101/2023.07.19.549718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Folate supplementation reduces the occurrence of neural tube defects, one of the most common and serious birth defects, consisting in the failure of the neural tube to form and close early in pregnancy. The mechanisms underlying neural tube defects and folate action during neural tube formation remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. Knockdown of FOLR1 in human neural organoids as well as in the Xenopus laevis in vivo model leads to neural tube defects that are rescued by pteroate, a folate precursor that binds to FOLR1 but is unable to participate in metabolic pathways. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein (CD2AP), a molecule that we find is essential for apical endocytosis and the spatiotemporal turnover of the cell adherens junction component C-cadherin in neural plate cells. The counteracting action of FOLR1 on these processes is mediated by regulating CD2AP protein level via a degradation-dependent mechanism. In addition, folate and pteroate increase Ca 2+ transient frequency in the neural plate in a FOLR1-dependent manner, suggesting that folate/FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.
Collapse
|
21
|
Gurler G, Belder N, Beker MC, Sever-Bahcekapili M, Uruk G, Kilic E, Yemisci M. Reduced folate carrier 1 is present in retinal microvessels and crucial for the inner blood retinal barrier integrity. Fluids Barriers CNS 2023; 20:47. [PMID: 37328777 DOI: 10.1186/s12987-023-00442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/18/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Reduced folate carrier 1 (RFC1; SLC19a1) is the main responsible transporter for the B9 family of vitamins named folates, which are essential for normal tissue growth and development. While folate deficiency resulted in retinal vasculopathy, the expression and the role of RFC1 in blood-retinal barrier (BRB) are not well known. METHODS We used whole mount retinas and trypsin digested microvessel samples of adult mice. To knockdown RFC1, we delivered RFC1-targeted short interfering RNA (RFC1-siRNA) intravitreally; while, to upregulate RFC1 we delivered lentiviral vector overexpressing RFC1. Retinal ischemia was induced 1-h by applying FeCl3 to central retinal artery. We used RT-qPCR and Western blotting to determine RFC1. Endothelium (CD31), pericytes (PDGFR-beta, CD13, NG2), tight-junctions (Occludin, Claudin-5 and ZO-1), main basal membrane protein (Collagen-4), endogenous IgG and RFC1 were determined immunohistochemically. RESULTS Our analyses on whole mount retinas and trypsin digested microvessel samples of adult mice revealed the presence of RFC1 in the inner BRB and colocalization with endothelial cells and pericytes. Knocking down RFC1 expression via siRNA delivery resulted in the disintegration of tight junction proteins and collagen-4 in twenty-four hours, which was accompanied by significant endogenous IgG extravasation. This indicated the impairment of BRB integrity after an abrupt RFC1 decrease. Furthermore, lentiviral vector-mediated RFC1 overexpression resulted in increased tight junction proteins and collagen-4, confirming the structural role of RFC1 in the inner BRB. Acute retinal ischemia decreased collagen-4 and occludin levels and led to an increase in RFC1. Besides, the pre-ischemic overexpression of RFC1 partially rescued collagen-4 and occludin levels which would be decreased after ischemia. CONCLUSION In conclusion, our study clarifies the presence of RFC1 protein in the inner BRB, which has recently been defined as hypoxia-immune-related gene in other tissues and offers a novel perspective of retinal RFC1. Hence, other than being a folate carrier, RFC1 is an acute regulator of the inner BRB in healthy and ischemic retinas.
Collapse
Affiliation(s)
- Gokce Gurler
- The Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Nevin Belder
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | | | | - Gokhan Uruk
- The Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Ertugrul Kilic
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey
- Physiology, Istanbul Medeniyet University, Istanbul, Turkey
| | - Muge Yemisci
- The Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.
- Faculty of Medicine, Department of Neurology, Hacettepe University, Ankara, Turkey.
- Neuroscience and Neurotechnology Center of Excellence (NÖROM), Ankara, Turkey.
| |
Collapse
|
22
|
Almahmoud R, Mekki M, El-Hattab AW. Cerebral folate deficiency: A report of two affected siblings. Mol Genet Metab Rep 2023; 35:100975. [PMID: 37101857 PMCID: PMC10123369 DOI: 10.1016/j.ymgmr.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Cerebral folate deficiency (CFD) is a rare progressive neurological condition characterized by normal blood folate level and low 5-methyltetrahydrofolate (5-MTHF) levels in the cerebrospinal fluid. Patients present with different neurological findings including hypotonia and microcephaly. Later, patients develop ataxia, seizures, para or quadri-plagia. Herein, we report two siblings; born to consanguineous parents; who had normal neurological development in early childhood. Subsequently they developed drug-resistant seizures, neurological regression, and spastic quadriplegia. After thorough investigations patients had brain MRI which showed abnormal white matter signals and ventricular dilatation, CSF with low 5-MTHF, and whole exome sequencing (WES) revealed a novel homozygous variant in FOLR1 (c.245A > G; p.Tyr82Cys) consistent with the diagnosis of cerebral folate deficiency. They were treated with folinic acid in addition to standard anti-seizure medications. WES aids in reaching CFD diagnosis due to FOLR1 pathogenic variants. These results can be used for future counselling to prevent recurrence in future pregnancies by preimplantation genetic testing prior to implanting the embryo in the uterus. Treatment with folinic acid was shown to improve the neurological symptoms namely reduced the seizures and spasticity.
Collapse
Affiliation(s)
- Rabah Almahmoud
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Corresponding author at: College of Medicine, University of Sharjah, PO BOX 27272, Sharjah, United Arab Emirates.
| | - Mohammed Mekki
- Department of Pediatrics, AlQassimi Women and Children Hospital, Sharjah, United Arab Emirates
| | - Ayman W. El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
23
|
Mwamanenge N, Mariki H, Mkony M, Manji KP. Caudal regression syndrome without maternal diabetes mellitus. BMJ Case Rep 2023; 16:16/3/e253136. [PMID: 36958756 PMCID: PMC10040001 DOI: 10.1136/bcr-2022-253136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Caudal regression is a rare complex disorder impacting the formation of the caudal segment of the spine and spinal cord. We report a preterm newborn baby who was referred to us due to respiratory distress syndrome and bilateral knee contracture. A clinical examination and a radiographic skeletal survey revealed a short spinal cord with complete agenesis of the lumbar, sacrum and coccygeal spine, and hypoplastic iliac bones with bilateral knee contractures. The mother did not have diabetes. The long-term outcome is not well-known in our set-up.
Collapse
Affiliation(s)
- Naomi Mwamanenge
- Department of Paediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania, United Republic of
| | - Haika Mariki
- Pediatrics, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Martha Mkony
- Department of Paediatrics and Child Health, Muhimbili National Hospital, Dar es Salaam, Tanzania, United Republic of
| | - Karim Premji Manji
- Department of Paediatrics and Child Health, Muhimbili University of Health and Allied Sciences, Dar-es-Salaam, Tanzania, United Republic of
| |
Collapse
|
24
|
Karakousis ND, Gourgoulianis KI, Kotsiou OS. The Role of Folic Acid in SARS-CoV-2 Infection: An Intriguing Linkage under Investigation. J Pers Med 2023; 13:jpm13030561. [PMID: 36983742 PMCID: PMC10052526 DOI: 10.3390/jpm13030561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND SARS-CoV-2 is a life-threatening RNA virus that may cause an acute respiratory syndrome associated with extremely high morbidity and mortality rates. Folic acid (FA), also known as folate, is an essential vitamin vital for human homeostasis, participating in many biochemical pathways, and its deficiency has been associated with viral infection vulnerability. In this review, we investigated the association between FA intake and SARS-CoV-2 infection, along with the existence of any potential impact of FA on the health outcome of patients suffering from this new viral infection. METHODS Studies included were patients' and in silico and molecular docking studies. RESULTS Data from in silico studies and molecular docking support that FA inhibits SARS-CoV-2 entry into the host and viral replication, binding at essential residues. Accordingly, in patients' studies, a protective role of FA supplementation against SARS-CoV-2 infection is indicated. However, contradictory data from observational studies indicate that FA supplementation, often linked to deficits during systemic inflammation due to SARS-CoV-2, increases the risk of post-infection mortality. CONCLUSIONS Future randomized controlled trial studies, including the FA pharmacological group, are needed to better understand the role of FA as a potential protective or mortality risk indicator in COVID-19 patients.
Collapse
Affiliation(s)
- Nikolaos D Karakousis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | - Ourania S Kotsiou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
- Faculty of Nursing, University of Thessaly, Gaiopolis, 41500 Larissa, Greece
| |
Collapse
|
25
|
Roufael M, Bitar T, Sacre Y, Andres C, Hleihel W. Folate-Methionine Cycle Disruptions in ASD Patients and Possible Interventions: A Systematic Review. Genes (Basel) 2023; 14:709. [PMID: 36980981 PMCID: PMC10048251 DOI: 10.3390/genes14030709] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Autism Spectrum Disorder (ASD) has become a major public health concern due to its rapidly rising incidence over the past few years. Disturbances in folate or methionine metabolism have been identified in many individuals with ASD, suggesting that the folate-methionine cycle may play an essential role in the pathogenesis of autism. Thus, changes in metabolite concentrations associated with this cycle could be used as potential biomarkers and therapeutic targets for ASD. The aim of this systematic review is to elucidate the perturbations of this cycle and the possible interventions that may be proposed in this context. Several studies have shown that high levels of homocysteine and low levels of vitamins B12 and folate are associated with ASD. These changes in serum metabolites are influenced by poor diet. In fact, children with ASD tend to eat selectively, which could compromise the quality of their diet and result in nutrient deficiencies. Moreover, these disturbances may also be caused by genetic predispositions such as polymorphisms of the MTHFR gene. Few studies have demonstrated the beneficial effects of the use of nutritional supplements in treating ASD children. Therefore, larger, well-structured studies are recommended to examine the impact of vitamin B12 and folate supplementation on homocysteine levels.
Collapse
Affiliation(s)
- Melissa Roufael
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
- UMR Inserm 1253 Ibrain, Université de Tours, 37032 Tours, France
| | - Tania Bitar
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Yonna Sacre
- Department of Nutrition and Food Sciences, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Christian Andres
- UMR Inserm 1253 Ibrain, Université de Tours, 37032 Tours, France
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| |
Collapse
|
26
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
27
|
Gök V, Erdem Ş, Haliloğlu Y, Bişgin A, Belkaya S, Başaran KE, Canatan MF, Özcan A, Yılmaz E, Acıpayam C, Karakükcü M, Canatan H, Per H, Patıroğlu T, Eken A, Ünal E. Immunodeficiency associated with a novel functionally defective variant of SLC19A1 benefits from folinic acid treatment. Genes Immun 2023; 24:12-20. [PMID: 36517554 DOI: 10.1038/s41435-022-00191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.
Collapse
Affiliation(s)
- Veysel Gök
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Şerife Erdem
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeşim Haliloğlu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Atıl Bişgin
- Department of Medical Genetics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Türkiye
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Alper Özcan
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ebru Yılmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Can Acıpayam
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Sütçü İmam University, Kahramanmaraş, Türkiye
| | - Musa Karakükcü
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.,Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
28
|
Joint Effects of Prenatal Folic Acid Supplement with Prenatal Multivitamin and Iron Supplement on Obesity in Preschoolers Born SGA: Sex Specific Difference. Nutrients 2023; 15:nu15020380. [PMID: 36678251 PMCID: PMC9863758 DOI: 10.3390/nu15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Prenatal maternal nutrient supplementation has been reported to be associated with offspring obesity, but the reports are inconsistent and have mainly ignored the differences between the total children population and children born small for gestational age (SGA). This study aimed to examine the joint effects of folic acid, iron, and multivitamin supplementation during pregnancy on the risk of obesity in preschoolers born SGA. A total of 8918 children aged 3-6.5 years born SGA were recruited from Longhua District in Shenzhen of China in 2021. Their mothers completed a structured questionnaire about the child's and parents' socio-demographic characteristics, maternal prepregnant obesity, and mothers' prenatal supplementation of folic acid, iron, and multivitamin. In addition, the children's current weight and height were measured by trained nurses. Logistic regression models were used to analyze the associations between prenatal supplementations and the current presence of childhood obesity. After controlling for potential confounders, the results of the logistic regression analysis showed that prenatal supplement of folic acid (OR = 0.72, 95% CI = 0.55~0.93) was associated with a lower likelihood of being an obese preschooler born SGA. In contrast, the ingestion of multivitamin or iron supplements during pregnancy did not seem to be related to the likelihood of childhood obesity in preschoolers born SGA. Moreover, cross-over analysis of prenatal folic acid and multivitamin obtained significant negative associations of prenatal folic acid supplement only (OR = 0.73, 95% CI = 0.55~0.97) and combination supplement of folic acid and multivitamin (OR = 0.67, 95% CI = 0.50~0.90) with obesity of preschoolers born SGA; while the cross-over analysis of prenatal folic acid and iron observed significant negative associations between obesity of preschoolers born SGA and a combination supplement of folic acid and iron (OR = 0.70, 95% CI = 0.52~0.96). Furthermore, the aforementioned significant associations were only found in girls and not in boys when the analyses were stratified by sex. Our findings suggest that the prenatal folic acid supplementation may decrease the risk of obesity in preschool girls born SGA, and that this effect may be modified by prenatal multivitamin or iron supplementation.
Collapse
|
29
|
Zappelli E, Daniele S, Vergassola M, Ceccarelli L, Chelucci E, Mangano G, Durando L, Ragni L, Martini C. A specific combination of nutraceutical Ingredients exerts cytoprotective effects in human cholinergic neurons. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): a current overview of active targeting in brain diseases. Colloids Surf B Biointerfaces 2022; 221:112999. [DOI: 10.1016/j.colsurfb.2022.112999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
|
31
|
Association between Folic Acid Supplementation and Hypertensive Disorder Complicating Pregnancy in Jiangsu Province: A Cross-Sectional Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7255331. [PMID: 36110183 PMCID: PMC9470310 DOI: 10.1155/2022/7255331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/03/2022]
Abstract
Objectives To investigate the association of folic acid (FA) supplementation with hypertensive disorder complicating pregnancy (HDCP) and preeclampsia in Jiangsu Province, China. Materials and Methods In this cross-sectional study, a total of 10,662 women with infants born between January 2017 and December 2018 were enrolled in Jiangsu Province, China. Maternal women with and without FA supplement intake were compared in this study. FA supplementation included 0.4 mg FA (0.4 FA), multivitamins with 0.4 mg FA (multivitamin (MV)+0.4 FA), and multivitamins with 0.8 mg FA (MV + 0.8 FA). Associations between FA intake, FA supplement dose or duration, (MV + FA) dosage per weight, and HDCP were analysed using ANOVA, the chi-square test, and logistic regression analysis. Results Over the study follow-up period, the incidences of HDCP and preeclampsia were 3.5%, 1.4%, and 2.2%, 0.6% in the non-FA supplementation and FA supplementation groups, but only 1.5% and 0.1% in the MV + 0.8 FA group in early pregnancy. Compared with the non-FA group, HDCP and preeclampsia had the lowest risk in the MV + 0.8 FA group among the seven FA supplementation groups (HDCP: RR = 0.42, 95% CI = 0.27-0.68, P=0.001; preeclampsia: RR = 0.09, 95% CI = 0.03–0.33, P=0.001) in early pregnancy. Compared with the 0.4 FA alone group, the risk of HDCP and preeclampsia in women taking MV + 0.8 FA was significantly reduced (RR = 0.60, 95% CI = 0.41–0.87, P=0.008; preeclampsia: RR = 0.18, 95% CI = 0.06–0.60, P=0.005) in early pregnancy. (MV + FA)/BMI supplementation was associated with the risk of HDCP in early pregnancy (P trend = 0.002). Conclusions MV supplement with 0.8 mg FA during early pregnancy may be effective in reducing HDCP and preeclampsia risk. The study provided the viewpoint that (MV + FA)/BMI could be used as a reference for FA intake in pregnant women of different weights.
Collapse
|
32
|
Sirichoat A, Anosri T, Kaewngam S, Aranarochana A, Pannangrong W, Wigmore P, Welbat JU. Neuroprotective properties of chrysin on decreases of cell proliferation, immature neurons and neuronal cell survival in the hippocampal dentate gyrus associated with cognition induced by methotrexate. Neurotoxicology 2022; 92:15-24. [PMID: 35779630 DOI: 10.1016/j.neuro.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Methotrexate (MTX) is a drug widely used for chemotherapy and can reduce cancer cell production by inhibiting dihydrofolate reductase and decreasing cancer cell growth. MTX has a neurotoxic effect on neural stem and glial cells, leading to memory deficits. Chrysin is a natural flavonoid that contains essential biological activities, such as neuroprotective and cognitive-improving properties. Therefore, the aim of the present study was to investigate the protective effect of chrysin against MTX-induced memory impairments related to hippocampal neurogenesis. Seventy-two male Sprague Dawley rats were divided into six groups: control, MTX, chrysin (10 and 30 mg/kg), and MTX+ chrysin (10 and 30 mg/kg) groups. Chrysin (10 and 30 mg/kg) was administered by oral gavage for 15 days. MTX (75 mg/kg) was administered by intravenous injection on days 8 and 15. Spatial and recognition memories were evaluated using the novel object location (NOL) and novel object recognition (NOR) tests, respectively. Moreover, cell proliferation, neuronal cell survival, and immature neurons in the subgranular zone of the hippocampal dentate gyrus were quantified by Ki-67, bromodeoxyuridine/neuronal nuclear protein (BrdU/NeuN), and doublecortin (DCX) immunohistochemistry staining. The results of the MTX group demonstrated that spatial and recognition memories were both impaired. Furthermore, cell division reduction, neuronal cell survival reduction, and immature neuron decreases were detected in the MTX group and not observed in the co-administration groups. Therefore, these results revealed that chrysin could alleviate memory and neurogenesis impairments in MTX-treated rats.
Collapse
Affiliation(s)
- Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Tanaporn Anosri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Soraya Kaewngam
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanassanun Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
33
|
Hereditary spastic paraplegia type 56: what a mouse can tell – a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Zhang XZ, Huo HQ, Zhu YQ, Feng HY, Jiao J, Tan JX, Wang Y, Hu P, Xu ZF. Folic Acid Rescues Valproic Acid-Induced Morphogenesis Inhibition in Neural Rosettes Derived From Human Pluripotent Stem Cells. Front Cell Neurosci 2022; 16:888152. [PMID: 35651759 PMCID: PMC9148965 DOI: 10.3389/fncel.2022.888152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
The ability of human pluripotent stem cells (hPSCs) to specialize in neuroepithelial tissue makes them ideal candidates for use in the disease models of neural tube defects. In this study, we cultured hPSCs in suspension with modified neural induction method, and immunostaining was applied to detect important markers associated with cell fate and morphogenesis to verify the establishment of the neural tube model in vitro. We carried out the drug experiments to further investigate the toxicity of valproic acid (VPA) exposure and the potential protective effect of folic acid (FA). The results demonstrated that neural rosette undergoes cell fate speciation and lumen formation accompanied by a spatiotemporal shift in the expression patterns of cadherin, indicating the model was successfully established. The results showed that VPA caused morphogenesis inhibition of lumen formation by altering cytoskeletal function and cell polarization, which could be rescued by FA supplement.
Collapse
|
35
|
Senbanjo IO, Owolabi AJ, Oshikoya KA, Hageman JHJ, Adeniyi Y, Samuel F, Melse-Boonstra A, Schaafsma A. Effect of a Fortified Dairy-Based Drink on Micronutrient Status, Growth, and Cognitive Development of Nigerian Toddlers- A Dose-Response Study. Front Nutr 2022; 9:864856. [PMID: 35571933 PMCID: PMC9097016 DOI: 10.3389/fnut.2022.864856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Malnutrition results in a high prevalence of stunting, underweight, and micronutrient deficiencies. This study investigated the effect of a multi-nutrient fortified dairy-based drink on micronutrient status, growth, and cognitive development in malnourished [height-for-age z-score (HAZ) and/or weight-for-age z-score (WAZ) < -1 SD and >-3 SD] Nigerian toddlers (n = 184, 1-3 years). The product was provided in different daily amounts (200, 400, or 600 ml) for 6 months. At baseline and endline, venous blood and urine samples were collected to determine micronutrient status. Bodyweight, height, waist, and head circumference were measured, and corresponding Z-scores were calculated. The Bayley-III Screening Test was used to classify the cognitive development of the children. In a modified per-protocol (PP) population, the highest prevalence's of micronutrient deficiencies were found for vitamin A (35.5%) and selenium (17.9%). At endline, there were no significant improvements in iodine, zinc, vitamin B12, and folate status in any of the three groups. Regarding vitamin D status (25OHD), consumption of 600 and 400 ml resulted in an improved status as compared to baseline, and in a difference between the 600- and 200-ml groups. Consumption of 600 ml also increased vitamin A and selenium status as compared to baseline, but no differences were found between groups. Within the groups, WAZ, weight-for-height z-score (WHZ), and BMI-for-age z-score (BAZ) improved, but without differences between the groups. For HAZ, only the 600 ml group showed improvement within the group, but it was not different between groups. For the absolute weight, height, and head circumference only trends for differences between groups were indicated. Cognition results did not differ between the groups. Within groups, all showed a decline in the per cent of competent children for receptive language. To study the effects of a nutritional intervention on linear growth and cognition, a longer study duration might be necessary. Regarding the improvement of micronutrient status, 600 ml of fortified dairy-based drink seems most effective. Clinical Trial Registration https://clinicaltrials.gov/ct2/show/NCT03411590?term=NCT03411590.&draw=2&rank=1, identifier: NCT03411590.
Collapse
Affiliation(s)
- Idowu Odunayo Senbanjo
- Department of Paediatrics and Child Health, Paediatric Gastroenterology, Hepatology and Nutrition Unit, Lagos State University College of Medicine, Lagos, Nigeria
| | - Adedotun J. Owolabi
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | - Kazeem Adeola Oshikoya
- Department of Pharmacology, Therapeutic and Toxicology, Lagos State University College of Medicine, Lagos, Nigeria
| | | | - Yetunde Adeniyi
- Department of Child and Adolescent Psychiatry, University College Hospital, Ibadan, Nigeria
| | - Folake Samuel
- Department of Human Nutrition, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Alida Melse-Boonstra
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
36
|
Huang L, Zhao J, Chen Y, Ma F, Huang G, Li W. Baseline folic acid status affects the effectiveness of folic acid supplements in cognitively relevant outcomes in older adults: a systematic review. Aging Ment Health 2022; 26:457-463. [PMID: 33463361 DOI: 10.1080/13607863.2021.1875194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Folic acid was investigated for decreased concentrations of the same type of cysteine (Hcy), which is considered a risk factor for Alzheimer's disease. However, the conclusions are inconsistent, while supplementing elders with different folic acid states. METHOD The PubMed, Science Network and EMBASE databases were searched for randomized controlled trials published over the past decade; The 11/485 study was included on the basis of pre-defined criteria. Cognitive-related results, including cognitive function and brain atrophy, were measured using cognitive scales and magnetic resonance imaging. RESULTS Significant cognitive benefits were reported in individuals with incomplete folic acid (n s 4); However, individuals with sufficient folic acid (n s 2) do not benefit from supplements, evaluated by the cognitive scale. On the other hand, a significant positive association was established in the participants of plasma Hcy, but the folic acid state was sufficient (n s 2). One study reported that folic acid supplements did not provide any benefit, but folic acid status data were missing. In addition, folic acid supplementation also improves brain atrophy (n s 2). CONCLUSION Baseline folic acid status may be a potential factor affecting the results of cognitive function folic acid supplementation in older adults. Older people with insufficient folic acid will benefit from folic acid supplementation.
Collapse
Affiliation(s)
- Ling Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China
| | - Yongjie Chen
- Department of Epidemiology and Biostatists, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Fei Ma
- Department of Epidemiology and Biostatists, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, China.,Tianjin Key Laboratory for Environment, Nutrition and Public Health, Tianjin
| |
Collapse
|
37
|
He H, Zhang Z, Li M. Association between serum folate concentrations and blood lead levels in adolescents: A cross-sectional study. Front Pediatr 2022; 10:941651. [PMID: 36389396 PMCID: PMC9641282 DOI: 10.3389/fped.2022.941651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
As a heavy metal, lead is a common toxic agent. Its accumulation in the body is harmful to physical health, particularly in children and adolescents. Studies have reported that folate may play a protective role in lead exposure. An association between serum folate concentrations (SFC) and blood lead levels (BLL) has been documented in adults, but studies in adolescents are limited. This study investigated the relationship between SFC and BLL in American adolescents. This cross-sectional study collected relevant data on both SFC and BLL of 5,195 adolescents in the NHANES database from 2007 to 2018. Multivariable linear regressions and smooth curve fittings were adopted to evaluate the correlation between BLL and SFC. After adjusting potential confounders, we found negative relationships between BLL and SFC [β = -0.0041 (-0.0063, -0.0019)], and the associations were significant in non-Hispanic Whites, Mexican Americans, and other races but not significant in non-Hispanic blacks (P = 0.139). Furthermore, the negative trends were significant in adolescents aged 16-19 years and females aged 12-15 years but insignificant in males aged 12-15 years (P = 0.172). Therefore, these findings provide a basis for future research on the mechanism of folate in regulating blood lead levels.
Collapse
Affiliation(s)
- Huan He
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | - Zhan Zhang
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| | - Min Li
- Department of Ultrasound, Xi'an Children's Hospital, Xi'an, China
| |
Collapse
|
38
|
Cazacu N, Popescu AI, Chilom CG. Spectroscopic and molecular docking approach of the interaction of vitamins with human serum transferrin. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics 2021; 14:14. [PMID: 35056911 PMCID: PMC8781617 DOI: 10.3390/pharmaceutics14010014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023] Open
Abstract
In normal tissues, the expression of folate receptors is low and limited to cells that are important for embryonic development or for folate reabsorption. However, in several pathological conditions some cells, such as cancer cells and activated macrophages, overexpress folate receptors (FRs). This overexpression makes them a potential therapeutic target in the treatment of cancer and inflammatory diseases to obtain a selective delivery of drugs at altered cells level, and thus to improve the therapeutic efficacy and decrease the systemic toxicity of the pharmacological treatments. Two strategies have been used to achieve this folate receptor targeting: (i) the use of ligands with high affinity to FRs (e.g., folic acid or anti-FRs monoclonal antibodies) linked to the therapeutic agents or (ii) the use of nanocarriers whose surface is decorated with these ligands and in which the drug is encapsulated. This manuscript analyzes the use of FRs as a target to develop new therapeutic tools in the treatment of cancer and inflammatory diseases with an emphasis on the nanoformulations that have been developed for both therapeutic and imaging purposes.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain; (C.M.-S.); (A.I.T.-S.); (M.A.-G.); (A.F.-C.)
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
40
|
Chen S, Ikemoto T, Tokunaga T, Okikawa S, Miyazaki K, Tokuda K, Yamada S, Saito Y, Imura S, Morine Y, Shimada M. Effective in vitro differentiation of adipose-derived stem cells into Schwann-like cells with folic acid supplementation. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 68:347-353. [PMID: 34759157 DOI: 10.2152/jmi.68.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peripheral nerve injury (PNI) after pelvic surgery is a common issue with a significant impact on patients. Autologous nerve grafting is the gold standard treatment for PNI, but this technique cannot be applied to fine nerve fibers in the pelvis. Schwann-like cell (SLC) differentiation is a novel therapeutic strategy for this clinical condition. However, the efficiency of SLC differentiation remains unsatisfactory. We modified an SLC differentiation protocol using adipose-derived stem cells (ADSCs) and folic acid. Morphology, gene expression and secretion of neurotrophic factors were examined to assess the differentiation quality and phenotypic characteristics. Our new modified protocol effectively induced a Schwann cell (SC) phenotype in ADSCs as assessed by morphology and expression of SC markers [S100 calcium-binding protein B (S100B), P < 0.01 ; p75 neurotrophic receptor (p75NTR), P < 0.05]. SLCs produced by the new protocol displayed a repair phenotype with decreased expression of ERBB2 and early growth response protein 2 (EGR2) / KROX20 (P < 0.01). Furthermore, our new protocol enhanced both mRNA expression and secretion of nerve growth factors by SLCs (P < 0.01). This protocol enhanced the SC characteristics and functions of ADSC-derived SLCs. This promising protocol requires further research and may contribute to SC-based nerve regeneration. J. Med. Invest. 68 : 347-353, August, 2021.
Collapse
Affiliation(s)
- Shuhai Chen
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shohei Okikawa
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Kazunori Tokuda
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Satoru Imura
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
41
|
Comparison of six modification methods on the chemical composition, functional properties and antioxidant capacity of wheat bran. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention. J Pers Med 2021; 11:jpm11080710. [PMID: 34442354 PMCID: PMC8398778 DOI: 10.3390/jpm11080710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Folate deficiency and folate receptor autoimmune disorder are major contributors to infertility, pregnancy related complications and abnormal fetal development including structural and functional abnormalities of the brain. Food fortification and prenatal folic acid supplementation has reduced the incidence of neural tube defect (NTD) pregnancies but is unlikely to prevent pregnancy-related complications in the presence of folate receptor autoantibodies (FRAb). In pregnancy, these autoantibodies can block folate transport to the fetus and in young children, folate transport to the brain. These antibodies are prevalent in neural tube defect pregnancies and in developmental disorders such as cerebral folate deficiency (CFD) syndrome and autism spectrum disorder (ASD). In the latter conditions, folinic acid treatment has shown clinical improvement in some of the core ASD deficits. Early testing for folate receptor autoantibodies and intervention is likely to result in a positive outcome. This review discusses the first identification of FRAb in women with a history of neural tube defect pregnancy and FRAb’s association with sub-fertility and preterm birth. Autoantibodies against folate receptor alpha (FRα) are present in about 70% of the children with a diagnosis of ASD, and a significant number of these children respond to oral folinic acid with overall improvements in speech, language and social interaction. The diagnosis of folate receptor autoimmune disorder by measuring autoantibodies against FRα in the serum provides a marker with the potential for treatment and perhaps preventing the pathologic consequences of folate receptor autoimmune disorder.
Collapse
|
43
|
Szałwińska K, Cyuńczyk M, Kochanowicz J, Witkowska AM. Dietary and lifestyle behavior in adults with epilepsy needs improvement: a case-control study from northeastern Poland. Nutr J 2021; 20:62. [PMID: 34187474 PMCID: PMC8243538 DOI: 10.1186/s12937-021-00704-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Several factors predispose individuals with epilepsy to chronic diseases. Among them, nutrition and lifestyle factors have not been sufficiently studied. Therefore, the aim of this study was to evaluate patients with epilepsy in terms of diet, body composition and physical activity compared to healthy sex- and age-matched subjects to investigate whether there are risk factors for nutritional deficiencies and risk factors for the development of metabolic diseases. METHODS The case-control study involved 60 epileptic male and female volunteers and 70 healthy controls matched according to age and sex. Medical information was collected during the study, and a detailed questionnaire regarding eating and lifestyle habits was conducted. Physical activity was evaluated using the International Physical Activity Questionnaire (IPAQ). Nutritional status was assessed by bioelectric impedance. Venous blood samples were taken for lipid and 25-hydroxyvitamin D3 (25(OH)D3) analyses. RESULTS A tendency toward an increase in LDL cholesterol was found in the individuals with epilepsy. Significantly higher body fat and insignificantly higher visceral fat were found in epileptic men than in healthy men. In epileptic women, a tendency toward a lower lean body mass was found. Patients with epilepsy were more sedentary, consumed less cottage cheese, fruit, pulses, nuts and seeds, vitamin C and potassium, and consumed more sugar-sweetened soda, fat and sodium than healthy people. On a positive note, individuals with epilepsy consumed less coffee and alcoholic beverages. More than 80% of the epileptic volunteers had diets that were low in folic acid, vitamin D and calcium, but a similar tendency was observed in the healthy volunteers. A higher percentage of the patients with epilepsy had diets that were low in niacin, vitamin C and potassium than the control group (25% vs. 7, 50% vs. 31% and 73 vs. 56%, respectively). A significantly lower serum concentration of 25(OH)D3 was observed in epileptic individuals and was found to be positively modulated by physical activity. CONCLUSIONS The results indicate that several behavior-related habits, which may predispose epileptic people to cardiovascular disease, need to be improved. For this reason, patients with epilepsy should be provided with more comprehensive medical care, including advice on nutrition and physical activity.
Collapse
Affiliation(s)
- Kamila Szałwińska
- Department of Food Biotechnology, Medical University of Białystok, Białystok, Poland
| | - Monika Cyuńczyk
- Department of Food Biotechnology, Medical University of Białystok, Białystok, Poland
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Białystok, Białystok, Poland
| | - Anna M Witkowska
- Department of Food Biotechnology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
44
|
Atlaw D, Tekalegn Y, Sahiledengle B, Seyoum K, Solomon D, Gezahegn H, Tariku Z, Tekle Y, Chattu VK. Magnitude and determinants of neural tube defect in Africa: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2021; 21:426. [PMID: 34126936 PMCID: PMC8204447 DOI: 10.1186/s12884-021-03848-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are a group of disorders that arise from the failure of the neural tube close between 21 and 28 days after conception. About 90% of neural tube defects and 95% of death due to these defects occurs in low-income countries. Since these NTDs cause considerable morbidity and mortality, this study aimed to determine the prevalence and associated factors of NTDs in Africa. METHODS The protocol of this study was registered in the International Prospective Register of Systematic Reviews (PROSPERO number: CRD42020149356). All major databases such as PubMed/MEDLINE, EMBASE, CINAHL, Web of Science, African Journals Online (AJOL), and Google Scholar search engine were systematically searched. A random-effect model was used to estimate the pooled prevalence of NTDs in Africa, and Cochran's Q-statistics and I2 tests were used to assess heterogeneity between included studies. Publication bias was assessed using Begg 's tests, and the association between determinant factors and NTDs was estimated using a random-effect model. RESULTS Of the total 2679 articles, 37 articles fulfilled the inclusion criteria and were included in this systematic review and meta-analysis. The pooled prevalence of NTDs in Africa was 50.71 per 10,000 births (95% CI: 48.03, 53.44). Folic acid supplementation (AOR: 0.40; 95% CI: 0.19-0.85), maternal exposure to pesticide (AOR: 3.29; 95% CI: 1.04-10.39), mothers with a previous history of stillbirth (AOR: 3.35, 95% CI: 1.99-5.65) and maternal exposure to x-ray radiation (AOR 2.34; 95% CI: 1.27-4.31) were found to be determinants of NTDs. CONCLUSIONS The pooled prevalence of NTDs in Africa was found to be high. Maternal exposure to pesticides and x-ray radiation were significantly associated with NTDs. Folic acid supplementation before and within the first month of pregnancy was found to be a protective factor for NTDs.
Collapse
Affiliation(s)
- Daniel Atlaw
- Department of Human Anatomy, School of Medicine, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia.
| | - Yohannes Tekalegn
- Department of Public Health, School of Health Science, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Biniyam Sahiledengle
- Department of Public Health, School of Health Science, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Kenbon Seyoum
- Department of Midwifery, School of Health Science, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Damtew Solomon
- Department of Human Anatomy, School of Medicine, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Habtamu Gezahegn
- Department of physiology, School of Medicine, Goba Referral Hospital, Madda Walabu University, Goba, Ethiopia
| | - Zerihun Tariku
- College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Yared Tekle
- College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Vijay Kumar Chattu
- Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
45
|
Muhsen M, Youngs J, Riu A, Gustafsson JÅ, Kondamadugu VS, Garyfalidis E, Bondesson M. Folic acid supplementation rescues valproic acid-induced developmental neurotoxicity and behavioral alterations in zebrafish embryos. Epilepsia 2021; 62:1689-1700. [PMID: 33997963 DOI: 10.1111/epi.16915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Fetal exposure to the anticonvulsant drug valproic acid (VPA), used to treat certain types of epilepsy, increases the risk for birth defects, including neural tube defects, as well as learning difficulties and behavioral problems. Here, we investigated neurotoxic effects of VPA exposure using zebrafish as a model organism. The capacity of folic acid (FA) supplementation to rescue the VPA-induced neuronal and behavioral perturbations was also examined. METHODS Zebrafish embryos of different transgenic lines with neuronal green fluorescent protein expression were exposed to increasing concentrations of VPA with or without FA supplementation. Fluorescence microscopy was used to visualize alterations in brain structures and neural progenitor cells, as well as motor neurons and neurite sprouting. A twitching behavioral assay was used to examine the functional consequences of VPA and FA treatment. RESULTS In zebrafish embryos, VPA exposure caused a decrease in the midbrain size, an increase in the midline gap of the hindbrain, and perturbed neurite sprouting of secondary motor neurons, in a concentration-dependent manner. VPA exposure also decreased the fluorescence intensity of neuronal progenitor cells in early developmental stages, indicating fewer cells. Furthermore, VPA exposure significantly altered embryonic twitching activity, causing hyperactivity in dark and hypoactivity in light. Supplementation of FA rescued the VPA-induced smaller midbrain size and hindbrain midline gap defects. FA treatment also increased the number of neuronal progenitor cells in VPA-treated embryos and salvaged neurite sprouting of the secondary motor neurons. FA rescued the VPA-induced alterations in twitching activity in light but not in dark. SIGNIFICANCE We conclude that VPA exposure induces specific neurotoxic perturbations in developing zebrafish embryos, and that FA reversed most of the identified defects. The results demonstrate that zebrafish is a promising model to study VPA-induced teratogenesis and to screen for countermeasures.
Collapse
Affiliation(s)
- Maram Muhsen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Jaclyn Youngs
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Anne Riu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Vijay Sai Kondamadugu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Elefterios Garyfalidis
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
46
|
Li Q, Yang T, Chen L, Dai Y, Wu LJ, Jia FY, Hao Y, Li L, Zhang J, Ke XY, Yi MJ, Hong Q, Chen JJ, Fang SF, Wang YC, Wang Q, Jin CH, Dong ZF, Chen J, Li TY. Serum Folate Status Is Primarily Associated With Neurodevelopment in Children With Autism Spectrum Disorders Aged Three and Under-A Multi-Center Study in China. Front Nutr 2021; 8:661223. [PMID: 34055856 PMCID: PMC8155683 DOI: 10.3389/fnut.2021.661223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Folate has been demonstrated to be associated with ASD. However, current studies on the correlation between folate and symptoms of children with ASD have inconsistent conclusions, use mainly small samples, and lack age-stratified analysis. This study aimed to explore the association between serum folate and symptoms of autistic children at different age groups from a multi-center perspective. Methods: We enrolled 1,300 children with ASD and 1,246 typically developing (TD) children under 7 years old from 13 cities in China. The Autism Behavior Checklist (ABC), Social Responsiveness Scale (SRS), and Childhood autism rating scale (CARS) were used to evaluate the symptoms of children with ASD. China neuropsychological and Behavior Scale-Revision 2016 (CNBS-R2016) scale was used to evaluate the neurodevelopment of children with ASD. Serum folate was measured by chemiluminescence assay in the two groups. Results: The serum folate levels of children with ASD were lower than that of TD children. In terms of core symptoms of ASD, we found that the serum folate levels were not associated with ABC, SRS, and CARS scores in ASD children of all ages but negatively associated with communication warning behavior scores of CNBS-R2016 in ASD children aged three and under. Concerning development quotients, it was at the age of three and under that serum folate levels were positively associated with gross motor, fine motor, language, and general quotient of ASD children. These ASD children aged three and under were further divided into two groups according to the median of serum folate (14.33 ng/mL); we found that compared to ASD children with folate ≤ 14.33 ng/mL, those with folate >14.33 ng/mL had lower communication warning behavior score and higher gross motor, fine motor, adaptive behavior, language, person-social, and general development quotients. Conclusion: We found that serum folate status was primarily associated with the neurodevelopment of children with ASD aged three and under. Furthermore, relatively higher serum folate levels may be more beneficial for children with ASD. Our results suggest that folate level should be paid more attention in ASD children, especially in early life, to better promote the intervention of ASD children.
Collapse
Affiliation(s)
- Qiu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Li Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ying Dai
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Li-Jie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Fei-Yong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Yan Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Li
- Department of Children Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Jie Zhang
- Children Health Care Center, Xi'an Children's Hospital, Xi'an, China
| | - Xiao-Yan Ke
- Child Mental Health Research Center of Nanjing Brain Hospital, Nanjing, China
| | - Ming-Ji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Hong
- Maternal and Child Health Hospital of Baoan, Shenzhen, China
| | - Jin-Jin Chen
- Department of Child Healthcare, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuan-Feng Fang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yi-Chao Wang
- National Health Commission Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Qi Wang
- Deyang Maternity & Child Healthcare Hospital, Deyang, China
| | - Chun-Hua Jin
- Department of Children Health Care, Capital Institute of Pediatrics, Beijing, China
| | - Zhi-Fang Dong
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting-Yu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| |
Collapse
|
47
|
Stepien BK, Vaid S, Huttner WB. Length of the Neurogenic Period-A Key Determinant for the Generation of Upper-Layer Neurons During Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:676911. [PMID: 34055808 PMCID: PMC8155536 DOI: 10.3389/fcell.2021.676911] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex, a six-layer neuronal brain structure that arose during the evolution of, and is unique to, mammals, is the seat of higher order brain functions responsible for human cognitive abilities. Despite its recent evolutionary origin, it shows a striking variability in size and folding complexity even among closely related mammalian species. In most mammals, cortical neurogenesis occurs prenatally, and its length correlates with the length of gestation. The evolutionary expansion of the neocortex, notably in human, is associated with an increase in the number of neurons, particularly within its upper layers. Various mechanisms have been proposed and investigated to explain the evolutionary enlargement of the human neocortex, focussing in particular on changes pertaining to neural progenitor types and their division modes, driven in part by the emergence of human-specific genes with novel functions. These led to an amplification of the progenitor pool size, which affects the rate and timing of neuron production. In addition, in early theoretical studies, another mechanism of neocortex expansion was proposed—the lengthening of the neurogenic period. A critical role of neurogenic period length in determining neocortical neuron number was subsequently supported by mathematical modeling studies. Recently, we have provided experimental evidence in rodents directly supporting the mechanism of extending neurogenesis to specifically increase the number of upper-layer cortical neurons. Moreover, our study examined the relationship between cortical neurogenesis and gestation, linking the extension of the neurogenic period to the maternal environment. As the exact nature of factors promoting neurogenic period prolongation, as well as the generalization of this mechanism for evolutionary distinct lineages, remain elusive, the directions for future studies are outlined and discussed.
Collapse
Affiliation(s)
- Barbara K Stepien
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany.,Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, School of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Samir Vaid
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Society (MPG), Munich, Germany
| |
Collapse
|
48
|
Sijilmassi O, Del Río Sevilla A, Maldonado Bautista E, Barrio Asensio MDC. Gestational folic acid deficiency alters embryonic eye development: Possible role of basement membrane proteins in eye malformations. Nutrition 2021; 90:111250. [PMID: 33962364 DOI: 10.1016/j.nut.2021.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Folic acid (FA) is crucial before and during early pregnancy. FA deficiency can occur because dietary FA intake is low in mothers at the time of conception. Likewise, various ocular pathologies are related to the alteration of extracellular matrices. The present study aimed to investigate the association between maternal FA deficiency and congenital eye defects. We also investigated whether maternal diet deficient in FA alters the expression of collagen IV and laminin-1 as a possible mechanism responsible for the appearance of ocular malformations. Both proteins are the main components of the basal lamina, and form an interlaced network that creates a relevant scaffold basement membrane. Basal laminae are involved in tissues maintenance and implicated in regulating many cellular processes. METHODS A total of 57 mouse embryos were classified into the following groups: Control group, (mothers were fed a standard rodent diet), and D2 and D8 groups (mothers were fed FA-deficient [FAD] diet for 2 or 8 wk, respectively). Female mice from group D2 were fed a FAD diet (0 mg/kg diet + 1% succinyl sulfathiazole used to block the synthesis of FA) for 2 wk from the day after mating until day 14.5 of gestation (E14.5). On the other hand, female mice from group D8 were fed a FAD diet for 8 wk (6 wk before conception and during the first 2 wk of pregnancy). For the data analysis, we first estimated the incidence of malformations in each group. Then, the statistical analysis was performed using IBM SPSS Statistics, version 25.0. Expression patterns of collagen IV and laminin-1 were examined with the immunohistochemical technique. RESULTS Our results showed that mice born to FA-deficient mothers had several congenital eye abnormalities. Embryos from dams fed a short-term FAD diet were found to have many significant abnormalities in both anterior and posterior segments, as well as choroidal vessel abnormalities. However, embryos from dams fed a long-term FAD diet had a significantly higher incidence of eye defects. Finally, maternal FA deficiency increased the expression of both collagen IV and laminin-1. Likewise, changes in the spatial localization and organization of collagen IV were observed. CONCLUSIONS A maternal FAD diet for a short-term period causes eye developmental defects and induces overexpression of both collagen IV and laminin-1. The malformations observed are probably related to alterations in the expression of basement membrane proteins.
Collapse
Affiliation(s)
- Ouafa Sijilmassi
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain.
| | - Aurora Del Río Sevilla
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain; Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| | - Estela Maldonado Bautista
- Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| | - María Del Carmen Barrio Asensio
- Universidad Complutense de Madrid, Faculty of Optics and Optometry, Anatomy and Embryology Department, Madrid, Spain; Universidad Complutense de Madrid, Faculty of Medicine, Anatomy and Embryology Department, Madrid, Spain
| |
Collapse
|
49
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
50
|
Maruvada P, Stover PJ, Mason JB, Bailey RL, Davis CD, Field MS, Finnell RH, Garza C, Green R, Gueant JL, Jacques PF, Klurfeld DM, Lamers Y, MacFarlane AJ, Miller JW, Molloy AM, O'Connor DL, Pfeiffer CM, Potischman NA, Rodricks JV, Rosenberg IH, Ross SA, Shane B, Selhub J, Stabler SP, Trasler J, Yamini S, Zappalà G. Knowledge gaps in understanding the metabolic and clinical effects of excess folates/folic acid: a summary, and perspectives, from an NIH workshop. Am J Clin Nutr 2020; 112:1390-1403. [PMID: 33022704 PMCID: PMC7657327 DOI: 10.1093/ajcn/nqaa259] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Folate, an essential nutrient found naturally in foods in a reduced form, is present in dietary supplements and fortified foods in an oxidized synthetic form (folic acid). There is widespread agreement that maintaining adequate folate status is critical to prevent diseases due to folate inadequacy (e.g., anemia, birth defects, and cancer). However, there are concerns of potential adverse effects of excess folic acid intake and/or elevated folate status, with the original concern focused on exacerbation of clinical effects of vitamin B-12 deficiency and its role in neurocognitive health. More recently, animal and observational studies have suggested potential adverse effects on cancer risk, birth outcomes, and other diseases. Observations indicating adverse effects from excess folic acid intake, elevated folate status, and unmetabolized folic acid (UMFA) remain inconclusive; the data do not provide the evidence needed to affect public health recommendations. Moreover, strong biological and mechanistic premises connecting elevated folic acid intake, UMFA, and/or high folate status to adverse health outcomes are lacking. However, the body of evidence on potential adverse health outcomes indicates the need for comprehensive research to clarify these issues and bridge knowledge gaps. Three key research questions encompass the additional research needed to establish whether high folic acid or total folate intake contributes to disease risk. 1) Does UMFA affect biological pathways leading to adverse health effects? 2) Does elevated folate status resulting from any form of folate intake affect vitamin B-12 function and its roles in sustaining health? 3) Does elevated folate intake, regardless of form, affect biological pathways leading to adverse health effects other than those linked to vitamin B-12 function? This article summarizes the proceedings of an August 2019 NIH expert workshop focused on addressing these research areas.
Collapse
Affiliation(s)
- Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Patrick J Stover
- Texas A&M University College of Agriculture and Life Sciences, Texas A&M University AgriLife, College Station, TX, USA
| | - Joel B Mason
- Jean Mayer USDA Human Nutrition Research Center on Aging, Friedman School of Nutrition Science and Policy, and School of Medicine, Tufts University, Boston, MA, USA
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Cindy D Davis
- Office of Dietary Supplements, NIH, Bethesda, MD, USA
| | - Martha S Field
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Richard H Finnell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cutberto Garza
- Professor Emeritus, Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Jean-Louis Gueant
- University of Lorraine and University Regional Hospital Centre of Nancy, Nancy, France
| | - Paul F Jacques
- Tufts University Friedman School of Nutritional Science and Policy and the Jean Mayer USDA Human Nutrition Research Center, Boston, MA, USA
| | - David M Klurfeld
- Department of Nutrition, Food Safety, and Quality, USDA Agricultural Research Service, Beltsville, MD, USA
| | - Yvonne Lamers
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Anne M Molloy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Irwin H Rosenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Friedman School of Nutrition Science and Policy, and School of Medicine, Tufts University, Boston, MA, USA
| | | | - Barry Shane
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Jacob Selhub
- Tufts University Friedman School of Nutritional Science and Policy and the Jean Mayer USDA Human Nutrition Research Center, Boston, MA, USA
| | - Sally P Stabler
- Department of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Sedigheh Yamini
- Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, US FDA, College Park, MD, USA
| | - Giovanna Zappalà
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|