1
|
Alrasheed AR, Awadalla M, Alnajran H, Alammash MH, Almaqati AM, Qadri I, Alosaimi B. Harnessing immunotherapeutic molecules and diagnostic biomarkers as human-derived adjuvants for MERS-CoV vaccine development. Front Immunol 2025; 16:1538301. [PMID: 40181980 PMCID: PMC11965926 DOI: 10.3389/fimmu.2025.1538301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025] Open
Abstract
The pandemic potential of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) highlights the critical need for effective vaccines due to its high fatality rate of around 36%. In this review, we identified a variety of immunotherapeutic molecules and diagnostic biomarkers that could be used in MERS vaccine development as human-derived adjuvants. We identified immune molecules that have been incorporated into standard clinical diagnostics such as CXCL10/IP10, CXCL8/IL-8, CCL5/RANTES, IL-6, and the complement proteins Ca3 and Ca5. Utilization of different human monoclonal antibodies in the treatment of MERS-CoV patients demonstrates promising outcomes in combatting MERS-CoV infections in vivo, such as hMS-1, 4C2H, 3B11-N, NBMS10-FC, HR2P-M2, SAB-301, M336, LCA60, REGN3051, REGN3048, MCA1, MERs-4, MERs-27, MERs-gd27, and MERs-gd33. Host-derived adjuvants such as CCL28, CCL27, RANTES, TCA3, and GM-CSF have shown significant improvements in immune responses, underscoring their potential to bolster both systemic and mucosal immunity. In conclusion, we believe that host-derived adjuvants like HBD-2, CD40L, and LL-37 offer significant advantages over synthetic options in vaccine development, underscoring the need for clinical trials to validate their efficacy.
Collapse
Affiliation(s)
- Abdullah R. Alrasheed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maaweya Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Hadeel Alnajran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Adil M. Almaqati
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Yang WS, Liu Q, Li Y, Li GY, Lin S, Li J, Li LY, Li Y, Ge XL, Wang XZ, Wu W, Yan J, Wang GF, Zhou QT, Liu Q, Wang MW, Li ZP. Oral FPR2/ALX modulators tune myeloid cell activity to ameliorate mucosal inflammation in inflammatory bowel disease. Acta Pharmacol Sin 2025:10.1038/s41401-025-01525-7. [PMID: 40069490 DOI: 10.1038/s41401-025-01525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Current treatments of inflammatory bowel disease (IBD) largely depend on anti-inflammatory and immunosuppressive strategies with unacceptable efficacy and adverse events. Resolution or repair agents to treat IBD are not available but potential targets like formyl peptide receptor 2 (FPR2/ALX) may fill the gap. In this study we evaluated the therapeutic effects of two small molecule FPR2/ALX modulators (agonist Quin-C1 and antagonist Quin-C7) against IBD. We first analyzed the cryo-electron microscopy structure of the Quin-C1-FPR2 in complex with heterotrimeric Gi to reveal the structural basis for ligand recognition and FPR2 activation. We then established dextran sulfate sodium (DSS)-induced colitis model in both normal and myeloid depletion mice. We showed that oral administration of Quin-C1 for 7 days ameliorated DSS-induced colitis evidenced by alleviated disease activity indexes, reduced colonic histopathological scores, and corrected cytokine disorders. Meanwhile, we found that oral administration of FPR2/ALX antagonist Quin-C7 exerted therapeutic actions similar to those of Quin-C1. In terms of symptomatic improvements, the ED50 values of Quin-C1 and Quin-C7 were 1.3660 mg/kg and 2.2110 mg/kg, respectively. The underlying mechanisms involved ERK- or ERK/JNK-mediated myeloid cell regulation that limited the development of colitis and inflammation. This is the first demonstration of anti-colitis property caused by synthetic small molecule FPR2/ALX modulators, implying that FPR2/ALX modulation rather than agonism alone ameliorates IBD.
Collapse
Affiliation(s)
- Wen-Sheng Yang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Guan-Yi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin-Yu Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yuan Li
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Xi-Lin Ge
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiao-Zhen Wang
- Research Center for Deepsea Bioresources, Sanya, 572025, China
| | - Wei Wu
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Guang-Fei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
- Research Center for Deepsea Bioresources, Sanya, 572025, China
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Research Center for Medicinal Structural Biology, National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhi-Ping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Department of Clinical Pharmacy, Kunshan Maternity and Children's Health Care Hospital, Children's Hospital of Fudan University Kunshan Branch, Kunshan, 215300, China.
| |
Collapse
|
3
|
Gasanov VAO, Kashirskikh DA, Khotina VA, Kuzmina DM, Nikitochkina SY, Mukhina IV, Vorotelyak EA, Vasiliev AV. Preclinical Evaluation of the Safety, Toxicity and Efficacy of Genetically Modified Wharton's Jelly Mesenchymal Stem/Stromal Cells Expressing the Antimicrobial Peptide SE-33. Cells 2025; 14:341. [PMID: 40072070 PMCID: PMC11898551 DOI: 10.3390/cells14050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) offer promising therapeutic potential in cell-based therapies for various diseases. However, the safety of genetically modified MSCs remains poorly understood. This study aimed to evaluate the general toxicity and safety of Wharton's Jelly-Derived MSCs (WJ-MSCs) engineered to express the antimicrobial peptide SE-33 in an animal model. Genetically modified WJ-MSCs expressing SE-33 were administered to C57BL/6 mice at both therapeutic and excessive doses, either once or repeatedly. Animal monitoring included mortality, clinical signs, and behavioral observations. The toxicity assessment involved histopathological, hematological, and biochemical analyses of major organs and tissues, while immunotoxicity and immunogenicity were examined through humoral and cellular immune responses, macrophage phagocytic activity, and lymphocyte blast transformation. Antimicrobial efficacy was evaluated in a Staphylococcus aureus-induced pneumonia model by monitoring animal mortality and assessing bacterial load and inflammatory processes in the lungs. Mice receiving genetically modified WJ-MSCs exhibited no acute or chronic toxicity, behavioral abnormalities, or pathological changes, regardless of the dose or administration frequency. No significant immunotoxicity or alterations in immune responses were observed, and there were no notable changes in hematological or biochemical serum parameters. Infected animals treated with WJ-MSC-SE33 showed a significant reduction in bacterial load and lung inflammation and improved survival compared to control groups, demonstrating efficacy over native WJ-MSCs. Our findings suggest that WJ-MSCs expressing SE-33 are well tolerated, displaying a favorable safety profile comparable to native WJ-MSCs and potent antimicrobial activity, significantly reducing bacterial load, inflammation, and mortality in an S. aureus pneumonia model. These data support the safety profile of WJ-MSCs expressing SE-33 as a promising candidate for cell-based therapies for bacterial infections, particularly those complicated by antibiotic resistance.
Collapse
Affiliation(s)
- Vagif Ali oglu Gasanov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | | | - Victoria Alexandrovna Khotina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Daria Mikhailovna Kuzmina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Sofya Yurievna Nikitochkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Irina Vasilievna Mukhina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Ekaterina Andreevna Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
- Department of Cell Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey Valentinovich Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| |
Collapse
|
4
|
Ouyang K, Chen T, Sun R, Xie Y, Qi Q, Li X, Liu J, Liu Q, Wei L. Effects of dietary cecropin on growth performance, diarrhea rate and intestinal health of nursery Hainan pigs. Front Microbiol 2024; 15:1298703. [PMID: 38633702 PMCID: PMC11021643 DOI: 10.3389/fmicb.2024.1298703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/19/2024] [Indexed: 04/19/2024] Open
Abstract
Antimicrobial peptides could inhibit the growth of harmful bacteria and promote the growth performance in weaned piglets. Here, we investigated the effects of dietary supplementation with cecropin antimicrobial peptides (CAP) on growth performance, diarrhea rate, intestinal health in nursery Hainan piglets. For this, 120 healthy nursery Hainan male piglets (13.29 ± 0.29 kg, 44 days old) were randomly divided into 5 groups-a control (CON) group (fed a basal diet), an antibiotic control (AC) group (fed a basal diet supplemented with 250 mg/kg colistin sulfate); and 3 experimental groups (provided the basal diet supplemented with 250, 500, or 1,000 mg/kg CAP). Pre-feeding lasted 7 days and the official period lasted 40 days. The results showed that compared with the CON group, dietary supplementation of 500 mg/kg CAP had significantly increased the average daily gain (ADG, p < 0.05), while the feed conversion ratio (FCR) and diarrhea rate were markedly reduced (p < 0.05), serum total protein (TP), albumin, IgA, IgM, and globulin concentrations were significantly increased (p < 0.05), where serum aspartate aminotransferase (AST) level was significantly reduced (p < 0.05), and it also increased the villus height and the villus height-to-crypt depth ratio in the jejunum, reduced the serum D-lactic acid concentrations and diamine oxidase activity, and increased the expression level of ZO-1 and occludin in the jejunum and ileum (p < 0.05), the relative abundance of Firmicutes, Lactobacillus, and Limoslactobacillus in the colon were increased (p < 0.05), whereas that of Streptococcus and Escherichia-Shigella were reduced (p < 0.05). These results indicated that dietary supplementation with 500 mg/kg CAP could improve the growth performance, reduce the diarrhea rate, improve the serum immunity, intestinal health of nursery pigs.
Collapse
Affiliation(s)
- Kun Ouyang
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruiping Sun
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Yali Xie
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Qi Qi
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiang Li
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jie Liu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| | - Quanwei Liu
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, China
- Sanya Institute, Hainan Academy of Agricultural Sciences (Hainan Experimental Animal Research Center), Sanya, China
| |
Collapse
|
5
|
Xie C, You X, Zhang H, Li J, Wang L, Liu Y, Wang Z, Yao R, Tong T, Li M, Wang X, Cui L, Zhang H, Guo H, Li C, Wu J, Xia X. A Nanovaccine Based on Adjuvant Peptide FK-13 and l-Phenylalanine Poly(ester amide) Enhances CD8 + T Cell-Mediated Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300418. [PMID: 37162249 PMCID: PMC10369282 DOI: 10.1002/advs.202300418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Cancer vaccines have shown promise as effective means of antitumor immunotherapy by inducing tumor antigen-specific T cell immunity. In this study, a novel peptide-based tumor nanovaccine that boosts antigen presentation and elicits effective antitumor immunity is developed. The adjuvant characteristics of an antimicrobial peptide-derived core peptide, FK-13, are investigated and used it to generate a fusion peptide named FK-33 with tumor antigen epitopes. l-phenylalanine-based poly(ester amide) (Phe-PEA), 8p4, is also identified as a competent delivery vehicle for the fusion peptide FK-33. Notably, the vaccination of 8p4 + FK-33 nanoparticles (8FNs) in vivo induces dendritic cell activation in the lymph nodes and elicits robust tumor antigen-specific CD8+ T cell response. The nanovaccine 8FNs demonstrate significant therapeutic and prophylactic efficacy against in situ tumor growth, effectively inhibit tumor metastasis, and significantly prolong the survival of tumor-bearing mice. Moreover, 8FNs can incorporate different tumor antigens and exhibit a synergistic therapeutic effect with antiprogrammed cell death protein 1 (PD-1) therapy. In summary, 8FNs represent a promising platform for personalized cancer vaccines and may serve as a potential combinational modality to improve current immunotherapy.
Collapse
Affiliation(s)
- Chunyuan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Xinru You
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Jiahui Li
- School of Food Science and TechnologyNational Engineering Research Center of SeafoodDalian Polytechnic UniversityDalian116024China
| | - Liying Wang
- School of Biomedical EngineeringSun Yat‐sen University66 Gongchang RoadShenzhen518107China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Zining Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Ruhui Yao
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Tong Tong
- School of Biomedical EngineeringSun Yat‐sen University66 Gongchang RoadShenzhen518107China
| | - Mengyun Li
- State Key Laboratory of BiocontrolSchool of Life ScienceSun Yat‐sen University135 Xingang West RoadGuangzhou510275China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Lei Cui
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Hui Guo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Chunwei Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| | - Jun Wu
- Bioscience and Biomedical Engineering ThrustThe Hong Kong University of Science and Technology (Guangzhou)NanshaGuangzhou511400China
- Division of Life ScienceThe Hong Kong University of Science and TechnologyHong Kong SAR999077China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center651 Dongfeng East RoadGuangzhou510060China
| |
Collapse
|
6
|
Formyl peptide receptor 2 as a potential therapeutic target for inflammatory bowel disease. Acta Pharmacol Sin 2023; 44:19-31. [PMID: 35840658 DOI: 10.1038/s41401-022-00944-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023]
Abstract
Inflammatory bowel disease (IBD) is a global health burden whose existing treatment is largely dependent on anti-inflammatory agents. Despite showing some therapeutic actions, their clinical efficacy and adverse events are unacceptable. Resolution as an active and orchestrated phase of inflammation involves improper inflammatory response with three key triggers, specialized pro-resolving mediators (SPMs), neutrophils and phagocyte efferocytosis. The formyl peptide receptor 2 (FPR2/ALX) is a human G protein-coupled receptor capable of binding SPMs and participates in the resolution process. This receptor has been implicated in several inflammatory diseases and its association with mouse model of IBD was established in some resolution-related studies. Here, we give an overview of three reported FPR2/ALX agonists highlighting their respective roles in pro-resolving strategies.
Collapse
|
7
|
Xu B, Wu X, Gong Y, Cao J. IL-27 induces LL-37/CRAMP expression from intestinal epithelial cells: implications for immunotherapy of Clostridioides difficile infection. Gut Microbes 2022; 13:1968258. [PMID: 34432564 PMCID: PMC8405154 DOI: 10.1080/19490976.2021.1968258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile infection is currently the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. Cathelicidins, a major group of natural antimicrobial peptides, have antimicrobial and immunomodulatory activities in Clostridioides difficile infection. Here, we have shown that cytokine IL-27 induced human cathelicidin antimicrobial peptide (LL-37) expression in primary human colonic epithelial cells. IL-27 receptor-deficient mice had impaired expression of cathelicidin-related antimicrobial peptide (CRAMP, mouse homolog for human LL-37) after Clostridioides difficile infection, and restoration of CRAMP improved Clostridium difficile clearance and reduced mortality in IL-27 receptor-deficient mice after Clostridioides difficile challenge. In clinical samples from 119 patients with Clostridioides difficile infection, elevated levels of IL-27 were positively correlated with LL-37 in the sera and stools. These findings suggest that IL-27 may be involved in host immunity against Clostridioides difficile infection via induction of LL-37/CRAMP. Therefore, IL-27-LL-37 axis may be a valuable pathway in the development of immune-based therapy.
Collapse
Affiliation(s)
- Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xianan Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Gong
- Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,CONTACT Ju Cao Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1#, Yu Zhong District, Chongqing, China
| |
Collapse
|
8
|
Kim J, Yang YL, Jeong Y, Jang YS. Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization. Immune Netw 2022; 22:e41. [DOI: 10.4110/in.2022.22.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
| | - Ye Lin Yang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
9
|
Li J, Jin ZH, Li JS, Su LY, Wang YX, Zhang Y, Qin DM, Rao GX, Wang RR. Activity of Compound Agrimony Enteritis Capsules against invasive candidiasis: Exploring the differences between traditional Chinese medicine prescriptions and its main components in the treatment of diseases. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114201. [PMID: 34015365 DOI: 10.1016/j.jep.2021.114201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/27/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Agrimony Enteritis Capsules (FFXHC) is an ethnomedicine derived from Yi Nationality Herbal Medicine for the treatment of enteritis. We found that compared to berberine hydrochloride (BBR), a component of this medicine, FFXHC was more efficacious in the mouse model of IC mice in significantly alleviating lung and intestinal lesions. " Our study provides a novel perspective into the pharmacological mechanism of action of the ethnic compound FFXHC. AIM OF THE STUDY To determine the underlying mechanism of the superiority of FFXHC over BBR in IC. MATERIALS AND METHODS The susceptibility of Candida albicans to FFXHC was evaluated in vitro. The mouse model of IC was established and the survival rate, weight change, the number of organ colonies, and immune organ coefficient of the mice were determined, the effect of FFXHC on the immune function of mice, including changes in the number of immune cells, levels of the related inflammatory cytokines (INF-γ, TNF-α, MCP-1, IL-6, and IL-17A), and the antimicrobial peptide, LL-37 (CRAMP in mice), were determined. Mice feces were collected and changes in the intestinal microecology were studied. RESULTS Our findings indicated that FFXHC was not active against Candida albicans and did not restore the sensitivity of the resistant strain in vitro; however, it had a therapeutic effect that improve survival rate on mice with IC. The number of lymphocytes and neutrophils of mice with IC treated with FFXHC increased significantly. The intestinal microecology of mice was restored and the abundance of the probiotic Bacteroides was increased, which further stimulated the production of the antimicrobial peptide, LL-37, which is required for acquired immunity. Furthermore, the levels of Th cell-related cytokines, including INF-γ, TNF-α, and IL-17A were significantly increased, whereas those of the proinflammatory cytokines, IL-6 and MCP-1, decreased. With the activation of acquired immunity, the immune function of mice was restored, the body weight and survival rate of mice improved considerably, the coefficients of the thymus and spleen increased, and the number of fungal colonies in the lung and kidney decreased. CONCLUSIONS FFXHC could eliminate fungi by increasing the relative abundance of probiotics in Bacteroides and the number of neutrophils, thereby promoting the production of CRAMP and resulting in a fungicidal effect, leading to acquired immunity. Although BBR has an antifungal effect, we found that it was not as effective as FFXHC.
Collapse
Affiliation(s)
- Jun Li
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ze-Hua Jin
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia-Sheng Li
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Liu-Yan Su
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ying-Xian Wang
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ding-Mei Qin
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Gao-Xiong Rao
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Rui-Rui Wang
- College of Chinese Materia Medica, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China; Engineering Laboratory for National Health Theory and Product of Yunnan Province, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
10
|
Bacillus subtilis Spore-Trained Dendritic Cells Enhance the Generation of Memory T Cells via ICAM1. Cells 2021; 10:cells10092267. [PMID: 34571913 PMCID: PMC8469252 DOI: 10.3390/cells10092267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/22/2022] Open
Abstract
Immunological memory is a cardinal feature of the immune system. The intestinal mucosa is the primary exposure and entry site of infectious organisms. For an effective and long-lasting safeguard, a robust immune memory system is required, especially by the mucosal immunity. It is well known that tissue-resident memory T cells (Trms) provide a first response against infections reencountered at mucosal tissues surfaces, where they accelerate pathogen clearance. However, their function in intestinal immunization remains to be investigated. Here, we report enhanced local mucosal and systemic immune responses through oral administration of H9N2 influenza whole inactivated virus (H9N2 WIV) plus Bacillus subtilis spores. Subsequently, H9N2 WIV plus spores led to the generation of CD103+ CD69+ Trms, which were independent of circulating T cells during the immune period. Meanwhile, we also found that Bacillus subtilis spores could stimulate Acrp30 expression in 3T3-L1 adipocytes. Moreover, spore-stimulated adipocyte supernatant also upregulated the expression of intercellular adhesion molecule-1 (ICAM1) in dendritic cells (DCs). Furthermore, the proportion of HA-tetramer+ cells was severely curtailed upon suppressed ICAM1 expression, which also depended on HA-loaded DCs. Taken together, our data demonstrated that spore-promoted H9N2 WIV induced an immune response by enhancing Trms populations, which were associated with the activation of ICAM1 in DCs.
Collapse
|
11
|
Deep survey for designing a vaccine against SARS-CoV-2 and its new mutations. Biologia (Bratisl) 2021; 76:3465-3476. [PMID: 34421121 PMCID: PMC8369332 DOI: 10.1007/s11756-021-00866-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has prompted worldwide vaccine development. Several vaccines have been authorized by WHO, FDA, or MOH of different countries. However, issues such as need for cold chain, price, and most importantly access problems have limited vaccine usage in some nations especially developing countries. Moreover, the vast global demand justifies further attempts for vaccine development. Multi-epitope polypeptide vaccines enjoy several key features including safety and lower production and transfer costs and could be designed by in silico tools. Spike protein (S), membrane protein (M), and nucleocapsid protein (N), the three major structural proteins of SARS-CoV-2, are ideal candidates for epitope selection. ORF3a (open reading frame3a), a transmembrane protein with pro-apoptotic functions, could be another proper target. Thus, a novel multi-epitope vaccine against SARS-CoV-2 was designed using these four proteins and LL37, a TLR3 agonist adjuvant, through different immunoinformatics and bioinformatics tools. The proposed multi-epitope vaccine is expected to induce robust humoral and cellular immune responses against SARS-CoV-2 with a population coverage of 76.92 % due to containing different immunodominant epitopes and LL37 adjuvant. Selecting epitopes derived from one functional and three structural proteins suggests the protective ability of the vaccine irrespective of probable virus mutations. The computationally observed proper interaction of LL37 with TLR3 implies its ability to induce immune responses effectively. Besides, it showed acceptable structural and physicochemical properties. The in-silico cloning results predicted its high efficiency production in Escherichia coli. Future experimental studies could further confirm its immunological efficacy.
Collapse
|
12
|
Willows S, Kulka M. Harnessing the Power of Mast Cells in unconventional Immunotherapy Strategies and Vaccine Adjuvants. Cells 2020; 9:cells9122713. [PMID: 33352850 PMCID: PMC7766453 DOI: 10.3390/cells9122713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Mast cells are long-lived, granular, myeloid-derived leukocytes that have significant protective and repair functions in tissues. Mast cells sense disruptions in the local microenvironment and are first responders to physical, chemical and biological insults. When activated, mast cells release growth factors, proteases, chemotactic proteins and cytokines thereby mobilizing and amplifying the reactions of the innate and adaptive immune system. Mast cells are therefore significant regulators of homeostatic functions and may be essential in microenvironmental changes during pathogen invasion and disease. During infection by helminths, bacteria and viruses, mast cells release antimicrobial factors to facilitate pathogen expulsion and eradication. Mast cell-derived proteases and growth factors protect tissues from insect/snake bites and exposure to ultraviolet radiation. Finally, mast cells release mediators that promote wound healing in the inflammatory, proliferative and remodelling stages. Since mast cells have such a powerful repertoire of functions, targeting mast cells may be an effective new strategy for immunotherapy of disease and design of novel vaccine adjuvants. In this review, we will examine how certain strategies that specifically target and activate mast cells can be used to treat and resolve infections, augment vaccines and heal wounds. Although these strategies may be protective in certain circumstances, mast cells activation may be deleterious if not carefully controlled and any therapeutic strategy using mast cell activators must be carefully explored.
Collapse
Affiliation(s)
- Steven Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada;
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-641-1687
| |
Collapse
|
13
|
Mast Cell Functions Linking Innate Sensing to Adaptive Immunity. Cells 2020; 9:cells9122538. [PMID: 33255519 PMCID: PMC7761480 DOI: 10.3390/cells9122538] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although mast cells (MCs) are known as key drivers of type I allergic reactions, there is increasing evidence for their critical role in host defense. MCs not only play an important role in initiating innate immune responses, but also influence the onset, kinetics, and amplitude of the adaptive arm of immunity or fine-tune the mode of the adaptive reaction. Intriguingly, MCs have been shown to affect T-cell activation by direct interaction or indirectly, by modifying the properties of antigen-presenting cells, and can even modulate lymph node-borne adaptive responses remotely from the periphery. In this review, we provide a summary of recent findings that explain how MCs act as a link between the innate and adaptive immunity, all the way from sensing inflammatory insult to orchestrating the final outcome of the immune response.
Collapse
|
14
|
Jeong YS, Bae YS. Formyl peptide receptors in the mucosal immune system. Exp Mol Med 2020; 52:1694-1704. [PMID: 33082511 PMCID: PMC7572937 DOI: 10.1038/s12276-020-00518-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Formyl peptide receptors (FPRs) belong to the G protein-coupled receptor (GPCR) family and are well known as chemotactic receptors and pattern recognition receptors (PRRs) that recognize bacterial and mitochondria-derived formylated peptides. FPRs are also known to detect a wide range of ligands, including host-derived peptides and lipids. FPRs are highly expressed not only in phagocytes such as neutrophils, monocytes, and macrophages but also in nonhematopoietic cells such as epithelial cells and endothelial cells. Mucosal surfaces, including the gastrointestinal tract, the respiratory tract, the oral cavity, the eye, and the reproductive tract, separate the external environment from the host system. In mucosal surfaces, the interaction between the microbiota and host cells needs to be strictly regulated to maintain homeostasis. By sharing the same FPRs, immune cells and epithelial cells may coordinate pathophysiological responses to various stimuli, including microbial molecules derived from the normal flora. Accumulating evidence shows that FPRs play important roles in maintaining mucosal homeostasis. In this review, we summarize the roles of FPRs at mucosal surfaces.
Collapse
Affiliation(s)
- Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
15
|
Yang B, Good D, Mosaiab T, Liu W, Ni G, Kaur J, Liu X, Jessop C, Yang L, Fadhil R, Yi Z, Wei MQ. Significance of LL-37 on Immunomodulation and Disease Outcome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8349712. [PMID: 32509872 PMCID: PMC7246396 DOI: 10.1155/2020/8349712] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 03/04/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
LL-37, also called cathelicidin, is an important part of the human immune system, which can resist various pathogens. A plethora of experiments have demonstrated that it has the multifunctional effects of immune regulation, in addition to antimicrobial activity. Recently, there have been increasing interest in its immune function. It was found that LL-37 can have two distinct functions in different tissues and different microenvironments. Thus, it is necessary to investigate LL-37 immune functions from the two sides of the same coin. On the one side, LL-37 promotes inflammation and immune response and exerts its anti-infective and antitumor effects; on the other side, it has the ability to inhibit inflammation and promote carcinogenesis. This review presents a brief summary of its expression, structure, and immunomodulatory effects as well as brief discussions on the role of this small peptide as a key factor in the development and treatment of various inflammation-related diseases and cancers.
Collapse
Affiliation(s)
- Binbin Yang
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - David Good
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
- School of Allied Health, Australian Catholic University, Brisbane, Qld 4014, Australia
| | - Tamim Mosaiab
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
- Institute for Glycomics, Griffith University, Gold Coast, Qld 4215, Australia
| | - Wei Liu
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Guoying Ni
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia
| | - Jasmine Kaur
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia
- Cancer Research Institute, First People's Hospital of Foshan, Foshan 528000, China
| | - Calvin Jessop
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Lu Yang
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Rushdi Fadhil
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| | - Zhengjun Yi
- School of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics in Universities of Shandong, Weifang Medical University, Weifang 261053, China
| | - Ming Q. Wei
- School of Medical Science & Menzies Health Institute Queensland, Griffith University, Gold Coast, Qld 4215, Australia
| |
Collapse
|
16
|
Dai J, Zheng J, Ou W, Xu W, Ai Q, Zhang W, Niu J, Zhang Y, Mai K. The effect of dietary cecropin AD on intestinal health, immune response and disease resistance of juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2020; 100:117-125. [PMID: 32109613 DOI: 10.1016/j.fsi.2020.02.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Cecropin AD (CAD) is a commercial cationic antimicrobial peptide that has been seldom studied in marine fish. This study investigated the effects of dietary CAD on intestinal health, immune response, disease resistance, and growth performance of turbot. A diet using fishmeal and plant protein as the main protein resources was used as the control (crude protein 53%, crude lipid 12%). CAD was supplemented into the control diet at the level of 250, 500, 750, and 1000 mg kg-1 to formulate four experimental diets, C1, C2, C3, and C4, respectively. No significant difference was observed in fish growth performance, feed utilization efficiency and whole-body composition among all groups. Dietary CAD significantly increased the activity of lysozyme and complement component 3 level in both serum and distal intestine (DI), as well as the immunoglobulin M content in DI. The gene expression of immune cytokines such as IFN-γ, IL-1β, and chemokine SmCCL19, and the goblet cell number in DI were also significantly increased by dietary CAD supplementation. Compared with the control group, the microbiota analysis indicated group C4 showed significantly decreased α-diversity, obvious alternation in dominant bacteria composition at phylum level, different clustering, and significantly decreased relative abundance of Lactobacillus. Besides, the relative abundance of Bacteroides was significantly decreased in groups C1, C3, and C4. In addition, the lowest mortality of turbot challenged with Edwardsiella tarda was observed in fish fed diets C2 and C3. In conclusion, moderate levels of CAD in diet of turbot improved the intestinal immune response without disrupting the intestinal bacterial community, and enhanced the disease resistance. However, dietary CAD at 1000 mg kg-1 greatly affected the intestinal bacterial composition and showed potentially inhibitory effects towards Lactobacillus.
Collapse
Affiliation(s)
- Jihong Dai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jing Zheng
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Weihao Ou
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Weiqi Xu
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Qinghui Ai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animal, Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
17
|
Tartaglia LJ, Badamchi-Zadeh A, Abbink P, Blass E, Aid M, Gebre MS, Li Z, Pastores KC, Trott S, Gupte S, Larocca RA, Barouch DH. Alpha-defensin 5 differentially modulates adenovirus vaccine vectors from different serotypes in vivo. PLoS Pathog 2019; 15:e1008180. [PMID: 31841560 PMCID: PMC6936886 DOI: 10.1371/journal.ppat.1008180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/30/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.
Collapse
Affiliation(s)
- Lawrence J. Tartaglia
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Alexander Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Eryn Blass
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Makda S. Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Zhenfeng Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Kevin Clyde Pastores
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Sebastien Trott
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Siddhant Gupte
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Rafael A. Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, Meurens F, Gerdts V. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro. Front Vet Sci 2019; 6:233. [PMID: 31355218 PMCID: PMC6640542 DOI: 10.3389/fvets.2019.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
Host defense peptides (HDPs) show both antimicrobial and immunomodulatory properties making them important mediators of the host immune system. In humans but also in pigs many HDPs have been identified and important families such as cathelicidins and defensins have been established. In our study, we assessed: (i) the potential interactions that could occur between three peptides (LL37, PR39, and synthetic innate defense regulator (IDR)-1002) and a common TLR ligand called poly(I:C); (ii) the impact of selected peptides on the response of alveolar macrophage (AM) to poly(I:C) stimulation; (iii) the anti-porcine respiratory and reproductive syndrome virus (PRRSV) properties of the peptides; and (iv) their adjuvant potential in a PRRSV challenge experiment after immunization with different vaccine formulations. The results are as following: LL37, PR39, and IDR-1002 were able to interact with poly(I:C) using an agarose gel migration assay. Then, an alteration of AM's response to poly(I:C) stimulation was observed when the cells were co-stimulated with LL37 and IDR-1002. Regarding the anti-PRRSV potential of the peptides only LL37 showed a PRRSV inhibition in infected AM as well as precision cut lung slices (PCLS). However, in our conditions and despite their immunomodulatory properties, neither LL37 nor IDR-1002 showed any convincing potential as an adjuvant when associated to killed PRRSV in a challenge experiment. In conclusion, both antiviral and immunomodulatory properties could be identified for LL37, only immunomodulatory properties for IDR-1002, and both peptides failed to improve the immune response consecutive to an immunization with a killed vaccine in a PPRSV challenge experiment. However, further studies are needed to fully decipher and explain differences between peptide properties.
Collapse
Affiliation(s)
- Benoît Levast
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jill van Kessel
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stacy Strom
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stew Walker
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | | | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
19
|
Antimicrobial Host Defence Peptides: Immunomodulatory Functions and Translational Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:149-171. [DOI: 10.1007/978-981-13-3588-4_10] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Roy S, Ganguly A, Haque M, Ali H. Angiogenic Host Defense Peptide AG-30/5C and Bradykinin B 2 Receptor Antagonist Icatibant Are G Protein Biased Agonists for MRGPRX2 in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1229-1238. [PMID: 30651343 DOI: 10.4049/jimmunol.1801227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
AG-30/5C is an angiogenic host defense peptide that activates human mast cells (MC) via an unknown mechanism. Using short hairpin RNA-silenced human MC line LAD2 and stably transfected RBL-2H3 cells, we demonstrate that AG-30/5C induces MC degranulation via Mas-related G protein-coupled receptor X2 (MRGPRX2). Most G protein-coupled receptors signal via parallel and independent pathways mediated by G proteins and β-arrestins. AG-30/5C and compound 48/80 induced similar maximal MC degranulation via MRGPRX2, which was abolished by pertussis toxin. However, compound 48/80 induced a robust β-arrestin activation as determined by transcriptional activation following arrestin translocation (Tango), but AG-30/5C did not. Overnight culture of MC with compound 48/80 resulted in reduced cell surface MRGPRX2 expression, and this was associated with a significant decrease in subsequent MC degranulation in response to compound 48/80 or AG-30/5C. However, AG-30/5C pretreatment had no effect on cell surface MRGPRX2 expression or degranulation in response to compound 48/80 or AG-30/5C. Icatibant, a bradykinin B2 receptor antagonist, promotes MC degranulation via MRGPRX2 and causes pseudoallergic drug reaction. Icatibant caused MC degranulation via a pertussis toxin-sensitive G protein but did not activate β-arrestin. A screen of the National Institutes of Health Clinical Collection library led to the identification of resveratrol as an inhibitor of MRGPRX2. Resveratrol inhibited compound 48/80-induced Tango and MC degranulation in response to compound 48/80, AG-30/5C, and Icatibant. This study demonstrates the novel finding that AG-30/5C and Icatibant serve as G protein-biased agonists for MRGPRX2, but compound 48/80 signals via both G protein and β-arrestin with distinct differences in receptor regulation.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anirban Ganguly
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Maureen Haque
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
21
|
LL-37 treatment on human peripheral blood mononuclear cells modulates immune response and promotes regulatory T-cells generation. Biomed Pharmacother 2018; 108:1584-1590. [PMID: 30372860 DOI: 10.1016/j.biopha.2018.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022] Open
Abstract
LL-37 is a host-defense peptide (HDP) and exerts a broad spectrum of microbicidal activity against bacteria, fungi, and viral pathogens. This peptide also interacts with human cells and influences their behavior, promoting angiogenesis, wound healing, immunomodulation, and affecting apoptosis. Lately, significant advances have been achieved regarding the elucidation of underlying mechanisms related to LL-37 effects over neutrophil and monocytes. However, how T-cells respond to LL-37 stimulation is still largely unknown. Here, we used flow cytometry to evaluate the effects of LL-37 over peripheral blood mononuclear cells (PBMCs) viability, T-cell proliferation, T-cell activation, as well as the generation of regulatory T-cells (Tregs). Those aspects were assessed both in immune homeostatic and inflammatory milieu. Furthermore, we investigated the transcript levels of the inflammatory factors INF-γ, TNF-ɑ, and TGF-β in these conditions. Interestingly, our data revealed that the treatment of PBMCs with LL-37 enhanced the viability of these cells and exerted wide effects over T cell response. Upon activation, LL-37 treated T-cells presented lower proliferation and also increased generation of Tregs. Finally, while non-stimulated cells increased the expression of inflammatory factors when treated with LL-37, activated cells treated with LL-37 presented a decreased production of the same inflammatory mediators. These results are important for the immunotherapy field, and indicate that the use of LL-37 must be carefully evaluated in both homeostatic and inflammatory scenarios, since the microenvironment clearly plays a crucial role in determining how T-cells respond to LL-37.
Collapse
|
22
|
van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res 2018; 49:68. [PMID: 30060758 PMCID: PMC6066942 DOI: 10.1186/s13567-018-0558-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described.
Collapse
Affiliation(s)
- Albert van Dijk
- Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris J. Hedegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henk P. Haagsman
- Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter M. H. Heegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
23
|
Mast cell activators as novel immune regulators. Curr Opin Pharmacol 2018; 41:89-95. [PMID: 29843056 DOI: 10.1016/j.coph.2018.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
Abstract
Mast cells are an important cell type of the innate immune system that when activated, play a crucial role in generating protective innate host responses after bacterial and viral infection. Additionally, activated mast cells influence lymph node composition to regulate the induction of adaptive immune responses. The recognition that mast cells play a beneficial role in host responses to microbial infection and induction of adaptive immunity has provided the rationale to evaluate mast cell activators for use as antimicrobials or vaccine adjuvants. This review summarizes the role of mast cell activators in antimicrobial responses while also discussing the use of different classes of mast cell activators as potent vaccine adjuvants that enhance the induction of protective immune responses.
Collapse
|
24
|
Thomi R, Schlapbach C, Yawalkar N, Simon D, Yerly D, Hunger RE. Elevated levels of the antimicrobial peptide LL-37 in hidradenitis suppurativa are associated with a Th1/Th17 immune response. Exp Dermatol 2018; 27:172-177. [PMID: 29222824 DOI: 10.1111/exd.13482] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2017] [Indexed: 12/14/2022]
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin disease with poorly understood immunopathogenic mechanisms. LL-37 is an antimicrobial peptide, which is transcribed from the CAMP (cathelicidin antimicrobial peptide) gene. Previous reports showed upregulated levels of CAMP and LL-37 in HS lesions, and therefore, the aim of this study was to compare levels of LL-37 in HS to other inflammatory skin diseases and to establish immunomodulatory functions of LL-37 in HS. We confirm an upregulation of the LL-37 peptide in lesional HS skin with comparable levels as in psoriasis patients and are able to positively correlate the presence of LL-37 in HS with the presence of T cells, macrophages, neutrophils, IFN-γ, IL-17, IL-23, TNF-α, IL-32 and IL-1β. Mechanistically, LL-37 boosts the proliferation of unspecifically activated CD4+ T cells via an increased calcium signalling independent of antigen-presenting cells. Targeting LL-37 may therefore represent a new therapeutic option for the treatment of this recalcitrant disease, but it has to be kept in mind that LL-37 also has an antimicrobial function.
Collapse
Affiliation(s)
- Rahel Thomi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Yerly
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Kim SH, Jang YS. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res 2017; 6:15-21. [PMID: 28168169 PMCID: PMC5292352 DOI: 10.7774/cevr.2017.6.1.15] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 01/22/2023] Open
Abstract
Vaccination is the most successful immunological practice that improves the quality of human life and health. Vaccine materials include antigens of pathogens and adjuvants potentiating the effectiveness of vaccination. Vaccines are categorized using various criteria, including the vaccination material used and the method of administration. Traditionally, vaccines have been injected via needles. However, given that most pathogens first infect mucosal surfaces, there is increasing interest in the establishment of protective mucosal immunity, achieved by vaccination via mucosal routes. This review summarizes recent developments in mucosal vaccines and their associated adjuvants.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju, Korea.; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
26
|
Kim SH, Kim YN, Jang YS. Cutting Edge: LL-37-Mediated Formyl Peptide Receptor-2 Signaling in Follicular Dendritic Cells Contributes to B Cell Activation in Peyer's Patch Germinal Centers. THE JOURNAL OF IMMUNOLOGY 2016; 198:629-633. [PMID: 27974458 DOI: 10.4049/jimmunol.1600886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 11/14/2016] [Indexed: 01/17/2023]
Abstract
Peyer's patches (PPs) are the major mucosal immune-inductive site, and germinal centers (GCs) in PPs determine the quality of the Abs produced. PP GCs are continuously induced by the gut microbiota, and their maintenance contributes to the induction of strong IgA responses to Ags. In this study, we investigated the role of formyl peptide receptor (FPR)-mediated signaling in the maintenance of PP GCs, because FPRs recognize the microbiota and initiate an innate immune response by chemotaxis. We found that follicular dendritic cells (FDCs), a key organizer of B cell follicles and GCs in mucosal immunity, express Fpr2. Additionally, Fpr2-mediated signaling in PP FDCs promoted Cxcl13 and B cell activating factor expression, as well as B cell proliferation and activation. Therefore, we suggest that Fpr2-mediated signaling in FDCs plays a key role in GC maintenance in PPs and results in an Ag-specific IgA response in the gut mucosal immune compartment.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea; and.,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | - Yu Na Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea; and .,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
27
|
Hemshekhar M, Anaparti V, Mookherjee N. Functions of Cationic Host Defense Peptides in Immunity. Pharmaceuticals (Basel) 2016; 9:ph9030040. [PMID: 27384571 PMCID: PMC5039493 DOI: 10.3390/ph9030040] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Cationic host defense peptides are a widely distributed family of immunomodulatory molecules with antimicrobial properties. The biological functions of these peptides include the ability to influence innate and adaptive immunity for efficient resolution of infections and simultaneous modulation of inflammatory responses. This unique dual bioactivity of controlling infections and inflammation has gained substantial attention in the last three decades and consequent interest in the development of these peptide mimics as immunomodulatory therapeutic candidates. In this review, we summarize the current literature on the wide range of functions of cationic host defense peptides in the context of the mammalian immune system.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine and Immunology, University of Manitoba, Winnipeg, MB R3E3P4, Canada.
| | - Vidyanand Anaparti
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine and Immunology, University of Manitoba, Winnipeg, MB R3E3P4, Canada.
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Departments of Internal Medicine and Immunology, University of Manitoba, Winnipeg, MB R3E3P4, Canada.
| |
Collapse
|
28
|
Kim SH, Kim YN, Truong TT, Thu Thuy NT, Mai LQ, Jang YS. Development of a monoclonal antibody specific to envelope domain III with broad-spectrum detection of all four dengue virus serotypes. Biochem Biophys Res Commun 2016; 473:894-898. [PMID: 27059141 DOI: 10.1016/j.bbrc.2016.03.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne pathogen that annually infects more than 390 million people in 100 different countries. Symptoms of the viral infection include a relatively weak dengue fever to severe dengue hemorrhagic fever/dengue shock syndrome, which are mortal infectious diseases. As of yet, there is no commercially available vaccine or therapeutic for DENV. Currently, passive immunotherapy using DENV-specific antibody (Ab) is a considered strategy to treat DENV infection. Here, we developed a monoclonal Ab (mAb), EDIIImAb-61, specific to the DENV domain III of the envelope glycoprotein (EDIII) with broad-spectrum detection ability to all four DENV serotypes (DENV-1∼4) to use as a therapeutic Ab. Although EDIII contains non-immunodominant epitopes compared to domains I and II, domain III plays a critical role in host receptor binding. EDIIImAb-61 exhibited cross-reactive binding affinity to all four DENV serotypes that had been isolated from infected humans. To further characterize EDIIImAb-61 and prepare genes for large-scale production using a heterologous expression system, the sequence of the complementarity determining regions was analyzed after cloning the full-length cDNA genes encoding the heavy and light chain of the mAb. Finally, we produced Ab from CHO-K1 cells transfected with the cloned EDIIImAb-61 heavy and light chain genes and confirmed the binding ability of the Ab. Collectively, we conclude that EDIIImAb-61 itself and the recombinant Ab produced using the cloned heavy and light chain gene of EDIIImAb-61 is a candidate for passive immunotherapy against DENV infection.
Collapse
Affiliation(s)
- Sae-Hae Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonju 54896, South Korea
| | - Yu Na Kim
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonju 54896, South Korea
| | - Thang Thua Truong
- Canadian Food Inspection Agency, National Center for Foreign Animal Disease, Winnipeg, MB R3E 3M4, Canada
| | | | - Le Quynh Mai
- National Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonju 54896, South Korea.
| |
Collapse
|