1
|
Gutierrez IV, Park M, Sar L, Rodriguez R, Snider DL, Torres G, Scaglione KM, Horner SM. 14-3-3ε UFMylation promotes RIG-I-mediated signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644084. [PMID: 40166322 PMCID: PMC11957140 DOI: 10.1101/2025.03.19.644084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Post-translational modifications are critical for regulating the RIG-I signaling pathway. Previously, we identified a role for the post-translation modification UFM1 (UFMylation) in promoting RIG-I signaling by stimulating the interaction between RIG-I and its membrane-targeting protein 14-3-3ε. Here, we identify UFMylation of 14-3-3ε as a novel regulatory mechanism promoting RIG-I signaling. We demonstrate that UFM1 conjugation to lysine residue K50 or K215 results in mono-UFMylation on 14-3-3ε and enhances its ability to promote RIG-I signaling. Importantly, we show that mutation of these residues (K50R/K215R) abolishes UFMylation and impairs induction of type I and III interferons without disrupting the interaction between 14-3-3ε and RIG-I. This suggests that UFMylation of 14-3-3ε likely stabilizes signaling events downstream of RIG-I activation to promote induction of interferon. Collectively, our work suggests that UFMylation-driven activation of 14-3-3ε facilitates innate immune signaling and highlights the broader role of UFMylation for antiviral defense and immune regulation. Importance Post-translational modifications provide regulatory control of antiviral innate immune responses. Our study reveals that UFMylation of 14-3-3ε is a control point for RIG-I-mediated antiviral signaling. We demonstrate that conjugation of UFM1 to specific lysine residues on 14-3-3ε enhances downstream signaling events that facilitate interferon induction, but surprisingly it does not affect 14-3-3ε binding to RIG-I. By identifying the precise sites of UFMylation on 14-3-3ε and their functional consequences, we provide insights into the regulatory layers governing antiviral innate immunity. These findings complement emerging evidence that UFMylation serves as a versatile modulator across diverse immune pathways. Furthermore, our work highlights how protein chaperones like 14-3-3ε can be dynamically modified to orchestrate complex signaling cascades, suggesting potential therapeutic approaches for targeting dysregulated innate immunity.
Collapse
|
2
|
Wang X, Wang Q, Zheng C, Wang L. MAVS: The next STING in cancers and other diseases. Crit Rev Oncol Hematol 2025; 207:104610. [PMID: 39746492 DOI: 10.1016/j.critrevonc.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025] Open
Abstract
The mitochondrial antiviral signaling protein (MAVS) is a pivotal adaptor in the antiviral innate immune signaling pathway and plays a crucial role in the activation of antiviral defences. This comprehensive review delves into the multifaceted functions of MAVS, spanning from its integral role in the RIG-I-like receptor (RLR) pathway to its emerging roles in tumor biology and autoimmune diseases. We discuss the structural and functional aspects of MAVS, its activation mechanisms, and the intricate regulatory networks that govern its activity. The potential of MAVS as a therapeutic target has been explored, highlighting its promise in personalized cancer therapy and developing combination treatment strategies. Additionally, we compare it with the STING signaling pathway and discuss the synergistic potential of targeting both pathways in immunotherapy. Our review underscores the importance of MAVS in maintaining immune homeostasis and its implications for a broad spectrum of diseases, offering new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xichen Wang
- The Second People's Hospital of Lianyungang, Lianyungang 222000, China.
| | - Qingwen Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Leisheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
He M, Yang Z, Xie L, Chen J, Liu S, Lu L, Li Z, Zheng B, Ye Y, Lin Y, Bu L, Xiao J, Zhong Y, Jia P, Li Q, Liang Y, Guo D, Li CM, Hou P. RNF167 mediates atypical ubiquitylation and degradation of RLRs via two distinct proteolytic pathways. Nat Commun 2025; 16:1920. [PMID: 39994288 PMCID: PMC11850712 DOI: 10.1038/s41467-025-57245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
The precise regulation of the RIG-I-like receptors (RLRs)-mediated type I interferon (IFN-I) activation is crucial in antiviral immunity and maintaining host immune homeostasis in the meantime. Here, we identify an E3 ubiquitin ligase, namely RNF167, as a negative regulator of RLR-triggered IFN signaling. Mechanistically, RNF167 facilitates both atypical K6- and K11-linked polyubiquitination of RIG-I/MDA5 within CARD and CTD domains, respectively, which leads to degradation of the viral RNA sensors through dual proteolytic pathways. RIG-I/MDA5 conjugated with K6-linked ubiquitin chains in CARD domains is recognized by the autophagy cargo adaptor p62, that delivers the substrates to autolysosomes for selective autophagic degradation. In contrast, K11-linked polyubiquitination in CTD domains leads to proteasome-dependent degradation of RLRs. Thus, our study clarifies a function of atypical K6- and K11-linked polyubiquitination in the regulation of RLR signaling. We also unveil an elaborate synergistic effect of dual proteolysis systems to control amplitude and duration of IFN-I activation, hereby providing insights into physiological roles of the cross-talk between these two protein quality control pathways.
Collapse
Affiliation(s)
- Miao He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zixiao Yang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Luyang Xie
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Junhai Chen
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shurui Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liaoxun Lu
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Birong Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuxin Lin
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
| | - Lang Bu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingshu Xiao
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongheng Zhong
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qiang Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinming Liang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, China
| | - Deyin Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, 510005, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chun-Mei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Panpan Hou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
4
|
Zhu G, Tong N, Zhu Y, Wang L, Wang Q. The crosstalk between SUMOylation and immune system in host-pathogen interactions. Crit Rev Microbiol 2025; 51:164-186. [PMID: 38619159 DOI: 10.1080/1040841x.2024.2339259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly damage human health and are one of the leading causes of global deaths. Small ubiquitin-like modifier (SUMO) modification, a type of protein post-translational modification (PTM) that occurs when SUMO groups bond covalently to particular lysine residues on substrate proteins, plays a crucial role in both innate and adaptive immunologic responses, as well as pathogen-host immune system crosstalk. SUMOylation participates in the host's defense against pathogens by regulating immune responses, while numerically vast and taxonomically diverse pathogens have evolved to exploit the cellular SUMO modification system to break through innate defenses. Here, we describe the characteristics and multiple functions of SUMOylation as a pivotal PTM mechanism, the tactics employed by various pathogens to counteract the immune system through targeting host SUMOylation, and the character of the SUMOylation system in the fight between pathogens and the host immune system. We have also included a summary of the potential anti-pathogen SUMO enzyme inhibitors. This review serves as a reference for basic research and clinical practice in the diagnosis, prognosis, and treatment of pathogenic microorganism-caused disorders.
Collapse
Affiliation(s)
- Gangli Zhu
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environment Protection Engineering, Foshan, Guangdong, China
| | - Ni Tong
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yipeng Zhu
- Guagnzhou NO.6 Middle school, Guangzhou, Guangdong, China
| | - Lize Wang
- General Department, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Qirui Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Meng X, Zhu X, Wang X, Zhang R, Zhang Z, Sun Y. Comprehensive analysis of the succinylome in Vero cells infected with peste des petits ruminants virus Nigeria 75/1 vaccine strain. BMC Vet Res 2025; 21:45. [PMID: 39885502 PMCID: PMC11784008 DOI: 10.1186/s12917-025-04496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Peste des petits ruminants virus (PPRV) is currently the only member of the Morbillivirus caprinae species within the genus Morbillivirus of the family Paramyoxviridae. PPRV causes a highly contagious disease in small ruminants, especially goats and sheep. Succinylation is a newly identified and conserved modification and plays an important role in host cell response to pathogen infection. However, the extent and function of succinylation in Vero cells during PPRV infection remains unknown. RESULTS In this study, a global profile of the succinylome in Vero cells infected with PPRV Nigeria 75/1 vaccine strain (PPRVvac) was performed by dimethylation labeling-based quantitative proteomics analysis. A total of 2633 succinylation sites derived from 823 proteins were quantified. The comparative analysis of differentially succinylated sites revealed that 228 down-regulated succinylation sites on 139 proteins and 44 up-regulated succinylation sites on 38 proteins were significantly modified in response to PPRVvac infection, seven succinylation motifs were identified. GO classification indicated that the differentially succinylated proteins (DSuPs) mainly participated in cellular respiration, biosynthetic process and transmembrane transporter activity. KEGG pathway analysis indicated that DSuPs were related to protein processing in the endoplasmic reticulum. Protein-protein interaction networks of the identified proteins provided further evidence that various ATP synthase subunits and carbon metabolism were modulated by succinylation, while the overlapped proteins between succinylation and acetylation are involved in glyoxylate and dicarboxylate metabolism. CONCLUSIONS The findings of the present study provide the first report of the succinylome in Vero cells infected with PPRVvac and provided a foundation for investigating the role of succinylation alone and its overlap with acetylation in response to PPRVvac.
Collapse
Affiliation(s)
- Xuelian Meng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China.
| | - Xueliang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China
| | - Rui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, #16, South Section, 1st Ring Road, Chengdu, 610041, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, #16, South Section, 1st Ring Road, Chengdu, 610041, Sichuan, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China
| |
Collapse
|
6
|
Su C, Su C, Zheng C. Identifying a Ubiquitinated Adaptor Protein by a Viral E3 Ligase Through Co-immunoprecipitation. Methods Mol Biol 2025; 2854:35-40. [PMID: 39192116 DOI: 10.1007/978-1-0716-4108-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Co-immunoprecipitation is a technique widely utilized to isolate protein complexes and study protein-protein interactions. Ubiquitinated proteins could be identified by combining co-immunoprecipitation with SDS-PAGE followed by immunoblotting. In this chapter, we use Herpes Simplex Virus 1 immediate-early protein ICP0-mediated polyubiquitination of p50 as an example to describe the method to identify a ubiquitinated adaptor protein by a viral E3 ligase by co-immunoprecipitation.
Collapse
Affiliation(s)
- Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenhao Su
- Department of Nephrology and Rheumatology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Su C, Su C, Zheng C. Identifying an Abnormal Phosphorylated Adaptor by Viral Kinase Using Mass Spectrometry. Methods Mol Biol 2025; 2854:29-34. [PMID: 39192115 DOI: 10.1007/978-1-0716-4108-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Mass spectrometers are widely used to identify protein phosphorylation sites. The process usually involves selective isolation of phosphoproteins and subsequent fragmentation to identify both the peptide sequence and phosphorylation site. Immunoprecipitation could capture and purify the protein of interest, greatly reducing sample complexity before submitting it for mass spectrometry analysis. This chapter describes a method to identify an abnormal phosphorylated site of the adaptor protein by a viral kinase through immunoprecipitation followed by LC-MS/MS.
Collapse
Affiliation(s)
- Chenhe Su
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenhao Su
- Department of Nephrology and Rheumatology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Cheng M, Lu Y, Wang J, Wang H, Sun Y, Zhao W, Wang J, Shi C, Luo J, Gao M, Yu T, Wang J, Guan J, Wang N, Yang W, Jiang Y, Huang H, Yang G, Cao X, Yang D, Wang C, Zeng Y. The E3 ligase ASB3 downregulates antiviral innate immunity by targeting MAVS for ubiquitin-proteasomal degradation. Cell Death Differ 2024; 31:1746-1760. [PMID: 39266719 PMCID: PMC11618372 DOI: 10.1038/s41418-024-01376-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
E3 ubiquitin ligases are very important for regulating antiviral immunity during viral infection. Here, we discovered that Ankyrin repeat and SOCS box-containing protein 3 (ASB3), an E3 ligase, are upregulated in the presence of RNA viruses, particularly influenza A virus (IAV). Notably, overexpression of ASB3 inhibits type I IFN (IFN-I) responses induced by Sendai virus (SeV) and IAV, and ablation of ASB3 restores SeV and H9N2 infection-mediated transcription of IFN-β and its downstream interferon-stimulated genes (ISGs). Interestingly, animals lacking ASB3 presented decreased susceptibility to H9N2 and H1N1 infections. Mechanistically, ASB3 interacts with MAVS and directly mediates K48-linked polyubiquitination and degradation of MAVS at K297, thereby inhibiting the phosphorylation of TBK1 and IRF3 and downregulating downstream antiviral signaling. These findings establish ASB3 as a critical negative regulator that controls the activation of antiviral signaling and describe a novel function of ASB3 that has not been previously reported.
Collapse
Affiliation(s)
- Mingyang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiarui Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haixu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiawei Luo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxin Yu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiayao Guan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Dongqin Yang
- Department of Laboratory Medicine of Huashan Hospital, Fudan University, Shanghai, China.
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
9
|
da Silva Cabral T, Cayuela NC, Carvalho KGB, Pimenta TS, Rodrigues APD, Diniz DG, Quaresma JAS, de Almeida Medeiros DB, Prazeres ITE, da Silva SP, Araújo TP, da Costa Vasconcelos PF, Diniz CWP, Diniz JAP. Juruaça virus taxonomy, tolerance and resistance to infection, and inflammatory response modulation in murine model. NPJ VIRUSES 2024; 2:46. [PMID: 40295833 PMCID: PMC11721108 DOI: 10.1038/s44298-024-00056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/05/2024] [Indexed: 04/30/2025]
Abstract
Juruaça virus (JUAV), previously unclassified, was isolated from bats and administered to neonatal and adult BALB/c mice to investigate acute and chronic disease progression. In this study, we conducted genomic sequencing to achieve taxonomic classification and utilized these models to explore the inflammatory response and sickness behavior in both neonatal and adult mice. Neonates received a single intranasal instillation of infected brain homogenate (20 µL), whereas 31-day-old mice were given the same volume intranasally for three consecutive days. Control groups were administered equal volumes of uninfected brain homogenate. Our findings reveal that intranasal JUAV infection-induced acute meningoencephalitis and death in neonates, while adult mice exhibited chronic infection with variable clinical signs, inflammatory mediator production, histopathological changes, and neuropathological features. Interestingly, only some adult mice showed sickness behavior post-infection, and among these, a subset continued to decline and die. The differential tissue damage observed in mice with and without overt disease symptoms suggests mechanisms of resistance or tolerance, where exceeding tolerance capacity resulted in pathological outcomes, including chronic dysfunction or death. This study provides the first evidence of JUAV's capability to infect mammals, demonstrating its distinct impact on bats and variable effects in neonatal and adult mice. We provisionally classified JUAV as closely related to the clade containing tombus-like virus 6 found in mute swan feces. Our research highlights the importance of understanding viral-host interactions and the inflammatory responses that contribute to disease variability, offering insights into tolerance and resistance mechanisms based on inflammatory response modulation.
Collapse
Affiliation(s)
- Tatyane da Silva Cabral
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Natalie Chaves Cayuela
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Karina Glazianne Barbosa Carvalho
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Tamirys Simão Pimenta
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Ana Paula Drummond Rodrigues
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
| | - Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil
- Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brasil
- Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Núcleo de Pesquisas em Oncologia, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brasil
| | - Juarez Antônio Simões Quaresma
- Departamento de Patologia, Universidade do Estado do Pará, Centro de Ciências Biológicas e da Saúde, Belém, Pará, Brasil, Rua do Una, 156, Telégrafo, CEP: 66.050-540, Belém, Pará, Brasil
- Universidade Federal do Pará, Núcleo de Medicina Tropical, Av. Generalíssimo Deodoro, 92 - Umarizal, CEP: 66.055-240, Belém, Pará, Brasil
| | - Daniele Barbosa de Almeida Medeiros
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Ivy Tsuya Essashika Prazeres
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Sandro Patroca da Silva
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Taís Pinheiro Araújo
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Pedro Fernando da Costa Vasconcelos
- Departamento de Patologia, Universidade do Estado do Pará, Centro de Ciências Biológicas e da Saúde, Belém, Pará, Brasil, Rua do Una, 156, Telégrafo, CEP: 66.050-540, Belém, Pará, Brasil
- Instituto Evandro Chagas, Seção de Arbovirologia e Febres Hemorrágicas, Rodovia BR-316 km 7 s/n - Levilândia, CEP: 67.030-000, Ananindeua, Pará, Brasil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus, 4487, Guamá, CEP: 66.073-005, Belém, Pará, Brasil
| | - José Antonio Picanço Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Avenida Almirante Barroso, 492, Bairro do Marco, CEP 66.093-020, Belém, Pará, Brasil.
| |
Collapse
|
10
|
Chakravarty S, Varghese M, Fan S, Taylor RT, Chakravarti R, Chattopadhyay S. IRF3 inhibits inflammatory signaling pathways in macrophages to prevent viral pathogenesis. SCIENCE ADVANCES 2024; 10:eadn2858. [PMID: 39121222 PMCID: PMC11313863 DOI: 10.1126/sciadv.adn2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Viral inflammation contributes to pathogenesis and mortality during respiratory virus infections. IRF3, a critical component of innate antiviral immune responses, interacts with pro-inflammatory transcription factor NF-κB, and inhibits its activity. This mechanism helps suppress inflammatory gene expression in virus-infected cells and mice. We evaluated the cells responsible for IRF3-mediated suppression of viral inflammation using newly engineered conditional Irf3Δ/Δ mice. Irf3Δ/Δ mice, upon respiratory virus infection, showed increased susceptibility and mortality. Irf3 deficiency caused enhanced inflammatory gene expression, lung inflammation, immunopathology, and damage, accompanied by increased infiltration of pro-inflammatory macrophages. Deletion of Irf3 in macrophages (Irf3MKO) displayed, similar to Irf3Δ/Δ mice, increased inflammatory responses, macrophage infiltration, lung damage, and lethality, indicating that IRF3 in these cells suppressed lung inflammation. RNA-seq analyses revealed enhanced NF-κB-dependent gene expression along with activation of inflammatory signaling pathways in infected Irf3MKO lungs. Targeted analyses revealed activated MAPK signaling in Irf3MKO lungs. Therefore, IRF3 inhibited inflammatory signaling pathways in macrophages to prevent viral inflammation and pathogenesis.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Merina Varghese
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
11
|
Zhang J, Wu Y, Wang Y, Wang J, Ye Y, Yin H, Sun N, Qin B, Sun N. TRIM35 Negatively Regulates the cGAS-STING-Mediated Signaling Pathway by Attenuating K63-Linked Ubiquitination of STING. Inflammation 2024:10.1007/s10753-024-02093-4. [PMID: 39088122 DOI: 10.1007/s10753-024-02093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-β expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Xuzhou Medical University, Xuzhou, China
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuhao Wu
- Xuzhou Medical University, Xuzhou, China
| | - Yiwen Wang
- Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yinlin Ye
- Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Xuzhou Medical University, Xuzhou, China
| | - Ningye Sun
- Xuzhou Medical University, Xuzhou, China
| | | | - Nan Sun
- Xuzhou Medical University, Xuzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
12
|
He Z, Li W, Zhang M, Huang M, Chen Z, Zhao X, Ding Y, Zhang J, Zhao L, Jiao P. RNF216 Inhibits the Replication of H5N1 Avian Influenza Virus and Regulates the RIG-I Signaling Pathway in Ducks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:187-203. [PMID: 38829131 DOI: 10.4049/jimmunol.2300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/20/2024] [Indexed: 06/05/2024]
Abstract
The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-β expression during virus infection, the expression level of IFN-β in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.
Collapse
Affiliation(s)
- Zhuoliang He
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Weiqiang Li
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Meng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Minfan Huang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zuxian Chen
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiya Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yangbao Ding
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Junsheng Zhang
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Luxiang Zhao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Peirong Jiao
- College of Veterinary Medicine, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
13
|
Yang N, Zhang Q, Wang Q, Zhang Y, Li S, Zhao Y, Shi X, Li Q, Xu X. Nsp10-interacting host protein SAP18 restricts PEDV replication in Marc-145 cells via enhancing dephosphorylation of RIG-I. Vet Microbiol 2024; 294:110124. [PMID: 38795403 DOI: 10.1016/j.vetmic.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 05/27/2024]
Abstract
PEDV, a single-stranded RNA virus, causes significant economic losses in the pig industry. Sin3-associated protein 18 (SAP18) is known for its role in transcriptional inhibition and RNA splicing. However, research on SAP18's involvement in PEDV infection is limited. Here, we identified an interaction between SAP18 and PEDV nonstructural protein 10 (Nsp10) using immunoprecipitation-mass spectrometry (IP-MS) and confirmed it through immunoprecipitation and laser confocal microscopy. Additionally, PEDV Nsp10 reduced SAP18 protein levels and induced its cytoplasmic accumulation. Overexpressing SAP18 suppressed PEDV replication, meanwhile its knockdown via short interfering RNA (siRNA) enhanced replication. SAP18 overexpression boosted IRF3 and NF-κB P65 phosphorylation, nuclear translocation, and IFN-β antiviral response. Furthermore, SAP18 upregulated RIG-I expression and facilitated its dephosphorylation, while SAP18 knockdown had the opposite effect. Finally, SAP18 interacted with phosphatase 1 (PP1) catalytic subunit alpha (PPP1CA), promoting PPP1CA-RIG-I interaction during PEDV infection. These findings highlight SAP18's role in activating the type I interferon pathway and inhibiting viral replication by promoting RIG-I dephosphorylation through its interaction with PPP1CA.
Collapse
Affiliation(s)
- Naling Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Quanqiong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yanxia Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shifan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Yina Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi 712100, China.
| |
Collapse
|
14
|
Yang Y, Gao Y, Sun H, Bai J, Zhang J, Zhang L, Liu X, Sun Y, Jiang P. Ursonic acid from medicinal herbs inhibits PRRSV replication through activation of the innate immune response by targeting the phosphatase PTPN1. Vet Res 2024; 55:67. [PMID: 38783392 PMCID: PMC11118551 DOI: 10.1186/s13567-024-01316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/25/2024] [Indexed: 05/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), has caused substantial economic losses to the global swine industry due to the lack of effective commercial vaccines and drugs. There is an urgent need to develop alternative strategies for PRRS prevention and control, such as antiviral drugs. In this study, we identified ursonic acid (UNA), a natural pentacyclic triterpenoid from medicinal herbs, as a novel drug with anti-PRRSV activity in vitro. Mechanistically, a time-of-addition assay revealed that UNA inhibited PRRSV replication when it was added before, at the same time as, and after PRRSV infection was induced. Compound target prediction and molecular docking analysis suggested that UNA interacts with the active pocket of PTPN1, which was further confirmed by a target protein interference assay and phosphatase activity assay. Furthermore, UNA inhibited PRRSV replication by targeting PTPN1, which inhibited IFN-β production. In addition, UNA displayed antiviral activity against porcine epidemic diarrhoea virus (PEDV) and Seneca virus A (SVA) replication in vitro. These findings will be helpful for developing novel prophylactic and therapeutic agents against PRRS and other swine virus infections.
Collapse
Affiliation(s)
- Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lujie Zhang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Hua F, Nass T, Parvatiyar K. TRIM28 facilitates type I interferon activation by targeting TBK1. Front Immunol 2024; 15:1279920. [PMID: 38495890 PMCID: PMC10940511 DOI: 10.3389/fimmu.2024.1279920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type I interferons play a fundamental role in innate host defense against viral infections by eliciting the induction of an antiviral gene program that serves to inhibit viral replication. Activation of type I interferon is regulated by the IRF3 transcription factor, which undergoes phosphorylation-dependent activation by the upstream kinase, TBK1, during viral infection. However, the mechanisms by which TBK1 achieves activation to support signaling to IRF3 remain incompletely understood. Here we identified the E3 ubiquitin ligase, tripartite motif containing 28 (TRIM28), as a positive regulator of type I interferon activation by facilitating TBK1 signaling. Genetic deletion of TRIM28 via CRISPR-Cas9 editing resulted in impaired type I interferon activation upon both RNA and DNA virus challenge, corresponding with increased susceptibility to virus infections in TRIM28 knockout cells. Mechanistically, TRIM28 interacted with TBK1 and mediated the assembly of K63-linked ubiquitin chains onto TBK1, a post-translational modification shown to augment TBK1 signal transmission events. TRIM28 knockout cells further displayed defective TBK1 phosphorylation and complex assembly with IRF3, resulting in impaired IRF3 phosphorylation. Altogether, our data demonstrate TBK1 to be a novel substrate for TRIM28 and identify TRIM28 as an essential regulatory factor in controlling innate antiviral immune responses.
Collapse
Affiliation(s)
- Fang Hua
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Tim Nass
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Kislay Parvatiyar
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
16
|
Firoozi Z, Mohammadisoleimani E, Bagheri F, Taheri A, Pezeshki B, Naghizadeh MM, Daraei A, Karimi J, Gholampour Y, Mansoori Y, Montaseri Z. Evaluation of the Expression of Infection-Related Long Noncoding RNAs among COVID-19 Patients: A Case-Control Study. Genet Res (Camb) 2024; 2024:3391054. [PMID: 38389521 PMCID: PMC10883746 DOI: 10.1155/2024/3391054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Background and Aims Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a worldwide pandemic, activates signaling cascades and leads to innate immune responses and secretion of multiple chemokines and cytokines. Long noncoding RNAs (lncRNAs) have a crucial role in inflammatory pathways. Through our search on the PubMed database, we discovered that existing research has primarily focused on examining the regulatory impacts of five lncRNAs in the context of viral infections. However, their role in regulating other conditions, including SARS-CoV-2, has not been explored. Therefore, this study aimed to investigate the expression pattern of lncRNAs in the peripheral blood mononuclear cells (PBMC) and their potential roles in SARS-CoV-2 infection. Potentially significant competing endogenous RNA (ceRNA) networks of these five lncRNAs were found using online in-silico techniques. Methods Ethylenediaminetetraacetic acid (EDTA) blood samples of the control group consisted of 45 healthy people, and a total of 53 COVID-19-infected patients in case group, with a written informed consent, was collected. PBMCs were extracted, and then, the RNA extraction and complementary DNA (cDNA) synthesis was performed. The expression of five lncRNAs (lnc ISR, lnc ATV, lnc PAAN, lnc SG20, and lnc HEAL) was assessed by real-time PCR. In order to evaluate the biomarker roles of genes, receiver operating characteristic (ROC) curve was drawn. Results Twenty-four (53.3%) and 29 (54.7%) of healthy and COVID-19-infected participants were male, respectively. The most prevalent symptoms were as follows: cough, general weakness, contusion, headache, and sore throat. The results showed that three lncRNAs, including lnc ISR, lnc ATV, and lnc HEAL, were expressed dramatically higher in the case group compared to healthy controls. According to ROC curve analysis, lnc ATV has a higher AUC and is a better biomarker to differentiate COVID-19 patients from the healthy controls. Then, using bioinformatics methods, the ceRNA network of these lncRNAs enabled the identification of mRNAs and miRNAs with crucial functions in COVID-19. Conclusion The considerable higher expression of ISR, ATV, and HEAL lncRNAs and the significant area under curve (AUC) in ROC curve demonstrate that these RNAs probably have a potential role in controlling the host innate immune responses and regulate the viral replication of SARS-CoV-2. However, these assumptions need further in vitro and in vivo investigations to be confirmed.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Bagheri
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atefeh Taheri
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Pezeshki
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Karimi
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yousef Gholampour
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
17
|
Móvio MI, de Almeida GWC, Martines IDGL, Barros de Lima G, Sasaki SD, Kihara AH, Poole E, Nevels M, Carlan da Silva MC. SARS-CoV-2 ORF8 as a Modulator of Cytokine Induction: Evidence and Search for Molecular Mechanisms. Viruses 2024; 16:161. [PMID: 38275971 PMCID: PMC10819295 DOI: 10.3390/v16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead to death. This remarkable increase in cytokines and other inflammatory molecules is primarily caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through pattern recognition receptors of dsRNA such as TLRs.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Giovana Waner Carneiro de Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Isabella das Graças Lopes Martines
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Gilmara Barros de Lima
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Emma Poole
- Division of Virology, Department of Pathology, Cambridge University, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael Nevels
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK;
| | - Maria Cristina Carlan da Silva
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| |
Collapse
|
18
|
Husain M. Influenza A Virus and Acetylation: The Picture Is Becoming Clearer. Viruses 2024; 16:131. [PMID: 38257831 PMCID: PMC10820114 DOI: 10.3390/v16010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Influenza A virus (IAV) is one of the most circulated human pathogens, and influenza disease, commonly known as the flu, remains one of the most recurring and prevalent infectious human diseases globally. IAV continues to challenge existing vaccines and antiviral drugs via its ability to evolve constantly. It is critical to identify the molecular determinants of IAV pathogenesis to understand the basis of flu severity in different populations and design improved antiviral strategies. In recent years, acetylation has been identified as one of the determinants of IAV pathogenesis. Acetylation was originally discovered as an epigenetic protein modification of histones. But, it is now known to be one of the ubiquitous protein modifications of both histones and non-histone proteins and a determinant of proteome complexity. Since our first observation in 2007, significant progress has been made in understanding the role of acetylation during IAV infection. Now, it is becoming clearer that acetylation plays a pro-IAV function via at least three mechanisms: (1) by reducing the host's sensing of IAV infection, (2) by dampening the host's innate antiviral response against IAV, and (3) by aiding the stability and function of viral and host proteins during IAV infection. In turn, IAV antagonizes the host deacetylases, which erase acetylation, to facilitate its replication. This review provides an overview of the research progress made on this subject so far and outlines research prospects for the significance of IAV-acetylation interplay.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Du Y, Zhang H, Hu H. Ubiquitination of Immune System and Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:35-45. [PMID: 39546134 DOI: 10.1007/978-981-97-7288-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Ubiquitination is a post-translational modification mechanism which regulates a variety of signaling pathways and crucial biological processes. It has long been known that ubiquitination regulates the fundamental cellular processes through the induction of proteasomal degradation of target proteins. Meanwhile, the nondegradative types of polyubiquitination modification have been appreciated as important regulatory machinery by modulating the activity or subcellular localization of key signaling proteins. The function of ubiquitination plays an important role in immune responses, which helps to maintain the stability of the internal environment and to control over protein stability and function and are thus critical for the regulation of both innate and adaptive immunity. Furthermore, ubiquitination also regulates both tumor-suppressing and tumor-promoting pathways in cancer. In this review, we will discuss recent progress regarding how ubiquitination regulates immune responses, focusing on Toll-like receptors signaling in innate immunity, T cell activation, TCR signaling, and tumor immunotherapy.
Collapse
Affiliation(s)
- Yizhou Du
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
20
|
Yang B, Pei J, Lu C, Wang Y, Shen M, Qin X, Huang Y, Yang X, Zhao X, Ma S, Song Z, Liang Y, Wang H, Wang J. RNF144A promotes antiviral responses by modulating STING ubiquitination. EMBO Rep 2023; 24:e57528. [PMID: 37955227 PMCID: PMC10702816 DOI: 10.15252/embr.202357528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Stimulator of interferon (IFN) genes (STING, also named MITA, ERIS, MPYS, or TMEM173) plays an essential role in DNA virus- or cytosolic DNA-triggered innate immune responses. Here, we demonstrate that the RING-in-between RING (RBR) E3 ubiquitin ligase family member RING-finger protein (RNF) 144A interacts with STING and promotes its K6-linked ubiquitination at K236, thereby enhancing STING translocation from the ER to the Golgi and downstream signaling pathways. The K236R mutant of STING displays reduced activity in promoting innate immune signal transduction. Overexpression of RNF144A upregulates HSV-1- or cytosolic DNA-induced immune responses, while knockdown of RNF144A expression has the opposite effect. In addition, Rnf144a-deficient cells exhibit impaired DNA virus- or cytosolic DNA-triggered signaling, and RNF144A protects mice from DNA virus infection. In contrast, RNF144A does not affect RNA virus- or cytosolic RNA-triggered innate immune responses. Taken together, our findings identify a new positive regulator of DNA virus- or cytosolic DNA-triggered signaling pathways and a critical ubiquitination site important for fully functional STING during antiviral responses.
Collapse
Affiliation(s)
- Bo Yang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Jinyong Pei
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Chen Lu
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yi Wang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Mengyang Shen
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xiao Qin
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yulu Huang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xi Yang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Xin Zhao
- Department of Laboratory MedicineThe Third Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Shujun Ma
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Zhishan Song
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Yinming Liang
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
- Ping Yuan LaboratoryXinxiangChina
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and ImmunologyXinxiang Medical UniversityXinxiangChina
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory MedicineXinxiang Medical UniversityXinxiangChina
- Henan Key Laboratory of Immunology and Targeted DrugXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
21
|
Nie H, Li Q, Pan W. The emerging roles of protein arginine methyltransferases in antiviral innate immune signaling pathways. Front Microbiol 2023; 14:1322929. [PMID: 38116532 PMCID: PMC10728285 DOI: 10.3389/fmicb.2023.1322929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
The Protein Arginine Methyltransferases (PRMTs) family is involved in various biological processes, including gene transcription, pre-mRNA splicing, mRNA translation, and protein stability. Recently, mounting evidence has shown that PRMTs also play critical roles in regulating the host antiviral immune response, either in an enzymatic activity dependent or independent manner. This review aims to provide an overview of the recent findings regarding the function and regulatory mechanisms of PRMTs in the antiviral response. These findings have the potential to aid in the discovery and design of novel therapeutic strategies for viral infections.
Collapse
Affiliation(s)
| | | | - Wei Pan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Meng X, Wang X, Zhu X, Zhang R, Zhang Z, Sun Y. Quantitative analysis of acetylation in peste des petits ruminants virus-infected Vero cells. Virol J 2023; 20:227. [PMID: 37817180 PMCID: PMC10563215 DOI: 10.1186/s12985-023-02200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Peste des petits ruminants virus (PPRV) is a highly contagious pathogen that strongly influences the productivity of small ruminants worldwide. Acetylation is an important post-translational modification involved in regulation of multiple biological functions. However, the extent and function of acetylation in host cells during PPRV infection remains unknown. METHODS Dimethylation-labeling-based quantitative proteomic analysis of the acetylome of PPRV-infected Vero cells was performed. RESULTS In total, 1068 proteins with 2641 modification sites were detected in response to PPRV infection, of which 304 differentially acetylated proteins (DAcPs) with 410 acetylated sites were identified (fold change < 0.83 or > 1.2 and P < 0.05), including 109 up-regulated and 195 down-regulated proteins. Gene Ontology (GO) classification indicated that DAcPs were mostly located in the cytoplasm (43%) and participated in cellular and metabolic processes related to binding and catalytic activity. Functional enrichment indicated that the DAcPs were involved in the minichromosome maintenance complex, unfolded protein binding, helicase activity. Only protein processing in endoplasmic reticulum pathway was enriched. A protein-protein interaction (PPI) network of the identified proteins further indicated that a various chaperone and ribosome processes were modulated by acetylation. CONCLUSIONS To the best of our knowledge, this is the first study on acetylome in PPRV-infected host cell. Our findings establish an important baseline for future study on the roles of acetylation in the host response to PPRV replication and provide novel insights for understanding the molecular pathological mechanism of PPRV infection.
Collapse
Affiliation(s)
- Xuelian Meng
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China.
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Xueliang Zhu
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| | - Rui Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhidong Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Preventiony, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, China
| |
Collapse
|
23
|
Li WW, Fan XX, Zhu ZX, Cao XJ, Zhu ZY, Pei DS, Wang YZ, Zhang JY, Wang YY, Zheng HX. Tyrosine phosphorylation of IRF3 by BLK facilitates its sufficient activation and innate antiviral response. PLoS Pathog 2023; 19:e1011742. [PMID: 37871014 PMCID: PMC10621992 DOI: 10.1371/journal.ppat.1011742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Viral infection triggers the activation of transcription factor IRF3, and its activity is precisely regulated for robust antiviral immune response and effective pathogen clearance. However, how full activation of IRF3 is achieved has not been well defined. Herein, we identified BLK as a key kinase that positively modulates IRF3-dependent signaling cascades and executes a pre-eminent antiviral effect. BLK deficiency attenuates RNA or DNA virus-induced ISRE activation, interferon production and the cellular antiviral response in human and murine cells, whereas overexpression of BLK has the opposite effects. BLK-deficient mice exhibit lower serum cytokine levels and higher lethality after VSV infection. Moreover, BLK deficiency impairs the secretion of downstream antiviral cytokines and promotes Senecavirus A (SVA) proliferation, thereby supporting SVA-induced oncolysis in an in vivo xenograft tumor model. Mechanistically, viral infection triggers BLK autophosphorylation at tyrosine 309. Subsequently, activated BLK directly binds and phosphorylates IRF3 at tyrosine 107, which further promotes TBK1-induced IRF3 S386 and S396 phosphorylation, facilitating sufficient IRF3 activation and downstream antiviral response. Collectively, our findings suggest that targeting BLK enhances viral clearance via specifically regulating IRF3 phosphorylation by a previously undefined mechanism.
Collapse
Affiliation(s)
- Wei-Wei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xu-Xu Fan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zi-Xiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xue-Jing Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhao-Yu Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Dan-Shi Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yi-Zhuo Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Ji-Yan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hai-Xue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
24
|
Aghelan Z, Pashaee S, Abtahi SH, Karima S, Khazaie H, Ezati M, Khodarahmi R. Natural Immunosuppressants as a Treatment for Chronic Insomnia Targeting the Inflammatory Response Induced by NLRP3/caspase-1/IL-1β Axis Activation: A Scooping Review. J Neuroimmune Pharmacol 2023; 18:294-309. [PMID: 37552452 DOI: 10.1007/s11481-023-10078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Chronic insomnia is an inflammatory-related disease with an important pathological basis for various diseases which is a serious threat to a person's physical and mental health. So far, many hypotheses have been proposed to explain the pathogenesis of insomnia, among which inflammatory mechanisms have become the focus of scientific attention. In this regard, the aim of the present scooping review is to evaluate the potential benefits of natural compounds in treatment of chronic insomnia targeting nucleotide-binding oligomerization domain (NOD)-like receptor-pyrin-containing protein 3 (NLRP3)/caspase-1/IL-1β axis as one of the most important activators of inflammatory cascades. The data show that compounds that have the potential to cause inflammation induce sleep disorders, and that inflammatory mediators are key molecules in regulating the sleep-related activity of neurons. In the inflammatory process of insomnia, the role of NLRP3 in the pathogenesis of insomnia has been gradually considered by researchers. NLRP3 is an intracellular sensor that recognizes the widest range of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). After identification and binding to damage factors, NLRP3 inflammasome is assembled to activate the caspase-1 and IL-1β. Increased production and secretion of IL-1β may be involved in central nervous system dysregulation of physiological sleep. The current scooping review reports the potential benefits of natural compounds that target NLRP3 inflammasome pathway activity and highlights the hypothesis which NLRP3 /caspase-1/IL-1β may serve as a potential therapeutic target for managing inflammation and improving symptoms in chronic insomnia.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Pashaee
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ezati
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran.
| |
Collapse
|
25
|
Zhang B, Cai T, He H, Huang X, Chen G, Lai Y, Luo Y, Huang S, Luo J, Guo X. TRIM21 Promotes Rabies Virus Production by Degrading IRF7 through Ubiquitination. Int J Mol Sci 2023; 24:10892. [PMID: 37446070 PMCID: PMC10341556 DOI: 10.3390/ijms241310892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Rabies, a highly fatal zoonotic disease, is a significant global public health threat. Currently, the pathogenic mechanism of rabies has not been fully elucidated, and no effective treatment for rabies is available. Increasing evidence shows that the tripartite-motif protein (TRIM) family of proteins participates in the host's regulation of viral replication. Studies have demonstrated the upregulated expression of tripartite-motif protein 21 (TRIM21) in the brain tissue of mice infected with the rabies virus. Related studies have shown that TRIM21 knockdown inhibits RABV replication, while overexpression of TRIM21 exerted the opposite effect. Knockdown of interferon-alpha and interferon-beta modulates the inhibition of RABV replication caused by TRIM21 knockdown and promotes the replication of the virus. Furthermore, our previous study revealed that TRIM21 regulates the secretion of type I interferon during RABV infection by targeting interferon regulatory factor 7 (IRF7). IRF7 knockdown reduced the inhibition of RABV replication caused by the knockdown of TRIM21 and promoted viral replication. TRIM21 regulates RABV replication via the IRF7-IFN axis. Our study identified TRIM21 as a novel host factor required by RABV for replication. Thus, TRIM21 is a potential target for rabies treatment or management.
Collapse
Affiliation(s)
- Boyue Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Ting Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Hongling He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xuezhe Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Guie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yanqin Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA;
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Jun Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| | - Xiaofeng Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510000, China; (B.Z.); (T.C.); (H.H.); (X.H.); (G.C.); (Y.L.); (Y.L.)
| |
Collapse
|
26
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
27
|
Abstract
The inflammaging concept was introduced in 2000 by Prof. Franceschi. This was an evolutionary or rather a revolutionary conceptualization of the immune changes in response to a lifelong stress. This conceptualization permitted to consider the lifelong proinflammatory process as an adaptation which could eventually lead to either beneficial or detrimental consequences. This dichotomy is influenced by both the genetics and the environment. Depending on which way prevails in an individual, the outcome may be healthy longevity or pathological aging burdened with aging-related diseases. The concept of inflammaging has also revealed the complex, systemic nature of aging. Thus, this conceptualization opens the way to consider age-related processes in their complexity, meaning that not only the process but also all counter-processes should be considered. It has also opened the way to add new concepts to the original one, leading to better understanding of the nature of inflammaging and of aging itself. Finally, it showed the way towards potential multimodal interventions involving a holistic approach to optimize the aging process towards a healthy longevity.
Collapse
|
28
|
Xiao J, Zhong H, Feng H. Post-translational modifications and regulations of RLR signaling molecules in cytokines-mediated response in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104631. [PMID: 36608898 DOI: 10.1016/j.dci.2023.104631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Teleosts rely on innate immunity to recognize and defense against pathogenic microorganisms. RIG-I-like receptor (RLR) family is the major pattern recognition receptor (PRR) to detect RNA viruses. After recognition of viral RNA components, these cytosolic sensors activate downstream signaling cascades to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses. Meanwhile, numerous molecules take part in the complex regulation of RLR signals by various methods, such as post-translational modification (PTM), to produce an immune response that is appropriately balanced. In this review, we summarize our recent understanding of PTMs and other regulatory proteins in modulating RLR signaling pathway, which is helpful for systematically studying the regulatory mechanism of antiviral innate immunity of teleost fish.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
29
|
Pan J, Fei CJ, Hu Y, Wu XY, Nie L, Chen J. Current understanding of the cGAS-STING signaling pathway: Structure, regulatory mechanisms, and related diseases. Zool Res 2023; 44:183-218. [PMID: 36579404 PMCID: PMC9841179 DOI: 10.24272/j.issn.2095-8137.2022.464] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The innate immune system protects the host from external pathogens and internal damage in various ways. The cGAS-STING signaling pathway, comprised of cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptors, plays an essential role in protective immune defense against microbial DNA and internal damaged-associated DNA and is responsible for various immune-related diseases. After binding with DNA, cytosolic cGAS undergoes conformational change and DNA-linked liquid-liquid phase separation to produce 2'3'-cGAMP for the activation of endoplasmic reticulum (ER)-localized STING. However, further studies revealed that cGAS is predominantly expressed in the nucleus and strictly tethered to chromatin to prevent binding with nuclear DNA, and functions differently from cytosolic-localized cGAS. Detailed delineation of this pathway, including its structure, signaling, and regulatory mechanisms, is of great significance to fully understand the diversity of cGAS-STING activation and signaling and will be of benefit for the treatment of inflammatory diseases and cancer. Here, we review recent progress on the above-mentioned perspectives of the cGAS-STING signaling pathway and discuss new avenues for further study.
Collapse
Affiliation(s)
- Jing Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Xiang-Yu Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
- Zhejiang Key Laboratory of Marine Bioengineering, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
30
|
Crossley MP, Song C, Bocek MJ, Choi JH, Kousouros JN, Sathirachinda A, Lin C, Brickner JR, Bai G, Lans H, Vermeulen W, Abu-Remaileh M, Cimprich KA. R-loop-derived cytoplasmic RNA-DNA hybrids activate an immune response. Nature 2023; 613:187-194. [PMID: 36544021 PMCID: PMC9949885 DOI: 10.1038/s41586-022-05545-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
R-loops are RNA-DNA-hybrid-containing nucleic acids with important cellular roles. Deregulation of R-loop dynamics can lead to DNA damage and genome instability1, which has been linked to the action of endonucleases such as XPG2-4. However, the mechanisms and cellular consequences of such processing have remained unclear. Here we identify a new population of RNA-DNA hybrids in the cytoplasm that are R-loop-processing products. When nuclear R-loops were perturbed by depleting the RNA-DNA helicase senataxin (SETX) or the breast cancer gene BRCA1 (refs. 5-7), we observed XPG- and XPF-dependent cytoplasmic hybrid formation. We identify their source as a subset of stable, overlapping nuclear hybrids with a specific nucleotide signature. Cytoplasmic hybrids bind to the pattern recognition receptors cGAS and TLR3 (ref. 8), activating IRF3 and inducing apoptosis. Excised hybrids and an R-loop-induced innate immune response were also observed in SETX-mutated cells from patients with ataxia oculomotor apraxia type 2 (ref. 9) and in BRCA1-mutated cancer cells10. These findings establish RNA-DNA hybrids as immunogenic species that aberrantly accumulate in the cytoplasm after R-loop processing, linking R-loop accumulation to cell death through the innate immune response. Aberrant R-loop processing and subsequent innate immune activation may contribute to many diseases, such as neurodegeneration and cancer.
Collapse
Affiliation(s)
- Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Chenlin Song
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Jun-Hyuk Choi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
- Department of Bio-Analytical Science, University of Science & Technology, Daejeon, South Korea
| | - Joseph N Kousouros
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Ataya Sathirachinda
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Cindy Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gongshi Bai
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance. Cells 2022; 12:cells12010149. [PMID: 36611943 PMCID: PMC9818243 DOI: 10.3390/cells12010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded βC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of βC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sβC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of βC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sβC1 protein of SiYVB restored these functions of βC1 protein. Thus, the dynamic phosphorylation of serine-33 in βC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission.
Collapse
|
32
|
Lu D, Li Z, Zhu P, Yang Z, Yang H, Li Z, Li H, Li Z. Whole-transcriptome analyses of sheep embryonic testicular cells infected with the bluetongue virus. Front Immunol 2022; 13:1053059. [PMID: 36532076 PMCID: PMC9751015 DOI: 10.3389/fimmu.2022.1053059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction bluetongue virus (BTV) infection triggers dramatic and complex changes in the host's transcriptional profile to favor its own survival and reproduction. However, there is no whole-transcriptome study of susceptible animal cells with BTV infection, which impedes the in-depth and systematical understanding of the comprehensive characterization of BTV-host interactome, as well as BTV infection and pathogenic mechanisms. Methods to systematically understand these changes, we performed whole-transcriptome sequencing in BTV serotype 1 (BTV-1)-infected and mock-infected sheep embryonic testicular cells, and subsequently conducted bioinformatics differential analyses. Results there were 1504 differentially expressed mRNAs, 78 differentially expressed microRNAs, 872 differentially expressed long non-coding RNAs, and 59 differentially expressed circular RNAs identified in total. Annotation from the Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of competing endogenous RNA networks revealed differentially expressed RNAs primarily related to virus-sensing and signaling transduction pathways, antiviral and immune responses, inflammation, and development and metabolism related pathways. Furthermore, a protein-protein interaction network analysis found that BTV may contribute to abnormal spermatogenesis by reducing steroid biosynthesis. Finally, real-time quantitative PCR and western blotting results showed that the expression trends of differentially expressed RNAs were consistent with the whole-transcriptome sequencing data. Discussion this study provides more insights of comprehensive characterization of BTV-host interactome, and BTV infection and pathogenic mechanisms.
Collapse
Affiliation(s)
- Danfeng Lu
- School of Medicine, Kunming University, Kunming, Yunnan, China
| | - Zhuoyue Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Heng Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
- College of Agriculture and Life Sciences, Kunming University, Kunming, Yunnan, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Huachun Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
33
|
Duan Z, Xing J, Shi H, Wang Y, Zhao C. The matrix protein of Newcastle disease virus inhibits inflammatory response through IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 218:295-309. [PMID: 35872314 DOI: 10.1016/j.ijbiomac.2022.07.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The matrix (M) protein of several cytoplasmic RNA viruses has been reported to be an NF-κB pathway antagonist. However, the function and mechanism of NDV M protein antagonizing NF-κB activation remain largely unknown. In this study, we found that the expression levels of IRAK4, TRAF6, TAK1, and RELA/p65 were obviously reduced late in NDV infection. In addition, the cytoplasmic M protein rather than other viral proteins decreased the expression of these proteins in a dose-dependent manner. Further indepth analysis showed that the N-terminal 180 amino acids of M protein were not only responsible for the reduced expression of these proteins, but also responsible for the inhibition of NF-κB activation and nuclear translocation of RELA/p65, as well as the production of inflammatory cytokines. Moreover, small interference RNA-mediated knockdown of IRAK4 or overexpression of IRAK4 markedly enhanced or reduced NDV replication by decreasing or increasing inflammatory cytokines production through the IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Strangely, there were no interactions detected between NDV M protein and IRAK4, TRAF6, TAK1 or RELA/p65. Our findings described here contribute to a better understanding of the innate immune antagonism function of M protein and the molecular mechanism underlying the replication and pathogenesis of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Jingru Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Haiying Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yanbi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Caiqin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
34
|
Gómez-Bañuelos E, Konig MF, Andrade F. Microbial pathways to subvert host immunity generate citrullinated neoantigens targeted in rheumatoid arthritis. Curr Opin Struct Biol 2022; 75:102423. [PMID: 35834948 PMCID: PMC9668488 DOI: 10.1016/j.sbi.2022.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022]
Abstract
The specific association between antibodies to citrullinated proteins and rheumatoid arthritis (RA) has centered interest on understanding why citrullinated proteins become immunogenic in this disease, which is believed to inform the origins of autoimmunity in RA. Since citrullination is a physiologic post-translational modification (PTM), one theory is that conditions promoting abnormal citrullination are initiators of self-reactive immune responses to citrullinated proteins in RA. Foremost candidates that dysregulate the normal balance of citrullination are microbial agents, which can exploit citrullination as an effector mechanism to subvert host antimicrobial activities and maximize their progeny. Here, we will use the host-pathogen interface as a unifying model to link microbe-induced citrullination and the loss of immunological tolerance to citrullinated antigens in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. https://twitter.com/@Eduardo95668787
| | - Maximilian F Konig
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. https://twitter.com/@MaxKonigMD
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Wang F, Zhao M, Chang B, Zhou Y, Wu X, Ma M, Liu S, Cao Y, Zheng M, Dang Y, Xu J, Chen L, Liu T, Tang F, Ren Y, Xu Z, Mao Z, Huang K, Luo M, Li J, Liu H, Ge B. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. Mol Cell 2022; 82:2032-2049.e7. [PMID: 35460603 DOI: 10.1016/j.molcel.2022.03.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022]
Abstract
Virus infection modulates both host immunity and host genomic stability. Poly(ADP-ribose) polymerase 1 (PARP1) is a key nuclear sensor of DNA damage, which maintains genomic integrity, and the successful application of PARP1 inhibitors for clinical anti-cancer therapy has lasted for decades. However, precisely how PARP1 gains access to cytoplasm and regulates antiviral immunity remains unknown. Here, we report that DNA virus induces a reactive nitrogen species (RNS)-dependent DNA damage and activates DNA-dependent protein kinase (DNA-PK). Activated DNA-PK phosphorylates PARP1 on Thr594, thus facilitating the cytoplasmic translocation of PARP1 to inhibit the antiviral immunity both in vitro and in vivo. Mechanistically, cytoplasmic PARP1 interacts with and directly PARylates cyclic GMP-AMP synthase (cGAS) on Asp191 to inhibit its DNA-binding ability. Together, our findings uncover an essential role of PARP1 in linking virus-induced genome instability with inhibition of host immunity, which is of relevance to cancer, autoinflammation, and other diseases.
Collapse
Affiliation(s)
- Fei Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengmeng Zhao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Boran Chang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilong Zhou
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiangyang Wu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Siyu Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yajuan Cao
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengge Zheng
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yifang Dang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Tianhao Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Fen Tang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Yefei Ren
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Minhua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China.
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200072, China; Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
36
|
Chegni H, Babaii H, Hassan ZM, Pourshaban M. Immune response and cytokine storm in SARS-CoV-2 infection: Risk factors, ways of control and treatment. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221098970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In 2020, a deadly pandemic caused by the SARS-COV-2 virus spread worldwide and killed many people. In some viral infections, in addition to the pathogenic role of the virus, impaired immune function leads to inflammation and further damage in internal tissues. For example, coronavirus in some patients prevents the stimulation of the acquired immune system. Therefore, innate immunity is over-stimulated to compensate, followed by the overproduction of inflammatory cytokines and cytokine storm. Various underlying factors such as age, gender, blood pressure, diabetes, and obesity affect cytokine storm. It seems that cytokine storm is one of the leading causes of death among COVID-19 patients, and providing that this storm is detected and controlled in time, it can reduce the mortality of COVID-19 patients. This article aims to investigate the immune system response to COVID-19, various factors associated with cytokine storm, and its treatment. In the current situation, in parallel with the progress made in the field of vaccination, it is necessary to carefully examine the various dimensions of the immune system in response to the COVID-19 virus to seek a suitable treatment strategy to save the lives of patients in intensive care units
Collapse
Affiliation(s)
- Hamid Chegni
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hadise Babaii
- Department of paramedical school, University of Shahid Beheshti, Tehran, Iran
| | - Zuhair M Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Manoochehr Pourshaban
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
37
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Li Y, Liu S, Chen Y, Chen B, Xiao M, Yang B, Rai KR, Maarouf M, Guo G, Chen JL. Syk Facilitates Influenza A Virus Replication by Restraining Innate Immunity at the Late Stage of Viral Infection. J Virol 2022; 96:e0020022. [PMID: 35293768 PMCID: PMC9006912 DOI: 10.1128/jvi.00200-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
39
|
Jiang Z, Cheng X, Sun Z, Hu J, Xu X, Li M, Feng Z, Hu C. Grass carp PRMT6 negatively regulates innate immunity by inhibiting the TBK1/IRF3 binding and cutting down IRF3 phosphorylation level. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104351. [PMID: 35033573 DOI: 10.1016/j.dci.2022.104351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Subcellular localization analysis implicated that CiPRMT6 was mainly located in the nucleus, with a small part of them located in the cytoplasm. PRMT6, namely protein arginine methyltransferase 6, was first identified and demonstrated to catalyze the methylation of arginine residue on the chromatin histones in mammals. Mammalian PRMT6 usually acts as an arginine methyltransferase in the nucleus, but induces antiviral innate immune response in the cytoplasm. Nowadays, there have been few reports about PRMT6 in teleost. In this study, we investigated the potential molecular mechanisms underlying the interaction of PRMT6 expression and IFN1 response in grass carp. We first cloned and identified a grass carp PRMT6 (named CiPRMT6, MN781672.1), which is 1068bp in length encoding a deduced polypeptide of 355 amino acids. In CIK cell, CiPRMT6 expression was up-regulated upon stimulation with poly (I:C); while overexpression of PRMT6 suppressed the promoter activity of grass carp IFN1 and reduced the phosphorylation of IRF3; however, the amount of PRMT6 mutant (lack of methyltransferase domain) was increased in the cytoplasm. Our results also showed that grass carp PRMT6 and IRF3 (but not TBK1) were co-located and bound to each other in the cytoplasm. The binding of CiPRMT6 to IRF3 impairs the interaction between TBK1 and IRF3, indicating that CiPRMT6 is a negative regulator for IFN1 expression through TBK1-IRF3 signaling pathway in grass carp. In conclusion, we identified that CiPRMT6 negatively regulated IFN1 expression by inhibiting the TBK1-IRF3 interaction as well as IRF3 phosphorylation.
Collapse
Affiliation(s)
- Zeyin Jiang
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xining Cheng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zhichao Sun
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Jihuan Hu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Xiaowen Xu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Meifeng Li
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Zhiqing Feng
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Key Lab of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
40
|
Tian X, Zhao Q, Chen X, Peng Z, Tan X, Wang Q, Chen L, Yang Y. Discovery of Novel and Highly Potent Inhibitors of SARS CoV-2 Papain-Like Protease Through Structure-Based Pharmacophore Modeling, Virtual Screening, Molecular Docking, Molecular Dynamics Simulations, and Biological Evaluation. Front Pharmacol 2022; 13:817715. [PMID: 35264955 PMCID: PMC8899470 DOI: 10.3389/fphar.2022.817715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Objective: COVID-19 has struck our society as a great calamity, and the need for effective anti-viral drugs is more urgent than ever. Papain-like protease (PLpro) of SARS CoV-2 plays important roles in virus maturation, dysregulation of host inflammation, and antiviral immune responses, which is being regarded as a promising druggable target for the treatment of COVID-19. Here, we carried out a combined screening approach to identify novel and highly potent PLpro inhibitors for the treatment of COVID-19. Methods: We used a combined screening approach of structure-based pharmacophore modeling and molecular docking to screen an in-house database containing 35,000 compounds. SARS CoV-2 PLpro inhibition assay was used to carry out the biological evaluation of hit compounds. Molecular dynamics (MD) simulations were conducted to check the stability of the PLpro-hit complexes predicted by molecular docking. Results: We found that four hit compounds showed excellent inhibitory activities against PLpro with IC50 values ranging from 0.6 to 2.4 μM. Among them, the most promising compound, hit 2 is the best PLpro inhibitor and its inhibitory activity was about 4 times higher than that of the positive control (GRL0617). The study of MD simulations indicated that four hits could bind stably to the active site of PLpro. Further study of interaction analysis indicated that hit 2 could form hydrogen-bond interactions with the key amino acids such as Gln269 and Asp164 in the PLpro-active site. Conclusion: Hit 2 is a novel and highly potent PLpro inhibitor, which will open the way for the development of clinical PLpro inhibitors for the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Quanfeng Zhao
- Department of Pharmacy, Southwest Hospital, First Affiliated Hospital to TMMU, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zhe Peng
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xiaodan Tan
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Qin Wang
- Department of Pharmacology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lin Chen
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Health Center for Women and Children, Chongqing, China
| |
Collapse
|
41
|
Zheng W, Su H, Lv X, Xin S, Xu T. Exon-Intron Circular RNA circRNF217 Promotes Innate Immunity and Antibacterial Activity in Teleost Fish by Reducing miR-130-3p Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1099-1114. [PMID: 35101892 DOI: 10.4049/jimmunol.2100890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022]
Abstract
Circular RNA (circRNA) is produced by splicing head to tail and is widely distributed in multicellular organisms, and circRNA reportedly can participate in various cell biological processes. In this study, we discovered a novel exon-intron circRNA derived from probable E3 ubiquitin-protein ligase RNF217 (RNF217) gene, namely, circRNF217, which was related to the antibacterial responses in teleost fish. Results indicated that circRNF217 played essential roles in host antibacterial immunity and inhibited the Vibrio anguillarum invasion into cells. Our study also found a microRNA miR-130-3p, which could inhibit antibacterial immune response and promote V. anguillarum invasion into cells by targeting NOD1. Moreover, we also found that the antibacterial effect inhibited by miR-130-3p could be reversed with circRNF217. In mechanism, our data revealed that circRNF217 was a competing endogenous RNA of NOD1 by sponging miR-130-3p, leading to activation of the NF-κB pathway and then enhancing the innate antibacterial responses. In addition, we also found that circRNF217 can promote the antiviral response caused by Siniperca chuatsi rhabdovirus through targeting NOD1. Our study provides new insights for understanding the impact of circRNA on host-pathogen interactions and formulating fish disease prevention to resist the severely harmful V. anguillarum infection.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hui Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shiying Xin
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China; and.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
42
|
Zheng W, Chang R, Luo Q, Liu G, Xu T. The long noncoding RNA MIR122HG is a precursor for miR-122-5p and negatively regulates the TAK1-induced innate immune response in teleost fish. J Biol Chem 2022; 298:101773. [PMID: 35218771 PMCID: PMC8935508 DOI: 10.1016/j.jbc.2022.101773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a diverse subset of RNA species of noncoding transcripts that are usually longer than 200 nt. However, the biological role and function of many lncRNAs have not been fully identified. It has been shown that one potential function of lncRNAs is to act as a precursor miRNA and promote the production of multiple miRNAs. However, the function of the miiuy croaker lncRNA MIR122HG has not been explored. In the present study, we show that this differentially expressed teleost fish lncRNA can act as the host gene of miR-122-5p, regulate its expression, and indirectly regulate the expression of potential inflammatory target protein transforming growth factor-β–activated kinase 1. We show that MIR122HG can negatively regulate the transforming growth factor-β–activated kinase 1–triggered NF-κB and interferon regulatory factor 3 signaling pathways and subsequently attenuate the innate immune response. In addition, MIR122HG can promote the replication of Siniperca chuatsi rhabdovirus and exacerbate the pathological effects caused by viral infection. We conclude that the study of lncRNA–miRNA–mRNA interaction through bioinformatics analysis or experimental-supported analysis can provide information for further elucidation of the functions of fish lncRNAs in innate immunity.
Collapse
Affiliation(s)
- Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Renjie Chang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Guiliang Liu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
43
|
N-Acetyltransferase 8 Promotes Viral Replication by Increasing the Stability of Enterovirus 71 Nonstructural Proteins. J Virol 2022; 96:e0011922. [PMID: 35170979 PMCID: PMC8941898 DOI: 10.1128/jvi.00119-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterovirus 71 (EV71) is deemed as a re-emergent pathogen with recent outbreaks worldwide. EV71 infection causes hand, foot and mouth disease (HFMD) and has been associated with severe cardiac and central nervous system complications and even death. Viruses need host factors to complete their life cycle, thus the identification of the host factors for EV71 infection is pivotal to new antiviral research. Emerging evidence has highlighted the importance of protein acetylation during infection of various human viruses. The endoplasmic reticulum, as the prominent organelle of EV71 replication, also has its unique acetylation regulation mechanism. However, the pathogenesis of EV71 and its relationship with the ER-based acetylation machinery are not fully understood. In this study, we demonstrated for the first time that the ER-resident acetyltransferase NAT8 is a host factor for EV71 infection. Inhibiting NAT8 with CRISPR or a small compound significantly suppressed EV71 infection in SK-N-SH cells. NAT8 promoted EV71 replication in an acetyltransferase activity-dependent manner. Additionally, we found NAT8 facilitates EV71 infection through interacting with EV71 2B,3AB and 3C proteins and increasing the stability of these proteins. These results uncovered a novel function of NAT8 and elucidated a new mechanism underlying the regulation of EV71 replication. Importance Enterovirus 71 (EV71) is one of the most common pathogens that cause hand, foot and mouth disease in young children and some patients experience severe or fatal neurologic consequences. To ensure efficient replication, the virus must hijack multiple host factors for its own benefit. Here we show that the ER-resident acetyltransferase NAT8 is a host factor for EV71 infection. EV71 fails to complete its infection in various cells in the absence of NAT8. We further show that NAT8 benefits EV71 replication in an acetyltransferase activity-dependent manner. Finally, we show that NAT8 facilitates EV71 infection through interacting with EV71 2B,3AB and 3C proteins and increasing the stability of these proteins. These results uncovered a novel function of NAT8 in EV71 infection and elucidated a new mechanism underlying the regulation of EV71 replication.
Collapse
|
44
|
Li M, Hu J, Mao H, Li D, Jiang Z, Sun Z, Yu T, Hu C, Xu X. Grass Carp ( Ctenopharyngodon idella) KAT8 Inhibits IFN 1 Response Through Acetylating IRF3/IRF7. Front Immunol 2022; 12:808159. [PMID: 35046960 PMCID: PMC8761793 DOI: 10.3389/fimmu.2021.808159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications (PTMs), such as phosphorylation and ubiquitination, etc., have been reported to modulate the activities of IRF3 and IRF7. In this study, we found an acetyltransferase KAT8 in grass carp (CiKAT8, MW286472) that acetylated IRF3/IRF7 and then resulted in inhibition of IFN 1 response. CiKAT8 expression was up-regulated in the cells under poly I:C, B-DNA or Z-DNA stimulation as well as GCRV(strain 873) or SVCV infection. The acetyltransferase domain (MYST domain) of KAT8 promoted the acetylation of IRF3 and IRF7 through the direct interaction with them. So, the domain is essential for KAT8 function. Expectedly, KAT8 without MYST domain (KAT8-△264-487) was granularly aggregated in the nucleus and failed to down-regulate IFN 1 expression. Subcellular localization analysis showed that KAT8 protein was evenly distributed in the nucleus. In addition, we found that KAT8 inhibited the recruitment of IRF3 and IRF7 to ISRE response element. Taken together, our findings revealed that grass carp KAT8 blocked the activities of IRF3 and IRF7 by acetylating them, resulting in a low affinity interaction of ISRE response element with IRF3 and IRF7, and then inhibiting nucleic acids-induced innate immune response.
Collapse
Affiliation(s)
- Meifeng Li
- School of Life Science, Nanchang University, Nanchang, China
| | - Jihuan Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, China
| | - Dongming Li
- Fuzhou Medical College, Nanchang University, Fuzhou, China
| | - Zeyin Jiang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhichao Sun
- School of Life Science, Nanchang University, Nanchang, China
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
46
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|
47
|
Shareef RH, Zwain ZD, Mahbuba WA. Superiority of lymphocyte ratio over total leukocyte count in detecting the severity of COVID- 19 pneumonia. Heliyon 2021; 7:e08412. [PMID: 34805573 PMCID: PMC8592846 DOI: 10.1016/j.heliyon.2021.e08412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Coronavirus disease (COVID-19) is an infectious disease caused by a recently discovered coronavirus. Blood test including complete blood count is crucial in diagnosing of several viral and bacterial infection. AIMS This study aimed to assess the association between lymphocyte ratio and other WBC types and severity of COVID-19 pneumonia. METHODS The design of this study was a cross-sectional study. A complete blood count and erythrocyte sedimentation rate (ESR) was done for one hundred twenty-six COVID-19 patients (76 males and 50 females; aged 20-70 years). Patients were randomly recruited from multicenter in Al-Najaf Governorate, Iraq. RESULTS The study had revealed an inverse correlation between severity of COVID-19 infection and both lymphocytes and monocytes ratio even in patients with normal WBC count. Additionally, there was a direct correlation between platelets and leukocyte count. The relation between leukocyte count and ESR level was significant in a patient with elevated WBC only. CONCLUSION Lymphocytes and monocyte ratios inpatient with COVID-19 infection can be used as predictors for the severity of infection. Increased leukocyte count resulted in increases in platelets inpatient with COVID-19.
Collapse
Affiliation(s)
- Rawaa Hadi Shareef
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Kufa, Najaf, Iraq
| | - Zinah Dhiaa Zwain
- Medical Education Unit, College of Medicine, University of Kufa, Najaf, Iraq
| | | |
Collapse
|
48
|
Qian G, Zhu L, Li G, Liu Y, Zhang Z, Pan J, Lv H. An Integrated View of Deubiquitinating Enzymes Involved in Type I Interferon Signaling, Host Defense and Antiviral Activities. Front Immunol 2021; 12:742542. [PMID: 34707613 PMCID: PMC8542838 DOI: 10.3389/fimmu.2021.742542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Viral infectious diseases pose a great challenge to human health around the world. Type I interferons (IFN-Is) function as the first line of host defense and thus play critical roles during virus infection by mediating the transcriptional induction of hundreds of genes. Nevertheless, overactive cytokine immune responses also cause autoimmune diseases, and thus, tight regulation of the innate immune response is needed to achieve viral clearance without causing excessive immune responses. Emerging studies have recently uncovered that the ubiquitin system, particularly deubiquitinating enzymes (DUBs), plays a critical role in regulating innate immune responses. In this review, we highlight recent advances on the diverse mechanisms of human DUBs implicated in IFN-I signaling. These DUBs function dynamically to calibrate host defenses against various virus infections by targeting hub proteins in the IFN-I signaling transduction pathway. We also present a future perspective on the roles of DUB-substrate interaction networks in innate antiviral activities, discuss the promises and challenges of DUB-based drug development, and identify the open questions that remain to be clarified. Our review provides a comprehensive description of DUBs, particularly their differential mechanisms that have evolved in the host to regulate IFN-I-signaling-mediated antiviral responses.
Collapse
Affiliation(s)
- Guanghui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ying Liu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
49
|
Cakir M, Obernier K, Forget A, Krogan NJ. Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. mSystems 2021; 6:e0038821. [PMID: 34519533 PMCID: PMC8547474 DOI: 10.1128/msystems.00388-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.
Collapse
Affiliation(s)
- Merve Cakir
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
50
|
Liu Q, Gu T, Su LY, Jiao L, Qiao X, Xu M, Xie T, Yang LX, Yu D, Xu L, Chen C, Yao YG. GSNOR facilitates antiviral innate immunity by restricting TBK1 cysteine S-nitrosation. Redox Biol 2021; 47:102172. [PMID: 34678655 PMCID: PMC8577438 DOI: 10.1016/j.redox.2021.102172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022] Open
Abstract
Innate immunity is the first line of host defense against pathogens. This process is modulated by multiple antiviral protein modifications, such as phosphorylation and ubiquitination. Here, we showed that cellular S-nitrosoglutathione reductase (GSNOR) is actively involved in innate immunity activation. GSNOR deficiency in mouse embryo fibroblasts (MEFs) and RAW264.7 macrophages reduced the antiviral innate immune response and facilitated herpes simplex virus-1 (HSV-1) and vesicular stomatitis virus (VSV) replication. Concordantly, HSV-1 infection in Gsnor-/- mice and wild-type mice with GSNOR being inhibited by N6022 resulted in higher mortality relative to the respective controls, together with severe infiltration of immune cells in the lungs. Mechanistically, GSNOR deficiency enhanced cellular TANK-binding kinase 1 (TBK1) protein S-nitrosation at the Cys423 site and inhibited TBK1 kinase activity, resulting in reduced interferon production for antiviral responses. Our study indicated that GSNOR is a critical regulator of antiviral responses and S-nitrosation is actively involved in innate immunity.
Collapse
Affiliation(s)
- Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Lijin Jiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101, China
| | - Lu-Xiu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650204, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|