1
|
Tao T, Tian L, Ke J, Zhang C, Li M, Xu X, Fan J, Tong Y, Fan H. Antibody-dependent enhancement of coronaviruses. Int J Biol Sci 2025; 21:1686-1704. [PMID: 39990674 PMCID: PMC11844293 DOI: 10.7150/ijbs.96112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
The COVID-19 pandemic presents a significant challenge to the global health and the world economy, with humanity engaged in an extended struggle against the virus. Notable advancements have been achieved in the development of vaccines and therapeutic interventions, including the application of neutralizing antibodies (NAbs) and convalescent plasma (CP). While antibody-dependent enhancement (ADE) has not been observed in human clinical studies related to SARS-CoV-2, the potential for ADE remains a critical concern and challenge in addressing SARS-CoV-2 infections. Moreover, the causal relationship between ADE and viral characteristics remains to be clearly elucidated. Viruses that present with severe clinical manifestations of ADE have demonstrated the capacity to replicate in macrophages or other immune cells, or to alter the immunological status of these cells, which induces abortive infections characterized by systemic inflammation. In this review, we summarize experimental observations and clinical evidence concerning the ADE effect associated with coronaviruses. We critically examine the potential mechanisms through which coronaviruses mediate ADE, and propose strategies to mitigate this phenomenon in the context of viral infection treatment. Our aim is to offer informed recommendations for the containment of the COVID-19 pandemic and to strengthen the response to SARS-CoV-2, as well as to prepare for potential future coronavirus threats.
Collapse
Affiliation(s)
- Tao Tao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayi Ke
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuxie Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
3
|
Viklicky O, Slatinska J, Janousek L, Rousse J, Royer PJ, Toutain PL, Cozzi E, Galli C, Evanno G, Duvaux O, Bach JM, Soulillou JP, Giral M, Vanhove B, Blancho G. First-in-human Study With LIS1, a Next-generation Porcine Low Immunogenicity Antilymphocyte Immunoglobulin in Kidney Transplantation. Transplantation 2024; 108:e139-e147. [PMID: 38421879 DOI: 10.1097/tp.0000000000004967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND Polyclonal rabbit antithymocyte globulins (ATGs) are commonly used in organ transplantation as induction. Anti- N -glycolylneuraminic acid carbohydrate antibodies which develop in response to rabbit carbohydrate antigens might lead to unwanted systemic inflammation. LIS1, the first new generation of antilymphocyte globulins (ALGs) derived from double knockout swine, lacking carbohydrate xenoantigens was already tested in nonhuman primates and rodent models. METHODS This open-label, single-site, dose escalation, first-in-human, phase 1 study evaluated the safety, T cell depletion, pharmacokinetics, and pharmacodynamics of LIS1. In an ascending dose cohort (n = 5), a primary kidney transplant recipient at low immunologic risk (panel reactive antibody [PRA] < 20%), received LIS1 for 5 d at either 0.6, 1, 3, 6, or 8 mg/kg. After each patient completed treatment, the data safety monitoring board approved respective dose escalation. In the therapeutic dose cohort (n = 5) in patients with PRA <50% without donor specific antibodies, 2 patients received 8 mg/kg and 3 patients 10 mg/kg. RESULTS CD3 + T cell depletion <100/mm 3 at day 2 was observed in all patients who received 6, 8, and 10 mg/kg of LIS1. The terminal half-life of LIS1 was 33.7 d with linearity in its disposition. Lymphocyte repopulation was fast and pretransplant lymphocyte subpopulation counts recovered within 2-4 wk. LIS1 was well tolerated, neither cytokine release syndrome nor severe thrombocytopenia or leukopenia were noticed. Antibodies to LIS1 were not detected. CONCLUSIONS In this first-in-human trial, genome-edited swine-derived polyclonal LIS1 ALG was well tolerated, did not elicit antidrug antibodies, and caused time-limited T cell depletion in low- and medium-risk kidney transplant recipients.
Collapse
Affiliation(s)
- Ondrej Viklicky
- Department of Nephrology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Janka Slatinska
- Department of Nephrology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | - Libor Janousek
- Department of Nephrology, Institute of Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | - Pierre-Louis Toutain
- Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona, Italy
| | | | | | | | - Jean-Paul Soulillou
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- Nantes Université, INSERM UMR1064, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | - Magali Giral
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- Nantes Université, INSERM UMR1064, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | | | - Gilles Blancho
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
- Nantes Université, INSERM UMR1064, Center for Research in Transplantation and Translational Immunology, Nantes, France
| |
Collapse
|
4
|
Poulakou G, Royer PJ, Evgeniev N, Evanno G, Shneiker F, Marcelin AG, Vanhove B, Duvaux O, Marot S, Calvez V. Anti-SARS-CoV-2 glyco-humanized polyclonal antibody XAV-19: phase II/III randomized placebo-controlled trial shows acceleration to recovery for mild to moderate patients with COVID-19. Front Immunol 2024; 15:1330178. [PMID: 38694503 PMCID: PMC11061480 DOI: 10.3389/fimmu.2024.1330178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction XAV-19 is a glyco-humanized swine polyclonal antibody targeting SARS-CoV-2 with high neutralizing activity. The safety and clinical efficacy of XAV-19 were investigated in patients with mild to moderate COVID-19. Methods This phase II/III, multicentric, randomized, double-blind, placebo-controlled clinical trial was conducted to evaluate the safety and clinical efficacy of XAV-19 in patients with a seven-point WHO score of 2 to 4 at randomization, i.e., inpatients with COVID-19 requiring or not requiring low-flow oxygen therapy, and outpatients not requiring oxygen (EUROXAV trial, NCT04928430). Adult patients presenting in specialized or emergency units with confirmed COVID-19 and giving their consent to participate in the study were randomized to receive 150 mg of XAV-19 or placebo. The primary endpoint was the proportion of patients with aggravation within 8 days after treatment, defined as a worsening of the seven-point WHO score of at least one point between day 8 and day 1 (inclusion). The neutralization activity of XAV-19 against variants circulating during the trial was tested in parallel. Results From March 2021 to October 2022, 279 patients received either XAV-19 (N = 140) or placebo (N = 139). A slow enrollment and a low rate of events forced the termination of the premature trial. XAV-19 was well tolerated. Underpowered statistics did not allow the detection of any difference in the primary endpoint between the two groups or in stratified groups. Interestingly, analysis of the time to improvement (secondary endpoint) showed that XAV-19 significantly accelerated the recovery for patients with a WHO score of 2 or 3 (median at 7 days vs. 14 days, p = 0.0159), and even more for patients with a WHO score of 2 (4 days vs. 14 days, p = 0.0003). The neutralizing activity against Omicron and BA.2, BA.2.12.1, BA.4/5, and BQ.1.1 subvariants was shown. Discussion In this randomized placebo- controlled trial with premature termination, reduction of aggravation by XAV-19 at day 8 in patients with COVID-19 was not detectable. However, a significant reduction of the time to improvement for patients not requiring oxygen was observed. XAV-19 maintained a neutralizing activity against SARS-CoV-2 variants. Altogether, these data support a possible therapeutic interest for patients with mild to moderate COVID-19 requiring anti-SARS-CoV-2 neutralizing antibodies. Clinical Trial Registration https://clinicaltrials.gov/, identifier NCT04928430; https://www.clinicaltrialsregister.eu/about.html (EudraCT), identifier 2020-005979-12.
Collapse
Affiliation(s)
- Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolay Evgeniev
- Department of Medical Oncology, Complex Oncology Center, Russe, Bulgaria
| | | | | | - Anne-Geneviève Marcelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | | | | | - Stéphane Marot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Vincent Calvez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d’Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| |
Collapse
|
5
|
Gaborit B, Vanhove B, Lacombe K, Guimard T, Hocqueloux L, Perrier L, Dubee V, Ferre V, Bressollette C, Josien R, Thuaut AL, Vibet MA, Jobert A, Dailly E, Ader F, Brouard S, Duvaux O, Raffi F. Effect of Swine Glyco-humanized Polyclonal Neutralizing Antibody on Survival and Respiratory Failure in Patients Hospitalized With Severe COVID-19: A Randomized, Placebo-Controlled Trial. Open Forum Infect Dis 2023; 10:ofad525. [PMID: 37942459 PMCID: PMC10629360 DOI: 10.1093/ofid/ofad525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Background We evaluated the safety and efficacy of XAV-19, an antispike glyco-humanized swine polyclonal neutralizing antibody in patients hospitalized with severe coronavirus disease 2019 (COVID-19). Methods This phase 2b clinical trial enrolled adult patients from 34 hospitals in France. Eligible patients had a confirmed diagnosis of severe acute respiratory syndrome coronavirus 2 within 14 days of onset of symptoms that required hospitalization for low-flow oxygen therapy (<6 L/min of oxygen). Patients were randomly assigned to receive a single intravenous infusion of 2 mg/kg of XAV-19 or placebo. The primary end point was the occurrence of death or severe respiratory failure between baseline and day 15. Results Between January 12, 2021, and April 16, 2021, 398 patients were enrolled in the study and randomly assigned to XAV-19 or placebo. The modified intention-to-treat population comprised 388 participants who received full perfusion of XAV-19 (199 patients) or placebo (189 patients). The mean (SD) age was 59.8 (12.4) years, 249 (64.2%) individuals were men, and the median time (interquartile range) from symptom onset to enrollment was 9 (7-10) days. There was no statistically significant decrease in the cumulative incidence of death or severe respiratory failure through day 15 in the XAV-19 group vs the placebo group (53/199 [26.6%] vs 48/189 [25.4%]; adjusted risk difference, 0.6%; 95% CI, -6% to 7%; hazard ratio, 1.03; 95% CI, 0.64-1.66; P = .90). In the safety population, adverse events were reported in 75.4% of 199 patients in the XAV-19 group and in 76.3% of 190 patients in the placebo group through D29. Conclusions Among patients hospitalized with COVID-19 requiring low-flow oxygen therapy, treatment with a single intravenous dose of XAV-19, compared with placebo, did not show a significant difference in terms of disease progression at day 15.
Collapse
Affiliation(s)
- Benjamin Gaborit
- Nantes Université, CHU Nantes, INSERM, Department of Infectious Diseases, Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | | | - Karine Lacombe
- INSERM, AP-HP, Hôpital Saint-Antoine, Service des Maladies Infectieuses et Tropicales, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
| | - Thomas Guimard
- Infectious Diseases and Emergency Department, Centre Hospitalier de La Roche sur Yon, La Roche sur Yon, France
| | | | - Ludivine Perrier
- Nantes Université, CHU Nantes, Sponsor Department, Direction de la Recherche et de l’Innovation, Nantes, France
| | - Vincent Dubee
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire d'Angers, Angers, France
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, Angers, France
| | - Virginie Ferre
- Nantes Université, CHU Nantes, Virology Laboratory, Nantes, France
| | | | - Régis Josien
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
- Nantes Université, CHU Nantes, Laboratoire d’Immunologie, CIMNA, Nantes, France
| | - Aurélie Le Thuaut
- Nantes Université, CHU Nantes, Sponsor Department, Direction de la Recherche et de l’Innovation, Nantes, France
- Nantes Université, CHU Nantes, Plateforme de Méthodologie et Biostatistique, Direction de la Recherche et de l’Innovation, Nantes, France
| | - Marie-Anne Vibet
- Nantes Université, CHU Nantes, Sponsor Department, Direction de la Recherche et de l’Innovation, Nantes, France
- Nantes Université, CHU Nantes, Plateforme de Méthodologie et Biostatistique, Direction de la Recherche et de l’Innovation, Nantes, France
| | - Alexandra Jobert
- Nantes Université, CHU Nantes, Sponsor Department, Direction de la Recherche et de l’Innovation, Nantes, France
- Nantes Université, CHU Nantes, UMR 1246 MethodS in Patients-centered outcomes and HEalth Research,” SPHERE, Nantes, France
| | - Eric Dailly
- Nantes Université, CHU Nantes, Clinical Pharmacology Department, Nantes, France
| | - Florence Ader
- CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, Université Lyon, Lyon, France
- Département des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Lyon, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, Nantes, France
| | | | - François Raffi
- Nantes Université, CHU Nantes, INSERM, Department of Infectious Diseases, Nantes, France
| |
Collapse
|
6
|
Manus JM. XAV-19, un anti-variant de Sars-CoV-2, BQ.1.1 compris. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2023; 2023:6-7. [PMID: 36879983 PMCID: PMC9978910 DOI: 10.1016/s1773-035x(23)00036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Rousse J, Royer PJ, Evanno G, Lheriteau E, Ciron C, Salama A, Shneiker F, Duchi R, Perota A, Galli C, Cozzi E, Blancho G, Duvaux O, Brouard S, Soulillou JP, Bach JM, Vanhove B. LIS1, a glyco-humanized swine polyclonal anti-lymphocyte globulin, as a novel induction treatment in solid organ transplantation. Front Immunol 2023; 14:1137629. [PMID: 36875084 PMCID: PMC9978386 DOI: 10.3389/fimmu.2023.1137629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Anti-thymocyte or anti-lymphocyte globulins (ATGs/ALGs) are immunosuppressive drugs used in induction therapies to prevent acute rejection in solid organ transplantation. Because animal-derived, ATGs/ALGs contain highly immunogenic carbohydrate xenoantigens eliciting antibodies that are associated with subclinical inflammatory events, possibly impacting long-term graft survival. Their strong and long-lasting lymphodepleting activity also increases the risk for infections. We investigated here the in vitro and in vivo activity of LIS1, a glyco-humanized ALG (GH-ALG) produced in pigs knocked out for the two major xeno-antigens αGal and Neu5Gc. It differs from other ATGs/ALGs by its mechanism of action excluding antibody-dependent cell-mediated cytotoxicity and being restricted to complement-mediated cytotoxicity, phagocyte-mediated cytotoxicity, apoptosis and antigen masking, resulting in profound inhibition of T-cell alloreactivity in mixed leucocyte reactions. Preclinical evaluation in non-human primates showed that GH-ALG dramatically reduced CD4+ (p=0.0005,***), CD8+ effector T cells (p=0.0002,***) or myeloid cells (p=0.0007,***) but not T-reg (p=0.65, ns) or B cells (p=0.65, ns). Compared with rabbit ATG, GH-ALG induced transient depletion (less than one week) of target T cells in the peripheral blood (<100 lymphocytes/L) but was equivalent in preventing allograft rejection in a skin allograft model. The novel therapeutic modality of GH-ALG might present advantages in induction treatment during organ transplantation by shortening the T-cell depletion period while maintaining adequate immunosuppression and reducing immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Carine Ciron
- Research and Development, Xenothera, Nantes, France
| | - Apolline Salama
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | | | - Roberto Duchi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Andrea Perota
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Cesare Galli
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Emmanuele Cozzi
- Avantea, Laboratorio di Tecnologie della Riproduzione, Cremona, Italy
| | - Gilles Blancho
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Odile Duvaux
- Research and Development, Xenothera, Nantes, France
| | - Sophie Brouard
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Jean-Paul Soulillou
- Nantes Université, Inserm, University Hospital Center CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | | | | |
Collapse
|
8
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Opriessnig T, Huang YW. SARS-CoV-2 does not infect pigs, but this has to be verified regularly. Xenotransplantation 2022; 29:e12772. [PMID: 36039616 PMCID: PMC9538518 DOI: 10.1111/xen.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
For successful xenotransplantation, freedom of the xenocraft donor from certain viral infections that may harm the organ recipient is important. A novel human coronavirus (CoV) with a respiratory tropism, designated as SARS-CoV-2, was first identified in January 2020 in China, but likely has been circulating unnoticed for some time before. Since then, this virus has reached most inhabited areas, resulting in a major global pandemic which is still ongoing. Due to a high number of subclinical infections, re-infections, geographic differences in diagnostic tests used, and differences in result reporting programs, the percentage of the population infected with SARS-CoV-2 at least once has been challenging to estimate. With continuous ongoing infections in people and an overall high viral load, it makes sense to look into possible viral spillover events in pets and farm animals, who are often in close contact with humans. The pig is currently the main species considered for xenotransplantation and hence there is interest to know if pigs can become infected with SARS-CoV-2 and if so what the infection dynamics may look like. This review article summarizes the latest research findings on this topic. It would appear that pigs can currently be considered a low risk species, and hence do not pose an immediate risk to the human population or xenotransplantation recipients per se. Monitoring the ever-changing SARS-CoV-2 variants appears important to recognize immediately should this change in the future.
Collapse
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Yao-Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
de Castro Barbosa E, de Souza Andrade A, Duarte MM, Faria G, de Melo Iani FC, Ataide ACZ, Cunha LM, Duarte CG, Fialho SL, Caldas S. Influence of SARS-CoV-2 inactivation by different chemical reagents on the humoral response evaluated in a murine model. Mol Immunol 2022; 147:199-208. [PMID: 35644072 PMCID: PMC9125173 DOI: 10.1016/j.molimm.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Viral inactivation for antibody induction purposes, among other applications, should ensure biosafety, completely avoiding the risk of infectivity, and preserving viral immunogenicity. β-propiolactone (BPL) is one of the most used reagents for viral inactivation, despite its high toxicity and recent difficulties related to importation, experienced in Brazil during the SARS-CoV-2 pandemic. In this context, the main objectives of this work were to test different inactivation procedures for SARS-CoV-2 and to evaluate the induction of neutralizing antibodies in mice immunized with antigenic preparations obtained after viral treatment with formaldehyde (FDE), glutaraldehyde (GDE), peroxide hydrogen (H2O2), as well as with viral proteins extract (VPE), in parallel with BPL. Verification of viral inactivation was performed by subsequent incubations of the inactivated virus in Vero cells, followed by cytopathic effect and lysis plaques observation, as well as by quantification of RNA load using reverse transcription-quantitative real time polymerase chain reaction. Once viral inactivation was confirmed, cell culture supernatants were concentrated and purified. In addition, an aliquot inactivated by BPL was also subjected to viral protein extraction (VPE). The different antigens were prepared using a previously developed microemulsion as adjuvant, and were administered in a four-dose immunization protocol. Antibody production was comparatively evaluated by ELISA and Plaque Reduction Neutralization Tests (PRNT). All immunogens evaluated showed some level of IgG anti-SARS-CoV-2 antibodies in the ELISA assay, with the highest levels presented by the group immunized with FDE-inactivated viral antigen. In the PRNT results, except for VPE-antigen, all other immunogens evaluated induced some level of neutralizing anti-SARS-CoV-2 antibodies, and the FDE-antigen stood out again with the most expressive values. Taken together, the present work shows that FDE can be an efficient and affordable alternative to BPL for the production of inactivated SARS-CoV-2 viral antigen.
Collapse
Affiliation(s)
- Emerson de Castro Barbosa
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil; Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Adriana de Souza Andrade
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Myrian Morato Duarte
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Felipe Campos de Melo Iani
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ana Caroline Zampiroli Ataide
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Lucas Maciel Cunha
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Clara Guerra Duarte
- Serviço de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sílvia Ligorio Fialho
- Serviço de Desenvolvimento Tecnológico Farmacêutico, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sérgio Caldas
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil.
| |
Collapse
|
11
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
12
|
Zhang J, Zhang H, Sun L. Therapeutic antibodies for COVID-19: is a new age of IgM, IgA and bispecific antibodies coming? MAbs 2022; 14:2031483. [PMID: 35220888 PMCID: PMC8890389 DOI: 10.1080/19420862.2022.2031483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/23/2022] Open
Abstract
Early humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are dominated by IgM and IgA antibodies, which greatly contribute to virus neutralization at mucosal sites. Given the essential roles of IgM and IgA in the control and elimination of SARS-CoV-2 infection, the mucosal immunity could be exploited for therapeutic and prophylactic purposes. However, almost all neutralizing antibodies that are authorized for emergency use and under clinical development are IgG antibodies, and no vaccine has been developed to boost mucosal immunity for SARS-CoV-2 infection. In addition to IgM and IgA, bispecific antibodies (bsAbs) combine specificities of two antibodies in one molecule, representing an important alternative to monoclonal antibody cocktails. Here, we summarize the latest advances in studies on IgM, IgA and bsAbs against SARS-CoV-2. The current challenges and future directions in vaccine design and antibody-based therapeutics are also discussed.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Pathogens and Infectious Disease Prevention and Control, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China, 650118
| | - Litao Sun
- Department of Pathogens and Infectious Disease Prevention and Control, School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107China
| |
Collapse
|
13
|
Vanhove B, Marot S, So RT, Gaborit B, Evanno G, Malet I, Lafrogne G, Mevel E, Ciron C, Royer PJ, Lheriteau E, Raffi F, Bruzzone R, Mok CKP, Duvaux O, Marcelin AG, Calvez V. XAV-19, a Swine Glyco-Humanized Polyclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Domain, Targets Multiple Epitopes and Broadly Neutralizes Variants. Front Immunol 2021; 12:761250. [PMID: 34868003 PMCID: PMC8634597 DOI: 10.3389/fimmu.2021.761250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Amino acid substitutions and deletions in the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants can reduce the effectiveness of monoclonal antibodies (mAbs). In contrast, heterologous polyclonal antibodies raised against S protein, through the recognition of multiple target epitopes, have the potential to maintain neutralization capacities. XAV-19 is a swine glyco-humanized polyclonal neutralizing antibody raised against the receptor binding domain (RBD) of the Wuhan-Hu-1 Spike protein of SARS-CoV-2. XAV-19 target epitopes were found distributed all over the RBD and particularly cover the receptor binding motives (RBMs), in direct contact sites with the angiotensin converting enzyme-2 (ACE-2). Therefore, in Spike/ACE-2 interaction assays, XAV-19 showed potent neutralization capacities of the original Wuhan Spike and of the United Kingdom (Alpha/B.1.1.7) and South African (Beta/B.1.351) variants. These results were confirmed by cytopathogenic assays using Vero E6 and live virus variants including the Brazil (Gamma/P.1) and the Indian (Delta/B.1.617.2) variants. In a selective pressure study on Vero E6 cells conducted over 1 month, no mutation was associated with the addition of increasing doses of XAV-19. The potential to reduce viral load in lungs was confirmed in a human ACE-2 transduced mouse model. XAV-19 is currently evaluated in patients hospitalized for COVID-19-induced moderate pneumonia in phase 2a-2b (NCT04453384) where safety was already demonstrated and in an ongoing 2/3 trial (NCT04928430) to evaluate the efficacy and safety of XAV-19 in patients with moderate-to-severe COVID-19. Owing to its polyclonal nature and its glyco-humanization, XAV-19 may provide a novel safe and effective therapeutic tool to mitigate the severity of coronavirus disease 2019 (COVID-19) including the different variants of concern identified so far.
Collapse
Affiliation(s)
| | - Stéphane Marot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Ray T So
- Hong Kong University (HKU)-Pasteur Research Pole, School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Benjamin Gaborit
- Department of Infectious Disease, Nantes University Hospital, Nantes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) CIC1413, Nantes University Hospital, Nantes, France
| | | | - Isabelle Malet
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | | | | | | | | | | | - François Raffi
- Department of Infectious Disease, Nantes University Hospital, Nantes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) CIC1413, Nantes University Hospital, Nantes, France
| | - Roberto Bruzzone
- Hong Kong University (HKU)-Pasteur Research Pole, School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Chris Ka Pun Mok
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Anne-Geneviève Marcelin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| | - Vincent Calvez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié Salpêtrière Hospital, Department of Virology, Paris, France
| |
Collapse
|
14
|
Kyriakopoulos C, Ntritsos G, Gogali A, Milionis H, Evangelou E, Kostikas K. Tocilizumab administration for the treatment of hospitalized patients with COVID-19: A systematic review and meta-analysis. Respirology 2021; 26:1027-1040. [PMID: 34605114 PMCID: PMC8661720 DOI: 10.1111/resp.14152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Tocilizumab has been repurposed against the ‘cytokine storm’ in the setting of coronavirus disease 2019 (COVID‐19). Our aim was to evaluate the efficacy of tocilizumab in the management of hospitalized COVID‐19 patients. We searched MEDLINE, CENTRAL and medRxiv for studies of tocilizumab in hospitalized COVID‐19 patients. Primary objective was the effectiveness of tocilizumab on mortality. Secondary objectives included the need for invasive mechanical ventilation (IMV), composite endpoints of mortality or IMV and intensive care unit (ICU) admission or IMV, length of hospitalization and differences in mortality in subgroups (ICU and non‐ICU patients and patients receiving or not receiving concomitant corticosteroids). We included 52 studies (nine randomized controlled trials [RCTs] and 43 observational) with a total of 27,004 patients. In both RCTs and observational studies, the use of tocilizumab was associated with a reduction in mortality; 11% in RCTs (risk ratio [RR] 0.89, 95% CI 0.82 to 0.96) and 31% in observational studies (RR 0.69, 95% CI 0.58 to 0.83). The need for IMV was reduced by 19% in RCTs (RR 0.81, 95% CI 0.71 to 0.93), while no significant reduction was observed in observational studies. Both RCTs and observational studies showed a benefit from tocilizumab on the composite endpoint of mortality or IMV. Tocilizumab improved mortality both in ICU and non‐ICU patients. Reduction in mortality was evident in observational studies regardless of the use of systemic corticosteroids, while that was not the case in the RCTs. Tocilizumab was associated with lower mortality and other clinically relevant outcomes in hospitalized patients with moderate‐to‐critical COVID‐19.
Collapse
Affiliation(s)
- Christos Kyriakopoulos
- Respiratory Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Georgios Ntritsos
- Department of Hygiene and Epidemiology, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Haralampos Milionis
- Internal Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Faculty of Medicine, Ioannina, Greece
| | - Konstantinos Kostikas
- Respiratory Medicine Department, University of Ioannina Faculty of Medicine, Ioannina, Greece
| |
Collapse
|
15
|
Padela AI. Porcine-derived medical therapies for SARS-CoV-2: Traversing Muslim bioethical concerns and assuring equity. Xenotransplantation 2021; 28:e12714. [PMID: 34549461 PMCID: PMC8646535 DOI: 10.1111/xen.12714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Aasim I Padela
- Initiative on Islam and Medicine, Brookfield, Wisconsin, USA.,Center for Bioethics and the Medical Humanities, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Emergency Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Pharmacokinetics and Safety of XAV-19, a Swine Glyco-humanized Polyclonal Anti-SARS-CoV-2 Antibody, for COVID-19-Related Moderate Pneumonia: a Randomized, Double-Blind, Placebo-Controlled, Phase IIa Study. Antimicrob Agents Chemother 2021; 65:e0123721. [PMID: 34181475 PMCID: PMC8370226 DOI: 10.1128/aac.01237-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We assessed the pharmacokinetics and safety of XAV-19, a swine glyco-humanized polyclonal antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in coronavirus disease 2019 (COVID-19)-related moderate pneumonia. The objective was to evaluate the optimal dose and safety of XAV-19 during this first administration to patients with COVID-19-related moderate pneumonia. In this phase IIa trial, adults with COVID-19-related moderate pneumonia with a duration of ≤10 days were randomized to receive an infusion of XAV-19 at 0.5 mg/kg of body weight at day 1 and day 5 (group 1), 2 mg/kg at day 1 and day 5 (group 2), or 2 mg/kg at day 1 (group 3) or placebo. Eighteen patients (n = 7 for group 1, n = 1 for group 2, n = 5 for group 3, and n = 5 for placebo) were enrolled. Baseline characteristics were similar across groups; median XAV-19 serum concentrations (ranges) at the time of the maximum serum concentration of the drug (Cmax) and at day 8 were 9.1 (5.2 to 18.1) and 6.4 (2.8 to 11.9) μg/ml, 71.5 and 47.2 μg/ml, and 50.4 (29.1 to 55.0) and 20.3 (12.0 to 22.7) μg/ml for groups 1, 2, and 3, respectively (P = 0.012). The median terminal half-life (range) was estimated at 11.4 (5.5 to 13.9) days for 2 mg/kg of XAV-19 at day 1. Serum XAV-19 concentrations were above the target concentration of 10 μg/ml (2-fold the in vitro 100% inhibitory concentration [IC100]) from the end of perfusion to more than 8 days for XAV-19 at 2 mg/kg at day 1. No hypersensitivity or infusion-related reactions were reported during treatment, and there were no discontinuations for adverse events and no serious adverse events related to the study drug. A single intravenous dose of 2 mg/kg of XAV-19 demonstrated high serum concentrations, predictive of potent durable neutralizing activity with good tolerability. (This study has been registered at ClinicalTrials.gov under identifier NCT04453384.)
Collapse
|
17
|
Gaborit B, Vanhove B, Vibet MA, Le Thuaut A, Lacombe K, Dubee V, Ader F, Ferre V, Vicaut E, Orain J, Le Bras M, Omnes A, Berly L, Jobert A, Morineau-Le Houssine P, Botturi K, Josien R, Flet L, Degauque N, Brouard S, Duvaux O, Poinas A, Raffi F. Evaluation of the safety and efficacy of XAV-19 in patients with COVID-19-induced moderate pneumonia: study protocol for a randomized, double-blinded, placebo-controlled phase 2 (2a and 2b) trial. Trials 2021; 22:199. [PMID: 33750432 PMCID: PMC7942514 DOI: 10.1186/s13063-021-05132-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Early inhibition of entry and replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a very promising therapeutic approach. Polyclonal neutralizing antibodies offers many advantages such as providing immediate immunity, consequently blunting an early pro-inflammatory pathogenic endogenous antibody response and lack of drug-drug interactions. By providing immediate immunity and inhibiting entry into cells, neutralizing antibody treatment is of interest for patient with COVID-19-induced moderate pneumonia. Convalescent plasma to treat infected patients is therefore a relevant therapeutic option currently under assessment (CORIMUNO-PLASM NCT04324047). However, the difficulties of collecting plasma on the long term are not adapted to a broad use across all populations. New polyclonal humanized anti-SARS-CoV2 antibodies (XAV-19) developed by Xenothera and administered intravenous. XAV-19 is a heterologous swine glyco-humanized polyclonal antibody (GH-pAb) raised against the spike protein of SARS-CoV-2, blocking infection of ACE-2-positive human cells with SARS-CoV-2. METHODS Pharmacokinetic and pharmacodynamic studies have been performed in preclinical models including primates. A first human study with another fully representative GH-pAb from Xenothera is ongoing in recipients of a kidney graft. These studies indicated that 5 consecutive administrations of GH-pAbs can be safely performed in humans. The objectives of this 2-step phase 2 randomized double-blinded, placebo-controlled study are to define the safety and the optimal XAV-19 dose to administrate to patients with SARS-CoV-2 induced moderate pneumonia, and to assess the clinical benefits of a selected dose of XAV-19 in this population. DISCUSSION This study will determine the clinical benefits of XAV-19 when administered to patients with SARS-CoV-2-induced moderate pneumonia. As a prerequisite, a first step of the study will define the safety and the dose of XAV-19 to be used. Such treatment might become a new therapeutic option to provide an effective treatment for COVID-19 patients (possibly in combination with anti-viral and immunotherapies). Further studies could later evaluate such passive immunotherapy as a potential post-exposure prophylaxis. TRIAL REGISTRATION ClinicalTrials.gov NCT04453384 , registered on 1 July 2020, and EUDRACT 2020-002574-27, registered 6 June 2020.
Collapse
Affiliation(s)
- Benjamin Gaborit
- CHU Nantes, Department of Infectious Disease, Clinical Investigation, Nantes, France
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
| | | | | | | | - Karine Lacombe
- Institut Pierre Louis d’Epidémiologie et de Santé Publique, Sorbonne Université, INSERM, AP-HP, Hôpital Saint-Antoine, Service des Maladies Infectieuses et Tropicales, Paris, France
| | - Vincent Dubee
- CHU Angers, Service de Maladies Infectieuses et Tropicales, Angers, France
| | - Florence Ader
- Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France
- Département des Maladies infectieuses et tropicales, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Virginie Ferre
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
- CHU Nantes, Virology Laboratory, Nantes, France
| | - Eric Vicaut
- APHP, Department of Biostatistics, Université Paris-Diderot, Sorbonne-Paris Cité, Fernand Widal Hospital, Paris, France
| | - Jéremie Orain
- CHU Nantes, Department of Infectious Disease, Clinical Investigation, Nantes, France
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
| | - Morgane Le Bras
- CHU Nantes, Department of Infectious Disease, Clinical Investigation, Nantes, France
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
| | - Anne Omnes
- CHU Nantes, Sponsor Department, Nantes, France
| | | | | | - Pascale Morineau-Le Houssine
- CHU Nantes, Department of Infectious Disease, Clinical Investigation, Nantes, France
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
| | - Karine Botturi
- CHU Nantes, Partnership and Innovation Department, Nantes, France
| | - Régis Josien
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- CHU Nantes, Laboratoire d’Immunologie, Nantes, France
| | | | - Nicolas Degauque
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- CHU Nantes, Nantes Université, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | | | - Alexandra Poinas
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
| | - François Raffi
- CHU Nantes, Department of Infectious Disease, Clinical Investigation, Nantes, France
- CHU Nantes and Inserm, Clinical Investigation Centre CIC1413, Nantes, France
| |
Collapse
|
18
|
Focosi D, Tuccori M, Franchini M. The Road towards Polyclonal Anti-SARS-CoV-2 Immunoglobulins (Hyperimmune Serum) for Passive Immunization in COVID-19. Life (Basel) 2021; 11:144. [PMID: 33671893 PMCID: PMC7918959 DOI: 10.3390/life11020144] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Effective treatments specific for COVID-19 are still lacking. In the setting of passive immunotherapies based on neutralizing antibodies (nAbs), randomized controlled trials of COVID-19 convalescent plasma (CCP) anti-SARS-CoV-2 Spike protein monoclonal antibodies (mAb), which have been granted emergency use authorization, have suggested benefit in early disease course (less than 72 hours from symptoms and seronegative). Meanwhile, polyclonal immunoglobulins (i.e., hyperimmune serum), derived either from CCP donations or from animals immunized with SARS-CoV-2 antigens, are likely to become the next nAb-derived candidate. We here discuss the pros and cons of hyperimmune serum versus CCP and mAb, and summarize the ongoing clinical trials of COVID-19 hyperimmune sera.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Marco Tuccori
- Division of Pharmacology and Pharmacovigilance, University of Pisa, 56126 Pisa, Italy;
- Unit of Adverse Drug reaction Monitoring, Pisa University Hospital, 56124 Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
| |
Collapse
|