1
|
Wiley DLF, Omlor KN, Torres López AS, Eberle CM, Savage AE, Atkinson MS, Barrow LN. Leveraging machine learning to uncover multi-pathogen infection dynamics across co-distributed frog families. PeerJ 2025; 13:e18901. [PMID: 39897487 PMCID: PMC11786709 DOI: 10.7717/peerj.18901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Background Amphibians are experiencing substantial declines attributed to emerging pathogens. Efforts to understand what drives patterns of pathogen prevalence and differential responses among species are challenging because numerous factors related to the host, pathogen, and their shared environment can influence infection dynamics. Furthermore, sampling across broad taxonomic and geographic scales to evaluate these factors poses logistical challenges, and interpreting the roles of multiple potentially correlated variables is difficult with traditional statistical approaches. In this study, we leverage frozen tissues stored in natural history collections and machine learning techniques to characterize infection dynamics of three generalist pathogens known to cause mortality in frogs. Methods We selected 12 widespread and abundant focal taxa within three ecologically distinct, co-distributed host families (Bufonidae, Hylidae, and Ranidae) and sampled them across the eastern two-thirds of the United States of America. We screened and quantified infection loads via quantitative PCR for three major pathogens: the fungal pathogen Batrachochytrium dendrobatidis (Bd), double-stranded viruses in the lineage Ranavirus (Rv), and the alveolate parasite currently referred to as Amphibian Perkinsea (Pr). We then built balanced random forests (RF) models to predict infection status and intensity based on host taxonomy, age, sex, geography, and environmental variables and to assess relative variable importance across pathogens. Lastly, we used one-way analyses to determine directional relationships and significance of identified predictors. Results We found approximately 20% of individuals were infected with at least one pathogen (231 single infections and 25 coinfections). The most prevalent pathogen across all taxonomic groups was Bd (16.9%; 95% CI [14.9-19%]), followed by Rv (4.38%; 95% CI [3.35-5.7%]) and Pr (1.06%; 95% CI [0.618-1.82%]). The highest prevalence and intensity were found in the family Ranidae, which represented 74.3% of all infections, including the majority of Rv infection points, and had significantly higher Bd intensities compared to Bufonidae and Hylidae. Host species and environmental variables related to temperature were key predictors identified in RF models, with differences in importance among pathogens and host families. For Bd and Rv, infected individuals were associated with higher latitudes and cooler, more stable temperatures, while Pr showed trends in the opposite direction. We found no significant differences between sexes, but juvenile frogs had higher Rv prevalence and Bd infection intensity compared to adults. Overall, our study highlights the use of machine learning techniques and a broad sampling strategy for identifying important factors related to infection in multi-host, multi-pathogen systems.
Collapse
Affiliation(s)
- Daniele L. F. Wiley
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Kadie N. Omlor
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Ariadna S. Torres López
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Celina M. Eberle
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Anna E. Savage
- Department of Biology, University of Central Florida, Orlando, Florida, United States
| | - Matthew S. Atkinson
- Department of Biology, University of Central Florida, Orlando, Florida, United States
| | - Lisa N. Barrow
- Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
2
|
Saenz V, Byrne AQ, Ohmer MEB, Hammond TT, Brannelly LA, Altman KA, Kosowsky M, Nordheim CL, Rosenblum EB, Richards-Zawacki CL. Landscape-scale drivers of spatial dynamics and genetic diversity in an emerging wildlife pathogen. Oecologia 2024; 207:3. [PMID: 39643763 PMCID: PMC11624241 DOI: 10.1007/s00442-024-05642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Aquatic pathogens often cannot tolerate drying, and thus their spread, and diversity across a landscape may depend on interactions between hydrological conditions and the movement of infected hosts. The aquatic fungus Batrachochytrium dendrobatidis (Bd) is a nearly ubiquitous pathogen of amphibians and particular lineages have been associated with host declines. By coupling amphibian surveys with molecular pathogen detection and genotyping techniques, we characterized the spatial dynamics and genetic diversity of Bd on a landscape containing both permanent and ephemeral ponds. In doing so, we aimed to clarify how pathogen loads and prevalences vary across seasons and among habitat types, and which host species move the pathogen from place to place. At the start of spring breeding, Bd prevalence was lower on amphibians sampled from ephemeral ponds. For the remainder of the amphibian active season, prevalence was similar across both ephemeral and permanent ponds, with variation in prevalence being well-explained by a hump-shaped relationship with host body temperature. The first amphibians to arrive at these ephemeral ponds infected were species that breed in ephemeral ponds and likely emerged infected from terrestrial hibernacula. However, species from permanent ponds, most of which hibernate aquatically, later visited the ephemeral ponds and these animals had a greater prevalence and load of Bd, suggesting that migrants among ponds and pond types also move Bd across the landscape. The Bd we sampled was genetically diverse within ponds but showed little genetic structure among ponds, host species, or seasons. Taken together, our findings suggest that Bd can be diverse even at small scales and moves readily across a landscape with help from a wide variety of hosts.
Collapse
Affiliation(s)
- Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA.
- Department of Biology, The Pennsylvania State University, State College, PA, 16802, USA.
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, University, MS, 38677, USA
| | - Talisin T Hammond
- San Diego Zoo Wildlife Alliance, 15600 San Pasqual Valley Rd., Escondido, CA, 92027, USA
| | - Laura A Brannelly
- Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, University of Melbourne, Werribee, VIC, 3030, Australia
| | - Karie A Altman
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Miranda Kosowsky
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA
| | - Caitlin L Nordheim
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Corinne L Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, 105 Clapp Hall, 5th and Ruskin Aves., Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Lucas PM, Di Marco M, Cazalis V, Luedtke J, Neam K, Brown MH, Langhammer PF, Mancini G, Santini L. Using comparative extinction risk analysis to prioritize the IUCN Red List reassessments of amphibians. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14316. [PMID: 38946355 PMCID: PMC11589027 DOI: 10.1111/cobi.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 07/02/2024]
Abstract
Assessing the extinction risk of species based on the International Union for Conservation of Nature (IUCN) Red List (RL) is key to guiding conservation policies and reducing biodiversity loss. This process is resource demanding, however, and requires continuous updating, which becomes increasingly difficult as new species are added to the RL. Automatic methods, such as comparative analyses used to predict species RL category, can be an efficient alternative to keep assessments up to date. Using amphibians as a study group, we predicted which species are more likely to change their RL category and thus should be prioritized for reassessment. We used species biological traits, environmental variables, and proxies of climate and land-use change as predictors of RL category. We produced an ensemble prediction of IUCN RL category for each species by combining 4 different model algorithms: cumulative link models, phylogenetic generalized least squares, random forests, and neural networks. By comparing RL categories with the ensemble prediction and accounting for uncertainty among model algorithms, we identified species that should be prioritized for future reassessment based on the mismatch between predicted and observed values. The most important predicting variables across models were species' range size and spatial configuration of the range, biological traits, climate change, and land-use change. We compared our proposed prioritization index and the predicted RL changes with independent IUCN RL reassessments and found high performance of both the prioritization and the predicted directionality of changes in RL categories. Ensemble modeling of RL category is a promising tool for prioritizing species for reassessment while accounting for models' uncertainty. This approach is broadly applicable to all taxa on the IUCN RL and to regional and national assessments and may improve allocation of the limited human and economic resources available to maintain an up-to-date IUCN RL.
Collapse
Affiliation(s)
- Pablo Miguel Lucas
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain
| | - Moreno Di Marco
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
| | - Victor Cazalis
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Leipzig UniversityLeipzigGermany
| | - Jennifer Luedtke
- IUCN SSC Amphibian Specialist GroupTorontoOntarioCanada
- Re:wildAustinTexasUSA
| | - Kelsey Neam
- IUCN SSC Amphibian Specialist GroupTorontoOntarioCanada
- Re:wildAustinTexasUSA
| | | | | | - Giordano Mancini
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
| | - Luca Santini
- Department of Biology and Biotechnologies "Charles Darwin"Sapienza University of RomeRomeItaly
| |
Collapse
|
4
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
5
|
Borteiro C, Laufer G, Gobel N, Arleo M, Kolenc F, Cortizas S, Barrasso DA, de Sá RO, Soutullo A, Ubilla M, Martínez-Debat C. Widespread occurrence of the amphibian chytrid panzootic lineage in Uruguay is constrained by climate. DISEASES OF AQUATIC ORGANISMS 2024; 158:123-132. [PMID: 38813853 DOI: 10.3354/dao03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.
Collapse
Affiliation(s)
- Claudio Borteiro
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
- Vida Silvestre Uruguay, Montevideo 11100, Uruguay
| | - Noelia Gobel
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
- Vida Silvestre Uruguay, Montevideo 11100, Uruguay
| | - Mailén Arleo
- Sección Bioquímica, Departamento de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Francisco Kolenc
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
| | - Sofía Cortizas
- Grupo de Agroecología, Sustentabilidad y Medio Ambiente, Universidad Tecnológica del Uruguay, Durazno 97000, Uruguay
| | - Diego A Barrasso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), and Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia 'San Juan Bosco' (UNPSJB), Puerto Madryn 9120, Chubut, Argentina
| | - Rafael O de Sá
- Department of Biology, University of Richmond, Richmond, Virginia 23173, USA
| | - Alvaro Soutullo
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Punta del Este 20100, Universidad de la República, Uruguay
| | - Martin Ubilla
- Departamento de Paleontología-ICG, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Claudio Martínez-Debat
- Sección Bioquímica, Departamento de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| |
Collapse
|
6
|
Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J, Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG, Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL, Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. Chytrid infections exhibit historical spread and contemporary seasonality in a declining stream-breeding frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231270. [PMID: 38298390 PMCID: PMC10827429 DOI: 10.1098/rsos.231270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis (Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints from R. boylii museum specimens (collected 1897-2005) and field samples (2005-2021) spanning 9° of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes. We detected eight high-prevalence geographical clusters through time that span the species' geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end of the dry season. Through a holistic assessment of relationships between infection risk, geographical context and time, we identify the locations and time periods where Bd mitigation and monitoring will be critical for conservation of this imperilled species.
Collapse
Affiliation(s)
- A. M. Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - R. A. Peek
- California Department of Fish and Wildlife, West Sacramento, CA, USA
| | - A. J. Adams
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - I. D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - M. E. De León
- Genome Center, University of California, Davis, CA, USA
| | - M. J. Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - J. Bettaso
- Six Rivers National Forest, Lower Trinity Ranger District, USDA Forest Service, P.O. Box 68, Willow Creek, CA, USA
| | | | - A. Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - D. A. Grear
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - B. J. Halstead
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - P. G. Johnson
- Pinnacles National Park, National Park Service, Paicines, CA, USA
| | - P. M. Kleeman
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - M. S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA
| | - C. W. Koppl
- Plumas National Forest, USDA Forest Service, Quincy, CA, USA
| | | | | | - J. Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - K. L. Pope
- Pacific Southwest Research Station, USDA Forest Service, Arcata, CA, USA
| | - V. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - M. Westphal
- Central Coast Field Office, United States Bureau of Land Management, Marina, CA, USA
| | - K. Wiseman
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - S. J. Kupferberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Pereira KE, Bletz MC, McCartney JA, Woodhams DC, Woodley SK. Effects of exogenous elevation of corticosterone on immunity and the skin microbiome of eastern newts ( Notophthalmus viridescens). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220120. [PMID: 37305906 PMCID: PMC10258667 DOI: 10.1098/rstb.2022.0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/15/2022] [Indexed: 06/13/2023] Open
Abstract
The amphibian chytrid fungus, Batrachochytrium salamandrivorans (Bsal) threatens salamander biodiversity. The factors underlying Bsal susceptibility may include glucocorticoid hormones (GCs). The effects of GCs on immunity and disease susceptibility are well studied in mammals, but less is known in other groups, including salamanders. We used Notophthalmus viridescens (eastern newts) to test the hypothesis that GCs modulate salamander immunity. We first determined the dose required to elevate corticosterone (CORT; primary GC in amphibians) to physiologically relevant levels. We then measured immunity (neutrophil lymphocyte ratios, plasma bacterial killing ability (BKA), skin microbiome, splenocytes, melanomacrophage centres (MMCs)) and overall health in newts following treatment with CORT or an oil vehicle control. Treatments were repeated for a short (two treatments over 5 days) or long (18 treatments over 26 days) time period. Contrary to our predictions, most immune and health parameters were similar for CORT and oil-treated newts. Surprisingly, differences in BKA, skin microbiome and MMCs were observed between newts subjected to short- and long-term treatments, regardless of treatment type (CORT, oil vehicle). Taken together, CORT does not appear to be a major factor contributing to immunity in eastern newts, although more studies examining additional immune factors are necessary. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Kenzie E. Pereira
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| | - Molly C. Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Julia A. McCartney
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Douglas C. Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sarah K. Woodley
- Department of Biology, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
8
|
Burgmeier NG, McCallen EB, Kenison EK, Williams RN. Comparing the Effects of Environmental Enrichment, Seasonality, and Soft Release on Site Retention and Survivorship of Captive-Reared Eastern Hellbenders (Cryptobranchus alleganiensis alleganiensis). HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-21-00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nicholas G. Burgmeier
- Purdue University, Department of Forestry and Natural Resources, 715 West State Street, West Lafayette, IN 47907, USA
| | - Emily B. McCallen
- Purdue University, Department of Forestry and Natural Resources, 715 West State Street, West Lafayette, IN 47907, USA
| | - Erin K. Kenison
- Purdue University, Department of Forestry and Natural Resources, 715 West State Street, West Lafayette, IN 47907, USA
| | - Rod N. Williams
- Purdue University, Department of Forestry and Natural Resources, 715 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Wilber MQ, Knapp RA, Smith TC, Briggs CJ. Host density has limited effects on pathogen invasion, disease-induced declines and within-host infection dynamics across a landscape of disease. J Anim Ecol 2022; 91:2451-2464. [PMID: 36285540 DOI: 10.1111/1365-2656.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
1. Host density is hypothesized to be a major driver of variability in the responses and outcomes of wildlife populations following pathogen invasion. While the effects of host density on pathogen transmission have been extensively studied, these studies are dominated by theoretical analyses and small-scale experiments. This focus leads to an incomplete picture regarding how host density drives observed variability in disease outcomes in the field. 2. Here, we leveraged a dataset of hundreds of replicate amphibian populations that varied by orders of magnitude in host density. We used these data to test the effects of host density on three outcomes following the arrival of the amphibian-killing fungal pathogen Batrachochytrium dendrobatidis (Bd): the probability that Bd successfully invaded a host population and led to a pathogen outbreak, the magnitude of the host population-level decline following an outbreak and within-host infection dynamics that drive population-level outcomes in amphibian-pathogen systems. 3. Based on previous small-scale transmission experiments, we expected that populations with higher densities would be more likely to experience Bd outbreaks and would suffer larger proportional declines following outbreaks. To test these predictions, we developed and fitted a Hidden Markov Model that accounted for imperfectly observed disease outbreak states in the amphibian populations we surveyed. 4. Contrary to our predictions, we found minimal effects of host density on the probability of successful Bd invasion, the magnitude of population decline following Bd invasion and the dynamics of within-host infection intensity. Environmental conditions, such as summer temperature, winter severity and the presence of pathogen reservoirs, were more predictive of variability in disease outcomes. 5. Our results highlight the limitations of extrapolating findings from small-scale transmission experiments to observed disease trajectories in the field and provide strong evidence that variability in host density does not necessarily drive variability in host population responses following pathogen arrival. In an applied context, we show that feedbacks between host density and disease will not necessarily affect the success of reintroduction efforts in amphibian-Bd systems of conservation concern.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Roland A Knapp
- Earth Research Institute, University of California, Santa Barbara, California, USA
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, USA
| | - Thomas C Smith
- Earth Research Institute, University of California, Santa Barbara, California, USA
- Sierra Nevada Aquatic Research Laboratory, University of California, Mammoth Lakes, California, USA
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
10
|
Hulting KA, Mason SD, Story CM, Keller GS. Wetland cohesion is associated with increased probability of infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2022; 151:97-109. [PMID: 36226838 DOI: 10.3354/dao03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) poses a substantial threat to amphibian populations. Understanding the landscape conditions that facilitate Bd transmission and persistence is crucial for predicting Bd trends in amphibian populations. Here, we investigated the interactions between land use, wetland connectivity, and Bd occurrence and infection intensity. In northeastern Massachusetts, we sampled Pseudacris crucifer, Lithobates sylvaticus, L. clamitans, and L. pipiens from 24 sites. We found an overall 30.6% Bd prevalence at our sites, with prevalence differing among species. Bd occurrence increased with wetland-patch cohesion, potentially due to microclimate shifts from decreased forest or changes in host movement. Bd infection intensity was not mediated by landscape context. Overall, our results highlight the importance of landscape structure for Bd dynamics, suggesting that certain landscapes may facilitate transmission and harbor Bd more than others. To mitigate the impacts of Bd on amphibian populations, conservation efforts should account for interactions between Bd and landscape variables.
Collapse
Affiliation(s)
- Katherine A Hulting
- Landscape Ecology Lab, Department of Life, Health, and Physical Sciences, Gordon College, Wenham, MA 01984, USA
| | | | | | | |
Collapse
|
11
|
Neely WJ, Greenspan SE, Stahl LM, Heraghty SD, Marshall VM, Atkinson CL, Becker CG. Habitat Disturbance Linked with Host Microbiome Dispersion and Bd Dynamics in Temperate Amphibians. MICROBIAL ECOLOGY 2022; 84:901-910. [PMID: 34671826 DOI: 10.1007/s00248-021-01897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter host-associated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a field survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed the effects of habitat disturbance and connectivity on environmental bacterial reservoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community variability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communities. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting greater isolation of bacterial assemblages in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. Combined, our findings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA.
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Leigha M Stahl
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Sam D Heraghty
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Vanessa M Marshall
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Carla L Atkinson
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
12
|
Wilber MQ, Ohmer MEB, Altman KA, Brannelly LA, LaBumbard BC, Le Sage EH, McDonnell NB, Muñiz Torres AY, Nordheim CL, Pfab F, Richards-Zawacki CL, Rollins-Smith LA, Saenz V, Voyles J, Wetzel DP, Woodhams DC, Briggs CJ. Once a reservoir, always a reservoir? Seasonality affects the pathogen maintenance potential of amphibian hosts. Ecology 2022; 103:e3759. [PMID: 35593515 DOI: 10.1002/ecy.3759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and Rana pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multi-host communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over 3 years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different from those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.
Collapse
Affiliation(s)
- Mark Q Wilber
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Institute of Agriculture, Knoxville, Tennessee, USA
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, University of Mississippi, Oxford, Mississippi, USA
| | - Karie A Altman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Biology, St. Bonaventure University, St. Bonaventure, New York, USA
| | - Laura A Brannelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
| | - Brandon C LaBumbard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Emily H Le Sage
- Department of Pathology Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nina B McDonnell
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Aura Y Muñiz Torres
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Caitlin L Nordheim
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ferdinand Pfab
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | | | - Louise A Rollins-Smith
- Department of Pathology Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Daniel P Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
13
|
Rosa GM, Perez R, Richards LA, Richards‐Zawacki CL, Smilanich AM, Reinert LK, Rollins‐Smith LA, Wetzel DP, Voyles J. Seasonality of host immunity in a tropical disease system. Ecosphere 2022. [DOI: 10.1002/ecs2.4158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Gonçalo M. Rosa
- Department of Biology University of Nevada, Reno Reno Nevada USA
- Institute of Zoology Zoological Society of London London UK
- Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências da Universidade de Lisboa Lisbon Portugal
| | - Rachel Perez
- Department of Biology New Mexico Institute of Mining and Technology Socorro New Mexico USA
| | - Lora A. Richards
- Department of Biology University of Nevada, Reno Reno Nevada USA
| | | | | | - Laura K. Reinert
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Louise A. Rollins‐Smith
- Department of Pathology Microbiology and Immunology, Vanderbilt University School of Medicine Nashville Tennessee USA
| | - Daniel P. Wetzel
- Department of Biological Sciences University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jamie Voyles
- Department of Biology University of Nevada, Reno Reno Nevada USA
| |
Collapse
|
14
|
Haver M, Le Roux G, Friesen J, Loyau A, Vredenburg VT, Schmeller DS. The role of abiotic variables in an emerging global amphibian fungal disease in mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152735. [PMID: 34974000 DOI: 10.1016/j.scitotenv.2021.152735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The emergence of the chytridiomycete fungal pathogen Batrachochytrium dendrobatidis (Bd), causing the disease chytridiomycosis, has caused collapse of amphibian communities in numerous mountain systems. The health of amphibians and of mountain freshwater habitats they inhabit is also threatened by ongoing changes in environmental and anthropogenic factors such as climate, hydrology, and pollution. Climate change is causing more extreme climatic events, shifts in ice occurrence, and changes in the timing of snowmelt and pollutant deposition cycles. All of these factors impact both pathogen and host, and disease dynamics. Here we review abiotic variables, known to control Bd occurrence and chytridiomycosis severity, and discuss how climate change may modify them. We propose two main categories of abiotic variables that may alter Bd distribution, persistence, and physiology: 1) climate and hydrology (temperature, precipitation, hydrology, ultraviolet radiation (UVR); and, 2) water chemistry (pH, salinity, pollution). For both categories, we identify topics for further research. More studies on the relationship between global change, pollution and pathogens in complex landscapes, such as mountains, are needed to allow for accurate risk assessments for freshwater ecosystems and resulting impacts on wildlife and human health. Our review emphasizes the importance of using data of higher spatiotemporal resolution and uniform abiotic metrics in order to better compare study outcomes. Fine-scale temperature variability, especially of water temperature, variability of moisture conditions and water levels, snow, ice and runoff dynamics should be assessed as abiotic variables shaping the mountain habitat of pathogen and host. A better understanding of hydroclimate and water chemistry variables, as co-factors in disease, will increase our understanding of chytridiomycosis dynamics.
Collapse
Affiliation(s)
- Marilen Haver
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.
| | - Gaël Le Roux
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| | - Jan Friesen
- Environmental and Biotechnology Centre, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Adeline Loyau
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France; Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin D-16775, Germany
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Ave., San Francisco, CA 94132, USA
| | - Dirk S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
15
|
Beranek CT, Sanders S, Clulow J, Mahony M. Factors influencing persistence of a threatened amphibian in restored wetlands despite severe population decline during climate change driven weather extremes. BIODIVERSITY AND CONSERVATION 2022; 31:1267-1287. [PMID: 35261489 PMCID: PMC8893051 DOI: 10.1007/s10531-022-02387-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Biodiversity is in global decline during the Anthropocene. Declines have been caused by multiple factors, such as habitat removal, invasive species, and disease, which are often targets for conservation management. However, conservation interventions are under threat from climate change induced weather extremes. Weather extremes are becoming more frequent and devastating and an example of this was the 2019/2020 Australian drought and mega-fires. We provide a case study the impacts of these extreme weather events had on a population of the threatened frog Litoria aurea that occurs in a constructed habitat which was designed to reduce the impact of introduced fish and chytrid-induced disease. We aimed to determine what factors influenced persistence so that the design of wetlands can be further optimised to future-proof threatened amphibians. We achieved this with 4 years (2016-2020) of intensive capture-recapture surveys during austral spring and summer across nine wetlands (n = 94 repeat surveys). As hypothesized, drought caused a sharp reduction in population size, but persistence was achieved. The most parsimonious predictor of survival was an interaction between maximum air temperature and rainfall, indicating that weather extremes likely caused the decline. Survival was positively correlated with wetland vegetation coverage, positing this is an important feature to target to enhance resilience in wetland restoration programs. Additionally, the benefits obtained from measures to reduce chytrid prevalence were not compromised during drought, as there was a positive correlation between salinity and survival. We emphasize that many species may not be able to persist under worse extreme weather scenarios. Despite the potential for habitat augmentation to buffer effects of extreme weather, global action on climate change is needed to reduce extinction risk. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10531-022-02387-9.
Collapse
Affiliation(s)
- Chad T. Beranek
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
- FAUNA Research Alliance, PO Box 5092, 2290 Kahibah, NSW Australia
| | - Samantha Sanders
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
| | - John Clulow
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
- FAUNA Research Alliance, PO Box 5092, 2290 Kahibah, NSW Australia
| | - Michael Mahony
- Conservation Science Research Group, School of Environmental and life Sciences, Biology Building, University of Newcastle, University Drive, 2308 Callaghan, NSW Australia
| |
Collapse
|
16
|
Urgiles VL, Ramírez ER, Villalta CI, Siddons DC, Savage AE. Three Pathogens Impact Terrestrial Frogs from a High-Elevation Tropical Hotspot. ECOHEALTH 2021; 18:451-464. [PMID: 34894333 DOI: 10.1007/s10393-021-01570-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Three infectious pathogens Batrachochytrium dendrobatidis (Bd), Ranavirus (Rv) and Perkinsea (Pr) are associated with widespread and ongoing amphibian population declines. Although their geographic and host ranges vary widely, recent studies have suggested that the occurrence of these pathogens could be more common than previously thought, even in direct-developing terrestrial species traditionally considered less likely to harbor these largely aquatic pathogens. Here, we characterize Bd, Rv, and Pr infections in direct-developing terrestrial amphibians of the Pristimantis genus from the highland Ecuadorean Andes. We confirm the first detection of Pr in terrestrial-breeding amphibians and in the Andean region, present the first report of Rv in Ecuador, and we add to the handful of studies finding Bd infecting Pristimantis. Infection prevalence did not differ significantly among pathogens, but infection intensity was significantly higher for Bd compared to Pr. Neither prevalence nor intensity differed significantly across locality and elevation for Bd and Rv, although low prevalence in our dataset and lack of seasonal sampling could have prevented important epidemiological patterns from emerging. Our study highlights the importance of incorporating pathogen surveillance in biodiversity monitoring in the Andean region and serves as starting point to understand pathogen dynamics, transmission, and impacts in terrestrial-breeding frogs.
Collapse
Affiliation(s)
- Veronica L Urgiles
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA.
- Instituto Nacional de Biodiversidad del Ecuador, Pasaje Rumipamba 341 y Avenida de los Shirys, Quito, Ecuador.
| | - Ervin R Ramírez
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Cristian I Villalta
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - David C Siddons
- Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Ave 24 de Mayo 7-77, Cuenca, Ecuador
| | - Anna E Savage
- Department of Biology, University of Central Florida, 4110 Libra Dr, Orlando, FL, 32816, USA
| |
Collapse
|
17
|
Villamizar-Gomez A, Wang HH, Peterson MR, Grant WE, Forstner MRJ. Environmental determinants of Batrachochytrium dendrobatidis and the likelihood of further dispersion in the face of climate change in Texas, USA. DISEASES OF AQUATIC ORGANISMS 2021; 146:29-39. [PMID: 34498608 DOI: 10.3354/dao03613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the major drivers of amphibian population declines is Batrachochytrium dendrobatidis (Bd). We sought to identify the major environmental drivers of Bd prevalence in Texas, USA, by drawing results from museum specimens. We sampled one of the largest museum collections in Texas, the Biodiversity Research and Teaching Collections at Texas A&M University. Our sampling focused on the 9 amphibian species with the widest geographical distribution within the state, where we sub-sampled 30% of each species per decade from 1930 to present via skin swabs, totaling 1501 independent sampling events, and used quantitative real-time PCR (qPCR) to detect pathogen presence. We analyzed several geo-referenced variables describing climatic conditions to identify potential factors influencing the likelihood of presence of Bd using boosted regression trees. Our final model suggests the most influential variables are mean temperature of driest quarter, annual mean temperature, temperature annual range, and mean diurnal range. The most likely suitable range for Bd is currently found in the Blackland Prairie and Cross Timbers ecoregions. Results of our future (to the year 2040) projections suggest that Bd could expand its current distribution. Our model could play an important role when developing an integrated conservation plan through (1) focusing future field work on locations with a high likelihood of presence, (2) assisting in the choice of locations for restoration, and (3) developing future research plans including those necessary for projecting reactions to climate change. Our model also could integrate new presence data of Bd when they become available to enhance prediction precision.
Collapse
|
18
|
Alvarado-Rybak M, Lepe-Lopez M, Peñafiel-Ricaurte A, Valenzuela-Sánchez A, Valdivia C, Mardones FO, Bacigalupe LD, Puschendorf R, Cunningham AA, Azat C. Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient. Sci Rep 2021; 11:17383. [PMID: 34462470 PMCID: PMC8405646 DOI: 10.1038/s41598-021-96535-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008-2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.
Collapse
Affiliation(s)
- Mario Alvarado-Rybak
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Echaurren 140, Santiago, Chile
| | - Manuel Lepe-Lopez
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
| | - Alexandra Peñafiel-Ricaurte
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Andrés Valenzuela-Sánchez
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Catalina Valdivia
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
| | - Fernando O Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Claudio Azat
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile.
| |
Collapse
|
19
|
Sheets CN, Schmidt DR, Hurtado PJ, Byrne AQ, Rosenblum EB, Richards-Zawacki CL, Voyles J. Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians. Front Vet Sci 2021; 8:687084. [PMID: 34239916 PMCID: PMC8258153 DOI: 10.3389/fvets.2021.687084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments.
Collapse
Affiliation(s)
- Ciara N Sheets
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Deena R Schmidt
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
| | - Paul J Hurtado
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | | | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV, United States
| |
Collapse
|
20
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
21
|
Sonn JM, Porter WP, Mathewson PD, Richards-Zawacki CL. Predictions of Disease Risk in Space and Time Based on the Thermal Physiology of an Amphibian Host-Pathogen Interaction. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.576065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been responsible for declines and extinctions in a growing number of species. Predicting disease variables like infection prevalence and mortality and how they vary in space and time will be critical to understanding how host-pathogen dynamics play out in natural environments and will help to inform management actions. The pandemic disease chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in declines in hundreds of amphibian species worldwide. We used field-collected measurements of host body temperatures and other physiological parameters to develop a mechanistic model of disease risk in a declining amphibian, the Northern cricket frog (Acris crepitans). We first used a biophysical model to predict host body temperatures across the species range in the eastern United States. We then used empirically derived relationships between host body temperature, infection prevalence and survival to predict where and when the risk of Bd-related declines is greatest. Our model predicts that pathogen prevalence is greatest, and survival of infected A. crepitans frogs is lowest, just prior to breeding when host body temperatures are low. Taken together, these results suggest that Bd poses the greatest threat to short-lived A. crepitans populations in the northern part of this host’s range and that disease-related recruitment failure may be common. Furthermore, our study demonstrates the utility of mechanistic modeling approaches for predicting disease outbreaks and dynamics in animal hosts.
Collapse
|
22
|
Beukema W, Pasmans F, Van Praet S, Ferri-Yáñez F, Kelly M, Laking AE, Erens J, Speybroeck J, Verheyen K, Lens L, Martel A. Microclimate limits thermal behaviour favourable to disease control in a nocturnal amphibian. Ecol Lett 2020; 24:27-37. [PMID: 33022129 DOI: 10.1111/ele.13616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
While epizootics increasingly affect wildlife, it remains poorly understood how the environment shapes most host-pathogen systems. Here, we employ a three-step framework to study microclimate influence on ectotherm host thermal behaviour, focusing on amphibian chytridiomycosis in fire salamanders (Salamandra salamandra) infected with the fungal pathogen Batrachochytrium salamandrivorans (Bsal). Laboratory trials reveal that innate variation in thermal preference, rather than behavioural fever, can inhibit infection and facilitate salamander recovery under humidity-saturated conditions. Yet, a 3-year field study and a mesocosm experiment close to the invasive Bsal range show that microclimate constraints suppress host thermal behaviour favourable to disease control. A final mechanistic model, that estimates range-wide, year-round host body temperature relative to microclimate, suggests that these constraints are rule rather than exception. Our results demonstrate how innate host defences against epizootics may remain constrained in the wild, which predisposes to range-wide disease outbreaks and population declines.
Collapse
Affiliation(s)
- Wouter Beukema
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Sarah Van Praet
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Francisco Ferri-Yáñez
- Department of Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Theodor-Lieser-Strasse 4, Halle, 06120, Germany
| | - Moira Kelly
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Alexandra E Laking
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Jesse Erens
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Jeroen Speybroeck
- Research Institute for Nature and Forest - INBO, Havenlaan 88 bus 73, Brussels, 1000, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, Gontrode, 9090, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit, Ghent University, K. L, Ledeganckstraat 35, Ghent, 9000, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| |
Collapse
|