1
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
2
|
Le-Trilling VTK, Maaßen F, Katschinski B, Hengel H, Trilling M. Deletion of the non-adjacent genes UL148 and UL148D impairs human cytomegalovirus-mediated TNF receptor 2 surface upregulation. Front Immunol 2023; 14:1170300. [PMID: 37600801 PMCID: PMC10437809 DOI: 10.3389/fimmu.2023.1170300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a prototypical β-herpesvirus which frequently causes morbidity and mortality in individuals with immature, suppressed, or senescent immunity. HCMV is sensed by various pattern recognition receptors, leading to the secretion of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα). TNFα binds to two distinct trimeric receptors: TNF receptor (TNFR) 1 and TNFR2, which differ in regard to their expression profiles, affinities for soluble and membrane-bound TNFα, and down-stream signaling pathways. While both TNF receptors engage NFκB signaling, only the nearly ubiquitously expressed TNFR1 exhibits a death domain that mediates TRADD/FADD-dependent caspase activation. Under steady-state conditions, TNFR2 expression is mainly restricted to immune cells where it predominantly submits pro-survival, proliferation-stimulating, and immune-regulatory signals. Based on the observation that HCMV-infected cells show enhanced binding of TNFα, we explored the interplay between HCMV and TNFR2. As expected, uninfected fibroblasts did not show detectable levels of TNFR2 on the surface. Intriguingly, however, HCMV infection increased TNFR2 surface levels of fibroblasts. Using HCMV variants and BACmid-derived clones either harboring or lacking the ULb' region, an association between TNFR2 upregulation and the presence of the ULb' genome region became evident. Applying a comprehensive set of ULb' gene block and single gene deletion mutants, we observed that HCMV mutants in which the non-adjacent genes UL148 or UL148D had been deleted show an impaired ability to upregulate TNFR2, coinciding with an inverse regulation of TACE/ADAM17.
Collapse
Affiliation(s)
| | - Fabienne Maaßen
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg−Essen, Essen, Germany
| |
Collapse
|
3
|
Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells 2020; 9:cells9102145. [PMID: 32977412 PMCID: PMC7598215 DOI: 10.3390/cells9102145] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine powerfully influencing diverse processes of the central nervous system (CNS) under both physiological and pathological conditions. Here, we analyze current literature describing the molecular processes involved in TNF synthesis and release from microglia, the resident immune cells of the CNS and the main source of this cytokine both in brain development and neurodegenerative diseases. A special attention has been given to the unconventional vesicular pathway of TNF, based on the emerging role of microglia-derived extracellular vesicles (EVs) in the propagation of inflammatory signals and in mediating cell-to-cell communication. Moreover, we describe the contribution of microglial TNF in regulating important CNS functions, including the neuroinflammatory response following brain injury, the neuronal circuit formation and synaptic plasticity, and the processes of myelin damage and repair. Specifically, the available data on the functions mediated by microglial EVs carrying TNF have been scrutinized to gain insights on possible novel therapeutic strategies targeting TNF to foster CNS repair.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marta Lombardi
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Claudia Verderio
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-0250318307
| |
Collapse
|
4
|
Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, McDermott MF. TNF receptor signalling in autoinflammatory diseases. Int Immunol 2020; 31:639-648. [PMID: 30838383 DOI: 10.1093/intimm/dxz024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autoinflammatory syndromes are a group of disorders characterized by recurring episodes of inflammation as a result of specific defects in the innate immune system. Patients with autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that are mediated by innate immune cells, for the most part. A number of these diseases arise from defects in the tumour necrosis factor receptor (TNFR) signalling pathway leading to elevated levels of inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in haploinsufficiency of A20 (HA20), otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) and linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review, we also address other TNFR signalling disorders such as TNFR-associated periodic syndrome (TRAPS), RELA haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding these diseases and therapeutic approaches currently used to target these diseases. Finally, we explore therapeutic advances in TNF-related immune-based therapies and explore new approaches to target disease-specific modulation of autoinflammatory diseases.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
6
|
Abstract
The innate immune system plays a critical role in the ethanol-induced neuroimmune response in the brain. Ethanol initiates the innate immune response via activation of the innate immune receptors Toll-like receptors (TLRs, e.g., TLR4, TLR3, TLR7) and NOD-like receptors (inflammasome NLRs) leading to a release of a plethora of chemokines and cytokines and development of the innate immune response. Cytokines and chemokines can have pro- or anti-inflammatory properties through which they regulate the immune response. In this chapter, we will focus on key cytokines (e.g., IL-1, IL-6, TNF-α) and chemokines (e.g., MCP-1/CCL2) that mediate the ethanol-induced neuroimmune responses. In this regard, we will use IL-1β, as an example cytokine, to discuss the neuromodulatory properties of cytokines on cellular properties and synaptic transmission. We will discuss their involvement through a set of evidence: (1) changes in gene and protein expression following ethanol exposure, (2) association of gene polymorphisms (humans) and alterations in gene expression (animal models) with increased alcohol intake, and (3) modulation of alcohol-related behaviors by transgenic or pharmacological manipulations of chemokine and cytokine systems. Over the last years, our understanding of the molecular mechanisms mediating cytokine- and chemokine-dependent regulation of immune responses has advanced tremendously, and we review evidence pointing to cytokines and chemokines serving as neuromodulators and regulators of neurotransmission.
Collapse
Affiliation(s)
- Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA.
| | - Reesha R Patel
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Gerald MJ, Bracchi-Ricard V, Ricard J, Fischer R, Nandakumar B, Blumenthal GH, Williams R, Kontermann RE, Pfizenmaier K, Moxon KA, Bethea JR. Continuous infusion of an agonist of the tumor necrosis factor receptor 2 in the spinal cord improves recovery after traumatic contusive injury. CNS Neurosci Ther 2019; 25:884-893. [PMID: 30941924 PMCID: PMC6630008 DOI: 10.1111/cns.13125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Aim The activation of the TNFR2 receptor is beneficial in several pathologies of the central nervous system, and this study examines whether it can ameliorate the recovery process following spinal cord injury. Methods EHD2‐sc‐mTNFR2, an agonist specific for TNFR2, was used to treat neurons exposed to high levels of glutamate in vitro. In vivo, it was infused directly to the spinal cord via osmotic pumps immediately after a contusion to the cord at the T9 level. Locomotion behavior was assessed for 6 weeks, and the tissue was analyzed (lesion size, RNA and protein expression, cell death) after injury. Somatosensory evoked potentials were also measured in response to hindlimb stimulation. Results The activation of TNFR2 protected neurons from glutamate‐mediated excitotoxicity through the activation of phosphoinositide‐3 kinase gamma in vitro and improved the locomotion of animals following spinal cord injury. The extent of the injury was not affected by infusing EHD2‐sc‐mTNFR2, but higher levels of neurofilament H and 2′, 3′‐cyclic‐nucleotide 3′‐phosphodiesterase were observed 6 weeks after the injury. Finally, the activation of TNFR2 after injury increased the neural response recorded in the cortex following hindlimb stimulation. Conclusion The activation of TNFR2 in the spinal cord following contusive injury leads to enhanced locomotion and better cortical responses to hindlimb stimulation.
Collapse
Affiliation(s)
- Marcus J Gerald
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | | | - Jerome Ricard
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Roman Fischer
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Bharadwaj Nandakumar
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania.,Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Gary H Blumenthal
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania.,Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - Raushaun Williams
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Karen A Moxon
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania.,Department of Biomedical Engineering, University of California-Davis, Davis, California
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Kusumoto Y, Okuyama H, Shibata T, Konno K, Takemoto Y, Maekawa D, Kononaga T, Ishii T, Akashi-Takamura S, Saitoh SI, Ikebuchi R, Moriya T, Ueda M, Miyake K, Ono S, Tomura M. Epithelial membrane protein 3 (Emp3) downregulates induction and function of cytotoxic T lymphocytes by macrophages via TNF-α production. Cell Immunol 2019; 324:33-41. [PMID: 29269102 DOI: 10.1016/j.cellimm.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Tetraspanin membrane protein, epithelial membrane protein 3 (Emp3), is expressed in lymphoid tissues. Herein, we have examined the Emp3 in antigen presenting cell (APC) function in the CD8+ cytotoxic T lymphocytes (CTLs) induction. Emp3-overexpressing RAW264.7 macrophage cell line derived from BALB/c mice reduced anti-C57BL/6 alloreactive CTL induction, while Emp3-knockdown RAW264.7 enhanced it compared with parent RAW267.4. Emp3-overexpressing RAW264.7 inhibited, but Emp3-knockdown RAW264.7 augmented, CD8+ T cell proliferation, interferon-γ secretion, IL-2 consumption, and IL-2Rα expression on CD8+ T cells. The supernatant from co-culture with Emp3-overexpressing RAW264.7 contained higher amount of TNF-α, and TNF- α neutralization significantly restored all these inhibitions and the alloreactive CTL induction. These results suggest that Emp3 in allogeneic APCs possesses the inhibitory function of alloreactive CTL induction by downregulation of IL-2Rα expression CD8+ T cells via an increase in TNF-α production. This demonstrates a novel mechanism for regulating CTL induction by Emp3 in APCs through TNF-α production.
Collapse
Affiliation(s)
- Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| | - Hiromi Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takuma Shibata
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazunori Konno
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yusuke Takemoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Daisuke Maekawa
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Kononaga
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takashi Ishii
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sachiko Akashi-Takamura
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shin-Ichiroh Saitoh
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Mizuki Ueda
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kensuke Miyake
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| |
Collapse
|
9
|
Delgado ME, Brunner T. The many faces of tumor necrosis factor signaling in the intestinal epithelium. Genes Immun 2019; 20:609-626. [DOI: 10.1038/s41435-019-0057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/26/2018] [Indexed: 01/15/2023]
|
10
|
Hashem RM, Mohamed RH, Abo-El-matty DM. Effect of curcumin on TNFR2 and TRAF2 in unilateral ureteral obstruction in rats. Nutrition 2015; 32:478-85. [PMID: 26732833 DOI: 10.1016/j.nut.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Tumor necrosis factor α (TNF-α) is implicated in the pathophysiology of renal obstruction through its interactions with two TNF-α receptors: TNFR1 and TNFR2. Activation of TNFR1 leads to the recruitment of the adaptor TNFR-associated death domain protein (TRADD), which binds the Ser/Thr kinase receptor-interacting protein (RIP) and TNFR-associated factors 2 (TRAF2). This TRADD-RIP-TRAF complex causes activation of the antiapoptotic pathway and inhibits caspase 8 activation. Meanwhile, activation of TNFR2 leads to depletion of TRAF2 and enhancement of the apoptotic pathway. Curcumin, the major component found in turmeric spice, has been reported to possess a protective role against renal injury elicited by unilateral ureteral obstruction (UUO). The present study aimed mainly to address the cytoprotective role of curcumin-rich diet (5% w/w) on the apoptotic pathway induced by UUO in rats after 30 d of ligation. METHODS The levels of mRNA for TNFR1, TNFR2, RIP, TRAF2, and caspase 8 were measured by reverse transcription-polymerase chain reaction. The levels of TNF-α was determined by ELISA. Kidney sections were exposed to histologic and morphometric studies. RESULTS Administration of curcumin decreased TNF-α, TNFR2, and caspase 8 without affecting TNFR1 levels. The gene expression levels of the antiapoptotic molecules RIP and TRAF2 were increased. CONCLUSIONS The cytoprotective role of curcumin relies on its ability to decrease the TNFR2 mRNA and enhance the antiapoptotic molecules RIP and TRAF2 to decrease the apoptotic pathway via decreasing the caspase 8.
Collapse
Affiliation(s)
- Reem M Hashem
- Centre for Skin Science, Faculty of Life Sciences, Bradford, Yorkshire, United Kingdom; Biochemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Rasha H Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Dina M Abo-El-matty
- Biochemistry Department, Faculty of Pharmacy, Suez-Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 2015; 302:2-22. [DOI: 10.1016/j.neuroscience.2015.06.038] [Citation(s) in RCA: 290] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
|
12
|
Pozharskaya T, Liang J, Lane AP. Regulation of inflammation-associated olfactory neuronal death and regeneration by the type II tumor necrosis factor receptor. Int Forum Allergy Rhinol 2013; 3:740-7. [PMID: 23733314 DOI: 10.1002/alr.21187] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 04/08/2013] [Accepted: 04/30/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Olfactory loss is a debilitating symptom of chronic rhinosinusitis. To study the impact of inflammation on the olfactory system, the inducible olfactory inflammation (IOI) transgenic mouse was created in which inflammation can be turned on and off within the olfactory epithelium. In this study, the type II tumor necrosis factor (TNF) receptor (TNFR2) was knocked out, and the effect on the olfactory loss phenotype was assessed. METHODS IOI mice were bred to TNFR2 knockout mice to yield progeny IOI mice lacking the TNFR2 receptor (TNFR2(-/-) ). TNF-α expression was induced within the olfactory epithelium for 6 weeks to generate chronic inflammation. Olfactory function was assayed by electro-olfactogram (EOG), and olfactory tissue was processed for histology and immunohistochemical staining. RESULTS Compared to IOI mice with wild-type TNFR2, IOI mice lacking the TNFR2 demonstrated similar levels of inflammatory infiltration and enlargement of the subepithelial layer. However, IOI-TNFR2(-/-) mice differed markedly in that the neuronal layer was largely preserved and active progenitor cell proliferation was present. Odorant responses were maintained in the IOI-TNFR2(-/-) mice, in contrast to IOI mice. CONCLUSION TNFR2 is the minor receptor for TNF-α, but appears to play an important role in mediating TNF-induced disruption of the olfactory system. This finding suggests that neuronal death and inhibition of proliferation in CRS may be mediated by TNFR2 on olfactory neurons and progenitor cells. Further studies are needed to elucidate the subcellular pathways involved and develop novel therapies for treating olfactory loss in the setting of CRS.
Collapse
Affiliation(s)
- Tatyana Pozharskaya
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
13
|
Bertok S, Wilson MR, Morley PJ, de Wildt R, Bayliffe A, Takata M. Selective inhibition of intra-alveolar p55 TNF receptor attenuates ventilator-induced lung injury. Thorax 2011; 67:244-51. [PMID: 22156959 PMCID: PMC3282043 DOI: 10.1136/thoraxjnl-2011-200590] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Tumour necrosis factor (TNF) is upregulated in the alveolar space early in the course of ventilator-induced lung injury (VILI). Studies in genetically modified mice indicate that the two TNF receptors play opposing roles during injurious high-stretch mechanical ventilation, with p55 promoting but p75 preventing pulmonary oedema. Aim To investigate the effects of selective inhibition of intra-alveolar p55 TNF receptor on pulmonary oedema and inflammation during ventilator-induced lung injury using a newly developed domain antibody. Methods Anaesthetised mice were ventilated with high tidal volume and given an intratracheal bolus of p55-specific domain antibody or anti-TNF monoclonal antibody (‘pure’ VILI model). As a model of enhanced inflammation, a subclinical dose of lipopolysaccharide (LPS) was included in the intratracheal antibody bolus (LPS+VILI model). Development of lung injury was assessed by respiratory mechanics and blood gases and protein levels in lavage fluid. Flow cytometry was used to determine leucocyte recruitment and alveolar macrophage activation, while lavage fluid cytokines were assessed by ELISA. Results The ventilation protocol produced deteriorations in respiratory mechanics and gas exchange with increased lavage fluid protein levels in the two models. The p55-specific domain antibody substantially attenuated all of these changes in the ‘pure’ VILI model, while anti-TNF antibody was ineffective. In the LPS+VILI model, p55 blockade prevented deteriorations in respiratory mechanics and oxygenation and significantly decreased neutrophil recruitment, expression of intercellular adhesion molecule 1 on alveolar macrophages, and interleukin 6 and monocyte chemotactic protein 1 levels in lavage fluid. Conclusions Selective inhibition of intra-alveolar p55 TNF receptor signalling by domain antibodies may open new therapeutic approaches for ventilated patients with acute lung injury.
Collapse
Affiliation(s)
- Szabolcs Bertok
- Section of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Extensive research has been performed to unravel the mechanistic signaling pathways mediated by tumor necrosis factor receptor 1 (TNFR1), by contrast there is limited knowledge on cellular signaling upon activation of TNFR2. Recently published data have revealed that these two receptors not only function independently, but also can influence each other via cross-talk between the different signaling pathways initiated by TNFR1 and TNFR2 stimulation. Furthermore, the complexity of this cross-talk is also dependent on the different signaling kinetics between TNFR1 and TNFR2, by which a delicate balance between cell survival and apoptosis can be maintained. Some known signaling factors and the kinetics that are involved in the receptor cross-talk between TNFR1 and TNFR2 are the topic of this review.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Molecular Neurobiology, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
TNFα (tumour necrosis factor α) is an extensively studied pleiotropic cytokine associated with the pathogenesis of a variety of inflammatory diseases. It elicits a wide spectrum of cellular responses which mediates and regulates inflammation, immune response, cell survival, proliferation and apoptosis. TNFα initiates its responses by binding to its receptors. TNFα-induced effector responses are mediated by the actions and interactions among the various intracellular signalling mediators in the cell. TNFα induces both survival and apoptotic signal in a TRADD (TNF receptor-associated DD)-dependent and -independent way. The signals are further transduced via a variety of signalling mediators, including caspases, MAPKs (mitogen-activated protein kinases), phospholipid mediators and miRNA/miR (microRNA), whose roles in specific functional responses is not fully understood. Elucidating the complexity and cross talks among signalling mediators involved in the TNFα-mediated responses will certainly aid in the identification of molecular targets, which can potentially lead to the development of novel therapeutics to treat TNFα-associated disorders and in dampening inflammation.
Collapse
|
16
|
Kraft AD, McPherson CA, Harry GJ. Heterogeneity of microglia and TNF signaling as determinants for neuronal death or survival. Neurotoxicology 2009; 30:785-93. [PMID: 19596372 PMCID: PMC3329780 DOI: 10.1016/j.neuro.2009.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/01/2009] [Indexed: 12/30/2022]
Abstract
Microglia do not constitute a single, uniform cell population, but rather comprise cells with varied phenotypes, some which are beneficial and others that may require active regulatory control. Thus, gaining a better understanding of the heterogeneity of resident microglia responses will contribute to any interpretation regarding the impact of any such response in the brain. Microglia are the primary source of the pro-inflammatory cytokine, tumor necrosis factor (TNF) that can initiate various effects through the activation of membrane receptors. The TNF p55 receptor contains a death domain and activation normally leads to cellular apoptosis; however, under specific conditions, receptor activation can also lead to the activation of NF-kappaB and contribute to cell survival. These divergent outcomes have been linked to receptor localization with receptor internalization leading to cell death and membrane localization supporting cell survival. A second TNF receptor, TNF p75 receptor, is normally linked to cell growth and survival, however, it can cooperate with the p55 receptor and contribute to cell death. Thus, while an elevation in TNFalpha in the brain is often considered an indicator of microglia activation and neuroinflammation, a number of factors come into play to determine the final outcome. Data are reviewed demonstrating that heterogeneity in morphological response of microglia and the expression of TNFalpha and TNF receptors are critical in identifying and characterizing neurotoxic events as they relate to neuroinflammation, neuronal damage and in stimulating neuroprotection.
Collapse
Affiliation(s)
- Andrew D. Kraft
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - Christopher A McPherson
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - G. Jean Harry
- Neurotoxicology Group, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| |
Collapse
|
17
|
Lambertsen KL, Clausen BH, Fenger C, Wulf H, Owens T, Dagnaes-Hansen F, Meldgaard M, Finsen B. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice. Neuroscience 2007; 144:934-49. [PMID: 17161916 DOI: 10.1016/j.neuroscience.2006.10.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 01/01/2023]
Abstract
The proinflammatory and potential neurotoxic cytokine tumor necrosis factor (TNF) is produced by activated CNS resident microglia and infiltrating blood-borne macrophages in infarct and peri-infarct areas following induction of focal cerebral ischemia. Here, we investigated the expression of the TNF receptors, TNF-p55R and TNF-p75R, from 1 to 10 days following permanent occlusion of the middle cerebral artery in mice. Using quantitative polymerase chain reaction (PCR), we observed that the relative level of TNF-p55R mRNA was significantly increased at 1-2 days and TNF-p75R mRNA was significantly increased at 1-10 days following arterial occlusion, reaching peak values at 5 days, when microglial-macrophage CD11b mRNA expression was also increased. In comparison, the relative level of TNF mRNA was significantly increased from 1 to 5 days, with peak levels 1 day after arterial occlusion. In situ hybridization revealed mRNA expression of both receptors in predominantly microglial- and macrophage-like cells in the peri-infarct and subsequently in the infarct, and being most marked from 1 to 5 days. Using green fluorescent protein-bone marrow chimeric mice, we confirmed that TNF-p75R was expressed in resident microglia and blood-borne macrophages located in the peri-infarct and infarct 1 and 5 days after arterial occlusion, which was supported by Western blotting. The data show that increased expression of the TNF-p75 receptor following induction of focal cerebral ischemia in mice can be attributed to expression in activated microglial cells and blood-borne macrophages.
Collapse
Affiliation(s)
- K L Lambertsen
- Medical Biotechnology Center, Winsloewparken 25, University of Southern Denmark, Odense, DK-5000, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Chung AS, Guan YJ, Yuan ZL, Albina JE, Chin YE. Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol 2005; 25:4716-26. [PMID: 15899873 PMCID: PMC1140645 DOI: 10.1128/mcb.25.11.4716-4726.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 01/14/2005] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
Ankyrin repeat and SOCS box (ASB) family members have a C-terminal SOCS box and an N-terminal ankyrin-related sequence of variable repeats belonging to the SOCS superfamily. While SH2-domain-bearing SOCS proteins are mainly involved in the negative feedback regulation of the protein tyrosine kinase-STAT pathway in response to a variety of cytokines, the roles of ASB family members remain largely unknown. To investigate ASB functions, we screened for ASB3-interacting factors by using antibody array technology and identified tumor necrosis factor receptor II (TNF-R2) as an ASB3 binding target. ASB3 expression and activities are required for (i) TNF-R2 ubiquitination both in vivo and in vitro, (ii) TNF-R2 proteolysis via the proteasome pathway, and (iii) the inhibition of TNF-R2-mediated Jun N-terminal protein kinase (JNK) activation. While the ankyrin repeats of ASB3 interact with the C-terminal 37 amino acids of TNF-R2, the SOCS box of ASB3 is responsible for recruiting the E3 ubiquitin ligase adaptors Elongins-B/C, leading to TNF-R2 ubiquitination on multiple lysine residues within its C-terminal region. Downregulation of ASB3 expression by a small interfering RNA inhibited TNF-R2 degradation and potentiated TNF-R2-mediated cytotoxicity. The data presented here implicate ASB3 as a negative regulator of TNF-R2-mediated cellular responses to TNF-alpha by direct targeting of TNF-R2 for ubiquitination and proteasome-mediated degradation.
Collapse
Affiliation(s)
- Alicia S Chung
- Department of Molecular and Cell Biology and Biochemistry, Brown University School of Medicine and Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
19
|
Thommesen L, Laegreid A. Distinct Differences between TNF Receptor 1- and TNF Receptor 2- mediated Activation of NFκB. BMB Rep 2005; 38:281-9. [PMID: 15943902 DOI: 10.5483/bmbrep.2005.38.3.281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor (TNF) signaling is mediated via two distinct receptors, TNFR2 and TNFR1, which shows partially overlapping signaling mechanisms and biological roles. In the present study, TNFR2 and TNFR1 signal transduction mechanisms involved in activation of NFkappaB and CMV promoter-enhancer were compared with respect to their susceptibility towards inhibitors of intracellular signaling. For this, we used SW480 cells, where we have shown that TNF-signaling can occur independently through each of the two receptors. The TNFR1 response was inhibited by D609, bromophenacyl bromide (BPB), nordihydroguararetic acid (NDGA), and by sodium salicylate, while TNFR2-mediated activation of NFkappaB and CMV promoter-enhancer was resistant to these compounds. The signaling mechanisms known to be affected by these inhibitors include phospholipases as well as redox- and pH-sensitive intracellular components. Our results imply that TNFR2 signaling involved in NFkappaB activation proceeds independently of these inhibitor-sensitive signaling components, indicating distinct signaling pathways not shared with TNFR1.
Collapse
MESH Headings
- Cell Line, Tumor
- Colonic Neoplasms
- Cytomegalovirus/genetics
- Enhancer Elements, Genetic
- Genes, Reporter
- Humans
- NF-kappa B/metabolism
- Promoter Regions, Genetic
- Receptors, Tumor Necrosis Factor, Type I/drug effects
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/drug effects
- Receptors, Tumor Necrosis Factor, Type II/physiology
- Sodium Salicylate/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Liv Thommesen
- Norwegian University of Science and Technology, Department of Cancer Research and Molecular Medicine, Sør-Trøndelag University College, Faculty of Technology, N-7489 Trondheim, Norway.
| | | |
Collapse
|
20
|
Lambertsen KL, Meldgaard M, Ladeby R, Finsen B. A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2005; 25:119-35. [PMID: 15678118 DOI: 10.1038/sj.jcbfm.9600014] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the role of tumor necrosis factor (TNF) in the life-death balance of ischemically injured neurons demands insight into the cellular synthesis of TNF, especially in the acute phase after induction of ischemia. Here, using approximated stereological methods and quantitative reverse transcription (RT) real-time polymerase chain reaction (PCR) analysis, the cellular synthesis of TNF from 30 mins to 10 days after induction of focal cerebral ischemia in mice was investigated. Reverse transcription real-time PCR analysis showed that TNF mRNA increased 2- to 3-fold within 1 hour after induction of ischemia. A significant 8-fold increase was observed at 4 hours when faintly labelled TNF mRNA-expressing and TNF immunoreactive microglial-like cells were easily identifiable in the peri-infarct and infarct. By 6 hours, TNF synthesizing cells were identified as Mac-1 immunopositive, glial fibrillary acidic protein immunonegative microglia-macrophages. The level of TNF mRNA and the numbers of TNF mRNA-expressing microglia-macrophages peaked at 12 hours, and the number of TNF immunoreactive cells at 24 hours. Neuronal TNF mRNA and TNF protein levels remained at constant, very low, levels. The data suggest that the pathophysiologically important TNF, produced in the acute phase from mins to 6 hours after an ischemic attack in mice, is synthesized by microglia-macrophages.
Collapse
Affiliation(s)
- Kate Lykke Lambertsen
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Odense, Denmark.
| | | | | | | |
Collapse
|
21
|
Rae C, MacEwan DJ. Granulocyte macrophage-colony stimulating factor and interleukin-3 increase expression of type II tumour necrosis factor receptor, increasing susceptibility to tumour necrosis factor-induced apoptosis. Control of leukaemia cell life/death switching. Cell Death Differ 2004; 11 Suppl 2:S162-71. [PMID: 15459750 DOI: 10.1038/sj.cdd.4401494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.
Collapse
Affiliation(s)
- C Rae
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | |
Collapse
|
22
|
Abstract
A single mouse click on the topic tumor necrosis factor (TNF) in PubMed reveals about 50,000 articles providing one or the other information about this pleiotropic cytokine or its relatives. This demonstrates the enormous scientific and clinical interest in elucidating the biology of a molecule (or rather a large family of molecules), which began now almost 30 years ago with the description of a cytokine able to exert antitumoral effects in mouse models. Although our understanding of the multiple functions of TNF in vivo and of the respective underlying mechanisms at a cellular and molecular level has made enormous progress since then, new aspects are steadily uncovered and it appears that still much needs to be learned before we can conclude that we have a full comprehension of TNF biology. This review shortly covers some general aspects of this fascinating molecule and then concentrates on the molecular mechanisms of TNF signal transduction. In particular, the multiple facets of crosstalk between the various signalling pathways engaged by TNF will be addressed.
Collapse
Affiliation(s)
- H Wajant
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Germany.
| | | | | |
Collapse
|
23
|
Weingärtner M, Siegmund D, Schlecht U, Fotin-Mleczek M, Scheurich P, Wajant H. Endogenous membrane tumor necrosis factor (TNF) is a potent amplifier of TNF receptor 1-mediated apoptosis. J Biol Chem 2002; 277:34853-9. [PMID: 12105203 DOI: 10.1074/jbc.m205149200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock protein 90 (Hsp-90) inhibitor, geldanamycin, and the proteasome inhibitor, MG-132, both inhibited tumor necrosis factor receptor 1 (TNF-R1)- but not TRAIL-induced apoptosis in Kym-1 cells, suggesting that TNF-R1-induced cell death is dependent on NF-kappaB activation in this model. Triggering of TNF-R1 by agonistic antibodies led to cell-type specific induction of endogenous TNF and apoptosis, the latter of which was abrogated by neutralizing TNF specific antibodies. TNF-R1-stimulated cells expressed TNF mainly in a cell-associated form, suggesting that the endogenously produced TNF act in its membrane-bound form. Geldanamycin failed to inhibit apoptosis induction by a combination of agonistic TNF-R1- and TNF-R2-specific antibodies, indicating that both TNF receptors co-operate in TNF-R1-triggered apoptosis in Kym-1 cells. Thus, TNF-R1 stimulation can elicit a strong and rapid apoptotic response via induction of membrane TNF and subsequent cooperation of TNF-R1 and TNF-R2. Moreover, we give evidence that this mechanism circumvents the need of the prolonged presence of exogenous soluble TNF for TNF-R1-mediated apoptosis induction.
Collapse
Affiliation(s)
- Monika Weingärtner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hausser A, Parmryd I, Scheurich P, Schmid JA, Wajant H. Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci 2002; 115:2757-70. [PMID: 12077366 DOI: 10.1242/jcs.115.13.2757] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently shown that stimulation of TNF-R2 selectively enhances apoptosis induction by the death receptor TNF-R1. Here, we demonstrate that stimulation of CD30 or CD40 also leads to selective enhancement of TNF-R1-induced cell death. Enhancement of apoptosis was correlated with the depletion of endogenous TRAF2 within 1 to 6 hours. Selective prestimulation of TNF-R2 for several hours inhibited TNF-R2-induced activation of the anti-apoptotic NF-κB pathway up to 90% and dramatically enhanced apoptosis induction by this receptor. When both TNF-receptors were stimulated simultaneously, TNF-R1-induced NF-κB activation remained unaffected but TNF-R1-induced apoptosis was still significantly enhanced. Compared with FasL-induced cell death TNF-R1-induced activation of caspase-8 was significantly weaker and delayed. Costimulation or prestimulation of TNF-R2 enhanced caspase-8 processing. Life cell imaging and confocal microscopy revealed that both TNF-R1 and TNF-R2 recruited the anti-apoptotic factor cIAP1 in a TRAF2-dependent manner. Thus, TNF-R2 may compete with TNF-R1 for the recruitment of newly synthesized TRAF2-bound anti-apoptotic factors, thereby promoting the formation of a caspase-8-activating TNF-R1 complex. Hence,TNF-R2 triggering can interfere with TNF-R1-induced apoptosis by inhibition of NF-κB-dependent production of anti-apoptotic factors and by blocking the action of anti-apoptotic factors at the post-transcriptional level.
Collapse
Affiliation(s)
- Mariola Fotin-Mleczek
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Tumour necrosis factor-alpha (TNF alpha) is a multifunctional cytokine belonging to a family of ligands with an associated family of receptor proteins. The pleiotropic actions of TNF range from proliferative responses such as cell growth and differentiation, to inflammatory effects and the mediation of immune responses, to destructive cellular outcomes such as apoptotic and necrotic cell death mechanisms. Activated TNF receptors mediate the association of distinct adaptor proteins that regulate a variety of signalling processes including kinase or phosphatase activation, lipase stimulation, and protease induction. Moreover, the cytokine regulates the activities of transcription factors, heterotrimeric or monomeric G-proteins and calcium ion homeostasis in order to orchestrate its cellular functions. This review addresses the structural basis of TNF signalling, the pathways employed with their cellular consequences, and focuses on the specific role played by each of the two TNF receptor isotypes, TNFR1 and TNFR2.
Collapse
Affiliation(s)
- David J MacEwan
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
26
|
Schwarz MJ, Chiang S, Müller N, Ackenheil M. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 2001; 15:340-70. [PMID: 11782103 DOI: 10.1006/brbi.2001.0647] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expanding field of psychoneuroimmunology has markedly increased knowledge about the interference of the central nervous system and the immune system. Immunological abnormalities in psychiatric patients have been repeatedly described in the last century. Modern concepts of immunology and the growing knowledge of psychoneuroimmunology may help in understanding the distinct immunological mechanisms in psychiatric disorders. One of these concepts regarding the adaptive immune system is the discrimination between Th1-like cell-mediated and Th2-like antibody-related immune responses. This article systematically describes alterations of Th1- or Th2-specific parameters in the major psychiatric disorders schizophrenia, major depression, and Alzheimer's disease. There are several hints of associations of these two distinct arms of immune response with subgroups of schizophrenia and major depression. The immunological research in Alzheimer's disease has already led to a preclinical model of immunotherapy. Categorization of immune parameters may also help to identify a possible immune-related pathophysiology in psychotic and affective disorders, resulting in specific treatment strategies.
Collapse
Affiliation(s)
- M J Schwarz
- Psychiatric Hospital, University of Munich, Nussbaumstr. 7, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
27
|
Fang L, Fang J, Chen CQ. TNF receptor-associated factor-2 binding site is involved in TNFR75-dependent enhancement of TNFR55-induced cell death. Cell Res 2001; 11:217-22. [PMID: 11642407 DOI: 10.1038/sj.cr.7290089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
TNF recepter-55 is the main mediator of TNF-induced apoptosis. TNF receptor-75-dependent induction or enhancement of cytotoxicity has been explained by intracellular signaling, "ligand passing", or induction of endogenous TNF. To study the function of human TNF receptor-75 (hTR75) and the interaction between human TNF receptor-55 (hTR55) and hTR75 in hTNFalpha-induced cytotoxicity, HEp-2 cells were transfected with bicistronic expression vector of hTR75 and its deletion mutants genes. hTNFalpha-induced cytotoxicity was determined by crystal violet colorimetric method. The expression of hTR75 and its deletion mutants in HEp-2 cells was demonstrated by RT-PCR and indirect ELISA. We found that the overexpressed hTR75 could significantly increase the susceptibility of HEp-2 cells to hTNFalpha which especially required TRAF2 binding site. hTR75 could not only mediate partial hTNFalpha-induced cytotoxicity independently but also fulfill an accessory role in enhancing or synergizing hTR55-mediated cytotoxicity.
Collapse
Affiliation(s)
- L Fang
- Shanghai Research Center of Biotechnology, Shanghai Institutes for Biological Sciences the Chinese Academy of Sciences
| | | | | |
Collapse
|
28
|
Kaszubowska L, Engelmann H, Gotartowska M, Iliszko M, Bigda J. Identification of two U937 cell sublines exhibiting different patterns of response to tumour necrosis factor. Cytokine 2001; 13:365-70. [PMID: 11292320 DOI: 10.1006/cyto.2001.0844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The monocytic cell line U937 is a frequently used model in studies on the cytotoxic effect of tumour necrosis factor (TNF). Two sublines of this cell line, termed U937(G) and U937(M), revealing different patterns of response to this cytokine, have been identified. The U937(G) cells, similarly to the cells obtained from ATCC, were resistant to the cytotoxic action of TNF in the absence of the protein-synthesis blocker cycloheximide (CHX). The U937(M) cells, however, were sensitive to the cytotoxic action of TNF both in the presence and absence of cycloheximide. Genetic analysis of the U937 sublines confirmed their common origin. The described U937 sublines may be useful models for analysis of the mechanisms of response to TNF. Additionally, our observation underscores the variability of the U937 cell line, which is described by most authors as a TNF-sensitive line.
Collapse
Affiliation(s)
- L Kaszubowska
- Department of Histology and Immunology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Poland
| | | | | | | | | |
Collapse
|
29
|
McFarlane SM, Anderson HM, Tucker SJ, Jupp OJ, MacEwan DJ. Unmodified calcium concentrations in tumour necrosis factor receptor subtype-mediated apoptotic cell death. Mol Cell Biochem 2000; 211:19-26. [PMID: 11055543 DOI: 10.1023/a:1007189911897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumour necrosis factor-alpha (TNF) receptors mediate a variety of effects dependent on cell type. A role for Ca2+ in TNF-induced death remains uncertain. Here we investigated restricting intracellular/extracellular Ca2+ in HeLa epithelial carcinoma cells expressing low and high levels of p75TNFR receptor subtype and KYM-1 rhabdomyosarcoma cells, models of rapid TNF-induced apoptosis. Ca2+ -chelators EGTA and BAPTA-AM as well as microsomal Ca2+ -ATPase inhibitor thapsigargin, did not alter TNF-induced death. TNF was also unable to alter resting [Ca2+]i levels which remained < 200 nM even during times when these cells were undergoing apoptotic cell death. These findings indicate no role for modulated Ca2+ concentrations in TNF-induced apoptotic cell death.
Collapse
Affiliation(s)
- S M McFarlane
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, UK
| | | | | | | | | |
Collapse
|
30
|
Hill GR, Teshima T, Rebel VI, Krijanovski OI, Cooke KR, Brinson YS, Ferrara JL. The p55 TNF-alpha receptor plays a critical role in T cell alloreactivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:656-63. [PMID: 10623807 DOI: 10.4049/jimmunol.164.2.656] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
TNF-alpha is known to be an important mediator of tissue damage during allograft rejection and graft-vs-host disease (GVHD), but its role in supporting T cell responses to allogeneic Ags is unclear. We have studied this question by comparing normal mice with those lacking the p55 (p55 TNFR-/-) or p75 (p75 TNFR-/-) TNF-alpha receptors as donors in well-defined bone marrow transplant (BMT) models. Recipients of p55 TNFR-/- cells had significantly reduced mortality and morbidity from GVHD compared with the other two sources of T cells. In vitro, T cells lacking the p55 (but not the p75) TNF-alpha receptor exhibited decreased proliferation and production of Th1 cytokines in MLC. This defect was only partially restored by exogenous IL-2 and affected both CD4+ and CD8+ populations. CD8+ p55 TNFR-/- proliferation was impaired independently of IL-2 whereas CTL effector function was impaired in an IL-2-dependent fashion. Inhibition of TNF-alpha with TNFR:Fc in primary MLC also impaired the proliferation and Th1 differentiation of wild-type T cells. BMT mixing experiments demonstrated that the reduced ability of p55 TNFR-/- donor cells to induce GVHD was due to the absence of the p55 TNFR on T cells rather than bone marrow cells. These data highlight the importance of TNF-alpha in alloreactive T cell responses and suggest that inhibition of the T cell p55 TNF-alpha receptor may provide an additional useful therapeutic maneuver to inhibit alloreactive T cell responses following bone marrow and solid organ transplantation.
Collapse
MESH Headings
- Adjuvants, Immunologic/physiology
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Female
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Graft vs Host Disease/pathology
- Isoantigens/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Culture Test, Mixed
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th1 Cells/cytology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- G R Hill
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kost ER, Mutch DG, Herzog TJ. Interferon-gamma and tumor necrosis factor-alpha induce synergistic cytolytic effects in ovarian cancer cell lines-roles of the TR60 and TR80 tumor necrosis factor receptors. Gynecol Oncol 1999; 72:392-401. [PMID: 10053112 DOI: 10.1006/gyno.1998.5257] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Utilizing ovarian cancer cell lines, we examined the effect of IFN-gamma on each type of TNF receptor. Additionally, we sought to determine the effect of receptor modulation on TNF-alpha-mediated cytolysis. METHODS Ovarian cancer cell lines Caov-3, A2780, and SK-OV-3 were employed. The number of TNF receptors was determined by a TNF-alpha binding assay utilizing 125I-labeled TNF-alpha. Monoclonal antibodies specific for the 55- to 60-kDa (TR60) and the 75- to 80-kDa (TR80) TNF receptors were used to determine the relative density of each receptor type. Northern blot analyses were performed employing cDNA probes for the TR60 and TR80 mRNAs. To elucidate which receptor(s) was responsible for mediating the signal for cytolysis, 24-h MTT cytolytic assays were performed in the presence of receptor-specific monoclonal antibodies. RESULTS IFN-gamma treatment resulted in an increase in TNF receptors in the cell lines A2780 and Caov-3 (P < 0.001), but not SK-OV-3. Northern blot analyses suggested distinct regulatory mechanisms for the two receptors. In Caov-3 and SK-OV-3 cells a synergistic increase in TNF-alpha-mediated cytolysis was seen when cells were pretreated with IFN-gamma. In both cell lines, pretreatment with IFN-gamma markedly enhanced the ability of the TR60 receptor to mediate cell lysis. Conversely, under similar treatment conditions, the TR80 receptor did not appear capable of generating a cytolytic signal. CONCLUSIONS TNF receptor modulation by IFN-gamma appears to be unique to individual cell lines. The TR60 TNF receptor plays a central role in the synergistic cytolytic effects of IFN-gamma and TNF-alpha. Sequential therapy with IFN-gamma and TNF-alpha and specific TNF receptor activation may provide novel translational strategies for the use of cytokines in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- E R Kost
- Division of Gynecologic Oncology, Brooke Army Medical Center, Ft. Sam, Houston, Texas, 78234-6200, USA
| | | | | |
Collapse
|
32
|
Berkova N, Lemay A, Korobko V, Shingarova L, Sagaidak L, Goupil S. Tumor necrosis factor mutants with selective cytotoxic activity. CANCER DETECTION AND PREVENTION 1999; 23:1-7. [PMID: 9892984 DOI: 10.1046/j.1525-1500.1999.00067.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tumor necrosis factor (TNF-alpha) has a cytotoxic or cytostatic effect when tested with various malignant cell lines. Clinical trials in cancer patients, however, revealed high systemic toxicity of TNF-alpha. The existence of two types of receptor may partially explain the pleiotropic activity of TNF-alpha. The purpose of this study was to characterize the relative cytotoxic activity of TNF-alpha and TNF mutants on the mouse fibrosarcoma L929 cells in a standard cytotoxicity test, on human larynx carcinoma HEp-2 cells, and on human monoblastoid leukemic cells U937. TNF mutants were obtained by site-directed mutagenesis. The purity of TNF-alpha was established by capillary electrophoresis. TNF-alpha and TNF mutants were analysed by Western blot analysis using monoclonal antibodies against TNF-alpha. The results show that TNF mutants can recognize the different TNF-receptors (TNF-R) selectivity. It is generally believed that activation of TNF-R75 is responsible for the systemic toxicity of TNF-alpha. Hence, the development of TNF mutants, binding selectively to TNF-R55, could lead to new option for an anticancer treatment that would be devoid of the deleterious effect of TNF-alpha.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Survival/drug effects
- Electrophoresis, Capillary
- Humans
- Mice
- Neoplasms/drug therapy
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- N Berkova
- Centre de Recherche, Endocrinologie de la Reproduction, Pavillon Saint-François d'Assise, CHUQ, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Interactions between cytokines and Schwann cells (SC) are important in development, repair, and disorders of the peripheral nervous system (PNS). Tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) are two prominent cytokines which may be involved in these processes and their gene products are upregulated in some experimental neuropathies. This study focuses on the in vitro effects of these cytokines, both singly and in combination, on cultured SC. Expression of both Type I and Type II TNF-alpha receptors was demonstrated on the SC surface by immunocytochemistry. Treatment of SC with a combination of TNF-alpha plus TGF-beta causes significant detachment and cell death while treatment with each cytokine alone is not significantly cytotoxic. When compared with control cultures, SC treated with the combination of cytokines exhibit an increase in the number of cells with condensed nuclei and evidence of DNA fragmentation, characteristics consistent with cells undergoing programmed cell death. Thus, TNF-alpha plus TGF-beta induce SC loss of adhesion which is predominantly due to cell death. Apoptotic mechanisms are likely to contribute to some extent to this cell death. These findings provide in vitro evidence to support the hypothesis that cytokines can directly damage SC in PNS disorders.
Collapse
Affiliation(s)
- A M Skoff
- Department of Neurology, Wayne State University School of Medicine, 6E-University Health Center, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
34
|
Ohara H, Hasegawa Y, Kawabe T, Ichiyama S, Hara T, Shimono Y, Saito H, Shimokata K. Effect of gene transfer of tumor necrosis factor receptors into human lung carcinoma cell line. Jpn J Cancer Res 1998; 89:589-95. [PMID: 9685865 PMCID: PMC5921841 DOI: 10.1111/j.1349-7006.1998.tb03302.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The human lung adenocarcinoma cell line A549 is known to be resistant to tumor necrosis factor alpha (TNF-alpha)-mediated tumor cell lysis in spite of the expression of 55 kDa TNF receptor (TNF-R55) mRNA and its cell surface protein. In this study, we investigated the mechanism of TNF-alpha resistance and the role of two types of TNF receptors (TNF-R55 and TNF-R75 (75 kDa TNF receptor)). TNF-R55 or TNF-R75 cDNA was transfected into A549 cells. In addition, a C-terminal deletion mutant of TNF-R75 which lacks the intracellular domain of TNF-R75 was also transfected into A549 cells. We assessed the TNF-alpha-mediated tumor cell lysis of these transfected clones, and found that the cytotoxic effect increased in transfected clones highly expressing TNF- R55, but not in low-expression clones. As for TNF-R75, the cytotoxic effect of TNF-alpha was observed in TNF-R75-transfected clones even when expression was low. Furthermore, the cytotoxic effect was also observed in clones transfected with the deletion mutant of TNF-R75, as well as the complete TNF-R75. These results indicate that a certain level of expression of TNF-R75 is necessary for obtaining TNF-alpha-mediated tumor cell lysis in the absence of TNF-R75. On the other hand, the expression of TNF-R75 strongly induces TNF-alpha-mediated cytotoxicity through TNF-R55 in the absence of an intracellular signal via TNF-R75.
Collapse
Affiliation(s)
- H Ohara
- First Department of Internal Medicine, Nagoya University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Grell M, Wajant H, Zimmermann G, Scheurich P. The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A 1998; 95:570-5. [PMID: 9435233 PMCID: PMC18461 DOI: 10.1073/pnas.95.2.570] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tumor necrosis factor (TNF) can induce a variety of cellular responses at low picomolar concentrations. This is in apparent conflict with the published dissociation constants for TNF binding to TNF receptors in the order of 100-500 pM. To elucidate the mechanisms underlying the outstanding cellular sensitivity to TNF, we determined the binding characteristics of TNF to both human TNF receptors at 37 degrees C. Calculation of the dissociation constant (Kd) from the association and dissociation rate constants determined at 37 degrees C revealed a remarkable high affinity for TNF binding to the 60-kDa TNF type 1 receptor (TNF-R1; Kd = 1.9 x 10(-11) M) and a significantly lower affinity for the 80-kDa TNF type 2 receptor (TNF-R2; Kd = 4.2 x 10(-10) M). The high affinity determined for TNF-R1 is mainly caused by the marked stability of ligand-receptor complexes in contrast to the transient interaction of soluble TNF with TNF-R2. These data can readily explain the predominant role of TNF-R1 in induction of cellular responses by soluble TNF and suggest the stability of the TNF-TNF receptor complexes as a rationale for their differential signaling capability. In accordance with this reasoning, the lower signaling capability of homotrimeric lymphotoxin, compared with TNF, correlates with a lower stability of the lymphotoxin-TNF-R1 complex at 37 degrees C.
Collapse
Affiliation(s)
- M Grell
- Institute of Cell Biology and Immunology, University of Stuttgart, Germany.
| | | | | | | |
Collapse
|
36
|
Page DM, Roberts EM, Peschon JJ, Hedrick SM. TNF Receptor-Deficient Mice Reveal Striking Differences Between Several Models of Thymocyte Negative Selection. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.1.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Central tolerance depends upon Ag-mediated cell death in developing thymocytes. However, the mechanism of induced death is poorly understood. Among the known death-inducing proteins, TNF was previously found to be constitutively expressed in the thymus. The role of TNF in thymocyte negative selection was therefore investigated using TNF receptor (TNFR)-deficient mice containing a TCR transgene. TNFR-deficient mice displayed aberrant negative selection in two models: an in vitro system in which APC are cultured with thymocytes, and a popular in vivo system in which mice are treated with anti-CD3 Abs. In contrast, TNFR-deficient mice displayed normal thymocyte deletion in two Ag-induced in vivo models of negative selection. Current models of negative selection and the role of TNFR family members in this process are discussed in light of these results.
Collapse
Affiliation(s)
- Dawne M. Page
- *Department of Biology and the Cancer Center, University of California-San Diego, La Jolla, CA 92093; and
| | - Edda M. Roberts
- *Department of Biology and the Cancer Center, University of California-San Diego, La Jolla, CA 92093; and
| | | | - Stephen M. Hedrick
- *Department of Biology and the Cancer Center, University of California-San Diego, La Jolla, CA 92093; and
| |
Collapse
|
37
|
Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 1997; 272:32401-10. [PMID: 9405449 DOI: 10.1074/jbc.272.51.32401] [Citation(s) in RCA: 510] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The members of the tumor necrosis factor (TNF) family play pivotal roles in the regulation of the immune system. Here we describe a new ligand in this family, designated TWEAK. The mouse and human versions of this protein are unusually conserved with 93% amino acid identity in the receptor binding domain. The protein was efficiently secreted from cells indicating that, like TNF, TWEAK may have the long range effects of a secreted cytokine. TWEAK transcripts were abundant and found in many tissues, suggesting that TWEAK and TRAIL belong to a new group of widely expressed ligands. Like many members of the TNF family, TWEAK was able to induce interleukin-8 synthesis in a number of cell lines. The human adenocarcinoma cell line, HT29, underwent apoptosis in the presence of both TWEAK and interferon-gamma. Thus, TWEAK resembles many other TNF ligands in the capacity to induce cell death; however, the fact that TWEAK-sensitive cells are relatively rare suggests that TWEAK along with lymphotoxins alpha/beta and possibly CD30L trigger death via a weaker, nondeath domain-dependent mechanism.
Collapse
Affiliation(s)
- Y Chicheportiche
- Department of Pathology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Siemienski K, Peters N, Scheurich P, Wajant H. Organization of the human tumour necrosis factor receptor-associated factor 1 (TRAF1) gene and mapping to chromosome 9q33-34. Gene X 1997; 195:35-9. [PMID: 9300817 DOI: 10.1016/s0378-1119(97)00147-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A new family of signal transducing proteins, associated with members of the tumour necrosis factor receptor (TNFR) superfamily, has recently been identified. The structural hallmark of these molecules is a novel C-terminal homology region of 230 bp designated as TRAF (TNF receptor-associated factor) domain, which is involved in a variety of specific protein-protein interactions. To elucidate the human TRAF1 gene structure for identification of potential regulatory elements, a set of genomic polymerase chain reaction (PCR) fragments was generated, which comprised the whole coding region of TRAF1. These fragments were cloned and partially sequenced to map splicing sites. The human TRAF1 gene was found to have a total length of approx. 12 kb. It is split into six exons, four of which encode for parts of the TRAF domain. Analysis of the genomic structure of the TRAF domains of human TRAF2 and 3 suggests that these domains are also encoded by several exons. The putative promotor region of the TRAFI gene was isolated by use of a PCR-based genomic walking approach. Fluorescence in situ hybridization was used to map this gene to chromosome 9q33-34.
Collapse
Affiliation(s)
- K Siemienski
- Institute of Cell Biology and Immunology, Stuttgart, Germany
| | | | | | | |
Collapse
|
39
|
Zeman K, Kantorski J, Paleolog EM, Feldmann M, Tchórzewski H. The role of receptors for tumour necrosis factor-alpha in the induction of human polymorphonuclear neutrophil chemiluminescence. Immunol Lett 1996; 53:45-50. [PMID: 8946217 DOI: 10.1016/0165-2478(96)02613-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tumour necrosis factor-alpha (TNF-alpha) is a potent mediator of inflammation, which exerts profound effects on polymorphonuclear neutrophils (PMN). TNF-alpha binds to distinct cell surface receptors termed p55 and p75, expressed in approximately equal amounts on the PMN surface. We have studied the effects of TNF-alpha on the priming of F-Met-Leu-Phe (FMLP)-stimulated oxidative metabolism of PMN, using a luminol-enhanced chemiluminescence assay, and have examined the relative roles of PMN receptors for TNF-alpha in priming this oxidative metabolism, using antibodies with p55 and p75 receptor-specific agonistic and antagonistic activities. We have obtained the following results: (1) Antibody Htr-9 with agonistic activity at the p55 receptor mimicked the effect of TNF-alpha; however, a combination of Htr-9 and TNF-alpha did not results in any further increase in chemiluminescence relative to the response observed with TNF-alpha alone. The p75 agonistic antibody MR2-1 actually decreased basal and FMLP-enhanced chemiluminescence. Additionally, MR2-1 substantially inhibited the effects of both TNF-alpha itself and of the p55 agonist Htr-9. (2) Addition of antibodies with antagonistic activities at the p55 (antibody TBP-2) and p75 (antibody Utr-1) receptors resulted in a marked inhibition of the PMN response to TNF-alpha. A combination of both Utr-1 and TBP-2 was most effective at inhibiting the action of TNF. We have confirmed previously published observations that TNF-alpha alone effectively stimulates the oxidative metabolism of PMN in vitro, and that pre-incubation of PMN with TNF-alpha enhances subsequent generation of oxidative metabolites in response to FMLP. We conclude that both p55 and p75 receptors play a critical role in mediating the activation of PMN by TNF-alpha.
Collapse
Affiliation(s)
- K Zeman
- Department of Clinical Immunology, Military Medical Academy, Lódź, Poland
| | | | | | | | | |
Collapse
|
40
|
Goppelt-Struebe M, Reiser CO, Schneider N, Grell M. Modulation of tumor necrosis factor (TNF) receptor expression during monocytic differentiation by glucocorticoids. Inflamm Res 1996; 45:503-7. [PMID: 8912015 DOI: 10.1007/bf02311086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE AND DESIGN Regulation of tumor necrosis factor receptors by glucocorticoids was investigated during phorbol ester-induced monocytic differentiation. MATERIALS AND TREATMENT As model system the human monocytic cell lines U937 and THP-1, which express both types of TNF receptors (TNF-R60 and TNF-R80), were differentiated with tetradecanoyl phorbol-13-acetate (TPA, 5 x 10(-9) M) in the presence or absence of dexamethasone (10(-9) - 10(-6) M). METHODS Expression of TNF receptors was determined at the mRNA level by Northern blot analysis and at the protein level by FACS analysis. RESULTS During differentiation, TNF-R60 mRNA was down-regulated, whereas TNF-R80 mRNA levels were increased. Dexamethasone had no effect on TNF-R60 mRNA expression but attenuated TNF-R80 mRNA expression in both cell lines. Cell surface expression of TNF-R60 protein remained essentially unchanged during differentiation of THP-1 cells, whereas a rapid down-regulation of TNF-R80 was observed that was followed by a slow recovery. Surface expression of TNF-R80 was not affected by dexamethasone, whereas TNF-R60 expression was reduced by about 25%. CONCLUSIONS These results indicate differential regulation of the two types of TNF receptors at the mRNA and protein level during monocytic differentiation. Glucocorticoids interfered with mRNA expression of TNF-R80 and protein expression of TNF-R60, but the rather limited effect leaves the question of its functional relevance open. In contrast to other cytokine systems, TNF receptors do not appear to be major targets of glucocorticoid action.
Collapse
|
41
|
Abstract
OBJECTIVE To determine the tumor necrosis factor (TNF) receptor type involved in induction of E-selectin expression on vascular endothelial cells. DESIGN Prospective, in vitro repeated-measures analysis of cellular responses. SETTING Research laboratory in an academic medical center. SUBJECTS Cultured human umbilical vein endothelial cells. INTERVENTIONS Human umbilical vein endothelial cells were incubated with recombinant human TNF (rhTNF) to induce the expression of E-selectin on their surfaces. To block rhTNF from binding to receptors, the cells were incubated with monoclonal antibodies against TNF receptors (anti-CD120a and anti-CD120b). TNF-induced E-selectin expression of the endothelial cells, with and without blocking antibodies, was then determined using indirect immunofluorescence and flow cytometry. MEASUREMENTS AND MAIN RESULTS Blocking of either CD120a or CD120b receptors individually resulted in inhibition of TNF-induced E-selectin expression on human umbilical vein endothelial cells. When both antibodies were added, the inhibition of TNF-induced E-selectin expression was synergistic. Inhibition of E-selectin expression was dependent on both TNF concentrations and antibody concentrations. CONCLUSIONS Both CD120a and CD120b receptors are involved in TNF-induced E-selectin expression on human umbilical vein endothelial cells. Blocking of both or one receptor type can reduce or totally inhibit expression of E-selectin on human umbilical vein endothelial cells, but the response is dependent on both TNF and antibody concentrations.
Collapse
Affiliation(s)
- R G Gedeit
- Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee 53201-1997, USA
| |
Collapse
|
42
|
Tong L, Perez-Polo JR. Effect of nerve growth factor on AP-1, NF-kappa B, and Oct DNA binding activity in apoptotic PC12 cells: extrinsic and intrinsic elements. J Neurosci Res 1996; 45:1-12. [PMID: 8811508 DOI: 10.1002/(sici)1097-4547(19960701)45:1<1::aid-jnr1>3.0.co;2-i] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Both intrinsic signals, such as serum and neurotrophic factor deprivation, and extrinsic events or agents, such as oxidative stress and glucose deprivation, can induce cell death in pheochromocytoma (PC12) cells. Also, treatment with nerve growth factor (NGF) reduces cell death due to the treatments mentioned. Serumless-induced cell death, as a model of apoptosis, has been intensively investigated in PC12 cells. In the present study, we investigated the molecular components of H2O2-induced cell death and compared it with serumless-induced cell death. Exposure of PC12 cells to intermediate concentrations of H2O2 (100 microM) induced nuclear condensation and DNA fragmentation, indicating that there is an apoptotic component in H2O2-induced cell death. Since transcription factors have been shown to play an essential role in the control of cellular proliferation, differentiation, and survival, we measured changes in the DNA binding activities of the transcription factors activator protein-1 (AP-1), nuclear factor kappa B (NF-kappa B), and octamer-binding protein (Oct) by electrophoretic mobility shift assay (EMSA) after H2O2 treatment and serum deprivation, both in the absence and presence of exogenous NGF in PC12 cells. AP-1 DNA binding activity transiently increased during apoptosis due to serum deprivation, and NGF treatment further stimulated AP-1 DNA binding activity in a more persistent fashion. NF-kappa B DNA binding activity only increased slightly after serum deprivation, and NGF treatment of PC12 cells decreased NF-kappa B binding activity in the late stages of serum deprivation. Oct DNA binding activity decreased after serum deprivation, while NGF had an opposite effect. AP-1 DNA binding activity also transiently increased after H2O2 treatment, as did NF-kappa B DNA binding activity. Our results suggest that AP-1 is likely to be a common component of signaling pathways associated with both the induction or suppression of apoptosis induced by intrinsic or extrinsic stimuli.
Collapse
Affiliation(s)
- L Tong
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0652, USA
| | | |
Collapse
|
43
|
Medvedev AE, Espevik T, Ranges G, Sundan A. Distinct roles of the two tumor necrosis factor (TNF) receptors in modulating TNF and lymphotoxin alpha effects. J Biol Chem 1996; 271:9778-84. [PMID: 8621658 DOI: 10.1074/jbc.271.16.9778] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The role for the two tumor necrosis factor (TNF) receptors in discriminating TNF and lymphotoxin alpha (LTalpha) effects has been studied. TNF and LTalpha were equally mitogenic in Fs4 fibroblasts, which express a high amount of the p55 compared to the p75 TNF receptors (TNFRs). In contrast, TNF was more potent than LTalpha in mediating gene regulation and cytotoxicity in SW480-betaGal cells and KYM-1 cells, which have a high p75/p55 TNFR ratio. Both TNF and LTalpha showed comparable affinities for the two TNFRs. However, in contrast to LTalpha, TNF dissociated rapidly from the p75 TNFR, whereas both cytokines dissociated slowly from the p55 TNFR. Soluble p55 TNFR was much more potent than soluble p75 TNFR in inhibiting TNF cytotoxicity, whereas both soluble receptors moderately decreased LTalpha-mediated cytotoxicity with comparable efficacy. Antagonistic monoclonal antibodies against either TNFR types markedly inhibited TNF effects. However, only the p55 TNFR antagonistic antibody significantly decreased LTalpha-mediated cytotoxicity and cytomegalovirus promoter activation, whereas blocking of the p75 TNFR enhanced the LTalpha effects. These data suggest that whereas the p75 TNFR can both directly propagate TNF signals and "pass" TNF to the p55 TNFR, it attenuates LTalpha and may serve as a decoy receptor for this cytokine.
Collapse
Affiliation(s)
- A E Medvedev
- Institute of Cancer Research and Molecular Biology, Trondheim, Norway
| | | | | | | |
Collapse
|
44
|
Kammermann JR, Kincaid SA, Rumph PF, Baird DK, Visco DM. Tumor necrosis factor-alpha (TNF-alpha) in canine osteoarthritis: Immunolocalization of TNF-alpha, stromelysin and TNF receptors in canine osteoarthritic cartilage. Osteoarthritis Cartilage 1996; 4:23-34. [PMID: 8731393 DOI: 10.1016/s1063-4584(96)80004-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presence and distribution of tumor necrosis factor-alpha (TNF-alpha), TNF receptors and stromelysin [matrix metalloproteinase 3 (MMP-3)] in articular cartilage were evaluated in an iatrogenically induced model of osteoarthritis (OA). Eleven adult male dogs were assigned randomly to a control group (N = 4) or an OA group (N = 7). Osteoarthritis was created by surgical transection of the cranial cruciate ligament of one stifle joint. Both femoral condyles were sampled 3 months post-surgery at necropsy and immunohistochemically analyzed for the presence of the aforementioned cytokines and receptors. Chondrocytes stained for TNF-alpha and TNF receptors in control articular cartilage, spanning an area encompassing most of the middle and deep zones. Positive matrical and chondrocytic staining for TNF-alpha, TNF receptors, and stromelysin was present in OA articular cartilage. Staining varied in intensity and distribution and was dependent of the severity of the lesion. Smooth muscle cells of arteries and arterioles (periarticular synovial membrane) were stained for only one (p55) of two TNF receptors; this staining was confined to control tissues. Results indicate that the differential expression of TNF-alpha and its receptors may be important in the normal maintenance of articular cartilage. The increased presence of TNF-alpha and its receptors in articular cartilage with mild osteoarthritic changes suggests a role in the development of early OA. Regulating TNF-alpha may be an important component in the treatment of OA.
Collapse
Affiliation(s)
- J R Kammermann
- Department of Anatomy and Histology, College of Veterinary Medicine, Auburn University, Alabama 36849-5518, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The past year has witnessed remarkable advances in the understanding of signaling by the two TNF (tumor necrosis factor) receptors, TNFR1 and TNFR2, and the related CD40 receptor. Adaptor molecules (termed TRAFs) have been identified that associate with TNFR2 and CD40 and function to modulate the signaling pathways. Significantly, TRAF2 mediates the activation of NF-kappa B by both receptors. Furthermore, a molecule called TRADD has been identified that associates with the cytoplasmic segment of TNFR1. TRADD, which contains a novel 'death domain' that binds to the corresponding death domain in the cytoplasmic segment of TNFR1, can mediate both activation of NF-kappa B and induction of apoptosis, the two major responses signaled by TNFR1.
Collapse
Affiliation(s)
- M Tewari
- Department of Pathology, University of Michigan Medical School, Ann Arbor 41809-0602, USA.
| | | |
Collapse
|
46
|
Abstract
Unwanted cells are removed by physiological cell death processes that are highly conserved throughout the animal kingdom. Physiological cell death plays an important role in development, tissue homeostasis and defence against viral infection and mutation. This review describes the molecular components that implement this process, the relevance of these to a variety of human diseases, and discusses the potential for novel therapies based on our understanding of them.
Collapse
Affiliation(s)
- A G Uren
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|