1
|
Wang C, He T, Qin J, Jiao J, Ji F. The roles of immune factors in neurodevelopment. Front Cell Neurosci 2025; 19:1451889. [PMID: 40276707 PMCID: PMC12018394 DOI: 10.3389/fncel.2025.1451889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The development of the nervous system is a highly complex process orchestrated by a multitude of factors, including various immune elements. These immune components play a dual role, not only regulating the immune response but also actively influencing brain development under both physiological and pathological conditions. The brain's immune barrier includes microglia in the brain parenchyma, which act as resident macrophages, astrocytes that support neuronal function and contribute to the inflammatory response, as well as circulating immune cells that reside at the brain's borders, including the choroid plexus, meninges, and perivascular spaces. Cytokines-soluble signaling molecules released by immune cells-play a crucial role in mediating communication between immune cells and the developing nervous system. Cytokines regulate processes such as neurogenesis, synaptic pruning, and inflammation, helping to shape the neural environment. Dysregulation of these immune cells, astrocytes, or cytokine signaling can lead to alterations in neurodevelopment, potentially contributing to neurodevelopmental abnormalities. This article reviews the central role of microglia, astrocytes, cytokines, and other immune factors in neurodevelopment, and explores how neuroinflammation can lead to the onset of neurodevelopmental disorders, shedding new light on their pathogenesis.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Ju XD, Zhang PH, Li Q, Bai QY, Hu B, Xu J, Lu C. Peripheral Blood Monocytes as Biomarkers of Neurodevelopmental Disorders: A Systematic Review and Meta-Analysis. Res Child Adolesc Psychopathol 2025; 53:583-595. [PMID: 40053221 DOI: 10.1007/s10802-025-01303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/26/2025]
Abstract
Accumulating evidence implicates immune dysregulation and chronic inflammation in neurodevelopmental disorders (NDDs), often manifesting as abnormal alterations in peripheral blood immune cell levels. The mononuclear phagocyte system, including monocytes and microglia, has been increasingly recognized for its involvement in the pathogenesis of NDDs. However, due to inconsistent findings in the literature, whether monocytes can serve as a reliable biomarker for NDDs remains controversial. To address this issue, we conducted a systematic review and meta-analysis of studies examining monocyte counts in NDD individuals. A comprehensive search was conducted across PubMed, Web of Science, and Scopus databases. Variables extracted for analysis encompassed the author's name, year of study, sample size, patient's age, type of disease, mean, standard deviation of monocytes and sex ratio. A total of 2503 articles were found by searching the three databases. After removed duplicates and screening titles, abstracts, and full texts, 17 articles met the inclusion criteria, and 20 independent studies were included in the meta-analysis. The results indicated significantly increased monocyte counts in 5 type NDDs compared to Typical Development (TD) groups (g = 0.36, 95%CI [0.23, 0.49]). Subgroup analyses revealed no significant differences in monocyte counts across different NDD types, gender, or age. These findings suggest that aberrant alterations in monocyte counts are common in NDD cases, indicating their potential as biomarkers for these conditions. Future research should further investigate the role of monocyte in understanding the mechanisms, early detection, and clinical diagnosis of NDDs.
Collapse
Affiliation(s)
- Xing-Da Ju
- School of Psychology, Northeast Normal University, Changchun, China
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun, China
- Autism Centre of Excellence, Northeast Normal University, Changchun, China
| | - Pai-Hao Zhang
- School of Psychology, Northeast Normal University, Changchun, China
| | - Qiang Li
- School of Psychology, Northeast Normal University, Changchun, China
| | - Qiu-Yu Bai
- Yancheng College of Mechatronic Technology, Yancheng, China
| | - Bo Hu
- School of Psychology, Northeast Normal University, Changchun, China
- School of Social and Behavioral Science, Nanjing University, Nanjing, China
| | - Jing Xu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Chang Lu
- School of Psychology, Northeast Normal University, Changchun, China.
- Jilin Provincial Key Laboratory of Cognitive Neuroscience and Brain Development, Changchun, China.
| |
Collapse
|
3
|
Díaz-Pons A, Castaño-Castaño S, Ortiz-García de la Foz V, Yorca-Ruiz Á, Martínez-Asensi C, Munarriz-Cuezva E, Ayesa-Arriola R. Understanding the potential impact of trimester-specific maternal immune activation due to SARS-CoV-2 on early human neurodevelopment and the role of cytokine balance. Brain Behav Immun Health 2025; 44:100956. [PMID: 39990281 PMCID: PMC11846590 DOI: 10.1016/j.bbih.2025.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose The COVID-19 pandemic presents significant future health challenges. Its impact on pregnant women and their newborn is a particular area of concern. This study aims to examine the potential role of maternal immune activation (MIA), due to SARS-CoV-2 infection, on early neurodevelopment. Methods We analysed 107 mother-infant dyads from the COGESTCOV-19 study in Cantabria, Spain, which included 59 SARS-CoV-2 exposed (cases) and 48 unexposed (controls) mothers, recruited between December 2020 and February 2022. Cytokine levels (IL-6 and IL-10) were obtained from maternal blood and cord blood. Neurodevelopment was assessed using the Neonatal Behavioral Assessment Scale (NBAS) at six weeks of age. Trimester of infection was considered in the main analyses. Results Results showed no significant overall delays in early neurodevelopment due to maternal SARS-CoV-2 infection. Control infants performed better in some NBAS items. However, cases infants showed trimester-specific differences. First-trimester exposure was related to motor and reflex delays, second-trimester to poorer performances in motor tasks and autonomic stability, and third-trimester to weaker state organization, regulation, and reflexes. Some correlations between cytokine levels and NBAS performance showed moderate associations. Conclusions These findings highlight the need for ongoing neurodevelopmental monitoring of infants born during the COVID-19 pandemic. The study enhances our understanding of MIA's impact on early development, emphasizing the importance of addressing homeostatic mechanisms in mothers and newborns.
Collapse
Affiliation(s)
- Alexandre Díaz-Pons
- Departamento de Investigación en Enfermedades Mentales, Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
- Escuela de Doctorado de la Universidad de Cantabria (EDUC), Universidad de Cantabria (UC), 39005, Santander, Spain
- Departamento de Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad de Cantabria (UC), 39011, Santander, Spain
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28015, Madrid, Spain
| | - Sergio Castaño-Castaño
- Departamento de Psicobiología, Facultad de Psicología, Universidad de Oviedo (UO), 33003, Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33003, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Víctor Ortiz-García de la Foz
- Departamento de Investigación en Enfermedades Mentales, Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
| | - Ángel Yorca-Ruiz
- Departamento de Investigación en Enfermedades Mentales, Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
- Escuela de Doctorado de la Universidad de Cantabria (EDUC), Universidad de Cantabria (UC), 39005, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria (UC), 39011, Santander, Spain
| | - Carlos Martínez-Asensi
- Departamento de Investigación en Enfermedades Mentales, Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28015, Madrid, Spain
| | - Eva Munarriz-Cuezva
- Departamento de Farmacología, Facultad de Medicina y Enfermería, Universidad del País Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rosa Ayesa-Arriola
- Departamento de Investigación en Enfermedades Mentales, Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011, Santander, Spain
- Departamento de Medicina y Ciencias de la Salud, Facultad de Medicina, Universidad de Cantabria (UC), 39011, Santander, Spain
- Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28015, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
4
|
Elagali A, Eisner A, Tanner S, Drummond K, Symeonides C, Love C, Tang ML, Mansell T, Burgner D, Collier F, Sly PD, O'Hely M, Dunlop S, Vuillermin P, Ponsonby AL. A pathway-based genetic score for inflammation: An indicator of vulnerability to phthalate-induced adverse neurodevelopment outcomes. Int J Hyg Environ Health 2025; 264:114514. [PMID: 39721371 DOI: 10.1016/j.ijheh.2024.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Phthalates, chemical additives used to enhance plastic products' flexibility, are easily released into the environment, and can harm the brain development through various mechanisms including inflammation. Genetic variation influencing an individual's susceptibility to inflammation may play a role in the effects of phthalate exposure on neurodevelopment however there is no summary measure developed for genetic susceptibility to inflammation. METHODS We developed a genetic pathway function score for inflammation (gPFSin), based on the transcriptional activity of the inflammatory response pathway in the brain and other tissues. Using the Barwon Infant Study (a birth cohort of n = 1074), we examined the connection between gPFSin and key neurodevelopmental outcomes, along with the interplay between prenatal phthalate levels, children's genetic susceptibility to inflammation (gPFSin), and adverse neurodevelopmental outcomes. RESULTS Regression techniques revealed consistent associations between gPFSin-phthalate combinations and key neurodevelopmental outcomes. A high gPFSin score was associated with an increased risk of doctor-diagnosed Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) by age 11.5 years, with adjusted odds ratios of 2.15(p = 0.039) and 2.42(p = 0.005), respectively. Furthermore, individuals with both high gPFSin and prenatal phthalate exposure exhibited more neurodevelopmental problems. This included associations of high gPFSin and bis(2-ethylhexyl) phthalate (DEHP) levels with parent-reported ASD traits and doctor-diagnosed ASD. The attributable proportions due to this interaction were 0.39 (p = 0.045) and 0.37 (p = 0.037), respectively. CONCLUSION These findings contribute to the evidence linking gestational phthalate exposure and inflammation to adverse neurodevelopment and underscoring increased risks in children with higher genetic susceptibility to inflammation.
Collapse
Affiliation(s)
- Ahmed Elagali
- Minderoo Foundation, Perth, WA, 6009, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Alex Eisner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel Tanner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christos Symeonides
- Minderoo Foundation, Perth, WA, 6009, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia
| | - Chloe Love
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Mimi Lk Tang
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Fiona Collier
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD, 4101, Australia
| | - Martin O'Hely
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Sarah Dunlop
- Minderoo Foundation, Perth, WA, 6009, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Peter Vuillermin
- School of Medicine, Deakin University, Geelong, VIC, 3220, Australia; Child Health Research Unit, Barwon Health, Geelong, VIC, 3220, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia; Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
5
|
Hall MB, Lemanski EA, Schwarz JM. Prenatal Maternal Immune Activation with Lipopolysaccharide Accelerates the Developmental Acquisition of Neonatal Reflexes in Rat Offspring Without Affecting Maternal Care Behaviors. Biomolecules 2025; 15:347. [PMID: 40149883 PMCID: PMC11940702 DOI: 10.3390/biom15030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Maternal immune activation (MIA)-infection with an immunogen during pregnancy-is linked to an increased risk of neurodevelopmental disorders (NDDs) in offspring. Both MIA and NDDs are associated with developmental delays in offsprings' motor behavior. Therefore, the current study examined the effects of MIA on neonatal reflex development in male and female offspring. Sprague Dawley rats were administered lipopolysaccharide (LPS; 50 μg/mL/kg, i.p.) or saline on embryonic day (E)15 of gestation. The offspring were then tested daily from postnatal day (P)3-P21 to determine their neonatal reflex abilities. The maternal care behaviors of the dam were also quantified on P1-P5, P10, and P15. We found that, regardless of sex, the E15 LPS offspring were able to forelimb grasp, cliff avoid, and right with a correct posture at an earlier postnatal age than the E15 saline offspring did. The E15 LPS offspring also showed better performance of forelimb grasping, hindlimb grasping, righting with correct posture, and walking with correct posture than the E15 saline offspring did. There were no significant differences in maternal licking/grooming, arched-back nursing, non-arched-back nursing, or total nursing across the E15 groups. Overall, these findings suggest that MIA with LPS on E15 accelerates reflex development in offspring without affecting maternal care. This may be explained by the stress acceleration hypothesis, whereby early-life stress accelerates development to promote survival.
Collapse
Affiliation(s)
- Mary Beth Hall
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA;
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA;
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
| | - Jaclyn M. Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA;
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
6
|
Sanders AFP. From Womb to Brain: Rethinking Maternal Immune Activation and Its Long-Term Impact. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:125-126. [PMID: 39919912 DOI: 10.1016/j.bpsc.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025]
|
7
|
Tan Z, Xia R, Zhao X, Yang Z, Liu H, Wang W. Potential key pathophysiological participant and treatment target in autism spectrum disorder: Microglia. Mol Cell Neurosci 2024; 131:103980. [PMID: 39580060 DOI: 10.1016/j.mcn.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024] Open
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by social and communication deficits, as well as restricted or repetitive behaviors or interests. Although the etiology of ASD remains unclear, there is abundant evidence suggesting that microglial dysfunction is likely to be a significant factor in the pathophysiology of ASD. Microglia, the primary innate immune cells in the central nervous system (CNS), play a crucial role in brain development and homeostasis. Recently, numerous studies have shown that microglia in ASD models display various abnormalities including morphology, function, cellular interactions, genetic and epigenetic factors, as well as the expression of receptors, transcription factors, and cytokines. They impact normal neural development through various mechanisms contributing to ASD, such as neuroinflammation, and alterations in synaptic formation and pruning. The focus of this review is on recent studies regarding microglial abnormalities in ASD and their effects on the onset and progression of ASD at both cellular and molecular levels. It can provide insight into the specific contribution of microglia to ASD pathogenesis and help in designing potential therapeutic and preventative strategies targeting microglia.
Collapse
Affiliation(s)
- Zehua Tan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ruixin Xia
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Zhao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zile Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
8
|
Collins B, Lemanski EA, Wright-Jin E. The Importance of Including Maternal Immune Activation in Animal Models of Hypoxic-Ischemic Encephalopathy. Biomedicines 2024; 12:2559. [PMID: 39595123 PMCID: PMC11591850 DOI: 10.3390/biomedicines12112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain injury that is the leading cause of cerebral palsy, developmental delay, and poor cognitive outcomes in children born at term, occurring in about 1.5 out of 1000 births. The only proven therapy for HIE is therapeutic hypothermia. However, despite this treatment, many children ultimately suffer disability, brain injury, and even death. Barriers to implementation including late diagnosis and lack of resources also lead to poorer outcomes. This demonstrates a critical need for additional treatments for HIE, and to facilitate this, we need translational models that accurately reflect risk factors and interactions present in HIE. Maternal or amniotic infection is a significant risk factor and possible cause of HIE in humans. Maternal immune activation (MIA) is a well-established model of maternal infection and inflammation that has significant developmental consequences largely characterized within the context of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. MIA can also lead to long-lasting changes within the neuroimmune system, which lead to compounding negative outcomes following a second insult. This supports the importance of understanding the interaction of maternal inflammation and hypoxic-ischemic outcomes. Animal models have been invaluable to understanding the pathophysiology of this injury and to the development of therapeutic hypothermia. However, each model system has its own limitations. Large animal models such as pigs may more accurately represent the brain and organ development and complexity in humans, while rodent models are more cost-effective and offer more possible molecular techniques. Recent studies have utilized MIA or direct inflammation prior to HIE insult. Investigators should thoughtfully consider the risk factors they wish to include in their HIE animal models. In the incorporation of MIA, investigators should consider the type, timing, and dose of the inflammatory stimulus, as well as the timing, severity, and type of hypoxic insult. Using a variety of animal models that incorporate the maternal-placental-fetal system of inflammation will most likely lead to a more robust understanding of the mechanisms of this injury that can guide future clinical decisions and therapies.
Collapse
Affiliation(s)
- Bailey Collins
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elizabeth Wright-Jin
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Division of Neurology, Nemours Children’s Health, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Galley JD, King MK, Rajasekera TA, Batabyal A, Woodke ST, Gur TL. Gestational administration of Bifidobacterium dentium results in intergenerational modulation of inflammatory, metabolic, and social behavior. Brain Behav Immun 2024; 122:44-57. [PMID: 39128569 DOI: 10.1016/j.bbi.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
Prenatal stress (PNS) profoundly impacts maternal and offspring health, with enduring effects including microbiome alterations, neuroinflammation, and behavioral disturbances such as reductions in social behavior. Converging lines of evidence from preclinical and clinical studies suggest that PNS disrupts tryptophan (Trp) metabolic pathways and reduces gut Bifidobacteria, a known beneficial bacterial genus that metabolizes Trp. Specifically, previous work from our lab demonstrated that human prenatal mood disorders in mothers are associated with reduced Bifidobacterium dentium in infants at 13 months. Given that Bifidobacterium has been positively associated with neurodevelopmental and other health benefits and is depleted by PNS, we hypothesized that supplementing PNS-exposed pregnant dams with B. dentium would ameliorate PNS-induced health deficits. We measured inflammatory outputs, Trp metabolite levels and enzymatic gene expression in dams and fetal offspring, and social behavior in adult offspring. We determined that B. dentium reduced maternal systemic inflammation and fetal offspring neuroinflammation, while modulating tryptophan metabolism and increasing kynurenic acid and indole-3-propionic acid intergenerationally. Additional health benefits were demonstrated by the abrogation of PNS-induced reductions in litter weight. Finally, offspring of the B. dentium cohort demonstrated increased sociability in males primarily and increased social novelty primarily in females. Together these data illustrate that B. dentium can orchestrate interrelated host immune, metabolic and behavioral outcomes during and after gestation for both dam and offspring and may be a candidate for prevention of the negative sequelae of stress.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mackenzie K King
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Therese A Rajasekera
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anandi Batabyal
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Tamar L Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Yotova AY, Li LL, O'Leary A, Tegeder I, Reif A, Courtney MJ, Slattery DA, Freudenberg F. Synaptic proteome perturbations after maternal immune activation: Identification of embryonic and adult hippocampal changes. Brain Behav Immun 2024; 121:351-364. [PMID: 39089536 DOI: 10.1016/j.bbi.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/10/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Maternal immune activation (MIA) triggers neurobiological changes in offspring, potentially reshaping the molecular synaptic landscape, with the hippocampus being particularly vulnerable. However, critical details regarding developmental timing of these changes and whether they differ between males and females remain unclear. METHODS We induced MIA in C57BL/6J mice on gestational day nine using the viral mimetic poly(I:C) and performed mass spectrometry-based proteomic analyses on hippocampal synaptoneurosomes of embryonic (E18) and adult (20 ± 1 weeks) MIA offspring. RESULTS In the embryonic synaptoneurosomes, MIA led to lipid, polysaccharide, and glycoprotein metabolism pathway disruptions. In the adult synaptic proteome, we observed a dynamic shift toward transmembrane trafficking, intracellular signalling cascades, including cell death and growth, and cytoskeletal organisation. In adults, many associated pathways overlapped between males and females. However, we found distinct sex-specific enrichment of dopaminergic and glutamatergic pathways. We identified 50 proteins altered by MIA in both embryonic and adult samples (28 with the same directionality), mainly involved in presynaptic structure and synaptic vesicle function. We probed human phenome-wide association study data in the cognitive and psychiatric domains, and 49 of the 50 genes encoding these proteins were significantly associated with the investigated phenotypes. CONCLUSIONS Our data emphasise the dynamic effects of viral-like MIA on developing and mature hippocampi and provide novel targets for study following prenatal immune challenges. The 22 proteins that changed directionality from the embryonic to adult hippocampus, suggestive of compensatory over-adaptions, are particularly attractive for future investigations.
Collapse
Affiliation(s)
- Anna Y Yotova
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany
| | - Li-Li Li
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Aet O'Leary
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Department of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Irmgard Tegeder
- Goethe University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Courtney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; Turku Brain and Mind Center, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - David A Slattery
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Florian Freudenberg
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany; Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Frankfurt, Germany.
| |
Collapse
|
11
|
Lin YH, Tsai SJ, Bai YM, Chen TJ, Chen MH. Risk of Neurodevelopmental Disorders in Offspring of Parents with Major Depressive Disorder: A Birth Cohort Study. J Autism Dev Disord 2024:10.1007/s10803-024-06502-3. [PMID: 39088144 DOI: 10.1007/s10803-024-06502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Studies have reported inconsistent results regarding associations between parental depression and offspring neurodevelopmental disorders, such as developmental delay and autism spectrum disorder (ASD). In all, 7,593 children who were born between 1996 and 2010 in Taiwan and had at least one parent with major depressive disorder and 75,930 birth-year- and sex-matched children of parents without major depressive disorder were followed from 1996 or time of birth to the end of 2011. Intergroup differences in neurodevelopmental conditions-including ASD, attention-deficit hyperactivity disorder (ADHD), tic disorder, developmental delay, and intellectual disability (ID)-were assessed. Compared with the children in the control group, the children of parents with major depression were more likely [hazard ratio (HR), 95% confidence interval (CI)] to develop ADHD (1.98, 1.80-2.18), ASD (1.52, 1.16-1.94), tic disorder (1.40, 1.08-1.81), developmental delay (1.32, 1.20-1.45), and ID (1.26, 1.02-1.55). Parental depression was associated with offspring neurodevelopmental disorders, specifically ASD, ADHD, developmental delay, ID, and tic disorder. Therefore, clinicians should closely monitor the neurodevelopmental conditions of children of parents with depression.
Collapse
Affiliation(s)
- Yu-Han Lin
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, Taipei, 11217, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, Taipei, 11217, Taiwan
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, No. 201, Shih-Pai Road, Sec. 2, Taipei, 11217, Taiwan.
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
13
|
Topchiy I, Mohbat J, Folorunso OO, Wang ZZ, Lazcano-Etchebarne C, Engin E. GABA system as the cause and effect in early development. Neurosci Biobehav Rev 2024; 161:105651. [PMID: 38579901 PMCID: PMC11081854 DOI: 10.1016/j.neubiorev.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
GABA is the primary inhibitory neurotransmitter in the adult brain and through its actions on GABAARs, it protects against excitotoxicity and seizure activity, ensures temporal fidelity of neurotransmission, and regulates concerted rhythmic activity of neuronal populations. In the developing brain, the development of GABAergic neurons precedes that of glutamatergic neurons and the GABA system serves as a guide and framework for the development of other brain systems. Despite this early start, the maturation of the GABA system also continues well into the early postnatal period. In this review, we organize evidence around two scenarios based on the essential and protracted nature of GABA system development: 1) disruptions in the development of the GABA system can lead to large scale disruptions in other developmental processes (i.e., GABA as the cause), 2) protracted maturation of this system makes it vulnerable to the effects of developmental insults (i.e., GABA as the effect). While ample evidence supports the importance of GABA/GABAAR system in both scenarios, large gaps in existing knowledge prevent strong mechanistic conclusions.
Collapse
Affiliation(s)
- Irina Topchiy
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Julie Mohbat
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne CH-1015, Switzerland
| | - Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Ziyi Zephyr Wang
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | | | - Elif Engin
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Fajardo-Martinez V, Ferreira F, Fuller T, Cambou MC, Kerin T, Paiola S, Mok T, Rao R, Mohole J, Paravastu R, Zhang D, Marschik P, Iyer S, Kesavan K, Borges Lopes MDC, Britto JAA, Moreira ME, Brasil P, Nielsen-Saines K. Neurodevelopmental delay in children exposed to maternal SARS-CoV-2 in-utero. Sci Rep 2024; 14:11851. [PMID: 38789553 PMCID: PMC11126599 DOI: 10.1038/s41598-024-61918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
It is unclear if SARS CoV-2 infection during pregnancy is associated with adverse neurodevelopmental repercussions to infants. We assessed pediatric neurodevelopmental outcomes in children born to mothers with laboratory-confirmed SARS CoV-2 infection during pregnancy. Neurodevelopmental outcomes of in-utero exposed children were compared to that of pre-pandemic control children in Los Angeles (LA), CA, USA and Rio de Janeiro, Brazil. Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III), the gold standard tool for evaluating neurodevelopment until 36 months of age and Ages and Stages Questionnaires (ASQ-3), a frequently used screening instrument for evaluating neurodevelopment in this same age group were the assessment tools used. Developmental delay (DD) was defined as having a score < - 2 SD below the norm (< 70) in at least one of three Bayley-III domains, (cognitive, motor or language) or a score below the cut-off (dark zone) in at least one of five ASQ-3 domains (communication, gross motor, fine motor, problem solving, personal-social). Exposed children were born between April 2020 and December 2022 while control children were born between January 2016 to December 2019. Neurodevelopmental testing was performed in 300 children total: 172 COVID-19 exposed children between 5-30 months of age and 128 control children between 6-38 months of age. Bayley-III results demonstrated that 12 of 128 exposed children (9.4%) had DD versus 2 of 128 controls (1.6%), p = 0.0007. Eight of 44 additional exposed children had DD on ASQ-3 testing. Fully, 20 of 172 exposed children (11.6%) and 2 of 128 control children (1.6%), p = 0.0006 had DD. In Rio, 12% of exposed children versus 2.6% of controls, p = 0.02 had DD. In LA, 5.7% of exposed children versus 0 controls, p = 0.12 had DD. Severe/critical maternal COVID-19 predicted below average neurodevelopment in the exposed cohort (OR 2.6, 95% CI 1.1-6.4). Children exposed to antenatal COVID-19 have a tenfold higher frequency of DD as compared to controls and should be offered neurodevelopmental follow-up.
Collapse
Affiliation(s)
| | | | - Trevon Fuller
- UCLA Institute for the Environment and Sustainability, Los Angeles, CA, USA.
| | | | - Tara Kerin
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Sophia Paiola
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Thalia Mok
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Rashmi Rao
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | - Jyodi Mohole
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | - Dajie Zhang
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Peter Marschik
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
- Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Interdisciplinary Developmental Neuroscience (IDN), Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Sai Iyer
- David Geffen, UCLA School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Faidi R, Reid AY. Early-life immune activation is a vulnerability factor for adult epileptogenesis in neurofibromatosis type 1 in male mice. Front Neurol 2024; 15:1284574. [PMID: 38685949 PMCID: PMC11056566 DOI: 10.3389/fneur.2024.1284574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction Patients with Neurofibromatosis type 1 (NF1), the most common neurocutaneous disorder, can develop several neurological manifestations that include cognitive impairments and epilepsy over their lifetime. It is unclear why certain patients with NF1 develop these conditions while others do not. Early-life immune activation promotes later-life seizure susceptibility, neurocognitive impairments, and leads to spontaneous seizures in some animal models of neurodevelopmental disorders, but the central nervous system immune profile and the enduring consequences of early-life immune activation on the developmental trajectory of the brain in NF1 have not yet been explored. We tested the hypothesis that early-life immune activation promotes the development of spatial memory impairments and epileptogenesis in a mouse model of NF1. Methods Male wild-type (WT) and Nf1+/- mice received systemic lipopolysaccharide (LPS) or saline at post-natal day 10 and were assessed in adulthood for learning and memory deficits in the Barnes maze and underwent EEG recordings to look for spontaneous epileptiform abnormalities and susceptibility to challenge with pentylenetetrazole (PTZ). Results Whereas early-life immune activation by a single injection of LPS acutely elicited a comparable brain cytokine signature in WT and Nf1+/- mice, it promoted spontaneous seizure activity in adulthood only in the Nf1+/- mice. Early-life immune activation affected susceptibility to PTZ-induced seizures similarly in both WT and Nf1+/-mice. There was no effect on spatial learning and memory regardless of mouse genotype. Discussion Our findings suggest second-hit environmental events such as early-life immune activation may promote epileptogenesis in the Nf1+/- mouse and may be a risk-factor for NF1-associated epilepsy.
Collapse
Affiliation(s)
- Rania Faidi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aylin Y. Reid
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Liu Y, Hang X, Zhang Y, Fang Y, Yuan S, Zhang Y, Wu B, Kong Y, Kuang Z, Sun W. Maternal immune activation induces sex-dependent behavioral differences in a rat model of schizophrenia. Front Psychiatry 2024; 15:1375999. [PMID: 38659461 PMCID: PMC11040086 DOI: 10.3389/fpsyt.2024.1375999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
Background Maternal immune activation (MIA) is a mature means to construct a schizophrenia model. However, some preclinical studies have reported that a MIA-induced schizophrenia model seemed to have gender heterogeneity in behavioral phenotype. On the other hand, the MIA's paradigms were diverse in different studies, and many details could affect the effect of MIA. To some extent, it is not credible and scientific to directly compare the gender differences of different MIA programs. Therefore, it is necessary to study whether the sex of the exposed offspring leads to behavioral differences on the premise of maintaining a consistent MIA mode. Methods An animal model of schizophrenia was established by the administration of 10 mg/kg Poly (I: C) when dams were on day 9 of gestation. Then, a number of female and male offspring completed a series of behavioral tests during postnatal days 61-75. Results Compared with the female control group (n = 14), female MIA offspring (n = 12) showed a longer movement distance (d = 1.07, p < 0.05) and higher average speed (d = 1.08, p < 0.05) in the open field test (OFT). In the Y maze test, the percentage of entering the novel arm of female MIA offspring was lower (d = 0.92, p < 0.05). Compared with the male control group (n = 14), male MIA offspring (n = 13) displayed less movement distance (d = 0.93, p < 0.05) and a lower average speed (d = 0.94, p < 0.05) in the OFT. In the Y maze test, the proportion of exploration time in the novel arm of male MIA offspring was lower (d = 0.96, p < 0.05). In the EPM, male MIA offspring showed less time (d = 0.85, p < 0.05) and a lower percentage of time spent in the open arms (d = 0.85, p < 0.05). Male MIA offspring also had a lower PPI index (76 dB + 120 dB, d = 0.81, p < 0.05; 80 dB + 120 dB, d = 1.45, p < 0.01). Conclusions Our results showed that the behavioral phenotypes induced by prenatal immune activation were highly dependent on the sex of the offspring.
Collapse
Affiliation(s)
- Yunxia Liu
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyi Hang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yijie Zhang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yilin Fang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Shanfang Yuan
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Encephalopathy, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Bin Wu
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Kong
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Kuang
- The Third Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjun Sun
- Department of Encephalopathy, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
17
|
Abbasi H, Ghavami-Kia S, Davoodian N, Davoodian N. Maternal quercetin supplementation improved lipopolysaccharide-induced cognitive deficits and inflammatory response in a rat model of maternal immune activation. Toxicol Appl Pharmacol 2024; 483:116830. [PMID: 38246289 DOI: 10.1016/j.taap.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND There is strong evidence that prenatal infection during a specific period of brain development increases the risk of neurodevelopmental disorders, partly through immune-inflammatory pathways. This suggests that anti-inflammatory agents could prevent these disorders by targeting the maternal inflammatory response. In the present study, we used a rat model of maternal immune activation (MIA) to examine whether maternal quercetin (QE) supplementation can alleviate behavioral deficits and inflammatory mediators in the prefrontal cortex (PFC) and hippocampus of adult male offspring. METHODS Pregnant rats were supplemented with QE (50 mg/kg) or vehicle throughout pregnancy and injected with either lipopolysaccharide (0.5 mg/kg) or saline on gestational days 15/16. At postnatal day 60, we evaluated the offspring's behavior, hippocampal and prefrontal cortex glial density, pro-inflammatory gene expression, and neuronal survival. RESULTS Our data showed that maternal QE supplementation can prevent working and recognition memory impairments in adult MIA offspring. This behavioral improvement correlates with the decrease in MIA-induced expression of pro-inflammatory genes, microglia, and astrocyte densities, without affecting neuronal survival, in both PFC and CA1 hippocampus areas. CONCLUSION Therefore, our study supports the potential preventive effect of QE on MIA-induced behavioral dysfunctions, at least in part, by suppressing the glial-mediated inflammatory response.
Collapse
Affiliation(s)
- Hossein Abbasi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sina Ghavami-Kia
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Najmeh Davoodian
- Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
18
|
Croen LA, Ames JL, Qian Y, Alexeeff S, Ashwood P, Gunderson EP, Wu YW, Boghossian AS, Yolken R, Van de Water J, Weiss LA. Inflammatory Conditions During Pregnancy and Risk of Autism and Other Neurodevelopmental Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:39-50. [PMID: 38045769 PMCID: PMC10689278 DOI: 10.1016/j.bpsgos.2023.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
Background Maternal inflammation can result from immune dysregulation and metabolic perturbations during pregnancy. Whether conditions associated with inflammation during pregnancy increase the likelihood of autism spectrum disorder (ASD) or other neurodevelopmental disorders (DDs) is not well understood. Methods We conducted a case-control study among children born in California from 2011 to 2016 to investigate maternal immune-mediated and cardiometabolic conditions during pregnancy and risk of ASD (n = 311) and DDs (n = 1291) compared with children from the general population (n = 967). Data on maternal conditions and covariates were retrieved from electronic health records. Maternal genetic data were used to assess a causal relationship. Results Using multivariable logistic regression, we found that mothers with asthma were more likely to deliver infants later diagnosed with ASD (odds ratio [OR] = 1.62, 95% CI: 1.15-2.29) or DDs (OR = 1.30, 95% CI: 1.02-1.64). Maternal obesity was also associated with child ASD (OR = 1.51, 95% CI: 1.07-2.13). Mothers with both asthma and extreme obesity had the greatest odds of delivering an infant later diagnosed with ASD (OR = 16.9, 95% CI: 5.13-55.71). These increased ASD odds were observed among female children only. Polygenic risk scores for obesity, asthma, and their combination showed no association with ASD risk. Mendelian randomization did not support a causal relationship between maternal conditions and ASD. Conclusions Inflammatory conditions during pregnancy are associated with risk for neurodevelopmental disorders in children. These risks do not seem to be due to shared genetic risk; rather, inflammatory conditions may share nongenetic risk factors with neurodevelopmental disorders. Children whose mothers have both asthma and obesity during pregnancy may benefit from earlier screening and intervention.
Collapse
Affiliation(s)
- Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Jennifer L. Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Yinge Qian
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Stacey Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology and the MIND Institute, University of California, Davis, Davis, California
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| | - Yvonne W. Wu
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Andrew S. Boghossian
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Robert Yolken
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Judy Van de Water
- Division of Rheumatology/Allergy/Clinical Immunology, Department of Internal Medicine, University of California at Davis, Davis, California
| | - Lauren A. Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| |
Collapse
|
19
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
20
|
de Oliveira EG, de Lima DA, da Silva Júnior JC, de Souza Barbosa MV, de Andrade Silva SC, de Santana JH, Dos Santos Junior OH, Lira EC, Lagranha CJ, Duarte FS, Gomes DA. (R)-ketamine attenuates neurodevelopmental disease-related phenotypes in a mouse model of maternal immune activation. Eur Arch Psychiatry Clin Neurosci 2023; 273:1501-1512. [PMID: 37249625 DOI: 10.1007/s00406-023-01629-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Infections during pregnancy are associated with an increased risk of neuropsychiatric disorders with developmental etiologies, such as schizophrenia and autism spectrum disorders (ASD). Studies have shown that the animal model of maternal immune activation (MIA) reproduces a wide range of phenotypes relevant to the study of neurodevelopmental disorders. Emerging evidence shows that (R)-ketamine attenuates behavioral, cellular, and molecular changes observed in animal models of neuropsychiatric disorders. Here, we investigate whether (R)-ketamine administration during adolescence attenuates some of the phenotypes related to neurodevelopmental disorders in an animal model of MIA. For MIA, pregnant Swiss mice received intraperitoneally (i.p.) lipopolysaccharide (LPS; 100 µg/kg/day) or saline on gestational days 15 and 16. The two MIA-based groups of male offspring received (R)-ketamine (20 mg/kg/day; i.p.) or saline from postnatal day (PND) 36 to 50. At PND 62, the animals were examined for anxiety-like behavior and locomotor activity in the open-field test (OFT), as well as in the social interaction test (SIT). At PND 63, the prefrontal cortex (PFC) was collected for analysis of oxidative balance and gene expression of the cytokines IL-1β, IL-6, and TGF-β1. We show that (R)-ketamine abolishes anxiety-related behavior and social interaction deficits induced by MIA. Additionally, (R)-ketamine attenuated the increase in lipid peroxidation and the cytokines in the PFC of the offspring exposed to MIA. The present work suggests that (R)-ketamine administration may have a long-lasting attenuation in deficits in emotional behavior induced by MIA, and that these effects may be attributed to its antioxidant and anti-inflammatory activity in the PFC.
Collapse
Affiliation(s)
- Elifrances Galdino de Oliveira
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil.
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Diógenes Afonso de Lima
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - José Carlos da Silva Júnior
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Mayara Victória de Souza Barbosa
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Severina Cassia de Andrade Silva
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Jonata Henrique de Santana
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Eduardo Carvalho Lira
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
- Laboratory of Biochemistry and Exercise Biochemistry, Department of Physical Education and Sports Science, Federal University of Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Filipe Silveira Duarte
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Dayane Aparecida Gomes
- Laboratory of Neuroendocrinology and Metabolism, Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 Cidade Universitária, Recife, PE, 50670-901, Brazil
- Graduate Program of Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
21
|
Chibanda Y, Brookes M, Churchill D, Al-Hassi H. The Ferritin, Hepcidin and Cytokines Link in the Diagnoses of Iron Deficiency Anaemia during Pregnancy: A Review. Int J Mol Sci 2023; 24:13323. [PMID: 37686128 PMCID: PMC10488244 DOI: 10.3390/ijms241713323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Following a diagnosis of iron deficiency anaemia in pregnancy, iron supplements are prescribed using UK guidelines; however, despite this, the condition remains highly prevalent, affecting up to 30% of pregnant women in the UK. According to the World Health Organisation, it globally accounts for 45% in the most vulnerable groups of pregnant women and infants (<5 years old). Recently, the efficacy of iron replacement therapy and the effectiveness of current standard testing of iron parameters have been reviewed in order to evaluate whether a more accurate diagnosis can be made using alternative and/or supplementary markers. Furthermore, many questions remain about the mechanisms involved in iron metabolism during pregnancy. The most recent studies have shed more light on serum hepcidin and raised questions on the significance of pregnancy related inflammatory markers including cytokines in iron deficiency anaemia. However, research into this is still scarce, and this review aims to contribute to further understanding and elucidating these areas.
Collapse
Affiliation(s)
- Yvonne Chibanda
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Matthew Brookes
- Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
| | - David Churchill
- Obstetrics, The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
| | - Hafid Al-Hassi
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
22
|
Yildiz Taskiran S, Taskiran M, Unal G, Bozkurt NM, Golgeli A. The long-lasting effects of aceclofenac, a COX-2 inhibitor, in a Poly I:C-Induced maternal immune activation model of schizophrenia in rats. Behav Brain Res 2023; 452:114565. [PMID: 37414224 DOI: 10.1016/j.bbr.2023.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
It is well established that rats exposed to inflammation during pregnancy or the perinatal period have an increased chance of developing schizophrenia-like symptoms and behaviors, and people with schizophrenia also have raised levels of inflammatory markers. Therefore, there is evidence supporting the idea that anti-inflammatory drugs may have therapeutic benefits. Aceclofenac is a nonsteroidal anti-inflammatory drug that has anti-inflammatory properties and is used clinically to treat inflammatory and painful processes such as osteoarthritis and rheumatoid arthritis, making it a potential candidate for preventive or adjunctive therapy in schizophrenia. This study therefore examined the effect of aceclofenac in a maternal immune activation model of schizophrenia, in which polyinosinic-polycytidylic acid (Poly I:C) (8 mg/kg, i.p.) was administered to pregnant rat dams. Young female rat pups received daily aceclofenac (5, 10, and 20 mg/kg, i.p., n = 10) between postnatal day 56 and 76. The effects of aceclofenac were compared with assessment of behavioral tests and ELISA results. During the postnatal days (PNDs) 73-76, behavioral tests were conducted in rats, and on PND 76, ELISA tests were performed to examine the changes in Tumor necrosis factor alpha (TNF-α), Interleukin-1β (IL-1β), Brain-derived neurotrophic factor (BDNF), and nestin levels. Aceclofenac treatment reversed deficits in prepulse inhibition, novel object recognition, social interaction, and locomotor activity tests. In addition, aceclofenac administration decreased TNF-α and IL-1β expression in the prefrontal cortex and hippocampus. In contrast, BDNF and nestin levels did not change significantly during treatment with aceclofenac. Taken together, these results suggest that aceclofenac may be an alternative therapeutic adjunctive strategy to improve the clinical expression of schizophrenia in the further studies.
Collapse
Affiliation(s)
| | - Mehmet Taskiran
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Gokhan Unal
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Nuh Mehmet Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Asuman Golgeli
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
23
|
Pavlov D, Gorlova A, Haque A, Cavalcante C, Svirin E, Burova A, Grigorieva E, Sheveleva E, Malin D, Efimochkina S, Proshin A, Umriukhin A, Morozov S, Strekalova T. Maternal Chronic Ultrasound Stress Provokes Immune Activation and Behavioral Deficits in the Offspring: A Mouse Model of Neurodevelopmental Pathology. Int J Mol Sci 2023; 24:11712. [PMID: 37511470 PMCID: PMC10380915 DOI: 10.3390/ijms241411712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Neurodevelopmental disorders stemming from maternal immune activation can significantly affect a child's life. A major limitation in pre-clinical studies is the scarcity of valid animal models that accurately mimic these challenges. Among the available models, administration of lipopolysaccharide (LPS) to pregnant females is a widely used paradigm. Previous studies have reported that a model of 'emotional stress', involving chronic exposure of rodents to ultrasonic frequencies, induces neuroinflammation, aberrant neuroplasticity, and behavioral deficits. In this study, we explored whether this model is a suitable paradigm for maternal stress and promotes neurodevelopmental abnormalities in the offspring of stressed females. Pregnant dams were exposed to ultrasound stress for 21 days. A separate group was injected with LPS on embryonic days E11.5 and E12.5 to mimic prenatal infection. The behavior of the dams and their female offspring was assessed using the sucrose test, open field test, and elevated plus maze. Additionally, the three-chamber sociability test and Barnes maze were used in the offspring groups. ELISA and qPCR were used to examine pro-inflammatory changes in the blood and hippocampus of adult females. Ultrasound-exposed adult females developed a depressive-like syndrome, hippocampal overexpression of GSK-3β, IL-1β, and IL-6 and increased serum concentrations of IL-1β, IL-6, IL-17, RANTES, and TNFα. The female offspring also displayed depressive-like behavior, as well as cognitive deficits. These abnormalities were comparable to the behavioral changes induced by LPS. The ultrasound stress model can be a promising animal paradigm of neurodevelopmental pathology associated with prenatal 'emotional stress'.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Abrar Haque
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Carlos Cavalcante
- Department of Human Health and Science, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Grigorieva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Elizaveta Sheveleva
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Dmitry Malin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sofia Efimochkina
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| |
Collapse
|
24
|
Sager REH, Walker AK, Middleton FA, Robinson K, Webster MJ, Gentile K, Wong ML, Shannon Weickert C. Changes in cytokine and cytokine receptor levels during postnatal development of the human dorsolateral prefrontal cortex. Brain Behav Immun 2023; 111:186-201. [PMID: 36958512 DOI: 10.1016/j.bbi.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
In addition to their traditional roles in immune cell communication, cytokines regulate brain development. Cytokines are known to influence neural cell generation, differentiation, maturation, and survival. However, most work on the role of cytokines in brain development investigates rodents or focuses on prenatal events. Here, we investigate how mRNA and protein levels of key cytokines and cytokine receptors change during postnatal development of the human prefrontal cortex. We find that most cytokine transcripts investigated (IL1B, IL18, IL6, TNF, IL13) are lowest at birth and increase between 1.5 and 5 years old. After 5 years old, transcriptional patterns proceeded in one of two directions: decreased expression in teens and young adults (IL1B, p = 0.002; and IL18, p = 0.004) or increased mean expression with maturation, particularly in teenagers (IL6, p = 0.004; TNF, p = 0.002; IL13, p < 0.001). In contrast, cytokine proteins tended to remain elevated after peaking significantly around 3 years of age (IL1B, p = 0.012; IL18, p = 0.026; IL6, p = 0.039; TNF, p < 0.001), with TNF protein being highest in teenagers. An mRNA-only analysis of cytokine receptor transcripts found that early developmental increases in cytokines were paralleled by increases in their ligand-binding receptor subunits, such as IL1R1 (p = 0.033) and IL6R (p < 0.001) transcripts. In contrast, cytokine receptor-associated signaling subunits, IL1RAP and IL6ST, did not change significantly between age groups. Of the two TNF receptors, the 'pro-death' TNFRSF1A and 'pro-survival' TNFRSF1B, only TNFRSF1B was significantly changed (p = 0.028), increasing first in toddlers and again in young adults. Finally, the cytokine inhibitor, IL13, was elevated first in toddlers (p = 0.006) and again in young adults (p = 0.053). While the mean expression of interleukin-1 receptor antagonist (IL1RN) was highest in toddlers, this increase was not statistically significant. The fluctuations in cytokine expression reported here support a role for increases in specific cytokines at two different stages of human cortical development. The first is during the toddler/preschool period (IL1B, IL18, and IL13), and the other occurs at adolescence/young adult maturation (IL6, TNF and IL13).
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Adam K Walker
- Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia; Monash Institute of Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Frank A Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kate Robinson
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | | | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ma-Li Wong
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA; Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, NSW, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Woods R, Lorusso J, Fletcher J, ElTaher H, McEwan F, Harris I, Kowash H, D'Souza SW, Harte M, Hager R, Glazier JD. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signal 2023; 7:NS20220064. [PMID: 37332846 PMCID: PMC10273029 DOI: 10.1042/ns20220064] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Maternal infection during pregnancy, leading to maternal immune activation (mIA) and cytokine release, increases the offspring risk of developing a variety of neurodevelopmental disorders (NDDs), including schizophrenia. Animal models have provided evidence to support these mechanistic links, with placental inflammatory responses and dysregulation of placental function implicated. This leads to changes in fetal brain cytokine balance and altered epigenetic regulation of key neurodevelopmental pathways. The prenatal timing of such mIA-evoked changes, and the accompanying fetal developmental responses to an altered in utero environment, will determine the scope of the impacts on neurodevelopmental processes. Such dysregulation can impart enduring neuropathological changes, which manifest subsequently in the postnatal period as altered neurodevelopmental behaviours in the offspring. Hence, elucidation of the functional changes that occur at the molecular level in the placenta is vital in improving our understanding of the mechanisms that underlie the pathogenesis of NDDs. This has notable relevance to the recent COVID-19 pandemic, where inflammatory responses in the placenta to SARS-CoV-2 infection during pregnancy and NDDs in early childhood have been reported. This review presents an integrated overview of these collective topics and describes the possible contribution of prenatal programming through placental effects as an underlying mechanism that links to NDD risk, underpinned by altered epigenetic regulation of neurodevelopmental pathways.
Collapse
Affiliation(s)
- Rebecca M. Woods
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jarred M. Lorusso
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jennifer Fletcher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Heidi ElTaher
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
- Department of Physiology, Faculty of Medicine, Alexandria University, Egypt
| | - Francesca McEwan
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Isabella Harris
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Hager M. Kowash
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Stephen W. D'Souza
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9WL, U.K
| | - Michael Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Reinmar Hager
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
26
|
Alvizi L, Nani D, Brito LA, Kobayashi GS, Passos-Bueno MR, Mayor R. Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene-environment interaction. Nat Commun 2023; 14:2868. [PMID: 37225711 PMCID: PMC10209087 DOI: 10.1038/s41467-023-38526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Gene-environment interactions are believed to play a role in multifactorial phenotypes, although poorly described mechanistically. Cleft lip/palate (CLP), the most common craniofacial malformation, has been associated with both genetic and environmental factors, with little gene-environment interaction experimentally demonstrated. Here, we study CLP families harbouring CDH1/E-Cadherin variants with incomplete penetrance and we explore the association of pro-inflammatory conditions to CLP. By studying neural crest (NC) from mouse, Xenopus and humans, we show that CLP can be explained by a 2-hit model, where NC migration is impaired by a combination of genetic (CDH1 loss-of-function) and environmental (pro-inflammatory activation) factors, leading to CLP. Finally, using in vivo targeted methylation assays, we demonstrate that CDH1 hypermethylation is the major target of the pro-inflammatory response, and a direct regulator of E-cadherin levels and NC migration. These results unveil a gene-environment interaction during craniofacial development and provide a 2-hit mechanism to explain cleft lip/palate aetiology.
Collapse
Affiliation(s)
- Lucas Alvizi
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Diogo Nani
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luciano Abreu Brito
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Gerson Shigeru Kobayashi
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Celulas-Tronco, Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
27
|
Boccazzi M, Raffaele S, Zanettin T, Abbracchio MP, Fumagalli M. Altered Purinergic Signaling in Neurodevelopmental Disorders: Focus on P2 Receptors. Biomolecules 2023; 13:biom13050856. [PMID: 37238724 DOI: 10.3390/biom13050856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
With the umbrella term 'neurodevelopmental disorders' (NDDs) we refer to a plethora of congenital pathological conditions generally connected with cognitive, social behavior, and sensory/motor alterations. Among the possible causes, gestational and perinatal insults have been demonstrated to interfere with the physiological processes necessary for the proper development of fetal brain cytoarchitecture and functionality. In recent years, several genetic disorders caused by mutations in key enzymes involved in purine metabolism have been associated with autism-like behavioral outcomes. Further analysis revealed dysregulated purine and pyrimidine levels in the biofluids of subjects with other NDDs. Moreover, the pharmacological blockade of specific purinergic pathways reversed the cognitive and behavioral defects caused by maternal immune activation, a validated and now extensively used rodent model for NDDs. Furthermore, Fragile X and Rett syndrome transgenic animal models as well as models of premature birth, have been successfully utilized to investigate purinergic signaling as a potential pharmacological target for these diseases. In this review, we examine results on the role of the P2 receptor signaling in the etiopathogenesis of NDDs. On this basis, we discuss how this evidence could be exploited to develop more receptor-specific ligands for future therapeutic interventions and novel prognostic markers for the early detection of these conditions.
Collapse
Affiliation(s)
- Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Thomas Zanettin
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
28
|
Mut-Arbona P, Sperlágh B. P2 receptor-mediated signaling in the physiological and pathological brain: From development to aging and disease. Neuropharmacology 2023; 233:109541. [PMID: 37062423 DOI: 10.1016/j.neuropharm.2023.109541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
The purinergic pathway mediates both pro-inflammatory and anti-inflammatory responses, whereas the breakdown of adenosine triphosphate (ATP) is in a critical equilibrium. Under physiological conditions, extracellular ATP is maintained at a nanomolar concentration. Whether released into the medium following tissue damage, inflammation, or hypoxia, ATP is considered a clear indicator of cell damage and a marker of pathological conditions. In this overview, we provide an update on the participation of P2 receptor-mediated purinergic signaling in normal and pathological brain development, with special emphasis on neurodevelopmental psychiatric disorders. Since purinergic signaling is ubiquitous, it is not surprising that it plays a prominent role in developmental processes and pathological alterations. The main aim of this review is to conceptualize the time-dependent dynamic changes in the participation of different players in the purinome in shaping the normal and aberrant developmental patterns and diseases of the central nervous system over one's lifespan.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
29
|
Murakami Y, Imamura Y, Kasahara Y, Yoshida C, Momono Y, Fang K, Sakai D, Konishi Y, Nishiyama T. Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells 2023; 12:1087. [PMID: 37048160 PMCID: PMC10093447 DOI: 10.3390/cells12071087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Several studies show that genetic and environmental factors contribute to the onset and progression of neurodevelopmental disorders. Maternal immune activation (MIA) during gestation is considered one of the major environmental factors driving this process. The kynurenine pathway (KP) is a major route of the essential amino acid L-tryptophan (Trp) catabolism in mammalian cells. Activation of the KP following neuro-inflammation can generate various endogenous neuroactive metabolites that may impact brain functions and behaviors. Additionally, neurotoxic metabolites and excitotoxicity cause long-term changes in the trophic support, glutamatergic system, and synaptic function following KP activation. Therefore, investigating the role of KP metabolites during neurodevelopment will likely promote further understanding of additional pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). In this review, we describe the changes in KP metabolism in the brain during pregnancy and represent how maternal inflammation and genetic factors influence the KP during development. We overview the patients with ASD clinical data and animal models designed to verify the role of perinatal KP elevation in long-lasting biochemical, neuropathological, and behavioral deficits later in life. Our review will help shed light on new therapeutic strategies and interventions targeting the KP for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Yukio Imamura
- Department of Architecture and Architectual Systems Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
- Department of Traumatology and Acute Critical Medicine, Graduate School of Medicine/Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | - Yoshiyuki Kasahara
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chihiro Yoshida
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yuta Momono
- Department of Maternal and Fetal Therapeutics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| | - Daisuke Sakai
- Department of Biology, Kanazawa Medical University, Kanazawa 920-0293, Japan
| | - Yukuo Konishi
- Center for Baby Science, Doshisha University, Kyotanabe 619-0225, Japan
- Healthcare and Medical Data Multi-Level Integration Platform Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama 230-0045, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
30
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
31
|
Massimo M, Barelli C, Moreno C, Collesi C, Holloway RK, Crespo B, Zentilin L, Williams A, Miron VE, Giacca M, Long KR. Haemorrhage of human foetal cortex associated with SARS-CoV-2 infection. Brain 2023; 146:1175-1185. [PMID: 36642091 PMCID: PMC9976976 DOI: 10.1093/brain/awac372] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 09/19/2022] [Indexed: 01/17/2023] Open
Abstract
Maternal viral infection and immune response are known to increase the risk of altered development of the foetal brain. Given the ongoing global pandemic of coronavirus disease 2019 (COVID-19), investigating the impact of SARS-CoV-2 on foetal brain health is of critical importance. Here, we report the presence of SARS-CoV-2 in first and second trimester foetal brain tissue in association with cortical haemorrhages. SARS-CoV-2 spike protein was sparsely detected within progenitors and neurons of the cortex itself, but was abundant in the choroid plexus of haemorrhagic samples. SARS-CoV-2 was also sparsely detected in placenta, amnion and umbilical cord tissues. Cortical haemorrhages were linked to a reduction in blood vessel integrity and an increase in immune cell infiltration into the foetal brain. Our findings indicate that SARS-CoV-2 infection may affect the foetal brain during early gestation and highlight the need for further study of its impact on subsequent neurological development.
Collapse
Affiliation(s)
- Marco Massimo
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Carlotta Barelli
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Catalina Moreno
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Chiara Collesi
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Rebecca K Holloway
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, UK
- Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre and Keenan Research Institute for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Berta Crespo
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Veronique E Miron
- Centre for Discovery Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, UK
- Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Medical Research Council Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Barlo Multiple Sclerosis Centre and Keenan Research Institute for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34139 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| | - Katherine R Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
32
|
Mut-Arbona P, Huang L, Baranyi M, Tod P, Iring A, Calzaferri F, de Los Ríos C, Sperlágh B. Dual Role of the P2X7 Receptor in Dendritic Outgrowth during Physiological and Pathological Brain Development. J Neurosci 2023; 43:1125-1142. [PMID: 36732073 PMCID: PMC9962779 DOI: 10.1523/jneurosci.0805-22.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 02/04/2023] Open
Abstract
At high levels, extracellular ATP operates as a "danger" molecule under pathologic conditions through purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Its endogenous activation is associated with neurodevelopmental disorders; however, its function during early embryonic stages remains largely unclear. Our objective was to determine the role of P2X7R in the regulation of neuronal outgrowth. For this purpose, we performed Sholl analysis of dendritic branches on primary hippocampal neurons and in acute hippocampal slices from WT mice and mice with genetic deficiency or pharmacological blockade of P2X7R. Because abnormal dendritic branching is a hallmark of certain neurodevelopmental disorders, such as schizophrenia, a model of maternal immune activation (MIA)-induced schizophrenia, was used for further morphologic investigations. Subsequently, we studied MIA-induced behavioral deficits in young adult mice females and males. Genetic deficiency or pharmacological blockade of P2X7R led to branching deficits under physiological conditions. Moreover, pathologic activation of the receptor led to deficits in dendritic outgrowth on primary neurons from WT mice but not those from P2X7R KO mice exposed to MIA. Likewise, only MIA-exposed WT mice displayed schizophrenia-like behavioral and cognitive deficits. Therefore, we conclude that P2X7R has different roles in the development of hippocampal dendritic arborization under physiological and pathologic conditions.SIGNIFICANCE STATEMENT Our main finding is a novel role for P2X7R in neuronal branching in the early stages of development under physiological conditions. We show how a decrease in the expression of P2X7R during brain development causes the receptor to play pathologic roles in adulthood. Moreover, we studied a neurodevelopmental model of schizophrenia and found that, at higher ATP concentrations, endogenous activation of P2X7R is necessary and sufficient for the development of positive and cognitive symptoms.
Collapse
Affiliation(s)
- Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| | - Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
| | - Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristobal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083, Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085, Budapest, Hungary
| |
Collapse
|
33
|
Maternal Immune Activation Induced by Prenatal Lipopolysaccharide Exposure Leads to Long-Lasting Autistic-like Social, Cognitive and Immune Alterations in Male Wistar Rats. Int J Mol Sci 2023; 24:ijms24043920. [PMID: 36835329 PMCID: PMC9968168 DOI: 10.3390/ijms24043920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Several studies have supported the association between maternal immune activation (MIA) caused by exposure to pathogens or inflammation during critical periods of gestation and an increased susceptibility to the development of various psychiatric and neurological disorders, including autism and other neurodevelopmental disorders (NDDs), in the offspring. In the present work, we aimed to provide extensive characterization of the short- and long-term consequences of MIA in the offspring, both at the behavioral and immunological level. To this end, we exposed Wistar rat dams to Lipopolysaccharide and tested the infant, adolescent and adult offspring across several behavioral domains relevant to human psychopathological traits. Furthermore, we also measured plasmatic inflammatory markers both at adolescence and adulthood. Our results support the hypothesis of a deleterious impact of MIA on the neurobehavioral development of the offspring: we found deficits in the communicative, social and cognitive domains, together with stereotypic-like behaviors and an altered inflammatory profile at the systemic level. Although the precise mechanisms underlying the role of neuroinflammatory states in neurodevelopment need to be clarified, this study contributes to a better understanding of the impact of MIA on the risk of developing behavioral deficits and psychiatric illness in the offspring.
Collapse
|
34
|
Hall MB, Willis DE, Rodriguez EL, Schwarz JM. Maternal immune activation as an epidemiological risk factor for neurodevelopmental disorders: Considerations of timing, severity, individual differences, and sex in human and rodent studies. Front Neurosci 2023; 17:1135559. [PMID: 37123361 PMCID: PMC10133487 DOI: 10.3389/fnins.2023.1135559] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Epidemiological evidence suggests that one's risk of being diagnosed with a neurodevelopmental disorder (NDD)-such as autism, ADHD, or schizophrenia-increases significantly if their mother had a viral or bacterial infection during the first or second trimester of pregnancy. Despite this well-known data, little is known about how developing neural systems are perturbed by events such as early-life immune activation. One theory is that the maternal immune response disrupts neural processes important for typical fetal and postnatal development, which can subsequently result in specific and overlapping behavioral phenotypes in offspring, characteristic of NDDs. As such, rodent models of maternal immune activation (MIA) have been useful in elucidating neural mechanisms that may become dysregulated by MIA. This review will start with an up-to-date and in-depth, critical summary of epidemiological data in humans, examining the association between different types of MIA and NDD outcomes in offspring. Thereafter, we will summarize common rodent models of MIA and discuss their relevance to the human epidemiological data. Finally, we will highlight other factors that may interact with or impact MIA and its associated risk for NDDs, and emphasize the importance for researchers to consider these when designing future human and rodent studies. These points to consider include: the sex of the offspring, the developmental timing of the immune challenge, and other factors that may contribute to individual variability in neural and behavioral responses to MIA, such as genetics, parental age, the gut microbiome, prenatal stress, and placental buffering.
Collapse
|
35
|
Intrauterine Inflammation Leads to Select Sex- and Age-Specific Behavior and Molecular Differences in Mice. Int J Mol Sci 2022; 24:ijms24010032. [PMID: 36613475 PMCID: PMC9819857 DOI: 10.3390/ijms24010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sex-specific differences in behavior have been observed in anxiety and learning in children exposed to prenatal inflammation; however, whether these behaviors manifest differently by age is unknown. This study assesses possible behavioral changes due to in utero inflammation as a function of age in neonatal, juvenile, and adult animals and presents potential molecular targets for observed differences. CD-1 timed pregnant dams were injected in utero with lipopolysaccharide (LPS, 50 μg/animal) or saline at embryonic day 15. No differences in stress responses were measured by neonatal ultrasonic vocalizations between LPS- and saline-exposed groups of either sex. By contrast, prenatal inflammation caused a male-specific increase in anxiety in mature but not juvenile animals. Juvenile LPS-exposed females had decreased movement in open field testing that was not present in adult animals. We additionally observed improved memory retrieval after in utero LPS in the juvenile animals of both sexes, which in males may be related to a perseverative phenotype. However, there was an impairment of long-term memory in only adult LPS-exposed females. Finally, gene expression analyses revealed that LPS induced sex-specific changes in genes involved in hippocampal neurogenesis. In conclusion, intrauterine inflammation has age- and sex-specific effects on anxiety and learning that may correlate to sex-specific disruption of gene expression associated with neurogenesis in the hippocampus.
Collapse
|
36
|
Duan L, Liu J, Yin H, Wang W, Liu L, Shen J, Wang Z. Dynamic changes in spatiotemporal transcriptome reveal maternal immune dysregulation of autism spectrum disorder. Comput Biol Med 2022; 151:106334. [PMID: 36442276 DOI: 10.1016/j.compbiomed.2022.106334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Maternal immune activation (MIA) during pregnancy is known to be an environmental risk factor for neurodevelopment and autism spectrum disorder (ASD). However, it is unclear at which fetal brain developmental windows and regions MIA induces ASD-related neurodevelopmental transcriptional abnormalities. The non-chasm differentially expressed genes (DEGs) involved in MIA inducing ASD during fetal brain developmental windows were identified by performing the differential expression analysis and comparing the common DEGs among MIA at four different gestational development windows, ASD with multiple brain regions from human patients and mouse models, and human and mouse embryonic brain developmental trajectory. The gene set and functional enrichment analyses were performing to identify MIA dysregulated ASD-related the fetal neurodevelopmental windows and brain regions and function annotations. Additionally, the networks were constructed using Cytoscape for visualization. MIA at E12.5 and E14.5 increased the risk of distinct brain regions for ASD. MIA-driven transcriptional alterations of non-chasm DEGs, during the coincidence brain developmental windows between human and mice, involving ASD-relevant synaptic components, as well as immune- and metabolism-related functions and pathways. Furthermore, a great number of non-chasm brain development-, immune-, and metabolism-related DEGs were overlapped in at least two existing ASD-associated databases, suggesting that the others could be considered as the candidate targets to construct the model mice for explaining the pathological changes of ASD when environmental factors (MIA) and gene mutation effects co-occur. Overall, our search supported that transcriptome-based MIA dysregulated the brain development-, immune-, and metabolism-related non-chasm DEGs at specific embryonic brain developmental window and region, leading to abnormal embryonic neurodevelopment, to induce the increasing risk of ASD.
Collapse
Affiliation(s)
- Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Jiaxin Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Huamin Yin
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Wenhang Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Wenzhou University, Chashan University Town, Wenzhou, 325035, China.
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
37
|
Zhang Y, Yin HY, Rubini P, Tang Y, Illes P. A Possible Causal Involvement of Neuroinflammatory, Purinergic P2X7 Receptors in Psychiatric Disorders. Curr Neuropharmacol 2022; 20:2142-2155. [PMID: 35236262 PMCID: PMC9886837 DOI: 10.2174/1570159x20666220302152400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 11/22/2022] Open
Abstract
P2X7 receptors (Rs) are prominent members of the P2XR family, which after binding ATP, open non-selective cationic channels, thereby allowing the transmembrane passage of Na+, Ca2+, and K+. Long-lasting and repetitive stimulation of the receptor by its agonist leads to the formation of large membrane pores permeable for organic cations of up to 900 Da molecular size. These pores are believed to play a role in apoptosis and inflammation. P2X7Rs are located primarily at peripheral macrophages and microglial cells, the resident macrophages of the CNS. The coactivation of toll-like receptors 4 (TLR4) by lipopolysaccharide, a constituent of the cell membrane of gram-negative bacteria, and the P2X7R by ATP leads to the generation and release of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α. Together with the microglial release of chemokines, reactive oxygen and nitrogen species, proteases, and excitotoxic glutamate, these cytokines result in neurodegeneration. P2X7Rs were found not only to amplify various neurodegenerative illnesses, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, but also to participate in a range of psychiatric diseases, such as major depression, bipolar disorder, schizophrenia, and autism spectrum disorder. Based on the prevention/reversal of neuroinflammation, pharmacological antagonists of P2X7Rs and their genetic deletion in animal experiments counteract these deleterious psychiatric conditions. Hence, brain penetrant P2X7R antagonists are potential therapeutics for psychiatric diseases, although the available evidence still needs to be extended and validated by further clinical data.
Collapse
Affiliation(s)
- Ying Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Patrizia Rubini
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| | - Peter Illes
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109 Leipzig, Germany,Address correspondence to these authors at the Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04107, Leipzig, Germany; Tel/Fax: (+49)341-9724614, (+49)341-9724609; E-mail: or at Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075, Chengdu, China; Tel/Fax: (+86) 28-87689918, (+86) 28-87683962; E-mail:
| |
Collapse
|
38
|
Nudel R, Thompson WK, Børglum AD, Hougaard DM, Mortensen PB, Werge T, Nordentoft M, Benros ME. Maternal pregnancy-related infections and autism spectrum disorder-the genetic perspective. Transl Psychiatry 2022; 12:334. [PMID: 35974006 PMCID: PMC9381559 DOI: 10.1038/s41398-022-02068-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to a group of neurodevelopmental disorders which include deficits in behavior, social interaction and communication. ASD has a complex genetic architecture, and it is also influenced by certain environmental exposures. Both types of predisposing factors may be related to immunological mechanisms, involving, for example, immune system genes and infections. Past studies have shown an association between infections occurring during the pregnancy in the mother and increased risk of ASD in the child, an observation which has received recent support from experimental animal studies of ASD-like behavior. The aim of this study was to study the genetic contribution to this effect. We employed genetic correlation analyses across potential ASD subtypes stratified on the basis of maternal pregnancy-related infections within the iPSYCH ASD case-cohort sample, as well as a case-case GWAS. We validated the trends of the genetic correlation analyses observed in our sample using GWAS summary statistics from the PGC ASD study (excluding iPSYCH). The genetic correlation between ASD with a history of maternal pregnancy-related infections and ASD without a history of maternal infections in iPSYCH was rg = 0.3811. We obtained a similar estimate between the former and the PGC ASD phenotype (rg = 0.3997). Both estimates are lower compared to the genetic correlation between ASD without a history of maternal infections and the PGC ASD phenotype (rg = 0.6735), and between ASD with a history of maternal infections occurring only more than 2 months following childbirth and the PGC ASD phenotype (rg = 0.6293). Additionally, we observed genetic variance between the two main ASD phenotypes using summary statistics from the case-case GWAS in iPSYCH (h2cc = 0.1059), indicating genome-wide differences between the phenotypes. Our results suggest potentially different etiologies of ASD based on a history of maternal pregnancy-related infections, which may, in part, be genetic. This highlights the relevance of maternal pregnancy-related infections to genetic studies of ASD and provides new insights into the molecular underpinnings of ASD.
Collapse
Affiliation(s)
- Ron Nudel
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Wesley K Thompson
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Family Medicine and Public Health, Division of Biostatistics, University of California, San Diego, CA, USA
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University and Centre for Integrative Sequencing, iSEQ, Aarhus, Denmark
- Aarhus Genome Center, Aarhus, Denmark
| | - David M Hougaard
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Preben B Mortensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- National Center for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael E Benros
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Haddad FL, Patel SV, Doornaert EE, De Oliveira C, Allman BL, Baines KJ, Renaud SJ, Schmid S. Interleukin 15 modulates the effects of poly I:C maternal immune activation on offspring behaviour. Brain Behav Immun Health 2022; 23:100473. [PMID: 35668725 PMCID: PMC9166394 DOI: 10.1016/j.bbih.2022.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/21/2023] Open
Abstract
Maternal infections during pregnancy are linked with an increased risk for disorders like Autism Spectrum Disorder and schizophrenia in the offspring. Although precise mechanisms are still unclear, clinical and preclinical evidence suggest a strong role for maternal immune activation (MIA) in the neurodevelopmental disruptions caused by maternal infection. Previously, studies using the Polyinosinic:Polycytidylic (Poly I:C) MIA preclinical model showed that cytokines like Interleukin 6 (Il6) are important mediators of MIA's effects. In this study, we hypothesized that Il15 may similarly act as a mediator of Poly I:C MIA, given its role in the antiviral immune response. To test this hypothesis, we induced Poly I:C MIA at gestational day 9.5 in wildtype (WT) and Il15−/− rat dams and tested their offspring in adolescence and adulthood. Poly I:C MIA and Il15 knockout produced both independent and synergistic effects on offspring behaviour. Poly I:C MIA decreased startle reactivity in adult WT offspring but resulted in increased adolescent anxiety and decreased adult locomotor activity in Il15−/− offspring. In addition, Poly I:C MIA led to genotype-independent effects on locomotor activity and prepulse inhibition. Finally, we showed that Il15−/− offspring exhibit distinct phenotypes that were unrelated to Poly I:C MIA including altered startle reactivity, locomotion and signal transduction in the auditory brainstem. Overall, our findings indicate that the lack of Il15 can leave offspring either more or less susceptible to Poly I:C MIA, depending on the phenotype in question. Future studies should examine the contribution of fetal versus maternal Il15 in MIA to determine the precise developmental mechanisms underlying these changes. Poly I:C MIA decreases startle reactivity in adult WT but not Il15−/− offspring. Il15−/− offspring exposed to Poly I:C MIA show altered PPI and open field exploration. Il15−/− rats exhibit distinct behavioural phenotypes independent from MIA.
Collapse
|
40
|
Shuffrey LC, Firestein MR, Kyle MH, Fields A, Alcántara C, Amso D, Austin J, Bain JM, Barbosa J, Bence M, Bianco C, Fernández CR, Goldman S, Gyamfi-Bannerman C, Hott V, Hu Y, Hussain M, Factor-Litvak P, Lucchini M, Mandel A, Marsh R, McBrian D, Mourad M, Muhle R, Noble KG, Penn AA, Rodriguez C, Sania A, Silver WG, O’Reilly KC, Stockwell M, Tottenham N, Welch MG, Zork N, Fifer WP, Monk C, Dumitriu D. Association of Birth During the COVID-19 Pandemic With Neurodevelopmental Status at 6 Months in Infants With and Without In Utero Exposure to Maternal SARS-CoV-2 Infection. JAMA Pediatr 2022; 176:e215563. [PMID: 34982107 PMCID: PMC8728661 DOI: 10.1001/jamapediatrics.2021.5563] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
Importance Associations between in utero exposure to maternal SARS-CoV-2 infection and neurodevelopment are speculated, but currently unknown. Objective To examine the associations between maternal SARS-CoV-2 infection during pregnancy, being born during the COVID-19 pandemic regardless of maternal SARS-CoV-2 status, and neurodevelopment at age 6 months. Design, Setting, and Participants A cohort of infants exposed to maternal SARS-CoV-2 infection during pregnancy and unexposed controls was enrolled in the COVID-19 Mother Baby Outcomes Initiative at Columbia University Irving Medical Center in New York City. All women who delivered at Columbia University Irving Medical Center with a SARS-CoV-2 infection during pregnancy were approached. Women with unexposed infants were approached based on similar gestational age at birth, date of birth, sex, and mode of delivery. Neurodevelopment was assessed using the Ages & Stages Questionnaire, 3rd Edition (ASQ-3) at age 6 months. A historical cohort of infants born before the pandemic who had completed the 6-month ASQ-3 were included in secondary analyses. Exposures Maternal SARS-CoV-2 infection during pregnancy and birth during the COVID-19 pandemic. Main Outcomes and Measures Outcomes were scores on the 5 ASQ-3 subdomains, with the hypothesis that maternal SARS-CoV-2 infection during pregnancy would be associated with decrements in social and motor development at age 6 months. Results Of 1706 women approached, 596 enrolled; 385 women were invited to a 6-month assessment, of whom 272 (70.6%) completed the ASQ-3. Data were available for 255 infants enrolled in the COVID-19 Mother Baby Outcomes Initiative (114 in utero exposed, 141 unexposed to SARS-CoV-2; median maternal age at delivery, 32.0 [IQR, 19.0-45.0] years). Data were also available from a historical cohort of 62 infants born before the pandemic. In utero exposure to maternal SARS-CoV-2 infection was not associated with significant differences on any ASQ-3 subdomain, regardless of infection timing or severity. However, compared with the historical cohort, infants born during the pandemic had significantly lower scores on gross motor (mean difference, -5.63; 95% CI, -8.75 to -2.51; F1,267 = 12.63; P<.005), fine motor (mean difference, -6.61; 95% CI, -10.00 to -3.21; F1,267 = 14.71; P < .005), and personal-social (mean difference, -3.71; 95% CI, -6.61 to -0.82; F1,267 = 6.37; P<.05) subdomains in fully adjusted models. Conclusions and Relevance In this study, birth during the pandemic, but not in utero exposure to maternal SARS-CoV-2 infection, was associated with differences in neurodevelopment at age 6 months. These early findings support the need for long-term monitoring of children born during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lauren C. Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Morgan R. Firestein
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Margaret H. Kyle
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Andrea Fields
- Department of Psychology, Columbia University, New York, New York
| | | | - Dima Amso
- Department of Psychology, Columbia University, New York, New York
| | - Judy Austin
- Heilbrunn Department of Population and Family Health, Columbia University Irving Medical Center, New York, New York
| | - Jennifer M. Bain
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Barbosa
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Mary Bence
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Catherine Bianco
- Department of Psychology, Columbia University, New York, New York
| | - Cristina R. Fernández
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Sylvie Goldman
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, New York
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla
| | - Violet Hott
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yunzhe Hu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Maha Hussain
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, New York
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Arthur Mandel
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, New York
| | - Rachel Marsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Danielle McBrian
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, New York
| | - Mirella Mourad
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center New York, New York
| | - Rebecca Muhle
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Kimberly G. Noble
- Department of Neuroscience and Education, Teachers College, Columbia University, New York, New York
| | - Anna A. Penn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | | | - Ayesha Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Wendy G. Silver
- Department of Neurology, Division of Child Neurology, Columbia University Irving Medical Center, New York, New York
| | - Kally C. O’Reilly
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- New York State Psychiatric Institute, New York
| | - Melissa Stockwell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, New York
| | - Martha G. Welch
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York
| | - Noelia Zork
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center New York, New York
| | - William P. Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Catherine Monk
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center New York, New York
| | - Dani Dumitriu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
41
|
Iyshwarya B, Vajagathali M, Ramakrishnan V. Investigation of Genetic Polymorphism in Autism Spectrum Disorder: a Pathogenesis of the Neurodevelopmental Disorder. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2022; 6:136-146. [DOI: 10.1007/s41252-022-00251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/07/2023]
|
42
|
Napolitano A, Schiavi S, La Rosa P, Rossi-Espagnet MC, Petrillo S, Bottino F, Tagliente E, Longo D, Lupi E, Casula L, Valeri G, Piemonte F, Trezza V, Vicari S. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry 2022; 13:889636. [PMID: 35633791 PMCID: PMC9136002 DOI: 10.3389/fpsyt.2022.889636] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a worldwide prevalence of about 1%, characterized by impairments in social interaction, communication, repetitive patterns of behaviors, and can be associated with hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid features include internalizing and externalizing symptoms such as anxiety, depression, hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it is undoubted that the disorder is linked to some extent to both genetic and environmental factors. It is also well-documented and known that one of the most striking and consistent finding in ASD is the higher prevalence in males compared to females, with around 70% of ASD cases described being males. The present review looked into the most significant studies that attempted to investigate differences in ASD males and females thus trying to shade some light on the peculiar characteristics of this prevalence in terms of diagnosis, imaging, major autistic-like behavior and sex-dependent uniqueness. The study also discussed sex differences found in animal models of ASD, to provide a possible explanation of the neurological mechanisms underpinning the different presentation of autistic symptoms in males and females.
Collapse
Affiliation(s)
- Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza University, Rome, Italy
| | - Sara Petrillo
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Lupi
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| |
Collapse
|
43
|
Pearson CA, Iadecola C. When the BBB goes MIA. Proc Natl Acad Sci U S A 2022; 119:e2204159119. [PMID: 35507877 PMCID: PMC9171801 DOI: 10.1073/pnas.2204159119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Caroline A. Pearson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021
| |
Collapse
|
44
|
Abstract
Immunity could be viewed as the common factor in neurodevelopmental disorders and cancer. The immune and nervous systems coevolve as the embryo develops. Immunity can release cytokines that activate MAPK signaling in neural cells. In specific embryonic brain cell types, dysregulated signaling that results from germline or embryonic mutations can promote changes in chromatin organization and gene accessibility, and thus expression levels of essential genes in neurodevelopment. In cancer, dysregulated signaling can emerge from sporadic somatic mutations during human life. Neurodevelopmental disorders and cancer share similarities. In neurodevelopmental disorders, immunity, and cancer, there appears an almost invariable involvement of small GTPases (e.g., Ras, RhoA, and Rac) and their pathways. TLRs, IL-1, GIT1, and FGFR signaling pathways, all can be dysregulated in neurodevelopmental disorders and cancer. Although there are signaling similarities, decisive differentiating factors are timing windows, and cell type specific perturbation levels, pointing to chromatin reorganization. Finally, we discuss drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Corresponding author
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
45
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
46
|
Guma E, Bordeleau M, González Ibáñez F, Picard K, Snook E, Desrosiers-Grégoire G, Spring S, Lerch JP, Nieman BJ, Devenyi GA, Tremblay ME, Chakravarty MM. Differential effects of early or late exposure to prenatal maternal immune activation on mouse embryonic neurodevelopment. Proc Natl Acad Sci U S A 2022; 119:e2114545119. [PMID: 35286203 PMCID: PMC8944668 DOI: 10.1073/pnas.2114545119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/01/2022] [Indexed: 12/23/2022] Open
Abstract
Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Katherine Picard
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Emily Snook
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gabriel Desrosiers-Grégoire
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Imaging Program, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Gabriel A. Devenyi
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V8P 5C2, Canada
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec–Université Laval, Quebec City, QC G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V8P 5C2, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - M. Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
47
|
Kwon HK, Choi GB, Huh JR. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends Immunol 2022; 43:230-244. [PMID: 35131181 PMCID: PMC9005201 DOI: 10.1016/j.it.2022.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Exposure to heightened inflammation in pregnancy caused by infections or other inflammatory insults has been associated with the onset of neurodevelopmental and psychiatric disorders in children. Rodent models have provided unique insights into how this maternal immune activation (MIA) disrupts brain development. Here, we discuss the key immune factors involved, highlight recent advances in determining the molecular and cellular pathways of MIA, and review how the maternal immune system affects fetal development. We also examine the roles of microbiomes in shaping maternal immune function and the development of autism-like phenotypes. A comprehensive understanding of the gut bacteria-immune-neuro interaction in MIA is essential for developing diagnostic and therapeutic measures for high-risk pregnant women and identifying targets for treating inflammation-induced neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea; Pohang University of Science and Technology, Pohang, Korea.
| | - Gloria B. Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun R. Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA.,Correspondence: Ho-Keun Kwon () and Jun R. Huh ()
| |
Collapse
|
48
|
Nakamura JP, Schroeder A, Gibbons A, Sundram S, Hill RA. Timing of maternal immune activation and sex influence schizophrenia-relevant cognitive constructs and neuregulin and GABAergic pathways. Brain Behav Immun 2022; 100:70-82. [PMID: 34808289 DOI: 10.1016/j.bbi.2021.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/17/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal immune activation (MIA) during pregnancy is an established environmental risk factor for schizophrenia. Timing of immune activation exposure as well as sex of the exposed offspring are critical factors in defining the effects of MIA. However, the specificity of MIA on the component structure of schizophrenia, especially cognition, has been difficult to assess due to a lack of translational validity of maze-like testing paradigms. We aimed to assess cognitive domains relevant to schizophrenia using highly translational touchscreen-based tasks in male and female mice exposed to the viral mimetic, poly(I:C) (5 mg/k, i.p.), during early (gestational day (GD) 9-11) and late (GD13-15) gestational time points. Gene expression of schizophrenia candidate pathways were assessed in fetal brain immediately following poly(I:C) exposure and in adulthood to identify its influence on neurodevelopmental processes. Sex and window specific alterations in cognitive performance were found with the early window of MIA exposure causing female-specific disruptions to working memory and reduced perseverative behaviour, while late MIA exposure caused male-specific changes to working memory and deficits in reversal learning. GABAergic specification marker, Nkx2.1 gene expression was reduced in fetal brains and reelin expression was reduced in adult hippocampus of both early and late poly(I:C) exposed mice. Neuregulin and EGF signalling were initially upregulated in the fetal brain, but were reduced in the adult hippocampus, with male mice exposed in the late window showing reduced Nrg3 expression. Serine racemase was reduced in both fetal and adult brain, but again, adult reductions were specific to male mice exposed at the late time point. Overall, we show that cognitive constructs relevant to schizophrenia are altered by in utero exposure to maternal immune activation, but are highly dependent on the timing of infection and the sex of the offspring. Glutamatergic and epidermal growth factor pathways were similarly altered by MIA in a timing and sex dependent manner, while MIA-induced GABAergic deficits were independent of timing or sex.
Collapse
Affiliation(s)
- J P Nakamura
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - A Schroeder
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - A Gibbons
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - S Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia; Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - R A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
49
|
Han VX, Jones HF, Patel S, Mohammad SS, Hofer MJ, Alshammery S, Maple-Brown E, Gold W, Brilot F, Dale RC. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain Behav Immun 2022; 99:91-105. [PMID: 34562595 DOI: 10.1016/j.bbi.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is increasingly recognised to play a major role in gene-environment interactions in neurodevelopmental disorders (NDDs). The effects of aberrant immune responses to environmental stimuli in the mother and in the child can affect neuroimmune signalling that is central to brain development. Toll-like receptors (TLR) are the best known innate immune pattern and danger recognition sensors to various environmental threats. In animal models, maternal immune activation (MIA), secondary to inflammatory factors including maternal gestational infection, obesity, diabetes, and stress activate the TLR pathway in maternal blood, placenta, and fetal brain, which correlate with offspring neurobehavioral abnormalities. Given the central role of TLR activation in animal MIA models, we systematically reviewed the human evidence for TLR activation and response to stimulation across the maternal-fetal interface. Firstly, we included 59 TLR studies performed in peripheral blood of adults in general population (outside of pregnancy) with six chronic inflammatory factors which have epidemiological evidence for increased risk of offspring NDDs, namely, obesity, diabetes mellitus, depression, low socio-economic status, autoimmune diseases, and asthma. Secondly, eight TLR studies done in human pregnancies with chronic inflammatory factors, involving maternal blood, placenta, and cord blood, were reviewed. Lastly, ten TLR studies performed in peripheral blood of individuals with NDDs were included. Despite these studies, there were no studies which examined TLR function in both the pregnant mother and their offspring. Increased TLR2 and TLR4 mRNA and/or protein levels in peripheral blood were common in obesity, diabetes mellitus, depression, autoimmune thyroid disease, and rheumatoid arthritis. To a lesser degree, TLR 3, 7, 8, and 9 activation were found in peripheral blood of humans with autoimmune diseases and depression. In pregnancy, increased TLR4 mRNA levels were found in the peripheral blood of women with diabetes mellitus and systemic lupus erythematosus. Placental TLR activation was found in mothers with obesity or diabetes. Postnatally, dysregulated TLR response to stimulation was found in peripheral blood of individuals with NDDs. This systematic review found emerging evidence that TLR activation may represent a mechanistic link between maternal inflammation and offspring NDD, however the literature is incomplete and longitudinal outcome studies are lacking. Identification of pathogenic mechanisms in MIA could create preventive and therapeutic opportunities to mitigate NDD prevalence and severity.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Khoo-Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Emma Maple-Brown
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Wendy Gold
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Fabienne Brilot
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
50
|
Murlanova K, Begmatova D, Weber-Stadlbauer U, Meyer U, Pletnikov M, Pinhasov A. Double trouble: Prenatal immune activation in stress sensitive offspring. Brain Behav Immun 2022; 99:3-8. [PMID: 34547401 DOI: 10.1016/j.bbi.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections during pregnancy are associated with increased incidence of psychiatric disorders in offspring. The pathological outcomes of viral infection appear to be caused by the deleterious effects of innate immune response-associated factors on development of the fetus, which predispose the offspring to pathological conditions in adulthood. The negative impact of viral infections varies substantially between pregnancies. Here, we explored whether differential stress sensitivity underlies the high heterogeneity of immune reactivity and whether this may influence the pathological consequences of maternal immune activation. Using mouse models of social dominance (Dom) and submissiveness (Sub), which possess innate features of stress resilience and vulnerability, respectively, we identified differential immune reactivity to the synthetic analogue of viral double-stranded RNA, Poly(I:C), in Sub and Dom nulliparous and pregnant females. More specifically, we found that Sub females showed an exacerbated pro- and anti-inflammatory cytokine response to Poly(I:C) as compared with Dom females. Sub offspring born to Sub mothers (stress sensitive offspring) showed enhanced locomotory response to the non-competitive NMDA antagonist, MK-801, which was potentiated by prenatal Poly(I:C) exposure. Our findings suggest that inherited stress sensitivity may lead to functional changes in glutamatergic signaling, which in turn is further exacerbated by prenatal exposure to viral-like infection. The maternal immunome seems to play a crucial role in these observed phenomena.
Collapse
Affiliation(s)
- Kateryna Murlanova
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel; Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Dilorom Begmatova
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Zurich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH, Zurich, Zurich, Switzerland
| | - Mikhail Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| |
Collapse
|