1
|
Ruiz-Herrera A. Interaction Outcomes in Mutualism-Antagonism Continua: Context Dependency and Instantaneous Effects of the Interactions. Am Nat 2025; 205:E66-E79. [PMID: 39965233 DOI: 10.1086/733503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractIt is increasingly evident that most interactions are not static and move along a continuum ranging from pure mutualism (i.e., in which each species in the interaction has a net benefit in the long term) to pure antagonism (i.e., in which each species in the interaction has a net damage in the long term). Despite numerous experimental and theoretical works on this concept, predicting interaction outcomes within an ecological community continues to pose a significant challenge. This article aims to tackle this challenge by presenting a theoretical methodology for predicting the interaction outcomes within the common mutualism-antagonism modeling framework. Specifically, my main finding is to describe the influence of the population abundance of the species, the interaction effects, and the ecological context on the interaction outcomes and to quantify their relative contribution. I found that the interaction outcomes depend on the number of interacting species. In particular, when the number of interacting species increases, the trend is to skip situations where all species benefit from the interactions.
Collapse
|
2
|
Quintero E, Arroyo-Correa B, Isla J, Rodríguez-Sánchez F, Jordano P. Downscaling mutualistic networks from species to individuals reveals consistent interaction niches and roles within plant populations. Proc Natl Acad Sci U S A 2025; 122:e2402342122. [PMID: 39937855 PMCID: PMC11848293 DOI: 10.1073/pnas.2402342122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 12/26/2024] [Indexed: 02/14/2025] Open
Abstract
Species-level networks emerge as the combination of interactions spanning multiple individuals, and their study has received considerable attention over the past 30 y. However, less is known about the structure of interaction configurations within species, even though individuals are the actual interacting units in nature. We compiled 46 empirical, individual-based, interaction networks on plant-animal seed dispersal mutualisms, comprising 1,037 plant individuals across 29 species from various regions. We compared the structure of individual-based networks to that of species-based networks and, by extending the niche concept to interaction assemblages, we explored individual plant specialization. Using a Bayesian framework to account for uncertainty derived from sampling, we examined how plant individuals "explore" the interaction niche of their populations. Both individual-based and species-based networks exhibited high variability in network properties, lacking remarkable structural and topological differences between them. Within populations, frugivores' interaction allocation among plant individuals was highly heterogeneous, with one to three frugivore species dominating interactions. Regardless of species or bioregion, plant individuals displayed a variety of interaction profiles across populations, with a consistently-small percentage of individuals playing a central role and exhibiting high diversity in their interaction assemblage. Plant populations showed variable mid to low levels of niche specialization; and individuals' interaction niche "breadth" accounted for 70% of the population interaction diversity, on average. Our results highlight how downscaling from species to individual-based networks helps understanding the structuring of interactions within ecological communities and provide an empirical basis for the extension of niche theory to complex mutualistic networks.
Collapse
Affiliation(s)
- Elena Quintero
- Departamento de Ecología y Evolución, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, SevillaE-41092, Spain
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, SevillaE-41012, Spain
| | - Blanca Arroyo-Correa
- Departamento de Ecología y Evolución, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, SevillaE-41092, Spain
| | - Jorge Isla
- Departamento de Ecología y Evolución, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, SevillaE-41092, Spain
| | - Francisco Rodríguez-Sánchez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, SevillaE-41012, Spain
| | - Pedro Jordano
- Departamento de Ecología y Evolución, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, SevillaE-41092, Spain
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, SevillaE-41012, Spain
| |
Collapse
|
3
|
Musah BI. Effects of heavy metals and metalloids on plant-animal interaction and biodiversity of terrestrial ecosystems-an overview. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:12. [PMID: 39623084 DOI: 10.1007/s10661-024-13490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Heavy metals and metalloids are ubiquitous and persistent in the environment. Anthropogenic activities, including land use change, industrial emissions, mining, chrome plating, and smelting, escalate their distribution and accumulation in terrestrial ecosystems. Priority metals, including lead, chromium, arsenic, nickel, copper, cadmium, and mercury, pose enormous risks to public health, ecological safety, and biodiversity. The adverse effects of heavy metals on plant-animal interactions, pollen viability, species fitness, richness, and abundance are poorly understood. Hence, this review summarises the critical insights from primary investigations on the key sources of heavy metal pollution, distribution pathways, and their adverse effects on plants and pollinators. This study provides insights into how heavy metals compromise nectar quality, pollen viability, plant-pollinator growth, and reproduction. Biotic pollinators are responsible for approximately 90% of the reproduction of flowering plants. Heavy metals adversely affect pollinators that rely on angiosperms for nectar and pollen. Heavy metals interrupt pollinators' and plants' growth, reproduction, and survival. Evidence showed that bees near gold mines had their olfactory learning performances and head sizes reduced by 36% and 4% due to heavy metals exposure. Cadmium (Cd) interrupts the redox balance, causes oxidative stress, alters gut microbiota, and reduces the survival rate of Apis cerana cerana. Excess Cd exposure reduced the flight capacity, loss of mitochondria, and damaged muscle fibre of Bombus terrestris, while Zn stress reduced egg production and hatchability of Harmonia axyridis. Furthermore, heavy metals alter flower visitation, foraging behaviour, and pollination efficiency.
Collapse
Affiliation(s)
- Baba Imoro Musah
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Menglun, 666316, Yunnan Province, P.R. China.
| |
Collapse
|
4
|
Wu LY, Huang SQ, Tong ZY. Elevational and temporal patterns of pollination success in distylous and homostylous buckwheats ( Fagopyrum) in the Hengduan Mountains. PLANT DIVERSITY 2024; 46:661-670. [PMID: 39290890 PMCID: PMC11403118 DOI: 10.1016/j.pld.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 09/19/2024]
Abstract
Reproductive strategies of sexually dimorphic plants vary in response to the environment. Here, we ask whether the sexual systems of Fagopyrum species (i.e., selfing homostylous and out-crossing distylous) represent distinct adaptive strategies to increase reproductive success in changing alpine environments. To answer this question, we determined how spatial and temporal factors (e.g., elevation and peak flowering time) affect reproductive success (i.e., stigmatic pollen load) in nine wild Fagopyrum species (seven distylous and two homostylous) among 28 populations along an elevation gradient of 1299-3315 m in the Hengduan Mountains, southwestern China. We also observed pollinators and conducted hundreds of hand pollinations to investigate inter/intra-morph compatibility, self-compatibility and pollen limitation in four Fagopyrum species (two distylous and two homostylous). We found that Fagopyrum species at higher elevation generally had bigger flowers and more stigmatic pollen loads; late-flowering individuals had smaller flowers and lower pollen deposition. Stigmatic pollen deposition was more variable in distylous species than in homostylous species. Although seed set was not pollen-limited in all species, we found that fruit set was much lower in distylous species, which rely on frequent pollinator visits, than in homostylous species capable of autonomous self-pollination. Our findings that pollination success increases at high elevations and decreases during the flowering season suggest that distylous and homostylous species have spatially and temporally distinct reproductive strategies related to environment-dependent pollinator activity.
Collapse
Affiliation(s)
- Ling-Yun Wu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shuang-Quan Huang
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ze-Yu Tong
- Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Gavini SS, Quintero C. Predation risk and floral rewards: How pollinators balance these conflicts and the consequences on plant fitness. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100091. [PMID: 39193177 PMCID: PMC11345579 DOI: 10.1016/j.cris.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Foraging behavior of pollinators is shaped by, among other factors, the conflict between maximizing resource intake and minimizing predation risk; yet, empirical studies quantifying variation in both forces are rare, compared to those investigating each separately. Here, we discuss the importance of simultaneously assessing bottom-up and top-down forces in the study of plant-pollinator interactions, and propose a conceptual and testable graphical hypothesis for pollinator foraging behavior and plant fitness outcomes as a function of varying floral rewards and predation risk. In low predation risk scenarios, no noticeable changes in pollinator foraging behavior are expected, with reward levels affecting only the activity threshold. However, as predation risk increases we propose that there is a decrease in foraging behavior, with a steeper decline as plants are more rewarding and profitable. Lastly, in high predation risk scenarios, we expect foraging to approach zero, regardless of floral rewards. Thus, we propose that pollinator foraging behavior follows an inverse S-shape curve, with more pronounced changes in foraging activity at intermediate levels of predation risk, especially in high reward systems. We present empirical evidence that is consistent with this hypothesis. In terms of the consequences for plant fitness, we propose that specialized plant-pollinator systems should be more vulnerable to increased predation risk, with a steeper and faster decline in plant fitness, compared with generalist systems, in which pollinator redundancy can delay or buffer the effect of predators. Moreover, whereas we expect that specialist systems follows a similar inverse S-shape curve, in generalist systems we propose three different scenarios as a function not only of reward level but also compatibility, mating-system, and the interplay between growth form and floral display. The incorporation of trade-offs in pollinator behavior balancing the conflicting demands between feeding and predation risk has a promising future as a key feature enabling the development of more complex foraging models.
Collapse
Affiliation(s)
- Sabrina S. Gavini
- INIBIOMA, CONICET-CRUB, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, Argentina
| | - Carolina Quintero
- INIBIOMA, CONICET-CRUB, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
6
|
Moracho E, Klein EK, Oddou-Muratorio S, Hampe A, Jordano P. Highly clustered mating networks in naturally fragmented riparian tree populations. Mol Ecol 2024; 33:e17285. [PMID: 38288563 DOI: 10.1111/mec.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024]
Abstract
Understanding how spatial patterns of mating and gene flow respond to habitat loss and geographical isolation is a crucial aspect of forest fragmentation genetics. Naturally fragmented riparian tree populations exhibit unique characteristics that significantly influence these patterns. In this study, we investigate mating patterns, pollen-mediated gene flow, and genetic diversity in relict populations of Frangula alnus in southern Spain by testing specific hypotheses related to the riparian habitat. We employ a novel approach that combines paternity analysis, particularly suited for small and isolated populations, with complex network theory and Bayesian models to predict mating likelihood among tree pairs. Our findings reveal a prevalence of short-distance pollination, resulting in spatially driven local mating clusters with a distinct subset of trees being highly connected in the mating network. Additionally, we observe numerous pollination events over distances of hundreds of metres and considerable pollen immigration. Local neighbourhood density is the primary factor influencing within-population mating patterns and pollen dispersal; moreover, mating network properties reflect the population's size and spatial configuration. Conversely, among-population pollen dispersal is mainly determined by tree size, which influences floral display. Our results do not support a major role of directional pollen dispersal in longitudinal trends of genetic diversity. We provide evidence that long-term fragmented tree populations persist in unique environments that shape mating patterns and impose constraints to pollen-mediated gene flow. Nevertheless, even seemingly strongly isolated populations can maintain functional connectivity over extended periods, especially when animal-mediated mating networks promote genetic diversity, as in this riparian tree species.
Collapse
Affiliation(s)
- Eva Moracho
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Etienne K Klein
- Ecologie des Forêts Méditerranéennes, UR 629, INRA, Avignon, France
- Biostatistique et Processus Spatiaux, UR 546, INRA, Avignon, France
| | | | - Arndt Hampe
- INRA, UMR1202 BIOGECO, Cestas, France
- Univ. Bordeaux, UMR1202 BIOGECO, Talence, France
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Dept. Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Arroyo-Correa B, Jordano P, Bartomeus I. Intraspecific variation in species interactions promotes the feasibility of mutualistic assemblages. Ecol Lett 2023; 26:448-459. [PMID: 36688287 DOI: 10.1111/ele.14163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/16/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Patterns of resource use observed at the species level emerge from the way individuals exploit the range of available resources. Hence, accounting for interindividual differences in resource use, such as pollinator use by plants, is essential to advance our understanding of community assembly and persistence. By using finely resolved data on plant-pollinator interactions, we evaluated how interindividual plant variation in pollinator use scales up to affect community structure and dynamics. All co-occurring plant species comprised specialists interacting with proper subsets of pollinators that visited generalists, and differences in interaction patterns were driven by among-individual trait variation. Furthermore, the nested structure and feasibility of plant-pollinator communities were maximised at higher levels of interindividual plant variation in traits and pollinator use. Our study sheds light on how pervasive properties of community structure arise from individual-level processes and contributes to elucidate the importance of preserving intraspecific variation in traits and resource use within populations.
Collapse
Affiliation(s)
- Blanca Arroyo-Correa
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain.,Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ignasi Bartomeus
- Integrative Ecology Group, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| |
Collapse
|
8
|
Gfrerer E, Laina D, Gibernau M, Comes HP, Hörger AC, Dötterl S. Variation in scent amount but not in composition correlates with pollinator visits within populations of deceptive Arum maculatum L. (Araceae). FRONTIERS IN PLANT SCIENCE 2023; 13:1046532. [PMID: 36699827 PMCID: PMC9869488 DOI: 10.3389/fpls.2022.1046532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Floral scent is vital for pollinator attraction and varies among and within plant species. However, little is known about how inter-individual variation in floral scent affects the abundance and composition of floral visitor assemblages within populations. Moreover, for deceptive plants it is predicted that intra-population variation in scent can be maintained by negative frequency-dependent selection, but empirical evidence is still lacking. To investigate the ecological and evolutionary relations between inter-individual scent variation (i.e., total emission and composition) and floral visitors in deceptive plants, we studied floral scent, visitor assemblages, and fruit set in two populations of fly-pollinated (Psychodidae, Sphaeroceridae; Diptera) and deceptive Arum maculatum from Austria (JOS) and northern Italy (DAO). By correlating individual data on floral scent and visitor assemblages, we show that inter-individual variation in floral scent partly explains variation in visitor assemblages. The quantity of floral scent emitted per individual correlated positively with visitor abundance in both populations but explained visitor composition only in DAO, where strongly scented inflorescences attracted more sphaerocerid flies. However, in each population, the composition of floral scent did not correlate with the composition of floral visitors. There was also no evidence of negative frequency-dependent selection on floral scent. Instead, in JOS, more frequent scent phenotypes attracted more pollinators and were more likely to set an infructescence than rarer ones. Our results show that floral scent, despite being key in pollinator attraction in A. maculatum, only partly explains variation in pollinator abundance and composition. Overall, this study is the first to shed light on the importance of inter-individual variation in floral scent in explaining floral visitor assemblages at the population level in a deceptive plant species.
Collapse
Affiliation(s)
- Eva Gfrerer
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Danae Laina
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Marc Gibernau
- Laboratory of Sciences for the Environment, Centre National de la Recherche Scientifique (CNRS) – University of Corsica, Ajaccio, France
| | - Hans Peter Comes
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Anja C. Hörger
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
9
|
A New Feature of Nesting Ecology in the Vulnerable European Turtle Dove: Nest Site and Nesting Tree Sharing with Coexisting Species at Three North African Wetlands. INTERNATIONAL JOURNAL OF ECOLOGY 2022. [DOI: 10.1155/2022/9922971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Investigations of niche splitting in the European turtle dove (Streptopelia turtur) have primarily addressed feeding habitats and foraging features and been limited to conspecific species, counting laughing dove and wood pigeon. The recent degradation of natural and suitable habitats for turtle doves, particularly in North Africa, would push this species to refuge in wetlands with a variety of other bird species. The understanding of potential cohabitation between doves and other species in these less disturbed ecosystems would help in the conservation measures of this declining game. This study, conducted from early March to September between 2015 and 2017, attempted to determine which species cohabit with turtle doves in three Northwest African wetlands in Morocco and how these species select nesting sites and trees. We used detrended corresponding analysis (DCA) to test the relevance of nest site and nesting tree variables in the nest distribution of the breeding species. The obtained results show a wide sharing of nest-niche between turtle doves and 7 breeding species, especially at the intermediate zone and downstream of the rivers. The lack of competition for food resources with neighbouring species may help in this harmonious sharing of both nesting sites and nesting trees. We further suggest guidelines for future research that seek to understand the spatiotemporal dynamics of species coexisting with turtle dove in the same habitats.
Collapse
|
10
|
Marques Dracxler C, Kissling WD. The mutualism-antagonism continuum in Neotropical palm-frugivore interactions: from interaction outcomes to ecosystem dynamics. Biol Rev Camb Philos Soc 2021; 97:527-553. [PMID: 34725900 PMCID: PMC9297963 DOI: 10.1111/brv.12809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Frugivory, that is feeding on fruits, pulp or seeds by animals, is usually considered a mutualism when interactions involve seed dispersal, and an antagonism when it results in the predation and destruction of seeds. Nevertheless, most frugivory interactions involve both benefits and disadvantages for plants, and the net interaction outcomes thus tend to vary along a continuum from mutualism to antagonism. Quantifying outcome variation is challenging and the ecological contribution of frugivorous animals to plant demography thus remains little explored. This is particularly true for interactions in which animals do not ingest entire fruits, that is in seed‐eating and pulp‐eating. Here, we provide a comprehensive review of Neotropical palm–frugivore interactions, with a focus on how frugivore consumption behaviour (i.e. digestive processing, fruit‐handling ability and caching behaviour) and feeding types (fruit‐eating, pulp‐eating and seed‐eating) influence interaction outcomes at different demographic stages of palms. We compiled a total of 1043 species‐level palm–frugivore interaction records that explicitly captured information on which parts of palm fruits are eaten by animals. These records showed consumption of fruits of 106 Neotropical palm species by 273 vertebrate species, especially birds (50%) and mammals (45%), but also fish (3%) and reptiles (2%). Fruit‐eating involved all four taxonomic vertebrate classes whereas seed‐eating and pulp‐eating were only recorded among birds and mammals. Most fruit‐eating interactions (77%) resulted in positive interaction outcomes for plants (e.g. gut‐passed seeds are viable or seeds are successfully dispersed), regardless of the digestive processing type of vertebrate consumers (seed defecation versus regurgitation). The majority of pulp‐eating interactions (91%) also resulted in positive interaction outcomes, for instance via pulp removal that promoted seed germination or via dispersal of intact palm seeds by external transport, especially if animals have a good fruit‐handling ability (e.g. primates, and some parrots). By contrast, seed‐eating interactions mostly resulted in dual outcomes (60%), where interactions had both negative effects on seed survival and positive outcomes through seed caching and external (non‐digestive) seed dispersal. A detailed synthesis of available field studies with qualitative and quantitative information provided evidence that 12 families and 27 species of mammals and birds are predominantly on the mutualistic side of the continuum whereas five mammalian families, six mammal and one reptile species are on the antagonistic side. The synthesis also revealed that most species can act as partial mutualists, even if they are typically considered antagonists. Our review demonstrates how different consumption behaviours and feeding types of vertebrate fruit consumers can influence seed dispersal and regeneration of palms, and thus ultimately affect the structure and functioning of tropical ecosystems. Variation in feeding types of animal consumers will influence ecosystem dynamics via effects on plant population dynamics and differences in long‐distance seed dispersal, and may subsequently affect ecosystem functions such as carbon storage. The quantification of intra‐ and inter‐specific variation in outcomes of plant–frugivore interactions – and their positive and negative effects on the seed‐to‐seedling transition of animal‐dispersed plants – should be a key research focus to understand better the mutualism–antagonism continuum and its importance for ecosystem dynamics.
Collapse
Affiliation(s)
- Caroline Marques Dracxler
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, Amsterdam, 1090 GE, The Netherlands
| |
Collapse
|
11
|
Moran NP, Caspers BA, Chakarov N, Ernst UR, Fricke C, Kurtz J, Lilie ND, Lo LK, Müller C, R R, Takola E, Trimmer PC, van Benthem KJ, Winternitz J, Wittmann MJ. Shifts between cooperation and antagonism driven by individual variation: a systematic synthesis review. OIKOS 2021. [DOI: 10.1111/oik.08201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nicholas P. Moran
- Centre for Ocean Life DTU‐Aqua, Technical Univ. of Denmark Lyngby Denmark
- Dept of Evolutionary Biology, Bielefeld Univ. Bielefeld Germany
| | | | | | - Ulrich R. Ernst
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
- Apicultural State Inst., Univ. of Hohenheim Stuttgart Germany
| | - Claudia Fricke
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Joachim Kurtz
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Navina D. Lilie
- Dept of Evolutionary Biology, Bielefeld Univ. Bielefeld Germany
- Dept of Animal Behaviour, Bielefeld Univ. Bielefeld Germany
| | - Lai Ka Lo
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | | | - Reshma R
- Inst. for Evolution and Biodiversity, Univ. of Münster Münster Germany
| | - Elina Takola
- Inst. of Ecology and Evolution, Friedrich Schiller Univ. Jena Jena Germany
| | | | | | | | | |
Collapse
|
12
|
Cappellari A, Marini L. Improving insect conservation across heterogeneous landscapes using species-habitat networks. PeerJ 2021; 9:e10563. [PMID: 33505794 PMCID: PMC7792512 DOI: 10.7717/peerj.10563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/22/2020] [Indexed: 02/03/2023] Open
Abstract
Background One of the biggest challenges in conservation is to manage multiple habitats for the effective conservation of multiple species, especially when the focal species are mobile and use multiple resources across heterogeneous protected areas. The application of ecological network tools and the analysis of the resulting species–habitat networks can help to describe such complex spatial associations and improve the conservation of species at the landscape scale. Methods To exemplify the application of species–habitat networks, we present a case study on butterflies inhabiting multiple grassland types across a heterogeneous protected area in North-East Italy. We sampled adult butterflies in 44 sites, each belonging to one of the five major habitat types in the protected area, that is, disturbed grasslands, continuous grasslands, evolved grasslands, hay meadows and wet meadows. First, we applied traditional diversity analyses to explore butterfly species richness and evenness. Second, we built and analyzed both the unipartite network, linking habitat patches via shared species, and the bipartite network, linking species to individual habitat patches. Aims (i) To describe the emerging properties (connectance, modularity, nestedness, and robustness) of the species–habitat network at the scale of the whole protected area, and (ii) to identify the key habitats patches for butterfly conservation across the protected area, that is, those supporting the highest number of species and those with unique species assemblages (e.g., hosting specialist species). Results The species–habitat network appeared to have a weak modular structure, meaning that the main habitat types tended to host different species assemblages. However, the habitats also shared a large proportion of species that were able to visit multiple habitats and use resources across the whole study area. Even butterfly species typically considered as habitat specialists were actually observed across multiple habitat patches, suggesting that protecting them only within their focal habitat might be ineffective. Our species–habitat network approach helped identifying both central habitat patches that were able to support the highest number of species, and habitat patches that supported rare specialist species.
Collapse
Affiliation(s)
- Andree Cappellari
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Padua, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Padua, Italy
| |
Collapse
|
13
|
Mathis KA, Bronstein JL. Our Current Understanding of Commensalism. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-040844] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Commensalisms, interactions between two species in which one species benefits and the other experiences no net effect, are frequently mentioned in the ecological literature but are surprisingly little studied. Here we review and synthesize our limited understanding of commensalism. We then argue that commensalism is not a single type of interaction; rather, it is a suite of phenomena associated with distinct ecological processes and evolutionary consequences. For each form of commensalism we define, we present evidence for how, where, and why it occurs, including when it is evolutionarily persistent and when it is an occasional outcome of interactions that are usually mutualistic or antagonistic. We argue that commensalism should be of great interest in the study of species interactions due to its location at the center of the continuum between positive and negative outcomes. Finally, we offer a roadmap for future research.
Collapse
Affiliation(s)
- Kaitlyn A. Mathis
- Department of Biology, Clark University, Worcester, Massachusetts 01610, USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
14
|
Krupa JJ, Hopper KR, Gruber SB, Schmidt JM, Harwood JD. Plant-animal interactions between carnivorous plants, sheet-web spiders, and ground-running spiders as guild predators in a wet meadow community. Ecol Evol 2020; 10:4762-4772. [PMID: 32551059 PMCID: PMC7297782 DOI: 10.1002/ece3.6230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/24/2022] Open
Abstract
Plant-animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant-animal interactions where they are the predator. Competition with animals is a potential antagonistic plant-animal interaction unique to carnivorous plants when they and animal predators consume the same prey.The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet-web spiders, and ground-running spiders co-exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet-web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity-density. Ground-running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.Sundews and spiders consumed springtails. Springtail activity-densities were lower, the higher the density of sundews. Both sheet-web and ground-running spiders were found less often where sundew densities were high. Sheet-web size was smaller where sundew densities were high.The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.
Collapse
Affiliation(s)
- James J. Krupa
- Department of BiologyUniversity of KentuckyLexingtonKYUSA
| | - Kevin R. Hopper
- Biological SciencesBluegrass Community and Technical CollegeLexingtonKYUSA
| | | | - Jason M. Schmidt
- Department of EntomologyUniversity of KentuckyLexingtonKYUSA
- Present address:
Department of EntomologyUniversity of Georgia2360 Rainwater RoadTiftonGA31793USA
| | - James D. Harwood
- Department of EntomologyUniversity of KentuckyLexingtonKYUSA
- Present address:
College of Plant Health and MedicineQingdao Agricultural University700 Changcheng RoadQingdaoShandong266109China
| |
Collapse
|
15
|
Ramos-Robles M, Vargas-Cardoso OR, Corona-López AM, Flores-Palacios A, Toledo-Hernández VH. Spatio-temporal variation of Cerambycidae-host tree interaction networks. PLoS One 2020; 15:e0228880. [PMID: 32040535 PMCID: PMC7010308 DOI: 10.1371/journal.pone.0228880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
Despite its high ecological importance, the commensal interactions at community level are poorly studied. In tropical dry forests (TDF) there is a great diversity of species adapted to the high seasonality that characterizes them; however, little is known regarding how the spatial and temporal availability of resources generates changes in the pattern of commensal interactions. We experimentally studied changes in the diversity, composition, and pattern of interactions in spatio-temporal associations between the saproxylophagous beetles and their host trees in a TDF in Morelos, Mexico. A total of 65 host tree species were selected, from which 16 wood sections were obtained per species. These sections were exposed in the field to allow oviposition by the cerambycids under four different (spatio-temporal) treatments. We analyzed the network structure and generated indices at species level (i.e., specialization, species strength, and effective partners) and those related to physical characteristics of the wood (hardness and degradation rate) and the cerambycids (body size). In total, 1,323 individuals of 57 species of cerambycids emerged. Our results showed that, independently of the space and time, the network presented a nested and modular structure, with a high specialization degree and a high turnover of cerambycid species and their interactions. In general, we found that the cerambycids are mostly associated with softwood species with a lower decomposition rate of wood, as well as with the most abundant host species. The commensalistic interactions between the cerambycids and their host trees are highly specialized but are not spatio-temporally static. The high turnover in the interactions is caused by the emergence patterns of cerambycids, which seem to restrict their use to certain species. The knowledge of the spatio-temporal variation in Cerambycidae-host tree interactions allows us to predict how environmental and structural changes in the habitat can modify the species ensemble, and therefore its interactions.
Collapse
Affiliation(s)
- Michelle Ramos-Robles
- Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Chamilpa, Cuernavaca, Morelos, México
| | - Orthon Ricardo Vargas-Cardoso
- Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Chamilpa, Cuernavaca, Morelos, México
| | - Angélica María Corona-López
- Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Chamilpa, Cuernavaca, Morelos, México
| | - Alejandro Flores-Palacios
- Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Chamilpa, Cuernavaca, Morelos, México
| | - Víctor Hugo Toledo-Hernández
- Universidad Autónoma del Estado de Morelos, Centro de Investigación en Biodiversidad y Conservación, Chamilpa, Cuernavaca, Morelos, México
| |
Collapse
|
16
|
Jácome‐Flores ME, Jordano P, Delibes M, Fedriani JM. Interaction motifs variability in a Mediterranean palm under environmental disturbances: the mutualism–antagonism continuum. OIKOS 2019. [DOI: 10.1111/oik.06688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Miguel E. Jácome‐Flores
- Estación Biológica de Doñana (EBD‐CSIC) Avenida Américo Vespucio 26, Isla de la Cartuja ES‐41092 Sevilla Spain
- Cátedras‐CONACyT, Centro de Cambio Global y Sustentabilidad, c/Centenario del Instituto Juárez s/n Villahermosa Tabasco Mexico
| | - Pedro Jordano
- Estación Biológica de Doñana (EBD‐CSIC) Avenida Américo Vespucio 26, Isla de la Cartuja ES‐41092 Sevilla Spain
| | - Miguel Delibes
- Dept of Conservation Biology, Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Jose M. Fedriani
- Dept of Conservation Biology, Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
- Centre for Applied Ecology ‘Prof. Baeta Neves’/InBio, Univ. of Lisbon Lisbon Portugal
| |
Collapse
|
17
|
Rentería-Ramos R, Hurtado-Heredia R, Urdinola BP. Morbi-Mortality of the Victims of Internal Conflict and Poor Population in the Risaralda Province, Colombia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1644. [PMID: 31083523 PMCID: PMC6540234 DOI: 10.3390/ijerph16091644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
This work studies the health status of two populations similar in most social and environmental interactions but one: the individuals from one population are victims of an internal armed conflict. Both populations are located in the Risaralda province, Colombia and the data for this study results from a combination of administrative records from the health system, between 2011 and 2016. We implemented a methodology based on graph theory that defines the system as a set of heterogeneous social actors, including individuals as well as organizations, embedded in a biological environment. The model of analysis uses the diagnoses in medical records to detect morbidity and mortality patterns for each individual (ego-networks), and assumes that these patterns contain relevant information about the effects of the actions of social actors, in a given environment, on the status of health. The analysis of the diagnoses and causes of specific mortality, following the Social Network Analysis framework, shows similar morbidity and mortality rates for both populations. However, the diagnoses' patterns show that victims portray broader interactions between diagnoses, including mental and behavioral disorders, due to the hardships of this population.
Collapse
Affiliation(s)
- Rafael Rentería-Ramos
- Departments of Physics and Statistics, Universidad Nacional de Colombia, Cra 45 Bogotá, Colombia.
- School of Basic Sciences, Technologies and Engineering, Universidad Nacional Abierta y a Distancia de Colombia, 111321 Bogotá, Colombia.
| | | | - B Piedad Urdinola
- Department of Statistics, Universidad Nacional de Colombia, Cra 45 Bogotá, Colombia.
| |
Collapse
|
18
|
Aslan C, Beckman NG, Rogers HS, Bronstein J, Zurell D, Hartig F, Shea K, Pejchar L, Neubert M, Poulsen J, HilleRisLambers J, Miriti M, Loiselle B, Effiom E, Zambrano J, Schupp G, Pufal G, Johnson J, Bullock JM, Brodie J, Bruna E, Cantrell RS, Decker R, Fricke E, Gurski K, Hastings A, Kogan O, Razafindratsima O, Sandor M, Schreiber S, Snell R, Strickland C, Zhou Y. Employing plant functional groups to advance seed dispersal ecology and conservation. AOB PLANTS 2019; 11:plz006. [PMID: 30895154 PMCID: PMC6420810 DOI: 10.1093/aobpla/plz006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.
Collapse
Affiliation(s)
- Clare Aslan
- Landscape Conservation Initiative, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Haldre S Rogers
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Judie Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Damaris Zurell
- Dynamic Macroecology, Landscape Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse, Birmensdorf, Switzerland
| | - Florian Hartig
- Faculty of Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstraße, Regensburg, Germany
| | - Katriona Shea
- Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, USA
| | - Liba Pejchar
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA
| | - Mike Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - John Poulsen
- Nicholas School of the Environment, Duke University, Durham, USA
| | | | - Maria Miriti
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Bette Loiselle
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Edu Effiom
- CRS Forestry Commission, Calabar, Nigeria
| | - Jenny Zambrano
- National Socio-Environmental Synthesis Center, 1 Park Place, Annapolis, MD, USA
| | - Geno Schupp
- Department of Biology, Utah State University, Logan, UT, USA
| | - Gesine Pufal
- Naturschutz & Landschaftsökologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Jeremy Johnson
- Department of Geography, Texas A&M University, College Station, TX, USA
| | | | - Jedediah Brodie
- Wildlife Biology Program, University of Montana, Missoula, MT, USA
| | - Emilio Bruna
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | | | | | - Evan Fricke
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Katie Gurski
- Department of Mathematics, Howard University, Washington, DC, USA
| | | | - Oleg Kogan
- Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Manette Sandor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Rebecca Snell
- Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | | | - Ying Zhou
- Department of Mathematics, Lafayette College, Easton, PA, USA
| |
Collapse
|
19
|
Simmons BI, Sweering MJM, Schillinger M, Dicks LV, Sutherland WJ, Di Clemente R. bmotif
: A package for motif analyses of bipartite networks. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13149] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benno I. Simmons
- Conservation Science GroupDepartment of ZoologyUniversity of Cambridge Cambridge UK
| | - Michelle J. M. Sweering
- Conservation Science GroupDepartment of ZoologyUniversity of Cambridge Cambridge UK
- Faculty of Mathematics Cambridge UK
| | - Maybritt Schillinger
- Conservation Science GroupDepartment of ZoologyUniversity of Cambridge Cambridge UK
- Faculty of Mathematics Cambridge UK
| | - Lynn V. Dicks
- School of Biological SciencesUniversity of East Anglia Norwich UK
| | | | - Riccardo Di Clemente
- Department of Civil and Environmental EngineeringMassachusetts Institute of Technology Cambridge Massachusetts
- Centre for Advanced Spatial Analysis (CASA)University College London London UK
| |
Collapse
|
20
|
Gómez JM, Schupp EW, Jordano P. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol Rev Camb Philos Soc 2018; 94:874-902. [PMID: 30467946 DOI: 10.1111/brv.12481] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Affiliation(s)
- José María Gómez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, S. J. and Jesse E. Quinney College of Natural Resources, 5230 Old Main Hill, Utah State University, Logan, UT 84322-5230,, U.S.A
| | - Pedro Jordano
- Departamento de Ecología Integrativa, Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Avda. Americo Vespucio S/N, E-41092 Sevilla, Spain
| |
Collapse
|
21
|
Soper Gorden NL, Adler LS. Consequences of multiple flower-insect interactions for subsequent plant-insect interactions and plant reproduction. AMERICAN JOURNAL OF BOTANY 2018; 105:1835-1846. [PMID: 30376158 DOI: 10.1002/ajb2.1182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Plants often interact simultaneously with multiple antagonists and mutualists that can alter plant traits at the phenotypic or genetic level, subsequent plant-insect interactions, and reproduction. Although many studies have examined the effects of single floral antagonisms on subsequent pollination and plant reproduction, we know very little about the combined, potentially non-additive effects of multiple flower-insect interactions. METHODS We simulated increased florivory, nectar robbing, and pollination on field-grown Impatiens capensis, which allowed us to determine interactive effects on five subsequent plant-insect interactions and 16 plant traits, including traits related to plant growth, floral attractiveness, floral defenses, and plant reproduction. KEY RESULTS All three manipulative treatments had significant non-additive effects on the behavior of subsequent floral visitors, indicating that the effect of floral visitors generally depended on the presence or behavior of others. Pollination increased visitation by both pollinators and nectar larcenists (robbers and thieves), while florivory reduced pollinator and larcenist visits. Surprisingly, supplemental pollination also increased leaf herbivory. Florivores often responded to manipulations in opposite ways than did nectar larcenists and pollinators, suggesting different mechanisms influencing visitors that consume nectar compared to floral tissue. While our treatments did not affect any floral trait measured, they non-additively impacted plant reproduction, with florivory having a larger overall impact than either nectar robbing or pollination. CONCLUSIONS These results emphasize the importance of understanding the context in which flower-insect interactions occur because the composition of the interacting community can have large and non-additive impacts on subsequent insect behavior and plant reproduction.
Collapse
Affiliation(s)
- Nicole L Soper Gorden
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| |
Collapse
|
22
|
Simmons BI, Cirtwill AR, Baker NJ, Wauchope HS, Dicks LV, Stouffer DB, Sutherland WJ. Motifs in bipartite ecological networks: uncovering indirect interactions. OIKOS 2018. [DOI: 10.1111/oik.05670] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Benno I. Simmons
- Dept of Zoology, Univ. of Cambridge, The David Attenborough Building, Pembroke Street; Cambridge CB2 3QZ UK
| | - Alyssa R. Cirtwill
- Dept of Physics, Chemistry and Biology (IFM), Linköping Univ; Linköping Sweden
| | - Nick J. Baker
- Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury; Christchurch New Zealand
| | - Hannah S. Wauchope
- Dept of Zoology, Univ. of Cambridge, The David Attenborough Building, Pembroke Street; Cambridge CB2 3QZ UK
| | - Lynn V. Dicks
- School of Biological Sciences, Univ. of East Anglia; UK
| | - Daniel B. Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, Univ. of Canterbury; Christchurch New Zealand
| | - William J. Sutherland
- Dept of Zoology, Univ. of Cambridge, The David Attenborough Building, Pembroke Street; Cambridge CB2 3QZ UK
| |
Collapse
|
23
|
Miguel MF, Jordano P, Tabeni S, Campos CM. Context-dependency and anthropogenic effects on individual plant-frugivore networks. OIKOS 2018. [DOI: 10.1111/oik.04978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M. Florencia Miguel
- Inst. Argentino de Investigaciones de las Zonas Áridas (UNCuyo- Gobierno de Mendoza-CONICET); Av. A. Ruiz Leal s/n, Parque General San Martín CP 5500, CC 507 Mendoza Argentina
- Integrative Ecology Group; Estación Biológica de Doñana EBD-CSIC Sevilla Spain
| | - Pedro Jordano
- Integrative Ecology Group; Estación Biológica de Doñana EBD-CSIC Sevilla Spain
| | - Solana Tabeni
- Inst. Argentino de Investigaciones de las Zonas Áridas (UNCuyo- Gobierno de Mendoza-CONICET); Av. A. Ruiz Leal s/n, Parque General San Martín CP 5500, CC 507 Mendoza Argentina
| | - Claudia M. Campos
- Inst. Argentino de Investigaciones de las Zonas Áridas (UNCuyo- Gobierno de Mendoza-CONICET); Av. A. Ruiz Leal s/n, Parque General San Martín CP 5500, CC 507 Mendoza Argentina
| |
Collapse
|