1
|
Lowe AJ, Royer DL, Wieczynski DJ, Butrim MJ, Reichgelt T, Azevedo-Schmidt L, Peppe DJ, Enquist BJ, Kerkoff AJ, Michaletz ST, Strömberg CAE. Global patterns in community-scale leaf mass per area distributions of extant woody non-monocot angiosperms and their utility in the fossil record. AMERICAN JOURNAL OF BOTANY 2025; 112:e70019. [PMID: 40123060 DOI: 10.1002/ajb2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
PREMISE Leaf mass per area (LMA) links leaf economic strategies, community assembly, and climate and can be reconstructed from woody non-monocot angiosperm (WNMA) fossils using the petiole metric (PM; petiole width2/leaf area). Reliable interpretation of LMA reconstructed from the fossil record is limited by an incomplete understanding of how PM and LMA are correlated at the community scale and what climatic parameters drive variation of both measured and reconstructed LMA of WNMAs globally. METHODS A modern, global, community-scale data set of in situ WNMA LMA and PM was compiled to test leading hypotheses for environmental drivers of LMA and quantify LMA-PM relationships. Correlations among PM, LMA, climate (Köppen types and continuous data), and leaf habit were assessed and quantified using several uni- and multivariate methods. RESULTS Community mean LMA increased under warmer and less seasonal temperatures. Drought-prone communities had the highest LMA variance, likely due to disparity between riparian and non-riparian microhabitats. PM and LMA were correlated for community mean and variance, and their correlations with climate were similar. These patterns indicate that climatic correlatives of modern LMA can inform relative trends in reconstructed fossil LMA. In contrast, matching "absolute" LMA distributions between fossil and modern sites does not allow reliable inference of analogous climate types. CONCLUSIONS This study furthers our understanding of processes influencing the assembly of WNMA leaf economic strategies in plant communities, highlighting the importance of temperature seasonality and habitat heterogeneity. We also provide a method to reconstruct, and refine the framework to interpret, community-scale LMA in the fossil record.
Collapse
Affiliation(s)
- Alexander J Lowe
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Dana L Royer
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, USA
| | | | - Matthew J Butrim
- Department of Geology and Geophysics, Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Tammo Reichgelt
- Department of Earth Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Andrew J Kerkoff
- Department of Biology, University of Puget Sound, Tacoma, WA, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, BC, Canada
| | | |
Collapse
|
2
|
Vázquez-Segovia K, Olson ME, Campo J, Ángeles G, Martínez-Garza C, Vetter S, Rosell JA. Tip-to-base bark cross-sectional areas contribute to understanding the drivers of carbon allocation to bark and the functional roles of bark tissues. THE NEW PHYTOLOGIST 2025; 245:1953-1968. [PMID: 39788906 DOI: 10.1111/nph.20379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Along their lengths, stems experience different functional demands. Because bark and wood traits are usually studied at single points on stems, it remains unclear how carbon allocation changes along tip-to-base trajectories across species. We examined bark vs wood allocation by measuring cross-sectional areas of outer and inner bark (OB and IB), IB regions (secondary phloem, cortex, and phelloderm), and wood from stem tips to bases of 35 woody angiosperm species of diverse phylogenetic lineages, climates, fire regimes, and bark morphologies. We examined how varied bark vs wood allocation was and how it was affected by precipitation, temperature, soil fertility, leaf habit, and fire regime. Allocation to phloem (relative to wood) varied little across species, whereas allocation to other tissues, strongly affected by the environment or shed in ontogeny, varied widely. Allocation to parenchyma-rich cortex and phloem was higher at drier sites, suggesting storage. Higher allocation to phloem and cortex also occurred on infertile soils, and to phloem in drought-deciduous vs cold-deciduous and evergreen species. Allocation to OB was highest at sites with frequent fires and decreased with fire frequency. Our approach contextualizes inferences from across-species studies, allows testing functional hypotheses, and contributes to disentangling the functional roles of poorly understood bark tissues.
Collapse
Affiliation(s)
- Karen Vázquez-Segovia
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico
- Department of Botany, Rhodes University, Grahamstown, 6140, South Africa
| | - Julio Campo
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Guillermo Ángeles
- Red de Ecología Funcional, Instituto de Ecología, A.C., Xalapa, Veracruz, 91073, Mexico
| | - Cristina Martínez-Garza
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Mexico
| | - Susanne Vetter
- Department of Botany, Rhodes University, Grahamstown, 6140, South Africa
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510, Mexico
- Department of Botany, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
3
|
Zhang YB, Huang XY, Corrêa Scalon M, Ke Y, Liu JX, Wang Q, Li WH, Yang D, Ellsworth DS, Zhang YJ, Zhang JL. Mistletoes have higher hydraulic safety but lower efficiency in xylem traits than their hosts. THE NEW PHYTOLOGIST 2025; 245:607-624. [PMID: 39538365 DOI: 10.1111/nph.20257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Both mistletoes and their hosts are challenged by increasing drought, highlighting the necessity of understanding their comparative hydraulic properties. The high transpiration of mistletoes requires efficient water transport, while high xylem tensions demand strong embolism resistance, representing a hydraulic paradox. This study, conducted across four environments with different aridity indices in Yunnan, China, examined the xylem traits of 119 mistletoe-host species pairs. Mistletoes showed lower water use efficiency, indicating a more aggressive water use. They also showed lower hydraulic efficiency (lower vessel diameter and theoretical hydraulic conductivity) but higher safety (lower vulnerability index and higher conduit wall reinforcement, vessel grouping index, and wood density) compared with their hosts, supporting the trade-off between efficiency and safety. Environmental variation across sites significantly affected xylem trait comparisons between mistletoes and hosts. Additionally, the xylem traits of mistletoes were strongly influenced by host water supply efficiency. The overall xylem trait relationships in mistletoes and hosts were different. These findings stress the impact of host and site on the hydraulic traits of mistletoes, and suggest that mistletoes may achieve high transpiration by maintaining high stomatal conductance under low water potentials. This study illuminates the distinctive adaptation strategies of mistletoes due to their parasitic lifestyle.
Collapse
Affiliation(s)
- Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Xian-Yan Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Marina Corrêa Scalon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, PR, 81531-990, Brazil
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Hua Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
- Climate Change Institute, University of Maine, Orono, ME, 04469, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| |
Collapse
|
4
|
Harrison Day BL, Brodersen CR, Brodribb TJ. Weak link or strong foundation? Vulnerability of fine root networks and stems to xylem embolism. THE NEW PHYTOLOGIST 2024; 244:1288-1302. [PMID: 39267263 DOI: 10.1111/nph.20115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Resolving the position of roots in the whole-plant hierarchy of drought-induced xylem embolism resistance is fundamental for predicting when species become isolated from soil water resources. Published research generally suggests that roots are the most vulnerable organ of the plant vascular system, although estimates vary significantly. However, our knowledge of root embolism excludes the fine roots (< 2 mm diameter) that form the bulk of total absorptive surface area of the root network for water and nutrient uptake. We measured fine root and stem xylem vulnerability in 10 vascular plant species from the major land plant clades (five angiosperms, three conifers, a fern and lycophyte), using standardised in situ methods (Optical Methods and MicroCT). Mean fine root embolism resistance across the network matched or exceeded stems in all study species. In six of these species (one fern, one lycophyte, three conifers and one angiosperm), fine roots were significantly more embolism resistant than stems. No clear relationship was found between root xylem conduit diameter and vulnerability. These results provide insight into the resistance of the plant hydraulic pathway at the site of water and nutrient uptake, and challenge the long-standing assumption that fine roots are more vulnerable than stems.
Collapse
Affiliation(s)
- Beatrice L Harrison Day
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Craig R Brodersen
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
- School of the Environment, Yale University, New Haven, CT, 06520, USA
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| |
Collapse
|
5
|
Zhang Q, Shen H, Peng L, Tao Y, Zhou X, Yin B, Fan Z, Zhang J. Intraspecific Variability of Xylem Hydraulic Traits of Calligonum mongolicum Growing in the Desert of Northern Xinjiang, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:3005. [PMID: 39519923 PMCID: PMC11548551 DOI: 10.3390/plants13213005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Plant hydraulic traits are essential for understanding and predicting plant drought resistance. Investigations into the mechanisms of the xylem anatomical traits of desert shrubs in response to climate can help us to understand plant survival strategies in extreme environments. This study examined the xylem anatomical traits and related functional traits of the branches of seven Calligonum mongolicum populations along a precipitation gradient, to explore their adaptive responses to climatic factors. We found that (1) the vessel diameter (D), vessel diameter contributing to 95% of hydraulic conductivity (D95), hydraulic weighted vessel diameter (Dh), vessel density (VD), percentage of conductive area (CA), thickness-to-span ratio of vessels ((t/b)2), and theoretical hydraulic conductivity (Kth) varied significantly across sites, while the vessel group index (Vg), wood density (WD), and vulnerability index (VI) showed no significant differences. (2) Principal component analysis revealed that efficiency-related traits (Kth, Dh, D95) and safety-related traits (VI, VD, inter-wall thickness of the vessel (t)) were the primary factors driving trait variation. (3) Precipitation during the wettest month (PWM) had the strongest influence, positively correlating with (t/b)2 and negatively with D, D95, Dh, CA, and Kth. (4) Structural equation modeling confirmed PWM as the main driver of Kth, with indirect effects through CA. These findings indicate that C. mongolicum displays high plasticity in xylem traits, enabling adaptation to changing environments, and providing insight into the hydraulic strategies of desert shrubs under climate change.
Collapse
Affiliation(s)
- Quanling Zhang
- Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hui Shen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Peng
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830017, China
| | - Ye Tao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Benfeng Yin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zhiqiang Fan
- Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, College of Life Sciences, Anqing Normal University, Anqing 246133, China;
| | - Jing Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (H.S.); (L.P.); (Y.T.); (X.Z.); (B.Y.)
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
6
|
Jacobsen AL, Venturas MD, Hacke UG, Pratt RB. Sap flow through partially embolized xylem vessel networks. PLANT, CELL & ENVIRONMENT 2024; 47:3375-3392. [PMID: 38826042 DOI: 10.1111/pce.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024]
Abstract
Sap is transported through numerous conduits in the xylem of woody plants along the path from the soil to the leaves. When all conduits are functional, vessel lumen diameter is a strong predictor of hydraulic conductivity. As vessels become embolized, sap movement becomes increasingly affected by factors operating at scales beyond individual conduits, creating resistances that result in hydraulic conductivity diverging from diameter-based estimates. These effects include pit resistances, connectivity, path length, network topology, and vessel or sector isolation. The impact of these factors varies with the level and distribution of emboli within the network, and manifest as alterations in the relationship between the number and diameter of embolized vessels with measured declines in hydraulic conductivity across vulnerability to embolism curves. Divergences between measured conductivity and diameter-based estimates reveal functional differences that arise because of species- and tissue-specific vessel network structures. Such divergences are not uniform, and xylem tissues may diverge in different ways and to differing degrees. Plants regularly operate under nonoptimal conditions and contain numerous embolized conduits. Understanding the hydraulic implications of emboli within a network and the function of partially embolized networks are critical gaps in our understanding of plants occurring within natural environments.
Collapse
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, California, USA
| | - Martin D Venturas
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Uwe G Hacke
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Brandon Pratt
- Department of Biology, California State University, Bakersfield, California, USA
| |
Collapse
|
7
|
Anfodillo T, Olson ME. Stretched sapwood, ultra-widening permeability and ditching da Vinci: revising models of plant form and function. ANNALS OF BOTANY 2024; 134:19-42. [PMID: 38634673 PMCID: PMC11161570 DOI: 10.1093/aob/mcae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
Collapse
Affiliation(s)
- Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD) 35020, Italy
| | - Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Plavcová L, Jandová V, Altman J, Liancourt P, Korznikov K, Doležal J. Variations in wood anatomy in Afrotropical trees with a particular emphasis on radial and axial parenchyma. ANNALS OF BOTANY 2024; 134:151-162. [PMID: 38525918 PMCID: PMC11161563 DOI: 10.1093/aob/mcae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIMS Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa. METHODS We determined how elevation, stem height and wood density affect interspecific differences in vessel, fibre, and specific axial (AP) and radial (RP) parenchyma fractions. We focus on quantifying distinct subcategories of homogeneous or heterogeneous rays and apotracheal, paratracheal and banded axial parenchyma. KEY RESULTS Elevation-related cooling correlated with reduced AP fractions and vessel diameters, while fibre fractions increased. Lower elevations exhibited elevated AP fractions due to abundant paratracheal and wide-banded parenchyma in tall trees from coastal and lowland forests. Vasicentric and aliform AP were predominantly associated with greater tree height and wider vessels, which might help cope with high evaporative demands via elastic wood capacitance. In contrast, montane trees featured a higher fibre proportion, scarce axial parenchyma, smaller vessel diameters and higher vessel densities. The lack of AP in montane trees was often compensated for by extended uniseriate ray sections with upright or squared ray cells or the presence of living fibres. CONCLUSIONS Elevation gradient influenced specific xylem fractions, with lower elevations showing elevated AP due to abundant paratracheal and wide-banded parenchyma, securing greater vessel-to-parenchyma connectivity and lower embolism risk. Montane trees featured a higher fibre proportion and smaller vessel diameters, which may aid survival under greater environmental seasonality and fire risk.
Collapse
Affiliation(s)
- Lenka Plavcová
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, Hradec Králové 500 03, Czech Republic
| | - Veronika Jandová
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Pierre Liancourt
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Kirill Korznikov
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Rodriguez-Zaccaro FD, Lieberman M, Groover A. A systems genetic analysis identifies putative mechanisms and candidate genes regulating vessel traits in poplar wood. FRONTIERS IN PLANT SCIENCE 2024; 15:1375506. [PMID: 38867883 PMCID: PMC11167656 DOI: 10.3389/fpls.2024.1375506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Wood is the water conducting tissue of tree stems. Like most angiosperm trees, poplar wood contains water-conducting vessel elements whose functional properties affect water transport and growth rates, as well as susceptibility to embolism and hydraulic failure during water stress and drought. Here we used a unique hybrid poplar pedigree carrying genomically characterized chromosomal insertions and deletions to undertake a systems genomics analysis of vessel traits. We assayed gene expression in wood forming tissues from clonal replicates of genotypes covering dosage quantitative trait loci with insertions and deletions, genotypes with extreme vessel trait phenotypes, and control genotypes. A gene co-expression analysis was used to assign genes to modules, which were then used in integrative analyses to identify modules associated with traits, to identify putative molecular and cellular processes associated with each module, and finally to identify candidate genes using multiple criteria including dosage responsiveness. These analyses identified known processes associated with vessel traits including stress response, abscisic acid and cell wall biosynthesis, and in addition identified previously unexplored processes including cell cycle and protein ubiquitination. We discuss our findings relative to component processes contributing to vessel trait variation including signaling, cell cycle, cell expansion, and cell differentiation.
Collapse
Affiliation(s)
| | - Meric Lieberman
- University of California Davis, Genome Center, Davis, CA, United States
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- USDA Forest Service, Northern Research Station, Burlington, VT, United States
| |
Collapse
|
10
|
Jupa R, Rosell JA, Pittermann J. Bark structure is coordinated with xylem hydraulic properties in branches of five Cupressaceae species. PLANT, CELL & ENVIRONMENT 2024; 47:1439-1451. [PMID: 38234202 DOI: 10.1111/pce.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
The properties of bark and xylem contribute to tree growth and survival under drought and other types of stress conditions. However, little is known about the functional coordination of the xylem and bark despite the influence of selection on both structures in response to drought. To this end, we examined relationships between proportions of bark components (i.e. thicknesses of tissues outside the vascular cambium) and xylem transport properties in juvenile branches of five Cupressaceae species, focusing on transport efficiency and safety from hydraulic failure via drought-induced embolism. Both xylem efficiency and safety were correlated with multiple bark traits, suggesting that xylem transport and bark properties are coordinated. Specifically, xylem transport efficiency was greater in species with thicker secondary phloem, greater phloem-to-xylem thickness ratio and phloem-to-xylem cell number ratio. In contrast, species with thicker bark, living cortex and dead bark tissues were more resistant to embolism. Thicker phellem layers were associated with lower embolism resistance. Results of this study point to an important connection between xylem transport efficiency and phloem characteristics, which are shaped by the activity of vascular cambium. The link between bark and embolism resistance affirms the importance of both tissues to drought tolerance.
Collapse
Affiliation(s)
- Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
11
|
Power CC, Normand S, von Arx G, Elberling B, Corcoran D, Krog AB, Bouvin NK, Treier UA, Westergaard-Nielsen A, Liu Y, Prendin AL. No effect of snow on shrub xylem traits: Insights from a snow-manipulation experiment on Disko Island, Greenland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169896. [PMID: 38185160 DOI: 10.1016/j.scitotenv.2024.169896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Widespread shrubification across the Arctic has been generally attributed to increasing air temperatures, but responses vary across species and sites. Wood structures related to the plant hydraulic architecture may respond to local environmental conditions and potentially impact shrub growth, but these relationships remain understudied. Using methods of dendroanatomy, we analysed shrub ring width (RW) and xylem anatomical traits of 80 individuals of Salix glauca L. and Betula nana L. at a snow manipulation experiment in Western Greenland. We assessed how their responses differed between treatments (increased versus ambient snow depth) and soil moisture regimes (wet and dry). Despite an increase in snow depth due to snow fences (28-39 %), neither RW nor anatomical traits in either species showed significant responses to this increase. In contrast, irrespective of the snow treatment, the xylem specific hydraulic conductivity (Ks) and earlywood vessel size (LA95) for the study period were larger in S. glauca (p < 0.1, p < 0.01) and B. nana (p < 0.01, p < 0.001) at the wet than the dry site, while both species had larger vessel groups at the dry than the wet site (p < 0.01). RW of B. nana was higher at the wet site (p < 0.01), but no differences were observed for S. glauca. Additionally, B. nana Ks and LA95 showed different trends over the study period, with decreases observed at the dry site (p < 0.001), while for other responses no difference was observed. Our results indicate that, taking into account ontogenetic and allometric trends, hydraulic related xylem traits of both species, along with B. nana growth, were influenced by soil moisture. These findings suggest that soil moisture regime, but not snow cover, may determine xylem responses to future climate change and thus add to the heterogeneity of Arctic shrub dynamics, though more long-term species- and site- specific studies are needed.
Collapse
Affiliation(s)
- Candice C Power
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark.
| | - Signe Normand
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Derek Corcoran
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Amanda B Krog
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark
| | | | - Urs Albert Treier
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; SustainScapes - Center for Sustainable Landscapes under Global Change, Aarhus University, Denmark
| | - Andreas Westergaard-Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Yijing Liu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Angela L Prendin
- Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Denmark; Department of Land Environment Agriculture and Forestry (TeSAF), University of Padova, Legnaro, Italy
| |
Collapse
|
12
|
Jacobsen AL. Growing whole-plant understanding through study of below-ground structural diversity. A commentary on 'Do root secondary xylem functional traits differ between growth forms in Fabaceae species in a seasonally dry Neotropical environment?'. ANNALS OF BOTANY 2023; 132:i-ii. [PMID: 37883502 PMCID: PMC10666998 DOI: 10.1093/aob/mcad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Affiliation(s)
- Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, CA 93311, USA
| |
Collapse
|
13
|
Xiang Y, Kagawa A, Nagai S, Yasuda Y, Utsumi Y. The difference in the functional water flow network between the stem and current-year root cross-sectional surfaces in Salix gracilistyla stem xylem. TREE PHYSIOLOGY 2023; 43:1326-1340. [PMID: 37098160 DOI: 10.1093/treephys/tpad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 06/19/2023]
Abstract
The dye injection method has been applied to many species to analyze the xylem water transport pathway in trees. However, traditional dye injection methods introduced dye tracers from the surface of cut stems, including several annual rings. Furthermore, the traditional dye injection method did not evaluate radial water movement from the outermost annual rings to the inner annual rings. In this study, we assessed the difference in radial water movement visualized by an injected dye, between stem base cut and current-year root cut samples of Salix gracilistyla Miq., with current-year roots grown hydroponically. The results showed that the number of stained annual rings in the root cut samples was smaller than that in the stem cut samples, and the percentage of stained vessels in the root cut samples was significantly smaller than that in the stem base cut samples in the second and third annual rings. In the current-year root cut samples, water transport mainly occurred in the outermost rings from the current-year roots to leaves. In addition, the theoretical hydraulic conductivity of stained vessels in the stem cut samples was higher in the current-year root cut samples in the second and third annual rings. These findings indicate that the previously reported dye injection method using stem cut samples overestimated the water transport pathway in the inner part of the stems. Moreover, previous hydraulic conductivity measurement methods might not have considered the effects of radial resistance through the annual ring boundary, and they might have overestimated the hydraulic conductivity in the inner annual rings.
Collapse
Affiliation(s)
- Yan Xiang
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi Ward, Fukuoka city, Fukuoka, 819-0385, Japan
| | - Akira Kagawa
- Forestry and Forest Products Research Institute, Wood Anatomy and Quality Laboratory, 1 Matsunosato, Tsukuba, Ibaraki 300-1244, Japan
| | - Satoshi Nagai
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Forestry and Forest Products Research Institute, 430 Yamasakicho Ikaba, Shiso, Hyogo 671-2515, Japan
| | - Yuko Yasuda
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, 1 Chome-21-24 Korimoto, Kagoshima City Kagoshima, 890-0065, Japan
| | - Yasuhiro Utsumi
- Kyushu University Forest, Kyushu University, 394-1 Tsubakuro, Sasaguri, Kasuya District, Fukuoka 811-2415, Japan
| |
Collapse
|
14
|
Zhang KY, Yang D, Zhang YB, Liu Q, Wang YSD, Ke Y, Xiao Y, Wang Q, Dossa GGO, Schnitzer SA, Zhang JL. Vessel dimorphism and wood traits in lianas and trees among three contrasting environments. AMERICAN JOURNAL OF BOTANY 2023; 110:e16154. [PMID: 36912354 DOI: 10.1002/ajb2.16154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Determining how xylem vessel diameters vary among plants and across environments gives insights into different water-use strategies among species and ultimately their distributions. Here, we tested the vessel dimorphism hypothesis that the simultaneous occurrence of many narrow and a few wide vessels gives lianas an advantage over trees in seasonally dry environments. METHODS We measured the diameters of 13,958 vessels from 15 liana species and 10,430 vessels from 16 tree species in a tropical seasonal rainforest, savanna, and subtropical evergreen broadleaved forest. We compared differences in mean and hydraulically weighted vessel diameter (MVD and Dh ), vessel density (VD), theoretical hydraulic conductivity (Kt ), vessel area fraction (VAF), and wood density (WD) between lianas and trees and among three sites. RESULTS Nine liana species and four tree species had dimorphic vessels. From the tropical seasonal rainforest to the savanna, liana MVD, Dh and Kt decreased, and VD and WD increased, while only tree WD increased. From the tropical seasonal rainforest to the subtropical forest, six wood traits remained unchanged for lianas, while tree MVD, Dh and Kt decreased and VD increased. Trait space for lianas and trees were more similar in the savanna and more divergent in the subtropical forest compared to the tropical seasonal rainforest. CONCLUSIONS These results suggest that lianas tend to possess greater vessel dimorphism, which may explain how lianas grow well during seasonal drought, influencing their unique distribution across tropical rainfall gradients.
Collapse
Affiliation(s)
- Ke-Yan Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Yun-Bing Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qi Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Yang-Si-Ding Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yan Ke
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Qin Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| |
Collapse
|
15
|
Weithmann G, Paligi SS, Schuldt B, Leuschner C. Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. TREE PHYSIOLOGY 2022; 42:2224-2238. [PMID: 35861677 DOI: 10.1093/treephys/tpac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Crucial for the climate adaptation of trees is a xylem anatomical structure capable of adjusting to changing water regimes. Although species comparisons across climate zones have demonstrated anatomical change in response to altered water availability and tree height, less is known about the adaptability of tree vascular systems to increasing water deficits at the intraspecific level. Information on the between-population and within-population variability of xylem traits helps assessing a species' ability to cope with climate change. We investigated the variability of wood anatomical and related hydraulic traits in terminal branches of European beech (Fagus sylvatica L.) trees across a precipitation gradient (520-890 mm year-1) and examined the influence of climatic water balance (CWB), soil water capacity (AWC), neighborhood competition (CI), tree height and branch age on these traits. Furthermore, the relationship between xylem anatomical traits and embolism resistance (P50) was tested. Within-population trait variation was larger than between-population variation. Vessel diameter, lumen-to-sapwood area ratio and potential conductivity of terminal branches decreased with decreasing CWB, but these traits were not affected by AWC, whereas vessel density increased with an AWC decrease. In contrast, none of the studied anatomical traits were influenced by variation in tree height (21-34 m) or CI. Branch age was highly variable (2-22 years) despite equal diameter and position in the flow path, suggesting different growth trajectories in the past. Vessel diameter decreased, and vessel density increased, with increasing branch age, reflecting negative annual radial growth trends. Although vessel diameter was not related to P50, vessel grouping index and lumen-to-sapwood area ratio showed a weak, though highly significant, positive relationship to P50. We conclude that the xylem anatomy of terminal tree-top branches in European beech is modified in response to increasing climatic aridity and/or decreasing soil water availability, independent of a tree height effect.
Collapse
Affiliation(s)
- Greta Weithmann
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Sharath Shyamappa Paligi
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz, 97082 Würzburg, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
16
|
Dória LC, Sonsin-Oliveira J, Rossi S, Marcati CR. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. ANNALS OF BOTANY 2022; 130:445-456. [PMID: 35863898 PMCID: PMC9486921 DOI: 10.1093/aob/mcac095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/20/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Collapse
Affiliation(s)
| | - Julia Sonsin-Oliveira
- Departamento de Biologia Vegetal, Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasilia (UnB), Brasília, DF, Brazil
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Carmen Regina Marcati
- Departamento de Ciência Florestal, Solos e Ambiente, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agronômicas, Avenida Universitária, Botucatu, SP, Brazil
| |
Collapse
|
17
|
Koyama K, Smith DD. Scaling the leaf length-times-width equation to predict total leaf area of shoots. ANNALS OF BOTANY 2022; 130:215-230. [PMID: 35350072 PMCID: PMC9445601 DOI: 10.1093/aob/mcac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS An individual plant consists of different-sized shoots, each of which consists of different-sized leaves. To predict plant-level physiological responses from the responses of individual leaves, modelling this within-shoot leaf size variation is necessary. Within-plant leaf trait variation has been well investigated in canopy photosynthesis models but less so in plant allometry. Therefore, integration of these two different approaches is needed. METHODS We focused on an established leaf-level relationship that the area of an individual leaf lamina is proportional to the product of its length and width. The geometric interpretation of this equation is that different-sized leaf laminas from a single species share the same basic form. Based on this shared basic form, we synthesized a new length-times-width equation predicting total shoot leaf area from the collective dimensions of leaves that comprise a shoot. Furthermore, we showed that several previously established empirical relationships, including the allometric relationships between total shoot leaf area, maximum individual leaf length within the shoot and total leaf number of the shoot, can be unified under the same geometric argument. We tested the model predictions using five species, all of which have simple leaves, selected from diverse taxa (Magnoliids, monocots and eudicots) and from different growth forms (trees, erect herbs and rosette herbs). KEY RESULTS For all five species, the length-times-width equation explained within-species variation of total leaf area of a shoot with high accuracy (R2 > 0.994). These strong relationships existed despite leaf dimensions scaling very differently between species. We also found good support for all derived predictions from the model (R2 > 0.85). CONCLUSIONS Our model can be incorporated to improve previous models of allometry that do not consider within-shoot size variation of individual leaves, providing a cross-scale linkage between individual leaf-size variation and shoot-size variation.
Collapse
Affiliation(s)
| | - Duncan D Smith
- Department of Botany, University of Wisconsin—Madison, 430 Lincoln Dr., Madison, WI, USA
| |
Collapse
|
18
|
Savage JA, Kiecker T, McMann N, Park D, Rothendler M, Mosher K. Leaf out time correlates with wood anatomy across large geographic scales and within local communities. THE NEW PHYTOLOGIST 2022; 235:953-964. [PMID: 35179794 PMCID: PMC9313884 DOI: 10.1111/nph.18041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
There is a long-standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves. We tested for a relationship between the timing of leaf out and vessel diameter in 220 plants in three common gardens accounting for species' phylogenetic relationships. We investigated how vessel diameter related to wood porosity, plant height and leaf length. We also used dye perfusion tests to determine whether plants relied on xylem produced during the previous growing season at the time of leaf out. In all three gardens, there was later leaf out in species with wider vessels. Ring-porous species had the widest vessels, exhibited latest leaf out and relied less on xylem made during the previous growing season than diffuse-porous species. Wood anatomy and leaf phenology did not exhibit a phylogenetic signal. The timing of leaf out is correlated with wood anatomy across species regardless of species' geographic origin and phylogenetic relationships. This correlation could be a result of developmental and physiological links between leaves and wood or tied to a larger safety efficiency trade-off.
Collapse
Affiliation(s)
| | - Thomas Kiecker
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| | - Natalie McMann
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| | - Daniel Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47907USA
| | | | - Kennedy Mosher
- Department of BiologyUniversity of MinnesotaDuluthMN55812USA
| |
Collapse
|
19
|
Tree height effects on vascular anatomy of upper-canopy twigs across a wide range of tropical rainforest species. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Vessel diameter variation along the hydraulic pathway determines how much water can be moved against the force of gravity from roots to leaves. While it is well-documented that tree size scales with vessel diameter variation at the stem base due to the effect of basipetal vessel widening, much less is known whether this likewise applies to terminal sun-exposed twigs. To analyze the effect of tree height on twig xylem anatomy, we compiled data for 279 tropical rainforest tree species belonging to 56 families in the lowlands of Jambi Province, Indonesia. Terminal upper-canopy twigs of fully grown individuals were collected and used for wood anatomical analysis.
We show that hydraulically weighted vessel diameter (Dh) and potential hydraulic conductivity (Kp) of upper canopy twigs increase with tree height across species although the relationship was weak. When averaged across given tree height classes irrespectively of species identity, however, a strong dependency of tree height on Dh and Kp was observed, but not on the lumen-to-sapwood area ratio (Al:Ax) or vessel density (VD).
According to the comparison between actual tree height and the maximum tree height reported for a given species in the stand, we show that the vascular xylem anatomy of their terminal twigs reflects their canopy position and thus ecological niche (understory versus overstory) at maturity. We conclude that the capacity to move large quantities of water during the diurnal peak in evaporative demand is a prerequisite for growing tall in a humid tropical environment.
Collapse
|
20
|
Functional Diversity in Woody Organs of Tropical Dry Forests and Implications for Restoration. SUSTAINABILITY 2022. [DOI: 10.3390/su14148362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tropical dry forests (TDFs) represent one of the most diverse and, at the same time, most threatened ecosystems on earth. Restoration of TDFs is thus crucial but is hindered by a limited understanding of the functional diversity (FD) of original communities. We examine the FD of TDFs based on wood (vessel diameter and wood density) and bark traits (total, inner, and outer bark thicknesses) measured on ~500 species from 24 plant communities and compare this diversity with that of seven other major vegetation types. Along with other seasonally dry sites, TDFs had the highest FD, as indicated by the widest ranges, highest variances, and largest trait hypervolumes. Warm temperatures and seasonal drought seem to drive diverse ecological strategies in these ecosystems, which include a continuum from deciduous species with low-density wood, thick bark, and wide vessels to evergreen species with high-density wood, thin bark, and narrow vessels. The very high FD of TDFs represents a challenge to restoring the likely widest trait ranges of any habitat on earth. Understanding this diversity is essential for monitoring successional changes in minimal intervention restoration and guiding species selection for resilient restoration plantings in the context of climate change.
Collapse
|
21
|
Echeverría A, Petrone‐Mendoza E, Segovia‐Rivas A, Figueroa‐Abundiz VA, Olson ME. The vessel wall thickness-vessel diameter relationship across woody angiosperms. AMERICAN JOURNAL OF BOTANY 2022; 109:856-873. [PMID: 35435252 PMCID: PMC9328290 DOI: 10.1002/ajb2.1854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 05/26/2023]
Abstract
PREMISE Comparative anatomy is necessary to identify the extremes of combinations of functionally relevant structural traits, to ensure that physiological data cover xylem anatomical diversity adequately, and thus achieve a global understanding of xylem structure-function relations. A key trait relationship is that between xylem vessel diameter and wall thickness of both the single vessel and the double vessel+adjacent imperforate tracheary element (ITE). METHODS We compiled a comparative data set with 1093 samples, 858 species, 350 genera, 86 families, and 33 orders. We used broken linear regression and an algorithm to explore changes in parameter values from linear regressions using subsets of the data set to identify a threshold, at 90-µm vessel diameter, in the wall thickness-diameter relationship. RESULTS Below 90 µm diameter for vessels, virtually any wall thickness could be associated with virtually any diameter. Below this threshold, selection is free to favor a very wide array of combinations, such as very thick walls and narrow vessels in ITE-free herbs, or very thin-walled, wide vessels in evergreen dryland pioneers. Above 90 µm, there was a moderate positive relationship. CONCLUSIONS Our analysis shows that the space of vessel wall thickness-diameter combinations is very wide, with selection apparently eliminating individuals with vessel walls "too thin" for their diameter. Most importantly, our survey revealed poorly studied plant hydraulic syndromes (functionally significant trait combinations). These data suggest that the full span of trait combinations, and thus the minimal set of hydraulic syndromes requiring study to span woody plant functional diversity adequately, remains to be documented.
Collapse
Affiliation(s)
- Alberto Echeverría
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Emilio Petrone‐Mendoza
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Alí Segovia‐Rivas
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Víctor A. Figueroa‐Abundiz
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| | - Mark E. Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Ciudad de México, 04510México
| |
Collapse
|
22
|
Fajardo A, Piper FI, García‐Cervigón AI. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Frida I. Piper
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay Talca 3460000 Chile
| | - Ana I. García‐Cervigón
- Departamento de Biología, Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, c/Tulipán s/n Móstoles 28933 Spain
| |
Collapse
|
23
|
Lourenço J, Enquist BJ, von Arx G, Sonsin-Oliveira J, Morino K, Thomaz LD, Milanez CRD. Hydraulic tradeoffs underlie local variation in tropical forest functional diversity and sensitivity to drought. THE NEW PHYTOLOGIST 2022; 234:50-63. [PMID: 34981534 DOI: 10.1111/nph.17944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Tropical forests are important to the regulation of climate and the maintenance of biodiversity on Earth. However, these ecosystems are threatened by climate change, as temperatures rise and droughts' frequency and duration increase. Xylem anatomical traits are an essential component in understanding and predicting forest responses to changes in water availability. We calculated the community-weighted means and variances of xylem anatomical traits of hydraulic and structural importance (plot-level trait values weighted by species abundance) to assess their linkages to local adaptation and community assembly in response to varying soil water conditions in an environmentally diverse Brazilian Atlantic Forest habitat. Scaling approaches revealed community-level tradeoffs in xylem traits not observed at the species level. Towards drier sites, xylem structural reinforcement and integration balanced against hydraulic efficiency and capacitance xylem traits, leading to changes in plant community diversity. We show how general community assembly rules are reflected in persistent fiber-parenchyma and xylem hydraulic tradeoffs. Trait variation across a moisture gradient is larger between species than within species and is realized mainly through changes in species composition and abundance, suggesting habitat specialization. Modeling efforts to predict tropical forest diversity and drought sensitivity may benefit from adding hydraulic architecture traits into the analysis.
Collapse
Affiliation(s)
- Jehová Lourenço
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Biological Sciences, University of Quebec in Montreal, Montreal, QC, H3C 3J7, Canada
- College of Life and Environmental Sciences, Geography, Exeter, Devon, EX4 4QE, UK
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, CH-3012, Switzerland
| | - Julia Sonsin-Oliveira
- Programa de Pós-Graduação (PPG) em Botânica, Departamento de Botânica, Instituto de Ciências Biológicas - Universidade de Brasília - UNB, Brasília, DF, 70919-970, Brazil
| | - Kiyomi Morino
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Luciana Dias Thomaz
- Herbário VIES, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| | - Camilla Rozindo Dias Milanez
- Programa de Pós-graduação em Biologia Vegetal, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, ES, 29075-910, Brazil
| |
Collapse
|
24
|
Bok ECPM, Brodribb TJ, Jordan GJ, Carriquí M. Convergent tip-to-base widening of water-conducting conduits in the tallest bryophytes. AMERICAN JOURNAL OF BOTANY 2022; 109:322-332. [PMID: 34713894 DOI: 10.1002/ajb2.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/02/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Tip-to-base conduit widening is considered a key mechanism that enables vascular plants to grow tall by decreasing the hydraulic resistance imposed by increasing height. Widening of hydraulic anatomy (larger conducting elements toward the base of the vascular system) minimizes gradients in leaf-specific hydraulic conductance with plant height, allowing uniform photosynthesis across the crown of trees. Tip-to-base conduit widening has also been associated with changes in conduit number. However, in bryophytes, despite having representatives with internal water-conducting tissue, conduit widening has been scarcely investigated. METHODS Here, we examined the changes in hydroid diameter and number with distance from plant tip in Dawsonia superba and D. polytrichoides, two representatives of the genus containing the tallest extant bryophytes. RESULTS The position of these moss species on the global scale of conduit size and plant size was consistent with a general scaling among plants with internal water transport. Within plants, patterns of conduit widening and number with distance from plant tip in endohydric mosses were similar to those observed in vascular plants. CONCLUSIONS This study demonstrated that land plants growing upward in the atmosphere show analogous conduit widening of hydraulic structures, suggesting that efficient internal water transport is a convergent adaptation for photosynthesis on land.
Collapse
Affiliation(s)
- Erin C P M Bok
- Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Gregory J Jordan
- Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Marc Carriquí
- Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Department of Biology, University of the Balearic Islands, Palma, Illes Balears, Spain
| |
Collapse
|
25
|
Fajardo A. Wood density relates negatively to maximum plant height across major angiosperm and gymnosperm orders. AMERICAN JOURNAL OF BOTANY 2022; 109:250-258. [PMID: 34766624 DOI: 10.1002/ajb2.1805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 05/26/2023]
Abstract
PREMISE Wood density is a crucial plant functional trait related to plant life history strategies. Its ecological importance in small-stature growth forms (e.g., shrubs) has not been extensively examined. Given that hydraulic conduit dimensions vary positively with plant height and that there is a negative relationship between conduits' diameter and wood density, I hypothesized an also negative relationship between wood density and plant height. Knowing that bark and pith proportions are significant in small-diameter stems, I additionally disentangled the contribution of wood, bark, and pith to stem density. METHODS I determined density in small-diameter stems across 153 species spanning all major angiosperm and gymnosperm orders by considering a diversity of growth forms (trees, treelets, shrubs, vines, and hemiparasites). Stem cross sections were dissected to consider the densities of wood with bark and pith; wood with pith and without bark; wood with bark and no pith; and wood without bark and pith. Secondary growth was also measured. RESULTS Trees showed similar wood densities as non-self-supporting vines, and both showed significantly less dense wood than treelets, shrubs, and hemiparasites. General comparisons showed that wood was significantly denser than all other tissues, and these differences did not depend on growth form. Wood density was significantly and negatively related to growth rate and pith area proportions but not to bark thickness proportion. CONCLUSIONS An implicit negative relationship between maximum plant height and stem density emerges as a property of plants likely linked to hydraulic conductive size.
Collapse
Affiliation(s)
- Alex Fajardo
- Instituto de Investigación Interdisciplinario (I3), Universidad de Talca, Campus Lircay, Talca, 3460000, Chile
| |
Collapse
|
26
|
Yang S, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, van Logtestijn RSP, Hefting M, Goudzwaard L, Zuo J, Poorter L. Stem Trait Spectra Underpin Multiple Functions of Temperate Tree Species. FRONTIERS IN PLANT SCIENCE 2022; 13:769551. [PMID: 35310622 PMCID: PMC8930200 DOI: 10.3389/fpls.2022.769551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/13/2022] [Indexed: 05/17/2023]
Abstract
A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark). The trait variation was explained by major taxa (38%), stem compartments (24%), and species within major taxa (19%). A continuous plant strategy gradient was found across and within taxa, running from hydraulic safe gymnosperms to conductive angiosperms. Both groups showed a second strategy gradient related to chemical defense. Gymnosperms strongly converged in their trait strategies because of their uniform tracheids. Angiosperms strongly diverged because of their different vessel arrangement and tissue types. The bark had higher concentrations of nutrients and phenolics whereas the wood had stronger physical defense. The gymnosperms have a conservative strategy associated with strong hydraulic safety and physical defense, and a narrow, specialized range of trait values, which allow them to grow well in drier and unproductive habitats. The angiosperm species show a wider trait variation in all stem compartments, which makes them successful in marginal- and in mesic, productive habitats. The associations between multiple wood and bark traits collectively define a slow-fast stem strategy spectrum as is seen also for each stem compartment.
Collapse
Affiliation(s)
- Shanshan Yang
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Shanshan Yang, ;
| | - Frank J. Sterck
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Ute Sass-Klaassen
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - J. Hans C. Cornelissen
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Richard S. P. van Logtestijn
- Department of Ecological Science, Systems Ecology, VU University (Vrije Universiteit) Amsterdam, Amsterdam, Netherlands
| | - Mariet Hefting
- Landscape Ecology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Leo Goudzwaard
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| | - Juan Zuo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
27
|
Baer AB, Fickle JC, Medina J, Robles C, Pratt RB, Jacobsen AL. Xylem biomechanics, water storage, and density within roots and shoots of an angiosperm tree species. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7984-7997. [PMID: 34410349 DOI: 10.1093/jxb/erab384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Xylem is a complex tissue that forms the bulk of tree bodies and has several functions, including to conduct water, store water and nutrients, and biomechanically support the plant body. We examined how xylem functional traits varied at different positions within 9-year-old Populus balsamifera subsp. trichocarpa. Whole trees were excavated, and xylem samples were collected at 1-m increments along the main root-to-shoot axis of six trees, from root tip to shoot tip. We examined biomechanical and water-storage traits of the xylem, including using a non-invasive imaging technique to examine water content within long, intact branches (high-resolution computed tomography; microCT). Xylem density, strength, and stiffness were greater in shoots than roots. Along the main root-to-shoot axis, xylem strength and stiffness were greatest at shoot tips, and the tissue became linearly weaker and less stiff down the plant and through the root. Roots had greater water storage with lower biomechanical support, and shoots had biomechanically stronger and stiffer xylem with lower water storage. These findings support trade-offs among xylem functions between roots and shoots. Understanding how xylem functions differ throughout tree bodies is important in understanding whole-tree functioning and how terrestrial plants endure numerous environmental challenges over decades of growth.
Collapse
Affiliation(s)
- Alex B Baer
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - Jaycie C Fickle
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - Jackeline Medina
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - Catherine Robles
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| | - Anna L Jacobsen
- Department of Biology, California State University, Bakersfield, CA, 93311, USA
| |
Collapse
|
28
|
Asbjornsen H, McIntire CD, Vadeboncoeur MA, Jennings KA, Coble AP, Berry ZC. Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally occurring severe droughts. TREE PHYSIOLOGY 2021; 41:1819-1835. [PMID: 33904579 DOI: 10.1093/treephys/tpab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.
Collapse
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Cameron D McIntire
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- State and Private Forestry, USDA Forest Service, 271 Mast Road, Durham, NH 03824, USA
| | - Matthew A Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Katie A Jennings
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Adam P Coble
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Private Forests Division, Oregon Department of Forestry, 2600 State St, Salem, OR 97310, USA
| | - Z Carter Berry
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
29
|
McGregor IR, Helcoski R, Kunert N, Tepley AJ, Gonzalez-Akre EB, Herrmann V, Zailaa J, Stovall AEL, Bourg NA, McShea WJ, Pederson N, Sack L, Anderson-Teixeira KJ. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. THE NEW PHYTOLOGIST 2021; 231:601-616. [PMID: 33049084 DOI: 10.1111/nph.16996] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
As climate change drives increased drought in many forested regions, mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. The dendrochronological record provides a window through which we can understand how tree size and traits shape growth responses to droughts. We analyzed tree-ring records for 12 species in a broadleaf deciduous forest in Virginia (USA) to test hypotheses for how tree height, microenvironment characteristics, and species' traits shaped drought responses across the three strongest regional droughts over a 60-yr period. Drought tolerance (resistance, recovery, and resilience) decreased with tree height, which was strongly correlated with exposure to higher solar radiation and evaporative demand. The potentially greater rooting volume of larger trees did not confer a resistance advantage, but marginally increased recovery and resilience, in sites with low topographic wetness index. Drought tolerance was greater among species whose leaves lost turgor (wilted) at more negative water potentials and experienced less shrinkage upon desiccation. The tree-ring record reveals that tree height and leaf drought tolerance traits influenced growth responses during and after significant droughts in the meteorological record. As climate change-induced droughts intensify, tall trees with drought-sensitive leaves will be most vulnerable to immediate and longer-term growth reductions.
Collapse
Affiliation(s)
- Ian R McGregor
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27607, USA
| | - Ryan Helcoski
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Norbert Kunert
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Alan J Tepley
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, T6H 3S5, Canada
| | - Erika B Gonzalez-Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Valentine Herrmann
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Joseph Zailaa
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Biological Sciences Department, California State University, Los Angeles, CA, 90032, USA
| | - Atticus E L Stovall
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, 22903, USA
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Norman A Bourg
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | | | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
- Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
30
|
Barceló-Anguiano M, Hormaza JI, Losada JM. Conductivity of the phloem in mango (Mangifera indica L.). HORTICULTURE RESEARCH 2021; 8:150. [PMID: 34193860 PMCID: PMC8245510 DOI: 10.1038/s41438-021-00584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Mango (Mangifera indica L., Anacardiaceae), the fifth most consumed fruit worldwide, is one of the most important fruit crops in tropical regions, but its vascular anatomy is quite unexplored. Previous studies examined the xylem structure in the stems of mango, but the anatomy of the phloem has remained elusive, leaving the long-distance transport of photoassimilates understudied. We combined fluorescence and electron microscopy to evaluate the structure of the phloem tissue in the tapering branches of mango trees, and used this information to describe the hydraulic conductivity of its sieve tube elements following current models of fluid transport in trees. We revealed that the anatomy of the phloem changes from current year branches, where it was protected by pericyclic fibres, to older ones, where the lack of fibres was concomitant with laticiferous canals embedded in the phloem tissue. Callose was present in the sieve plates, but also in the walls of the phloem sieve cells, making them discernible from other phloem cells. A scaling geometry of the sieve tube elements-including the number of sieve areas and the pore size across tapering branches-resulted in an exponential conductivity towards the base of the tree. These evaluations in mango fit with previous measurements of the phloem architecture in the stems of forest trees, suggesting that, despite agronomic management, the phloem sieve cells scale with the tapering branches. The pipe model theory applied to the continuous tubing system of the phloem appears as a good approach to understand the hydraulic transport of photoassimilates in fruit trees.
Collapse
Affiliation(s)
- Miguel Barceló-Anguiano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Avda Dr. Wienberg s/n. 29750, Algarrobo-Costa, Málaga, Spain
| | - José I Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Avda Dr. Wienberg s/n. 29750, Algarrobo-Costa, Málaga, Spain
| | - Juan M Losada
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Avda Dr. Wienberg s/n. 29750, Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
31
|
Abstract
Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.
Collapse
|
32
|
Olson ME, Anfodillo T, Gleason SM, McCulloh KA. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. THE NEW PHYTOLOGIST 2021; 229:1877-1893. [PMID: 32984967 DOI: 10.1111/nph.16961] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In the stems of terrestrial vascular plants studied to date, the diameter of xylem water-conducting conduits D widens predictably with distance from the stem tip L approximating D ∝ Lb , with b ≈ 0.2. Because conduit diameter is central for conductance, it is essential to understand the cause of this remarkably pervasive pattern. We give reason to suspect that tip-to-base conduit widening is an adaptation, favored by natural selection because widening helps minimize the increase in hydraulic resistance that would otherwise occur as an individual stem grows longer and conductive path length increases. Evidence consistent with adaptation includes optimality models that predict the 0.2 exponent. The fact that this prediction can be made with a simple model of a single capillary, omitting much biological detail, itself makes numerous important predictions, e.g. that pit resistance must scale isometrically with conduit resistance. The idea that tip-to-base conduit widening has a nonadaptive cause, with temperature, drought, or turgor limiting the conduit diameters that plants are able to produce, is less consistent with the data than an adaptive explanation. We identify empirical priorities for testing the cause of tip-to-base conduit widening and underscore the need to study plant hydraulic systems leaf to root as integrated wholes.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Legnaro (PD), 35020, Italy
| | - Sean M Gleason
- Water Management and Systems Research Unit, United States Department of Agriculture, Agricultural Research Service, Fort Collins, CO, 80526, USA
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, 80523, USA
| | | |
Collapse
|
33
|
Olson ME, Anfodillo T, Rosell JA, Martínez-Méndez N. Across climates and species, higher vapour pressure deficit is associated with wider vessels for plants of the same height. PLANT, CELL & ENVIRONMENT 2020; 43:3068-3080. [PMID: 32909290 DOI: 10.1111/pce.13884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
While plant height is the main driver of variation in mean vessel diameter at the stem base (VD) across angiosperms, climate, specifically temperature, does play an explanatory role, with vessels being wider with warmer temperature for plants of the same height. Using a comparative approach sampling 537 species of angiosperms across 19 communities, we rejected selection favouring freezing-induced embolism resistance as being able to account for wider vessels for a given height in warmer climates. Instead, we give reason to suspect that higher vapour pressure deficit (VPD) accounts for the positive scaling of height-standardized VD (and potential xylem conductance) with temperature. Selection likely favours conductive systems that are able to meet the higher transpirational demand of warmer climates, which have higher VPD, resulting in wider vessels for a given height. At the same time, wider vessels are likely more vulnerable to dysfunction. With future climates likely to experience ever greater extremes of VPD, future forests could be increasingly vulnerable.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México, Tercer Circuito sn de Ciudad Universitaria, Ciudad de México, Mexico
| | - Tommaso Anfodillo
- Department Territorio e Sistemi Agro-Forestali, University of Padova, Padova, Italy
| | - Julieta A Rosell
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Norberto Martínez-Méndez
- Laboratorio de Bioconservación y Manejo, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Ciudad de México, Mexico
| |
Collapse
|
34
|
Olson ME. From Carlquist's ecological wood anatomy to Carlquist's Law: why comparative anatomy is crucial for functional xylem biology. AMERICAN JOURNAL OF BOTANY 2020; 107:1328-1341. [PMID: 33078405 DOI: 10.1002/ajb2.1552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
All students of xylem structure-function relations need to be familiar with the work of Sherwin Carlquist. He studies xylem through the lens of the comparative method, which uses the appearance of similar anatomical features under similar conditions of natural selection to infer function. "Function" in biology implies adaptation; maximally supported adaptation inferences require experimental and comparative xylem scientists to work with one another. Engaging with comparative inferences of xylem function will, more likely sooner rather than later, bring one to the work of Sherwin Carlquist. To mark his 90th birthday, I highlight just a few examples of his extraordinarily perceptive and general comparative insights. One is "Carlquist's Law", the pervasive tendency for vessels to be solitary when background cells are conductive. I cover his pioneering of "ecological" wood anatomy, viewing xylem variation as reflecting the effects of selection across climate and habit variation. Another is the embolism vulnerability-conduit diameter relationship, one of the most widely invoked structure-function relationships in xylem biology. I discuss the inferential richness within the notion of Carlquistian paedomorphosis, including detailed functional inferences regarding ray cell orientation. My final example comes from his very recent work offering the first satisfactory hypothesis accounting for the geographical and histological distribution of scalariform perforation plates as an adaptation, including "Carlquist's Ratchet", why scalariform plates are adaptive but do not re-evolve once lost. This extraordinarily rich production over six decades is filled with comparative inferences that should keep students of xylem function busy testing for decades to come.
Collapse
Affiliation(s)
- Mark E Olson
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico, DF, 04510, México
| |
Collapse
|