1
|
Ambu J, Litvinchuk SN, Caballero‐Díaz C, Nicieza A, Velo‐Antón G, Gonçalves H, Martínez‐Freiría F, Martínez‐Gil H, Beltrán JF, Donaire‐Barroso D, Hernandez A, Suchan T, Crochet P, Martínez‐Solano Ĺ, Dufresnes C. Genomic, Phenotypic and Environmental Correlates of Speciation in the Midwife Toads (Alytes). Mol Ecol 2025; 34:e17736. [PMID: 40130889 PMCID: PMC11974493 DOI: 10.1111/mec.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Speciation, i.e., the formation of new species, implies that diverging populations evolve genetic, phenotypic or ecological factors that promote reproductive isolation (RI), but the relative contributions of these factors remain elusive. Here we test which of genomic, bioacoustic, morphological, and environmental differences best predicts RI across a continuum of divergence in the midwife toads (genus Alytes), a group of Western Mediterranean amphibians, using a total evidence approach. We found that, without strong geographic barriers to dispersal, the extent of introgression across hybrid zones between phylogeographic lineages, which should reflect the strength of RI, predominantly covaries with genomic divergence. Overall phenotypic differentiation becomes substantial only between well established, fully isolated species. These results suggest that speciation in midwife toads initially involve cryptic lineages, which probably evolve RI through intrinsic (genetic) hybrid incompatibilities. As they continue to diverge, these nascent species eventually differentiate externally, which potentially enforces pre-mating barriers and facilitates sympatry. This speciation scenario has practical implications for species delimitation, notably when using hybrid zones and divergence thresholds as proxies for reproductive isolation.
Collapse
Affiliation(s)
- Johanna Ambu
- Laboratory for Amphibian Systematics and Evolutionary Research, College of Biology & the EnvironmentNanjing Forestry UniversityNanjingChina
| | | | - Carlos Caballero‐Díaz
- Department of BiologyUniversidad Autónoma de MadridMadridSpain
- Asociación Herpetológica EspañolaMadridSpain
| | - Alfredo Nicieza
- Biodiversity Research Institute (IMIB)University of Oviedo‐CSIC‐Principado de AsturiasMieresSpain
- Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
| | | | - Helena Gonçalves
- Museu de História Natural e da Ciência–Universidade do Porto (MHNC‐UP)PortoPortugal
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
| | - Fernando Martínez‐Freiría
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIOVairãoPortugal
| | - Helena Martínez‐Gil
- Department of Evolutionary Biology, Ecology and Environmental Sciences, and Biodiversity Research Institute (IRBio)Universitat de BarcelonaBarcelonaCataloniaSpain
| | | | | | - Axel Hernandez
- Department of Environmental Sciences, Faculty of Sciences and TechnicsUniversity Pasquale Paoli of CorsicaCorteFrance
| | - Tomasz Suchan
- W. Szafer Institute of BotanyPolish Academy of SciencesKrakówPoland
| | | | | | - Christophe Dufresnes
- Laboratory for Amphibian Systematics and Evolutionary Research, College of Biology & the EnvironmentNanjing Forestry UniversityNanjingChina
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE‐PSLUniversité Des AntillesParisFrance
| |
Collapse
|
2
|
Geng X, Summers J, Chen N. Ecological niche contributes to the persistence of the Western x Glaucous-winged Gull hybrid zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571742. [PMID: 38168246 PMCID: PMC10760172 DOI: 10.1101/2023.12.14.571742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Hybrid zones occur in nature when populations with limited reproductive barriers overlap in space. Many hybrid zones persist over time, and different models have been proposed to explain how selection can maintain hybrid zone stability. More empirical studies are needed to elucidate the role of ecological adaptation in maintaining stable hybrid zones. Here, we investigated the role of exogenous factors in maintaining a hybrid zone between western gulls (Larus occidentalis) and glaucous-winged gulls (L. glaucescens). We used ecological niche models (ENMs) and niche similarity tests to quantify and examine the ecological niches of western gulls, glaucous-winged gulls, and their hybrids. We found evidence of niche divergence between all three groups. Our results best support the bounded superiority model, providing further evidence that exogenous selection favoring hybrids may be an important factor in maintaining this stable hybrid zone.
Collapse
Affiliation(s)
- Xuewen Geng
- Department of Biology, University of Rochester
| | | | - Nancy Chen
- Department of Biology, University of Rochester
| |
Collapse
|
3
|
Liu J, Wei H, Zheng J, Chen R, Wang L, Jiang F, Gu W. Constructing indicator species distribution models to study the potential invasion risk of invasive plants: A case of the invasion of Parthenium hysterophorus in China. Ecol Evol 2023; 13:e10672. [PMID: 37920769 PMCID: PMC10618719 DOI: 10.1002/ece3.10672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/19/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
Aim As invasive plants are often in a non-equilibrium expansion state, traditional species distribution models (SDMs) are likely underestimating their suitable habitat. New methods are necessary to identify potential invasion risk areas. Location Tropical monsoon rainforest and subtropical evergreen broad-leaved forest regions in China. Methods We took Parthenium hysterophorus as a case study to predict its potential invasion risk using climate, terrain, and human activity variables. First, a generalized joint attribute model (GJAM) was constructed using the occurrence of P. hysterophorus and its 27 closely related species in Taiwan, given it is widely distributed in Taiwan. Based on the output correlation values, two positively correlated species (Cardiospermum halicacabum and Portulaca oleracea) and one negatively correlated species (Crassocephalum crepidioides) were selected as indicator species. Second, the distributions of P. hysterophorus and its indicator species in the study area were predicted separately using an ensemble model (EM). Third, when selecting indicator species to construct indicator SDMs, two treatments (indicator species with positive correlation only, or both positive and negative correlation) were considered. The indicator species' EM predictions were overlaid using a weighted average method, and a better indicator SDMs prediction result was selected by comparison. Finally, the EM prediction result of P. hysterophorus was used to optimize the indicator SDMs result by a maximum overlay. Results The optimized indicator SDMs prediction showed an expanded range beyond the current geographic range compared to EM and the thresholds for predicting key environmental variables were wider. It also reinforced the human activities' influence on the potential distribution of P. hysterophorus. Main Conclusions For invasive plants with expanding ranges, information about indicator species distribution can be borrowed as a barometer for areas not currently invaded. The optimized indicator SDMs allow for more efficient potential invasion risk prediction. On this basis, invasive plants can be prevented earlier.
Collapse
Affiliation(s)
- Jiamin Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaShaanxi Normal UniversityXi'anChina
- School of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Haiyan Wei
- School of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Jiaying Zheng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaShaanxi Normal UniversityXi'anChina
- School of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Ruidun Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaShaanxi Normal UniversityXi'anChina
- School of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Lukun Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaShaanxi Normal UniversityXi'anChina
- School of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Fan Jiang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaShaanxi Normal UniversityXi'anChina
- School of Geography and TourismShaanxi Normal UniversityXi'anChina
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest ChinaShaanxi Normal UniversityXi'anChina
- College of Life SciencesShaanxi Normal UniversityXi'anChina
| |
Collapse
|
4
|
da Silva Santana G, Ronchi-Teles B, dos Santos CM, Souza PGC, Farnezi PKB, de Assis Paes VL, Soares MA, da Silva RS. Risk analysis for Anastrepha suspensa (Diptera: Tephritidae) and potential areas for its biological control with Diachasmimorpha longicaudata (Hymenoptera: Braconidae) in the Americas. Heliyon 2023; 9:e18701. [PMID: 37609418 PMCID: PMC10440466 DOI: 10.1016/j.heliyon.2023.e18701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
The Caribbean fruit fly Anastrepha suspensa (Diptera: Tephritidae) is a polyphagous pest causing economic losses in Central America, the Caribbean and South Florida. The parasitoid wasp Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is the main parasitoid of A. suspensa in biological control programs. In this study, by modeling with CLIMEX software, climatically suitable areas were projected according to historical climate data. Areas with overlapping optimal climatic suitability for the joint establishment of the pest and parasitoid were mapped, indicating large areas with host presence in North, Central, and South America, with cold stress being the main climatic factor limiting distribution for both species. Tropical regions have the most potential for invasion, with optimal suitability in many areas. Through the projected distributions, this study can target quarantine strategies in areas most susceptible to invasion and establishment of the pest in each country. In addition, classical biological control with the parasitoid in areas with climatic suitability is also recommended.
Collapse
Affiliation(s)
- Geovani da Silva Santana
- Instituto Nacional de Pesquisa da Amazônia, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - Beatriz Ronchi-Teles
- Instituto Nacional de Pesquisa da Amazônia, Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - Cícero Manoel dos Santos
- Universidade Federal do Pará R. Cel. José Porfírio, 030 - Recreio, Altamira, PA, 68371-030, Brazil
| | - Philipe Guilherme Corcino Souza
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Priscila Kelly Barroso Farnezi
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | | | - Marcus Alvarenga Soares
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| | - Ricardo Siqueira da Silva
- Universidade Federal dos Vales de Jequitinhonha e Mucuri. Rodovia MGT 367 – Km 583, nº 5000 - Alto da Jacuba, Diamantina, MG, 39100-000, Brazil
| |
Collapse
|
5
|
Velasco N, Andrade N, Smit C, Bustamante R. Climatic niche convergence through space and time for a potential archaeophyte (Acacia caven) in South America. Sci Rep 2023; 13:9340. [PMID: 37291243 PMCID: PMC10250544 DOI: 10.1038/s41598-023-35658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Based on the niche conservatism hypothesis, i.e. the idea that niches remain unchanged over space and time, climatic niche modelling (CNM) is a useful tool for predicting the spread of introduced taxa. Recent advances have extended such predictions deeper in time for plant species dispersed by humans before the modern era. The latest CNMs successfully evaluate niche differentiation and estimate potential source areas for intriguing taxa such as archaeophytes (i.e., species introduced before 1492 AD). Here, we performed CNMs for Acacia caven, a common Fabaceae tree in South America, considered an archaeophyte west of the Andes, in Central Chile. Accounting for the infraspecific delimitation of the species, our results showed that even when climates are different, climatic spaces used by the species overlap largely between the eastern and western ranges. Despite slight variation, results were consistent when considering one, two, or even three-environmental dimensions, and in accordance with the niche conservatism hypothesis. Specific distribution models calibrated for each region (east vs west) and projected to the past, indicate a common area of occupancy available in southern Bolivia-northwest Argentina since the late Pleistocene, which could have acted as a source-area, and this signal becomes stronger through the Holocene. Then, in accordance with a taxon introduced in the past, and comparing regional vs continental distribution models calibrated at the infraspecific or species level, the western populations showed their spread status to be mostly in equilibrium with the environment. Our study thus indicates how niche and species distribution models are useful to improve our knowledge related to taxa introduced before the modern era.
Collapse
Affiliation(s)
- Nicolás Velasco
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Nicolás Andrade
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Christian Smit
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ramiro Bustamante
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
- Cape Horn International Centre, Cape Horn County, Chilean Antarctic Province, Chile
| |
Collapse
|
6
|
Piirainen S, Lehikoinen A, Husby M, Kålås JA, Lindström Å, Ovaskainen O. Species distributions models may predict accurately future distributions but poorly how distributions change: A critical perspective on model validation. DIVERS DISTRIB 2023. [DOI: 10.1111/ddi.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Affiliation(s)
- Sirke Piirainen
- Zoological Unit, Finnish Museum of Natural History University of Helsinki Helsinki Finland
- Arctic Centre University of Lapland Rovaniemi Finland
| | - Aleksi Lehikoinen
- Zoological Unit, Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - Magne Husby
- Section of Science Nord University Levanger Norway
- BirdLife Norway Trondheim Norway
| | | | | | - Otso Ovaskainen
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
- Organismal and Evolutionary Biology Research Programme University of Helsinki Helsinki Finland
- Department of Biology, Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
7
|
Moreira GA, Gamerman D. Analysis of presence-only data via exact Bayes, with model and effects identification. Ann Appl Stat 2022. [DOI: 10.1214/21-aoas1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Dani Gamerman
- Instituto de Matemática, Universidade Federal do Rio de Janeiro
| |
Collapse
|
8
|
Hanbury-Brown AR, Ward RE, Kueppers LM. Forest regeneration within Earth system models: current process representations and ways forward. THE NEW PHYTOLOGIST 2022; 235:20-40. [PMID: 35363882 DOI: 10.1111/nph.18131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Earth system models must predict forest responses to global change in order to simulate future global climate, hydrology, and ecosystem dynamics. These models are increasingly adopting vegetation demographic approaches that explicitly represent tree growth, mortality, and recruitment, enabling advances in the projection of forest vulnerability and resilience, as well as evaluation with field data. To date, simulation of regeneration processes has received far less attention than simulation of processes that affect growth and mortality, in spite of their critical role maintaining forest structure, facilitating turnover in forest composition over space and time, enabling recovery from disturbance, and regulating climate-driven range shifts. Our critical review of regeneration process representations within current Earth system vegetation demographic models reveals the need to improve parameter values and algorithms for reproductive allocation, dispersal, seed survival and germination, environmental filtering in the seedling layer, and tree regeneration strategies adapted to wind, fire, and anthropogenic disturbance regimes. These improvements require synthesis of existing data, specific field data-collection protocols, and novel model algorithms compatible with global-scale simulations. Vegetation demographic models offer the opportunity to more fully integrate ecological understanding into Earth system prediction; regeneration processes need to be a critical part of the effort.
Collapse
Affiliation(s)
- Adam R Hanbury-Brown
- The Energy and Resources Group, University of California, 345 Giannini Hall, Berkeley, CA, 94720, USA
| | - Rachel E Ward
- The Energy and Resources Group, University of California, 345 Giannini Hall, Berkeley, CA, 94720, USA
| | - Lara M Kueppers
- The Energy and Resources Group, University of California, 345 Giannini Hall, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| |
Collapse
|
9
|
Hanbury-Brown AR, Powell TL, Muller-Landau HC, Wright SJ, Kueppers LM. Simulating environmentally-sensitive tree recruitment in vegetation demographic models. THE NEW PHYTOLOGIST 2022; 235:78-93. [PMID: 35218213 DOI: 10.1111/nph.18059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to climate change. This requires simulating which trees, if any, are able to recruit under changing environmental conditions. We present a new recruitment scheme for VDMs in which functional-type-specific recruitment rates are sensitive to light, soil moisture and the productivity of reproductive trees. We evaluate the scheme by predicting tree recruitment for four tropical tree functional types under varying meteorology and canopy structure at Barro Colorado Island, Panama. We compare predictions to those of a current VDM, quantitative observations and ecological expectations. We find that the scheme improves the magnitude and rank order of recruitment rates among functional types and captures recruitment limitations in response to variable understory light, soil moisture and precipitation regimes. Our results indicate that adopting this framework will improve VDM capacity to predict functional-type-specific tree recruitment in response to climate change, thereby improving predictions of future forest distribution, composition and function.
Collapse
Affiliation(s)
- Adam R Hanbury-Brown
- The Energy and Resources Group, University of California, 345 Giannini Hall, Berkeley, CA, 94720, USA
| | - Thomas L Powell
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Earth and Environmental Systems, The University of the South, 735 University Ave, Sewanee, TN, 37383, USA
| | - Helene C Muller-Landau
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Lara M Kueppers
- The Energy and Resources Group, University of California, 345 Giannini Hall, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Dufresnes C, Litvinchuk SN. Diversity, distribution and molecular species delimitation in frogs and toads from the Eastern Palaearctic. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Biodiversity analyses can greatly benefit from coherent species delimitation schemes and up-to-date distribution data. In this article, we have made the daring attempt to delimit and map described and undescribed lineages of anuran amphibians in the Eastern Palaearctic (EP) region in its broad sense. Through a literature review, we have evaluated the species status considering reproductive isolation and genetic divergence, combined with an extensive occurrence dataset (nearly 85k localities). Altogether 274 native species from 46 genera and ten families were retrieved, plus eight additional species introduced from other realms. Independent hotspots of species richness were concentrated in southern Tibet (Medog County), the circum-Sichuan Basin region, Taiwan, the Korean Peninsula and the main Japanese islands. Phylogeographic breaks responsible for recent in situ speciation events were shared around the Sichuan Mountains, across Honshu and between the Ryukyu Island groups, but not across shallow water bodies like the Yellow Sea and the Taiwan Strait. Anuran compositions suggested to restrict the zoogeographical limits of the EP to East Asia. In a rapidly evolving field, our study provides a checkpoint to appreciate patterns of species diversity in the EP under a single, spatially explicit, species delimitation framework that integrates phylogeographic data in taxonomic research.
Collapse
Affiliation(s)
- Christophe Dufresnes
- LASER, College of Biology & Environment, Nanjing Forestry University, Nanjing, China
| | - Spartak N Litvinchuk
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Department of Biology, Dagestan State University, Makhachkala, Russia
| |
Collapse
|
11
|
Shay JE, Pennington LK, Mandussi Montiel-Molina JA, Toews DJ, Hendrickson BT, Sexton JP. Rules of Plant Species Ranges: Applications for Conservation Strategies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.700962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Earth is changing rapidly and so are many plant species’ ranges. Here, we synthesize eco-evolutionary patterns found in plant range studies and how knowledge of species ranges can inform our understanding of species conservation in the face of global change. We discuss whether general biogeographic “rules” are reliable and how they can be used to develop adaptive conservation strategies of native plant species across their ranges. Rules considered include (1) factors that set species range limits and promote range shifts; (2) the impact of biotic interactions on species range limits; (3) patterns of abundance and adaptive properties across species ranges; (4) patterns of gene flow and their implications for genetic rescue, and (5) the relationship between range size and conservation risk. We conclude by summarizing and evaluating potential species range rules to inform future conservation and management decisions. We also outline areas of research to better understand the adaptive capacity of plants under environmental change and the properties that govern species ranges. We advise conservationists to extend their work to specifically consider peripheral and novel populations, with a particular emphasis on small ranges. Finally, we call for a global effort to identify, synthesize, and analyze prevailing patterns or rules in ecology to help speed conservation efforts.
Collapse
|
12
|
Palacio RD, Negret PJ, Velásquez‐Tibatá J, Jacobson AP. A data‐driven geospatial workflow to map species distributions for conservation assessments. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ruben Dario Palacio
- Nicholas School of the Environment Duke University Durham North Carolina USA
- Fundación Ecotonos Santiago de Cali Valle del Cauca Colombia
| | - Pablo Jose Negret
- Centre for Biodiversity and Conservation Science University of Queensland Brisbane Queensland Australia
- School of Earth and Environmental Sciences University of Queensland Brisbane Queensland Australia
| | | | - Andrew P. Jacobson
- Department of Environment and Sustainability Catawba College Salisbury North Carolina USA
| |
Collapse
|
13
|
Chowdhury MAW, Müller J, Varela S. Climate change and the increase of human population will threaten conservation of Asian cobras. Sci Rep 2021; 11:18113. [PMID: 34518621 PMCID: PMC8438023 DOI: 10.1038/s41598-021-97553-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/27/2021] [Indexed: 02/08/2023] Open
Abstract
Asian cobras (genus Naja) are venomous snakes distributed from the Middle East to Southeast Asia. Because cobras often live near humans settlements, they are responsible for a large part of snakebite incidents and as such pose a challenge for public health systems. In the light of growing human populations, correctly mapping the present and future ranges of Asian cobras is therefore important for both biological conservation and public health management. Here, we mapped the potential climatic niches of ten Asian cobra species for both the present and the future, with the aim to quantify changes in climate and human population densities relative to their current and future ranges. Our analyses reveal that cobras that are adapted to dry climates and inhabit islands have narrow climatic niches, while those of mainland species with larger geographic ranges are much wider. We also found a higher degree of fragmentation of future cobra distributions; within the next 50 years, Asian cobras will lose an average of around 60% of their current suitable climatic range. In the near future, Naja mandalayensis, N. sputatrix, N. samarensis, and N. philippinensis are likely to have no accessible suitable climate space left. Besides, a further increase of human populations in this region may also exponentially accelerate the effects of anthropogenic impacts. Solutions for conservation may involve awareness and appropriate use of law to overcome the rate of habitat degradation and the increase of animal trade of Asian cobras, while promoting investment on health systems to avoid snakebite fatalities.
Collapse
Affiliation(s)
- Mohammad Abdul Wahed Chowdhury
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany.
- Institut Für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
- Department of Zoology, University of Chittagong, Chattogram, 4331, Bangladesh.
- Department of Medicine, Venom Research Centre, Chittagong Medical College, Chattogram, 4203, Bangladesh.
| | - Johannes Müller
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany
- Institut Für Biologie, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Sara Varela
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany
- Departamento de Ecoloxía e Bioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Grupo GEA, 36310, Vigo, Spain
| |
Collapse
|
14
|
Maréchaux I, Langerwisch F, Huth A, Bugmann H, Morin X, Reyer CP, Seidl R, Collalti A, Dantas de Paula M, Fischer R, Gutsch M, Lexer MJ, Lischke H, Rammig A, Rödig E, Sakschewski B, Taubert F, Thonicke K, Vacchiano G, Bohn FJ. Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecol Evol 2021; 11:3746-3770. [PMID: 33976773 PMCID: PMC8093733 DOI: 10.1002/ece3.7391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.
Collapse
Affiliation(s)
| | - Fanny Langerwisch
- Department of Ecology and Environmental SciencesPalacký University OlomoucOlomoucCzech Republic
- Department of Water Resources and Environmental ModelingCzech University of Life SciencesPragueCzech Republic
| | - Andreas Huth
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Harald Bugmann
- Forest EcologyInstitute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Xavier Morin
- EPHECEFECNRSUniv MontpellierUniv Paul Valéry MontpellierIRDMontpellierFrance
| | - Christopher P.O. Reyer
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | - Rupert Seidl
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Alessio Collalti
- Forest Modelling LabInstitute for Agriculture and Forestry Systems in the MediterraneanNational Research Council of Italy (CNR‐ISAFOM)Perugia (PG)Italy
- Department of Innovation in Biological, Agro‐food and Forest SystemsUniversity of TusciaViterboItaly
| | | | - Rico Fischer
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Martin Gutsch
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | - Heike Lischke
- Dynamic MacroecologyLand Change ScienceSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Anja Rammig
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Edna Rödig
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | - Kirsten Thonicke
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | | |
Collapse
|
15
|
López R, Cano FJ, Martin-StPaul NK, Cochard H, Choat B. Coordination of stem and leaf traits define different strategies to regulate water loss and tolerance ranges to aridity. THE NEW PHYTOLOGIST 2021; 230:497-509. [PMID: 33452823 DOI: 10.1111/nph.17185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (gmin ) decreased. With trait variability, SurEau predicts the plasticity of LAI and gmin buffers the impact of increasing aridity on population persistence. Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.
Collapse
Affiliation(s)
- Rosana López
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| | - Francisco Javier Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Hervé Cochard
- Université Clermont-Auvergne, INRA, PIAF, Clermont-Ferrand, 63000, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
16
|
Santini L, Benítez‐López A, Maiorano L, Čengić M, Huijbregts MAJ. Assessing the reliability of species distribution projections in climate change research. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13252] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Luca Santini
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Rome Italy
- Institute of Research on Terrestrial Ecosystems (CNR‐IRET) National Research Council Monterotondo, Rome Italy
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| | - Ana Benítez‐López
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
- Integrative Ecology Group Estación Biológica de Doñana (EBD‐CSIC) Sevilla Spain
| | - Luigi Maiorano
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Rome Italy
| | - Mirza Čengić
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| | - Mark A. J. Huijbregts
- Department of Environmental Science Institute for Wetland and Water Research Faculty of Science Radboud University Nijmegen The Netherlands
| |
Collapse
|
17
|
Lu Y, Xu P, Li Q, Wang Y, Wu C. Planning priority conservation areas for biodiversity under climate change in topographically complex areas: A case study in Sichuan province, China. PLoS One 2020; 15:e0243425. [PMID: 33362279 PMCID: PMC7757871 DOI: 10.1371/journal.pone.0243425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 11/24/2022] Open
Abstract
Identifying priority conservation areas plays a significant role in conserving biodiversity under climate change, but uncertainties create challenges for conservation planning. To reduce uncertainties in the conservation planning framework, we developed an adaptation index to assess the effect of topographic complexity on species adaptation to climate change, which was incorporated into the conservation framework as conservation costs. Meanwhile, the species distributions were predicted by the Maxent model, and the priority conservation areas were optimized during different periods in Sichuan province by the Marxan model. Our results showed that the effect of topographic complexity was critical for species adaptation, but the adaptation index decreased with the temperature increase. Based on the conservation targets and costs, the distributions of priority conservation areas were mainly concentrated in mountainous areas around the Sichuan Basin where may be robust to the adaptation to climate change. In the future, the distributions of priority conservation areas had no evident changes, accounting for about 26% and 28% of the study areas. Moreover, most species habitats could be conserved in terms of conservation targets in these priority conservation areas. Therefore, our approach could achieve biodiversity conservation goals and be highly practical. More importantly, quantifying the effect of topography also is critical for options for planning conservation areas in response to climate change.
Collapse
Affiliation(s)
- Yafeng Lu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu, China
| | - Pei Xu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu, China
| | - Qinwen Li
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu, China
| | - Yukuan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu, China
| | - Cheng Wu
- Power China Kunming Engineering Corporation Limited, Kuming, China
| |
Collapse
|
18
|
Volaire F, Gleason SM, Delzon S. What do you mean "functional" in ecology? Patterns versus processes. Ecol Evol 2020; 10:11875-11885. [PMID: 33209257 PMCID: PMC7663066 DOI: 10.1002/ece3.6781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Use of the term "functional" trait has increased exponentially in ecology. Although accounting for numerous ecological questions, this concept raises several issues. We propose that the term "functional" could be misleading because (1) no rigorous criteria exist to identify "functional" traits and (2) it suggests that only some traits ("functional" ones) can inform our understanding of species functioning, whatever the scale or discipline. Hence, the concept of "functional" trait in ecology is starting to be challenged and it remains unclear why some traits should be considered functional, whereas other traits should not. We argue that the most used "functional" traits are meaningful because they reflect important differences between populations or species, based on synchronic comparisons, that is, irrespective of time (hereafter "pattern" traits). Hence, they are useful for identifying trade-offs and strategies across large numbers of observations, usually at rather coarse scales, and are most often used in analyses of "big data." However, given that many ecological processes occur across short time scales and narrow gradients of climate and resource availability, the efficacy of these traits to inform us about these ecological processes appears questionable. We show that trait measurements that take time explicitly into account (hereafter "process" traits) differ from pattern traits because they quantify the flows of material and energy within a given environment across a defined period of time. Although pattern traits and process traits are both functional, it is important to understand the differences between the approaches. Moreover, better accounting of ontogeny, life form, plasticity, and genetic variability is required to enhance the convergence between pattern and process approaches. This revised framework allows more explicit connections between trait ecology and other biological sciences. It should enhance the study of processes at all scales in order to investigate efficiently the adaptive responses of biological organisms to climate change.
Collapse
Affiliation(s)
- Florence Volaire
- CEFE, Univ Montpellier, CNRS, INRAE, EPHE, IRD, Univ Paul Valéry Montpellier 3MontpellierFrance
| | - Sean M. Gleason
- USDA ARS, Water Management and Systems Research UnitFort CollinsCOUSA
| | - Sylvain Delzon
- Univ. Bordeaux, INRAE, BIOGECOUniv. BordeauxPessacFrance
| |
Collapse
|
19
|
Modelling the geographical distributions of one native and two introduced species of crayfish in the French Alps. ECOL INFORM 2020. [DOI: 10.1016/j.ecoinf.2020.101172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Potential Impact of Climate Change on the Forest Coverage and the Spatial Distribution of 19 Key Forest Tree Species in Italy under RCP4.5 IPCC Trajectory for 2050s. FORESTS 2020. [DOI: 10.3390/f11090934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Forests provide a range of ecosystem services essential for human wellbeing. In a changing climate, forest management is expected to play a fundamental role by preserving the functioning of forest ecosystems and enhancing the adaptive processes. Understanding and quantifying the future forest coverage in view of climate changes is therefore crucial in order to develop appropriate forest management strategies. However, the potential impacts of climate change on forest ecosystems remain largely unknown due to the uncertainties lying behind the future prediction of models. To fill this knowledge gap, here we aim to provide an uncertainty assessment of the potential impact of climate change on the forest coverage in Italy using species distribution modelling technique. The spatial distribution of 19 forest tree species in the country was extracted from the last national forest inventory and modelled using nine Species Distribution Models algorithms, six different Global Circulation Models (GCMs), and one Regional Climate Models (RCMs) for 2050s under an intermediate forcing scenario (RCP 4.5). The single species predictions were then compared and used to build a future forest cover map for the country. Overall, no sensible variation in the spatial distribution of the total forested area was predicted with compensatory effects in forest coverage of different tree species, whose magnitude and patters appear largely modulated by the driving climate models. The analyses reported an unchanged amount of total land suitability to forest growth in mountain areas while smaller values were predicted for valleys and floodplains than high-elevation areas. Pure woods were predicted as the most influenced when compared with mixed stands which are characterized by a greater species richness and, therefore, a supposed higher level of biodiversity and resilience to climate change threatens. Pure softwood stands along the Apennines chain in central Italy (e.g., Pinus, Abies) were more sensitive than hardwoods (e.g., Fagus, Quercus) and generally characterized by pure and even-aged planted forests, much further away from their natural structure where admixture with other tree species is more likely. In this context a sustainable forest management strategy may reduce the potential impact of climate change on forest ecosystems. Silvicultural practices should be aimed at increasing the species richness and favoring hardwoods currently growing as dominating species under conifers canopy, stimulating the natural regeneration, gene flow, and supporting (spatial) migration processes.
Collapse
|
21
|
Abstract
Abstract
The critical agenda for mammalian ecologists over this century is to obtain a synthetic and predictive understanding of the factors that limit the distribution and abundance of mammals on Earth. During the last 100 years, a start has been made on this agenda, but only a start. Most mammal species have been described, but there still are tropical areas of undisclosed species richness. We have been measuring changes in distribution and abundance of many common mammals during the last century, and this monitoring agenda has become more critical as climate change has accelerated and habitat destruction has increased with human population growth. There are a small number of factors that can limit the distribution and abundance of mammals: weather, predation, food supplies, disease, and social behavior. Weather limits distribution and abundance mostly in an indirect manner by affecting food supplies, disease, and predation in the short term and habitat composition and structure in the longer term. A good starting point for all studies of mammals is to define them within a well-structured trophic web, and then quantify the major linkages within that web. We still are far from having data on enough model systems to develop a complete theory and understanding of how food webs are structured and constrained as climate shifts and humans disturb habitats. We have many of the bits and pieces for some of our major ecosystems but a poor understanding of the links and the resilience of our mammalian communities to changes in trophic webs driven by climate change and human disturbances.
Collapse
Affiliation(s)
- Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Timothy J. Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jennifer Powers
- Departments of Ecology, Evolution and Behavior and Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN 55108, USA
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|