1
|
Gianella S, Anderson C, Chaillon A, Wells A, Porrachia M, Caballero G, Vargas M, Lonergan J, Woodworth B, Gaitan N, Rawlings SA, Muttera L, Harkness L, Little SJ, May S, Smith D. Impact of influenza and pneumococcal vaccines on HIV persistence and immune dynamics during suppressive antiretroviral therapy. AIDS 2024; 38:1131-1140. [PMID: 38526550 PMCID: PMC11141237 DOI: 10.1097/qad.0000000000003882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
OBJECTIVE We sought to determine if standard influenza and pneumococcal vaccines can be used to stimulate HIV reservoirs during antiretroviral therapy (ART). DESIGN A prospective, randomized, double-blinded, placebo-controlled, crossover trial of two clinically recommended vaccines (influenza and pneumococcal). METHODS Persons with HIV on ART ( N = 54) were enrolled in the clinical trial. Blood was collected at baseline and days 2,4,7,14, and 30 postimmunizations. Levels of cellular HIV RNA and HIV DNA were measured by ddPCR. Expression of immunological markers on T cell subsets was measured by flow cytometry. Changes in unspliced cellular HIV RNA from baseline to day 7 postinjection between each vaccine and placebo was the primary outcome. RESULTS Forty-seven participants completed at least one cycle and there were no serious adverse events related to the intervention. We observed no significant differences in the change in cellular HIV RNA after either vaccine compared with placebo at any timepoint. In secondary analyses, we observed a transient increase in total HIV DNA levels after influenza vaccine, as well as increased T cell activation and exhaustion on CD4 + T cells after pneumococcal vaccine. CONCLUSION Clinically recommended vaccines were well tolerated but did not appear to stimulate the immune system strongly enough to elicit significantly noticeable HIV RNA transcription during ART.Clinicaltrials.gov identifier: NCT02707692.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Christy Anderson
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alan Wells
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Magali Porrachia
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Gemma Caballero
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Milenka Vargas
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Joseph Lonergan
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Brendon Woodworth
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Noah Gaitan
- Department of Medicine, University of California San Diego, La Jolla, CA
| | | | - Leticia Muttera
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Liliana Harkness
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Susanne May
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Davey Smith
- Department of Medicine, University of California San Diego, La Jolla, CA
| |
Collapse
|
2
|
Godala M, Gaszyńska E, Walczak K, Małecka-Wojciesko E. Evaluation of Albumin, Transferrin and Transthyretin in Inflammatory Bowel Disease Patients as Disease Activity and Nutritional Status Biomarkers. Nutrients 2023; 15:3479. [PMID: 37571416 PMCID: PMC10421392 DOI: 10.3390/nu15153479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is often accompanied by malnutrition that manifests itself as nutrient deficiencies and body mass loss or deficit. The purpose of this study is to evaluate the utility of albumin, transferrin and transthyretin levels in the assessment of nutritional status and IBD activity. The case-control study included 82 IBD patients. The serum concentrations of albumin, transferrin and transthyretine were determined by a quantitative sandwich enzyme-linked immunosorbent assay (ELISA). Significantly lower median concentrations of albumin were found in the IBD patients vs. controls and in CD patients compared to the UC patients. Significantly higher median transthyretin concentrations were found in the IBD patients compared to the healthy subjects. There were no significant differences in median transferrin concentrations between the IBD patients and the healthy subjects. Significantly higher albumin levels were found in IBD patients in remission compared to patients with moderate and severe exacerbation of IBD symptoms. There were no significant differences in the median transferrin or transthyretin levels in patients with IBD depending on disease activity. No differences were identified in the median transferrin or transthyretin levels in the IBD patients according to nutritional status. The median albumin concentrations in the IBD subjects were significantly higher in patients with normal body fat, normal BMI and normal waist circumferences compared to those with an abnormal nutritional status. The albumin levels reflect both nutritional status and disease activity and therefore cannot be considered a prognostic marker of malnutrition in IBD. As regards the utility of transferrin and transthyretin as markers of activity and nutritional status in IBD patients, further studies are required.
Collapse
Affiliation(s)
- Małgorzata Godala
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Ewelina Gaszyńska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-752 Lodz, Poland;
| | - Konrad Walczak
- Department of Internal Medicine and Nephrodiabetology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-647 Lodz, Poland;
| |
Collapse
|
3
|
Lin HJL, Parkinson DH, Holman JC, Thompson WC, Anderson CNK, Hadfield M, Ames S, Zuniga Pina NR, Bowden JN, Quinn C, Hansen LD, Price JC. Modification of the structural stability of human serum albumin in rheumatoid arthritis. PLoS One 2023; 18:e0271008. [PMID: 36930604 PMCID: PMC10022781 DOI: 10.1371/journal.pone.0271008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/29/2022] [Indexed: 03/18/2023] Open
Abstract
Differential scanning calorimetry (DSC) can indicate changes in structure and/or concentration of the most abundant proteins in a biological sample via heat denaturation curves (HDCs). In blood serum for example, HDC changes result from either concentration changes or altered thermal stabilities for 7-10 proteins and has previously been shown capable of differentiating between sick and healthy human subjects. Here, we compare HDCs and proteomic profiles of 50 patients experiencing joint-inflammatory symptoms, 27 of which were clinically diagnosed with rheumatoid arthritis (RA). The HDC of all 50 subjects appeared significantly different from expected healthy curves, but comparison of additional differences between the RA and the non-RA subjects allowed more specific understanding of RA samples. We used mass spectrometry (MS) to investigate the reasons behind the additional HDC changes observed in RA patients. The HDC differences do not appear to be directly related to differences in the concentrations of abundant serum proteins. Rather, the differences can be attributed to modified thermal stability of some fraction of the human serum albumin (HSA) proteins in the sample. By quantifying differences in the frequency of artificially induced post translational modifications (PTMs), we found that HSA in RA subjects had a much lower surface accessibility, indicating potential ligand or protein binding partners in certain regions that could explain the shift in HSA melting temperature in the RA HDCs. Several low abundance proteins were found to have significant changes in concentration in RA subjects and could be involved in or related to binding of HSA. Certain amino acid sites clusters were found to be less accessible in RA subjects, suggesting changes in HSA structure that may be related to changes in protein-protein interactions. These results all support a change in behavior of HSA which may give insight into mechanisms of RA pathology.
Collapse
Affiliation(s)
- Hsien-Jung L. Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - David H. Parkinson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - J. Connor Holman
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - W. Chad Thompson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Christian N. K. Anderson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Marcus Hadfield
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Stephen Ames
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Nathan R. Zuniga Pina
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Jared N. Bowden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Colette Quinn
- Applications Lab, TA Instruments, Lindon, Utah, United States of America
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - John C. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
4
|
Brown S, Stafford KJ, Norris G. A search for predictive biomarkers of ovine pre-partum vaginal prolapse. Res Vet Sci 2021; 140:251-258. [PMID: 34537551 DOI: 10.1016/j.rvsc.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/30/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
Ovine pre-partum vaginal prolapse (known as bearings in sheep) occurs within a few weeks prior to lambing and unless treated both ewes and unborn lambs will die. It is a worldwide problem with no clear aetiology. Rates of prolapse in New Zealand typically vary from 0.1 to 2% per annum, varying between seasons and farms. In order to determine preclinical changes leading to prolapse, blood samples were collected prior to prolapse occurring and analysed for changes in both protein and specific hormone and vitamin levels. 650 ewes were ear tagged and blood samples were taken one month prior to the beginning of lambing; 28 of these ewes subsequently prolapsed. Using an improved proteomic method plasma samples were subjected to 2D DIGE (two dimensional differential in gel electrophoresis) to determine if there were differences between the pre-prolapse and non-prolapsing ewes. Acidic isoforms of haptoglobin, a major acute phase protein in ruminants, increased approximately 3-fold in ewes prior to prolapse occurring. Total haptoglobin quantitation was confirmed with an independent assay. Although another plasma protein, α-1B-glycoprotein, was down regulated close to prolapse, the biological significance of this is unknown. While vitamin D levels were not associated with subsequent prolapse there was, however, a negative correlation between cortisol and days to prolapse from sampling (r2 = 0.36); i.e. ewes sampled closest to prolapse had higher plasma cortisol concentrations than controls. This raises the possibility that the ewes which prolapsed may have been suffering from chronic stress. Further research is needed.
Collapse
Affiliation(s)
- S Brown
- School of Fundamental Science, Massey University, Tennent Drive, Palmerston North, New Zealand.
| | - K J Stafford
- School of Agriculture and Environment, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - G Norris
- School of Fundamental Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| |
Collapse
|
5
|
Interactions between knockout of schizophrenia risk factor Dysbindin-1 and copper metabolism in mice. Brain Res Bull 2020; 164:339-349. [PMID: 32795490 DOI: 10.1016/j.brainresbull.2020.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE DTNBP1 gene variation and lower dysbindin-1 protein are associated with schizophrenia. Previous evidence suggests that downregulated dysbindin-1 expression results in lower expression of copper transporters ATP7A (intracellular copper transporter) and SLC31A1 (CTR1; extracellular copper transporter), which are required for copper transport across the blood brain barrier. However, whether antipsychotic medications used for schizophrenia treatment may modulate these systems is unclear. EXPERIMENTAL APPROACH The current study measured behavioral indices of neurological function in dysbindin-1 functional knockout (KO) mice and their wild-type (WT) littermates with or without quetiapine treatment. We assessed serum and brain copper levels, ATP7A and CTR1 mRNA, and copper transporter-expressing cellular population transcripts: TTR (transthyretin; choroid plexus epithelial cells), MBP (myelin basic protein; oligodendrocytes), and GJA1 (gap-junction protein alpha-1; astrocytes) in cortex and hippocampus. KEY RESULTS Regardless of genotype, quetiapine significantly reduced TTR, MBP, CTR1 mRNA, and serum copper levels. Neurological function of untreated KO mice was abnormal, and ledge instability was rescued with quetiapine. KO mice were hyperactive after 10 min in the open-field assay, which was not affected by treatment. CONCLUSIONS AND IMPLICATIONS Dysbindin-1 KO results in hyperactivity, altered serum copper, and neurological impairment, the last of which is selectively rescued with quetiapine. Antipsychotic treatment modulates specific cellular populations, affecting myelin, the choroid plexus, and copper transport across the blood brain barrier. Together these results indicate the widespread impact of antipsychotic treatment, and that alteration of dysbindin-1 may be sufficient, but not necessary, for specific schizophrenia pathology.
Collapse
|
6
|
Wünsch D, Strijkstra A, Wöhlbrand L, Freese HM, Scheve S, Hinrichs C, Trautwein K, Maczka M, Petersen J, Schulz S, Overmann J, Rabus R. Global Response of Phaeobacter inhibens DSM 17395 to Deletion of Its 262-kb Chromid Encoding Antibiotic Synthesis. Microb Physiol 2020; 30:9-24. [PMID: 32958725 DOI: 10.1159/000508591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
The marine alphaproteobacterium Phaeobacter inhibens DSM 17395, a member of the Roseobacter group, was recently shown to markedly enhance growth upon deletion of its 262-kb chromid encoding biosynthesis of tropodithietic acid (TDA). To scrutinize the metabolic/regulatory adaptations that underlie enhanced growth of the Δ262 mutant, its transcriptome and proteome compared to the wild type were investigated in process-controlled bioreactors with Casamino Acids as growth substrate. Genome resequencing revealed only few additional genetic changes (a heterogenic insertion, prophage activation, and several point mutations) between wild type and Δ262 mutant, albeit with no conceivable effect on the studied growth physiology. The abundances of the vast majority of transcripts and proteins involved in the catabolic network for complete substrate oxidation to CO2 were found to be unchanged, suggesting that the enhanced amino acid utilization of the Δ262 mutant did not require elevated synthesis of most enzymes of the catabolic network. Similarly, constituents of genetic information processing and cellular processes remained mostly unchanged. In contrast, 426 genes displayed differential expression, of which 410 were localized on the 3.2-Mb chromosome, 5 on the 65-kb chromid, and 11 on the 78-kb chromid. Notably, the branched-chain amino transferase IlvE acting on rapidly utilized Val, Ile, and Leu was upregulated. Moreover, the transportome was reconfigured, as evidenced from increased abundances of transcripts and proteins of several uptake systems for amino acids and inorganic nutrients (e.g., phosphate). Some components of the respiratory chain were also upregulated, which correlates with the higher respiration rates of the Δ262 mutant. Furthermore, chromosomally encoded transcripts and proteins that are peripherally related to TDA biosynthesis (e.g., the serine acyl transferase CysE) were strongly downregulated in the Δ262 mutant. Taken together, these observations reflect adaptations to enhanced growth as well as the functional interconnectivity of the replicons of P. inhibens DSM 17395.
Collapse
Affiliation(s)
- Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Annemieke Strijkstra
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Department Microbial Ecology and Diversity, Leibniz Institute German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Maczka
- Institute of Organic Chemistry, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - Jörn Petersen
- Department Microbial Ecology and Diversity, Leibniz Institute German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity, Leibniz Institute German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
7
|
Precision multiparameter tracking of inflammation on timescales of hours to years using serial dried blood spots. Bioanalysis 2020; 12:937-955. [PMID: 32253915 PMCID: PMC7372997 DOI: 10.4155/bio-2019-0278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: High-frequency longitudinal tracking of inflammation using dried blood microsamples provides a new window for personalized monitoring of infections, chronic inflammatory disease and clinical trials of anti-inflammatory drugs. Results/methodology: Using 1662 dried blood spot samples collected by 16 subjects over periods of weeks to years, we studied the behavior of 12 acute phase response and related proteins in inflammation events correlated with infection, vaccination, surgery, intense exercise and Crohn's disease. Proteins were measured using SISCAPA mass spectrometry and normalized to constant plasma volume using low-variance proteins, generating high precision within-person biomarker trajectories with well-characterized personal baselines. Discussion/conclusion: The results shed new light on the dynamic regulation of APR responses, offering a new approach to visualization of multidimensional inflammation trajectories.
Collapse
|
8
|
Trautwein K, Hensler M, Wiegmann K, Skorubskaya E, Wöhlbrand L, Wünsch D, Hinrichs C, Feenders C, Müller C, Schell K, Ruppersberg H, Vagts J, Koßmehl S, Steinbüchel A, Schmidt-Kopplin P, Wilkes H, Hillebrand H, Blasius B, Schomburg D, Rabus R. The marine bacterium Phaeobacter inhibens secures external ammonium by rapid buildup of intracellular nitrogen stocks. FEMS Microbiol Ecol 2018; 94:5074353. [PMID: 30124819 PMCID: PMC6122490 DOI: 10.1093/femsec/fiy154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/13/2018] [Indexed: 11/27/2022] Open
Abstract
Reduced nitrogen species are key nutrients for biological productivity in the oceans. Ammonium is often present in low and growth-limiting concentrations, albeit peaks occur during collapse of algal blooms or via input from deep sea upwelling and riverine inflow. Autotrophic phytoplankton exploit ammonium peaks by storing nitrogen intracellularly. In contrast, the strategy of heterotrophic bacterioplankton to acquire ammonium is less well understood. This study revealed the marine bacterium Phaeobacter inhibens DSM 17395, a Roseobacter group member, to have already depleted the external ammonium when only ∼⅓ of the ultimately attained biomass is formed. This was paralleled by a three-fold increase in cellular nitrogen levels and rapid buildup of various nitrogen-containing intracellular metabolites (and enzymes for their biosynthesis) and biopolymers (DNA, RNA and proteins). Moreover, nitrogen-rich cells secreted potential RTX proteins and the antibiotic tropodithietic acid, perhaps to competitively secure pulses of external ammonium and to protect themselves from predation. This complex response may ensure growing cells and their descendants exclusive provision with internal nitrogen stocks. This nutritional strategy appears prevalent also in other roseobacters from distant geographical provenances and could provide a new perspective on the distribution of reduced nitrogen in marine environments, i.e. temporary accumulation in bacterioplankton cells.
Collapse
Affiliation(s)
- Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Michael Hensler
- Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universität Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Katharina Wiegmann
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Ekaterina Skorubskaya
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Daniel Wünsch
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Christoph Feenders
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Constanze Müller
- Analytical BioGeoChemistry, HelmholtzZentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kristina Schell
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Hanna Ruppersberg
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Jannes Vagts
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Sebastian Koßmehl
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Alexander Steinbüchel
- Institute for Molecular Microbiology and Biotechnology, WWU Münster, Corrensstr. 3, Münster 48149, Germany
| | - Philippe Schmidt-Kopplin
- Analytical BioGeoChemistry, HelmholtzZentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Helmut Hillebrand
- Planktology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, Oldenburg 23129, Germany
| | - Bernd Blasius
- Mathematical Modelling, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| | - Dietmar Schomburg
- Bioinformatics and Biochemistry, Institute for Biochemistry and Biotechnology, Technische Universität Braunschweig, Rebenring 56, Braunschweig 38106, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), University Oldenburg, Carl-von-Ossietzky Str. 9-11, Oldenburg 26111, Germany
| |
Collapse
|
9
|
Comparative proteomics in alkaptonuria provides insights into inflammation and oxidative stress. Int J Biochem Cell Biol 2016; 81:271-280. [DOI: 10.1016/j.biocel.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022]
|
10
|
Biomarkers of systemic inflammation in farmers with musculoskeletal disorders; a plasma proteomic study. BMC Musculoskelet Disord 2016; 17:206. [PMID: 27160764 PMCID: PMC4862124 DOI: 10.1186/s12891-016-1059-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/03/2016] [Indexed: 12/24/2022] Open
Abstract
Background Farmers have an increased risk for musculoskeletal disorders (MSD) such as osteoarthritis of the hip, low back pain, and neck and upper limb complaints. The underlying mechanisms are not fully understood. Work-related exposures and inflammatory responses might be involved. Our objective was to identify plasma proteins that differentiated farmers with MSD from rural referents. Methods Plasma samples from 13 farmers with MSD and rural referents were included in the investigation. Gel based proteomics was used for protein analysis and proteins that differed significantly between the groups were identified by mass spectrometry. Results In total, 15 proteins differed significantly between the groups. The levels of leucine-rich alpha-2-glycoprotein, haptoglobin, complement factor B, serotransferrin, one isoform of kininogen, one isoform of alpha-1-antitrypsin, and two isoforms of hemopexin were higher in farmers with MSD than in referents. On the other hand, the levels of alpha-2-HS-glycoprotein, alpha-1B-glycoprotein, vitamin D- binding protein, apolipoprotein A1, antithrombin, one isoform of kininogen, and one isoform of alpha-1-antitrypsin were lower in farmers than in referents. Many of the identified proteins are known to be involved in inflammation. Conclusions Farmers with MSD had altered plasma levels of protein biomarkers compared to the referents, indicating that farmers with MSD may be subject to a more systemic inflammation. It is possible that the identified differences of proteins may give clues to the biochemical changes occurring during the development and progression of MSD in farmers, and that one or several of these protein biomarkers might eventually be used to identify and prevent work-related MSD. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-1059-y) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Phillips RJ, Heesom KJ, Trinder J, Bernal AL. Human maternal plasma proteomic changes with parturition. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Lahme S, Trautwein K, Strijkstra A, Dörries M, Wöhlbrand L, Rabus R. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1. BMC Microbiol 2014; 14:269. [PMID: 25344702 PMCID: PMC4268860 DOI: 10.1186/s12866-014-0269-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion. Unlike the carbon catabolite repression-mediated discriminative utilization of carbohydrates, the substrate preferences of non-carbohydrate-utilizing bacteria for environmentally relevant compound classes (e.g., aliphatic or aromatic acids) are rarely investigated. The denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1 anaerobically degrades a wide variety of aliphatic and aromatic compounds and is unique for anaerobic degradation of 4-methylbenzoate. The latter proceeds via a distinct reaction sequence analogous to the central anaerobic benzoyl-CoA pathway to intermediates of central metabolism. Considering the presence of these two different anaerobic “aromatic ring degrading” pathways, substrate preferences of Magnetospirillum sp. strain pMbN1 were investigated. Anaerobic growth and substrate consumption were monitored in binary and ternary mixtures of 4-methylbenzoate, benzoate and succinate, in conjuction with time-resolved abundance profiling of selected transcripts and/or proteins related to substrate uptake and catabolism. Results Diauxic growth with benzoate preference was observed for binary and ternary substrate mixtures containing 4-methylbenzoate and succinate (despite adaptation of Magnetospirillum sp. strain pMbN1 to one of the latter two substrates). On the contrary, 4-methylbenzoate and succinate were utilized simultaneously from a binary mixture, as well as after benzoate depletion from the ternary mixture. Apparently, simultaneous repression of 4-methylbenzoate and succinate utilization from the ternary substrate mixture resulted from (i) inhibition of 4-methylbenzoate uptake, and (ii) combined inhibition of succinate uptake (via the two transporters DctPQM and DctA) and succinate conversion to acetyl-CoA (via pyruvate dehydrogenase). The benzoate-mediated repression of C4-dicarboxylate utilization in Magnetospirillum sp. strain pMbN1 differs from that recently described for “Aromatoleum aromaticum” EbN1 (involving only DctPQM). Conclusions The preferential or simultaneous utilization of benzoate and other aromatic acids from mixtures with aliphatic acids may represent a more common nutritional behavior among (anaerobic) degradation specialist than previously thought. Preference of Magnetospirillum sp. strain pMbN1 for benzoate from mixtures with 4-methylbenzoate, and thus temporal separation of the benzoyl-CoA (first) and 4-methylbenzoyl-CoA (second) pathway, may reflect a catabolic tuning towards metabolic efficiency and the markedly broader range of aromatic substrates feeding into the central anaerobic benzoyl-CoA pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0269-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
|
14
|
Öhman M, Öhman ML, Wållberg-Jonsson S. The apoB/apoA1 ratio predicts future cardiovascular events in patients with rheumatoid arthritis. Scand J Rheumatol 2014; 43:259-64. [PMID: 24689997 DOI: 10.3109/03009742.2013.877158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Patients with rheumatoid arthritis (RA) have increased mortality and morbidity due to cardiovascular disease (CVD). A high apolipoprotein (apo)B/apoA1 ratio is known to predict cardiovascular events (CVEs) in the population. apoA1 has, besides anti-atherogenic effects, anti-inflammatory properties. The importance of apolipoproteins in the development of CVEs, in the context of lipids, haemostatic factors, and inflammation, was evaluated over 18 years in patients with RA. METHOD Seventy-four patients with inflammatory active RA (61 females/13 males, mean age 63.6 years, disease duration 22.1 years) had been previously investigated in a study of haemostatic factors [tissue plasminogen activator (tPA), plasminogen activator inhibitor (PAI)-1, von Willebrand factor (vWF)], lipids (cholesterol and triglycerides), apolipoproteins (apoA1 and apoB), lipoprotein(a) [Lp(a)], and markers of inflammation [erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and haptoglobin]. After 18 years, the first CVE during follow-up and the presence of traditional CV risk factors, extra-articular disease, and pharmacological treatment were registered. Cox proportional hazards regression was used to identify predictors of a new CVE. RESULTS A new CVE (n = 34) was predicted by the apoB/apoA1 ratio (p < 0.01), the triglyceride level (p < 0.01), PAI-1 (p < 0.01) and tPA (p < 0.01) activities, vWF (p < 0.001), ESR (< 0.001), CRP (< 0.05), and haptoglobin (p < 0.05). apoA1 (p = 0.056) and apoB (p < 0.05) correlated weakly and inversely with haptoglobin and CRP, respectively. In a multiple Cox regression model, adjusted for gender and previous CVD, the apoB/apoA1 ratio significantly predicted a new CVE, as did vWF, PAI-1, and ESR. CONCLUSIONS The apoB/apoA1 ratio was a good predictor of CVE during 18 years of follow-up in patients with active RA. Apolipoproteins correlated negatively with inflammation.
Collapse
Affiliation(s)
- M Öhman
- Institution of Medicine and Public Health/Rheumatology, University of Umeå , Sweden
| | | | | |
Collapse
|
15
|
Nilo-Poyanco R, Olivares D, Orellana A, Hinrichsen P, Pinto M. Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance. J Proteomics 2013; 91:309-30. [PMID: 23933133 DOI: 10.1016/j.jprot.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Using a proteomics approach, we evaluated the response of heterotrophic and autotrophic leaves of grapevine when exposed to high light irradiation. From a total of 572 protein spots detected on two-dimensional gels, 143 spots showed significant variation caused by changes in the trophic state. High light treatment caused variation in 90 spots, and 51 spots showed variation caused by the interaction between both factors. Regarding the trophic state of the leaf, most of the proteins detected in the heterotrophic stage decreased in abundance when the leaf reached the autotrophic stage. Major differences induced by high light were detected in autotrophic leaves. In the high-light-treated autotrophic leaves several proteins involved in the oxidative stress response were up-regulated. This pattern was not observed in the high-light-treated heterotrophic leaves. This indicates that in these types of leaves other mechanisms different to the protein antioxidant system are acting to protect young leaves against the excess of light. This also suggests that these protective mechanisms rely on other sets of proteins or non-enzymatic molecules, or that differences in protein dynamics between the heterotrophic and autotrophic stages makes the autotrophic leaves more prone to the accumulation of oxidative stress response proteins. BIOLOGICAL SIGNIFICANCE Transition from a heterotrophic to an autotrophic state is a key period during which the anatomical, physiological and molecular characteristics of a leaf are defined. In many aspects the right functioning of a leaf at its mature stage depends on the conditions under what this transition occurs. This because apart of the genetic control, environmental factors like mineral nutrition, temperature, water supply, light etc. are also important in its control. Many anatomical and physiological changes have been described in several plant species, however in grapevine molecular data regarding changes triggered by this transition or by light stress are still scarce. In this study, we identify that the transition from heterotrophic to autotrophic state in grapevine triggers major changes in the leaf proteome, which are mainly related to processes such as protein synthesis, protein folding and degradation, photosynthesis and chloroplast development. With the exception of proteins involved in carbon fixation, that increased in abundance, most of the proteins detected during the heterotrophic stage decreased in abundance when the leaf reached its autotrophic stage. This is most likely because leaves have reached their full size and from now they have to work as a carbon source for sink organs located in other parts of the plant. Despite the potential control of this transition by light, to date, no studies using a proteomics approach have been conducted to gain a broader view of the effects of short-term high light stress. Our results indicate that short-term high light exposure has a major impact on the proteome of the autotrophic leaves, and trigger a differential accumulation of several proteins involved in the oxidative stress response. Surprisingly, heterotrophic leaves do not display this pattern which can be attributed to a lower sensitivity of these leaves to high light stimulus. In fact we discovered that heterotrophic leaves are more tolerant to light stress than autotrophic leaves. This finding is of high biological significance because it helps to understand how young leaves are able to evolve to autotrophy in areas where high light intensities are predominant. This also reveals in this type of leaves the existence of alternative mechanisms to address this stressful condition. These observations provide new insights into the molecular changes occurring during transition of leaves to autotrophy particularly when this transition occurs under high light intensities. This for example occurs during the springtime when the grapevine buds burst and the young leaves are suddenly exposed to high light intensities.
Collapse
Affiliation(s)
- R Nilo-Poyanco
- FONDAP Centre for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
16
|
Findeisen P, Thumfart JO, Costina V, Hofheinz R, Neumaier M. MS-based monitoring of proteolytic decay of synthetic reporter peptides for quality control of plasma and serum specimens. Am J Clin Pathol 2013; 140:314-23. [PMID: 23955449 DOI: 10.1309/ajcpos9z5kvzsfsc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES To determine the preanalytical quality of serum and plasma by monitoring the time-dependent ex vivo decay of a synthetic reporter peptide (RP) with liquid chromatography/mass spectrometry (LC/MS). METHODS Serum and plasma specimens were spiked with the RP and proteolytic fragments were monitored with LC/MS at different preanalytical time points ranging from 2 to 24 hours after blood withdrawal. RESULTS The concentration of fragments changed in a time-dependent manner, and respective peptide profiles were used to classify specimens according to their preanalytical time span. Classification accuracy was high, with values always above 0.89 for areas under receiver operating characteristic curves. CONCLUSIONS This "proteomics degradation clock" can be used to estimate the preanalytical quality of serum and plasma and might have impact on quality control procedures of biobanking repositories.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Jörg Oliver Thumfart
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Ralf Hofheinz
- Third Medical Clinic, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
17
|
Lange S, Rosenkrands I, Stein R, Andersen P, Kaufmann SHE, Jungblut PR. Analysis of protein species differentiation among mycobacterial low-Mr-secreted proteins by narrow pH range Immobiline gel 2-DE-MALDI-MS. J Proteomics 2013; 97:235-44. [PMID: 23856608 DOI: 10.1016/j.jprot.2013.06.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/11/2013] [Accepted: 06/29/2013] [Indexed: 12/25/2022]
Abstract
UNLABELLED Secreted proteins of bacteria are preferentially capable of interacting with host cells and are therefore of special biological and medical interest. Narrow pH range 2-DE and MALDI-TOFTOF-MS combine high-resolution protein separation with highly sensitive identification of proteins. Secreted proteins of Mycobacterium tuberculosis were separated at the protein species level, distinguishing different protein species of one protein. We focused on the pI range 4.0-4.7 and the Mr range 6-20kDa of the 2-DE pattern. Out of 128 analyzed spots, 121 were identified resulting in 33 different proteins with 277 different protein species, accumulating in a mean of 8.4 protein species per protein. Overrepresentation was found for the protein classes "virulence, detoxification, adaption", "information pathways", "cell wall and cell processes" and "intermediary metabolism and respiration". Thus far, 15 protein species of the ESX-1 family are characterized with 100% sequence coverage. More automated 2-DE procedures and more sensitive identification techniques are required for complete characterization of all of the protein species even in highly enriched samples, such as culture filtrates. Only then the functional level of proteomics will be achieved and potential biomarkers can be postulated at the molecular level. BIOLOGICAL SIGNIFICANCE Proteomics is dominated by bottom-up approaches largely ignoring protein speciation. A prerequisite to reach the protein species level is to obtain 100% sequence coverage, which is a major challenge in proteomics. Here we show complete sequence information with a 2-DE-MS approach for 15 protein species. Acetylation of the N-terminus of ESAT-6 inhibits interaction with CFP-10, with direct consequences for pathogen-host interaction. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Sabine Lange
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | - Peter R Jungblut
- Max Planck Institute for Infection Biology, Core Facility Protein Analysis, Berlin, Germany.
| |
Collapse
|
18
|
Zech H, Hensler M, Koßmehl S, Drüppel K, Wöhlbrand L, Trautwein K, Colby T, Schmidt J, Reinhardt R, Schmidt-Hohagen K, Schomburg D, Rabus R. Dynamics of amino acid utilization in Phaeobacter inhibens DSM 17395. Proteomics 2013; 13:2869-85. [PMID: 23625753 DOI: 10.1002/pmic.201200560] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/23/2013] [Indexed: 11/10/2022]
Abstract
Time-resolved utilization of multiple amino acids by Phaeobacter inhibens DSM 17395 was studied during growth with casamino acids. The 15 detected amino acids could be grouped according to depletion rate into four different categories, i.e. from rapid (category I) to nondepletion (category IV). Upon entry into stationary growth phase, amino acids of category I (e.g. glutamate) were (almost) completely depleted, while those of categories II (e.g. leucine) and III (e.g. serine) were further consumed at varying rates and to different extents. Thus, cultures entered stationary growth phase despite the ample presence of organic nutrients, i.e. under nonlimiting conditions. Integrated proteomic and metabolomic analysis identified 1747 proteins and 94 intracellular metabolites. Of these, 180 proteins and 86 metabolites displayed altered abundance levels during growth. Most strikingly, abundance and activity profiles of alanine dehydrogenase concomitantly increased with the onset of enhanced alanine utilization during transition into stationary growth phase. Most enzymes of amino acid and central metabolism, however, displayed unaltered abundances across exponential and stationary growth phases. In contrast, metabolites of the Entner-Doudoroff pathway and gluconeogenesis as well as cellular fatty acids increased markedly in abundance in early stationary growth phase.
Collapse
Affiliation(s)
- Hajo Zech
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zech H, Hensler M, Koßmehl S, Drüppel K, Wöhlbrand L, Trautwein K, Hulsch R, Maschmann U, Colby T, Schmidt J, Reinhardt R, Schmidt-Hohagen K, Schomburg D, Rabus R. Adaptation of Phaeobacter inhibens DSM 17395 to growth with complex nutrients. Proteomics 2013; 13:2851-68. [PMID: 23613352 DOI: 10.1002/pmic.201200513] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/06/2013] [Accepted: 02/23/2013] [Indexed: 12/19/2022]
Abstract
Phaeobacter inhibens DSM 17395, a member of the Roseobacter clade, was studied for its adaptive strategies to complex and excess nutrient supply, here mimicked by cultivation with Marine Broth (MB). During growth in process-controlled fermenters, P. inhibens DSM 17395 grew faster (3.6-fold higher μmax ) and reached higher optical densities (2.2-fold) with MB medium, as compared to the reference condition of glucose-containing mineral medium. Apparently, in the presence of MB medium, metabolism was tuned to maximize growth rate at the expense of efficiency. Comprehensive proteomic analysis of cells harvested at ½ ODmax identified 1783 (2D DIGE, membrane and extracellular protein-enriched fractions, shotgun) different proteins (50.5% coverage), 315 (based on 2D DIGE) of which displayed differential abundance profiles. Moreover, 145 different metabolites (intra- and extracellular combined) were identified, almost all of which (140) showed abundance changes. During growth with MB medium, P. inhibens DSM 17395 specifically formed the various proteins required for utilization of phospholipids and several amino acids, as well as for gluconeogenesis. Metabolic tuning on amino acid utilization is also reflected by massive discharge of urea to dispose the cell of excess ammonia. Apparently, P. inhibens DSM 17395 modulated its metabolism to simultaneously utilize diverse substrates from the complex nutrient supply.
Collapse
Affiliation(s)
- Hajo Zech
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Thiede B, Koehler CJ, Strozynski M, Treumann A, Stein R, Zimny-Arndt U, Schmid M, Jungblut PR. High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol Cell Proteomics 2012; 12:529-38. [PMID: 23033477 DOI: 10.1074/mcp.m112.019372] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteomics field has shifted over recent years from two-dimensional gel electrophoresis (2-DE)-based approaches to SDS-PAGE or gel-free workflows because of the tremendous developments in isotopic labeling techniques, nano-liquid chromatography, and high-resolution mass spectrometry. However, 2-DE still offers the highest resolution in protein separation. Therefore, we combined stable isotope labeling with amino acids in cell culture of controls and apoptotic HeLa cells with 2-DE and the subsequent analysis of tryptic peptides via nano-liquid chromatography coupled to an LTQ-Orbitrap mass spectrometer to obtain quantitative data using the methods with the highest resolving power on all levels of the proteomics workflow. More than 1,200 proteins with more than 2,700 protein species were identified and quantified from 816 Coomassie Brilliant Blue G-250 stained 2-DE spots. About half of the proteins were identified and quantified only in single 2-DE spots. The majority of spots revealed one to five proteins; however, in one 2-DE spot, up to 23 proteins were identified. Only half of the 2-DE spots represented a dominant protein with more than 90% of the whole protein amount. Consequently, quantification based on staining intensities in 2-DE gels would in approximately half of the spots be imprecise, and minor components could not be quantified. These problems are circumvented by quantification using stable isotope labeling with amino acids in cell culture. Despite challenges, as shown in detail for lamin A/C and vimentin, the quantitative changes of protein species can be detected. The combination of 2-DE with high-resolution nano-liquid chromatography-mass spectrometry allowed us to identify proteomic changes in apoptotic cells that would be unobservable using any of the other previously employed proteomic workflows.
Collapse
Affiliation(s)
- Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, 0349 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yuan Q, Fontenele-Neto JD, Fricker LD. Effect of Voluntary Exercise on Genetically ObeseCpefat/fatMice: Quantitative Proteomics of Serum. ACTA ACUST UNITED AC 2012; 12:1179-88. [PMID: 15292483 DOI: 10.1038/oby.2004.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To compare the effect of voluntary exercise on body weight, food consumption, and levels of serum proteins between wild-type and carboxypeptidase E-deficient (Cpefat/fat) mice. RESEARCH METHODS AND PROCEDURES Study 1 consisted of three groups of female mice: Cpefat/fat mice with continuous access to exercise wheels for 3 weeks (n = 4); wild-type C57BKS mice with access to exercise wheels for 3 weeks (n = 4); and sedentary Cpefat/fat mice (n = 3). Activity, body weight, and food consumption were monitored for this period and a subsequent 9-week period without exercise wheels. Study 2 consisted of four groups of male mice (n = 6 to 7 each): Cpefat/fat mice with exercise wheels, wild-type mice with exercise wheels, and Cpefat/fat and wild-type mice without exercise wheels. Body weight and food consumption were measured over 4 weeks. Sera were collected, and the protein profile was determined by 2-dimensional gel electrophoresis and mass spectrometry. RESULTS Cpefat/fat mice were moderately hyperphagic but lost weight during the initial exercise period because of greater energy expenditure. The effect of exercise was temporary, and the mice gained weight after the second week. Several serum proteins were found to be altered by exercise: haptoglobin was decreased by exercise in Cpefat/fat mice, and several kallikreins were increased by exercise in wild-type mice. DISCUSSION The access to exercise wheels provided an initial weight loss in Cpefat/fat mice, but this effect was offset by elevated food consumption. The serum proteomics results indicated that Cpefat/fat and wild-type mice differed in their response to exercise.
Collapse
Affiliation(s)
- Quan Yuan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Trautwein K, Wilkes H, Rabus R. Proteogenomic evidence for β-oxidation of plant-derived 3-phenylpropanoids in "Aromatoleum aromaticum" EbN1. Proteomics 2012; 12:1402-13. [PMID: 22589189 DOI: 10.1002/pmic.201100279] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The betaproteobacterium "Aromatoleum aromaticum" EbN1 utilizes eight different plant-derived nonhydroxylated (e.g. cinnamate) and hydroxylated (e.g. p-coumarate) 3-phenylpropanoids with nitrate as electron acceptor. Differential protein profiling (2D-DIGE) revealed abundance increases of five proteins (EbA5316 to EbA5320) during anaerobic growth with cinnamate, hydrocinnamate, p-coumarate, and 3-(4-hydroxyphenyl)propanoate, compared to anaerobic benzoate-adapted cells serving as reference state. The predicted functions of four of these proteins (EbA5317, fatty acid-coenzyme A (CoA) ligase; EbA5318, enoyl-CoA hydratase/isomerase; EbA5319, β-ketothiolase; and EbA5320, 3-hydroxyacyl-CoA dehydrogenase) suggest β-oxidation of the above 3-phenylpropanoids to benzoyl-CoA and p-hydroxybenzoyl-CoA, respectively. The fifth protein (EbA5316, ABC-type periplasmic solute-binding protein) could be involved in 3-phenylpropanoid uptake. The detection of 3-hydroxy-3-phenylpropanoate during anaerobic growth with cinnamate and hydrocinnamate or 3-hydroxy-3-(4-hydroxyphenyl)propanoate during anaerobic growth with p-coumarate and 3-(4-hydroxyphenyl)propanoate supports the proteome-predicted β-oxidation pathway. Based on the specific formation of EbA5316-20 also during anaerobic growth with further 3-phenylpropanoid growth substrates including cinnamyl alcohol, m-coumarate, 3-(3,4-dihydroxyphenyl)propanoate and 3,4-dihydroxycinnamate (caffeate), a common β-oxidation route is proposed for 3-phenylpropanoid degradation in strain EbN1. The low amount of metabolites attributable to cometabolic transformation of nongrowth supporting 3-phenylpropanoids (e.g. o-coumarate, ferulate) may be indicative for a high substrate specificity of the involved enzymes.
Collapse
Affiliation(s)
- Kathleen Trautwein
- Carl-von-Ossietzky University, Oldenburg, Germany; Max Planck Institute for Marine Microbiology, Carl-von-Ossietzky Strasse 9-11, Bremen, Germany
| | | | | |
Collapse
|
23
|
Berlanda Scorza F, Colucci AM, Maggiore L, Sanzone S, Rossi O, Ferlenghi I, Pesce I, Caboni M, Norais N, Di Cioccio V, Saul A, Gerke C. High yield production process for Shigella outer membrane particles. PLoS One 2012; 7:e35616. [PMID: 22701551 PMCID: PMC3368891 DOI: 10.1371/journal.pone.0035616] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30-45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from gram-negative bacteria.
Collapse
Affiliation(s)
| | | | - Luana Maggiore
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Silvia Sanzone
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Omar Rossi
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | | | - Isabella Pesce
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | | | | | | | - Allan Saul
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Christiane Gerke
- Novartis Vaccines Institute for Global Health, Siena, Italy
- * E-mail:
| |
Collapse
|
24
|
Physiological and proteomic adaptation of "Aromatoleum aromaticum" EbN1 to low growth rates in benzoate-limited, anoxic chemostats. J Bacteriol 2012; 194:2165-80. [PMID: 22366417 DOI: 10.1128/jb.06519-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Aromatoleum aromaticum" EbN1 was cultivated at different growth rates in benzoate-limited chemostats under nitrate-reducing conditions. Physiological characteristics, proteome dynamics, phospholipid-linked fatty acid (PLFA) composition, and poly(3-hydroxybutyrate) (PHB) content were analyzed in steady-state cells at low (μ(low)) (0.036 h(-1)), medium (μ(med)) (0.108 h(-1)), and high (μ(high)) (0.180 h(-1)) growth rates. A positive correlation to growth rate was observed for cellular parameters (cell size, and DNA and protein contents). The free energy consumed for biomass formation steadily increased with growth rate. In contrast, the energy demand for maintenance increased only from μ(low) to μ(med) and then remained constant until μ(high). The most comprehensive proteomic changes were observed at μ(low) compared to μ(high). Uniformly decreased abundances of protein components of the anaerobic benzoyl coenzyme A (benzoyl-CoA) pathway, central carbon metabolism, and information processing agree with a general deceleration of benzoate metabolism and cellular processes in response to slow growth. In contrast, increased abundances were observed at μ(low) for diverse catabolic proteins and components of uptake systems in the absence of the respective substrate (aromatic or aliphatic compounds) and for proteins involved in stress responses. This potential catabolic versatility and stress defense during slow growth may be interpreted as preparation for future needs.
Collapse
|
25
|
Mogilenko DA, Orlov SV, Trulioff AS, Ivanov AV, Nagumanov VK, Kudriavtsev IV, Shavva VS, Tanyanskiy DA, Perevozchikov AP. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J 2012; 26:2019-30. [PMID: 22271762 DOI: 10.1096/fj.11-193946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is the main functional protein component of human high-density lipoproteins. ApoA-I shows various anti-inflammatory and atheroprotective properties toward macrophages; however, endogenous apoA-I expression has not been investigated in macrophages. We have shown that endogenous apoA-I gene is expressed in human macrophages at both mRNA and protein levels. Endogenous ApoA-I is localized in intracellular vesicles and at the external side of the plasma membrane in association with ATP-binding cassette transporter A1 (ABCA1) and lipid rafts in macrophages. We have shown that endogenous ApoA-I stabilizes ABCA1, moreover, down-regulation of ApoA-I by siRNA results in an increase of Toll-like receptor 4 (TLR4) mRNA and membrane surface protein expression, as well as an enhancement of bacterial lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and inducible nitric oxide synthase (NOS2) genes in human macrophages. TNF-α stimulates ApoA-I expression and secretion (1.2±0.2 vs. 4.3±0.9 ng/mg total protein) in macrophages. Obtained results suggest that endogenous ApoA-I has anti-inflammatory properties, presumably due to ABCA1 stabilization in macrophages; these results elucidate the cell type-specific mechanism of the TNF-α-mediated regulation of apoA-I gene expression in monocytes and macrophages.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Department of Biochemistry, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lahme S, Eberlein C, Jarling R, Kube M, Boll M, Wilkes H, Reinhardt R, Rabus R. Anaerobic degradation of 4-methylbenzoate via a specific 4-methylbenzoyl-CoA pathway. Environ Microbiol 2012; 14:1118-32. [PMID: 22264224 DOI: 10.1111/j.1462-2920.2011.02693.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathway for anaerobic degradation of 4-methylbenzoate was studied in the denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1. Adaptation studies with whole cells indicated substrate-dependent induction of the capacity to degrade 4-methylbenzoate. Differential protein profiling (2D-DIGE) of 4-methylbenzoate- in comparison with benzoate- or succinate-adapted cells revealed the specific abundance increase of substrate-specific protein sets. Their coding genes form distinct clusters on the genome, two of which were assigned to 4-methylbenzoate and one to benzoate degradation. The predicted functions of the gene products agree with a specific 4-methylbenzoyl-CoA degradation pathway in addition to and analogous to the known anaerobic benzoyl-CoA degradation pathway. In vitro benzoyl-CoA and 4-methylbenzoyl-CoA reductase activities revealed the electron donor and ATP-dependent formation of the corresponding conjugated cyclic dienoyl-CoA/4-methyl-dienoyl-CoA products. The 4-methylbenzoyl-CoA reductase activity was induced in the presence of 4-methylbenzoate. In accordance, metabolite analysis of cultures grown with 4-methylbenzoate tentatively identified 4-methylcyclohex-1,5-diene-1-carboxylate. The 4-methylbenzoate induced genes were assigned to code for the putative 4-methylbenzoyl-CoA reductase; their products display pronounced sequence disparity from the conventional class I benzoyl-CoA reductase, which does not accept substituents at the para-position. Identification of 3-methylglutarate together with the formation of specific proteins for ring cleavage and β-oxidation in 4-methylbenzoate-adapted cells suggest conservation of the methyl group along the specific 4-methylbenzoyl-CoA degradation pathway.
Collapse
Affiliation(s)
- Sven Lahme
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Findeisen P, Neumaier M. Functional protease profiling for diagnosis of malignant disease. Proteomics Clin Appl 2011; 6:60-78. [PMID: 22213637 DOI: 10.1002/prca.201100058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/27/2011] [Accepted: 10/19/2011] [Indexed: 12/24/2022]
Abstract
Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
28
|
Benzoate mediates repression of C(4)-dicarboxylate utilization in "Aromatoleum aromaticum" EbN1. J Bacteriol 2011; 194:518-28. [PMID: 22081395 DOI: 10.1128/jb.05072-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diauxic growth was observed in anaerobic C(4)-dicarboxylate-adapted cells of "Aromatoleum aromaticum" EbN1 due to preferred benzoate utilization from a substrate mixture of a C(4)-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C(4)-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C(4)-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C(4)-dicarboxylate uptake seems to be a main determinant for the observed diauxie.
Collapse
|
29
|
Identification of haptoglobin and apolipoprotein A-I as biomarkers for high altitude pulmonary edema. Funct Integr Genomics 2011; 11:407-17. [DOI: 10.1007/s10142-011-0234-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/15/2011] [Accepted: 06/26/2011] [Indexed: 11/25/2022]
|
30
|
Holland C, Schmid M, Zimny-Arndt U, Rohloff J, Stein R, Jungblut PR, Meyer TF. Quantitative phosphoproteomics reveals link between Helicobacter pylori infection and RNA splicing modulation in host cells. Proteomics 2011; 11:2798-811. [DOI: 10.1002/pmic.201000793] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Birdsall RE, Kiley MP, Segu ZM, Palmer CD, Madera M, Gump BB, MacKenzie JA, Parsons PJ, Mechref Y, Novotny MV, Bendinskas KG. Effects of lead and mercury on the blood proteome of children. J Proteome Res 2011; 9:4443-53. [PMID: 20681587 DOI: 10.1021/pr100204g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heavy metal exposure in children has been associated with a variety of physiological and neurological problems. The goal of this study was to utilize proteomics to enhance the understanding of biochemical interactions responsible for the health problems related to lead and mercury exposure at concentrations well below CDC guidelines. Blood plasma and serum samples from 34 children were depleted of their most abundant proteins using antibody-based affinity columns and analyzed using two different methods, LC-MS/MS and 2-D electrophoresis coupled with MALDI-TOF/MS and tandem mass spectrometry. Apolipoprotein E demonstrated an inverse significant association with lead concentrations (average being one microgram/deciliter) as deduced from LC-MS/MS and 2-D electrophoresis and confirmed by Western blot analysis. This coincides with prior findings that Apolipoprotein E genotype moderates neurobehavioral effects in individuals exposed to lead. Fifteen other proteins were identified by LC-MS/MS as proteins of interest exhibiting expressional differences in the presence of environmental lead and mercury.
Collapse
|
32
|
Vellasamy KM, Mariappan V, Hashim OH, Vadivelu J. Identification of immunoreactive secretory proteins from the stationary phase culture of Burkholderia pseudomallei. Electrophoresis 2010; 32:310-20. [PMID: 21254130 DOI: 10.1002/elps.201000355] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/08/2010] [Accepted: 10/27/2010] [Indexed: 11/06/2022]
Abstract
Bacterial secreted proteins are known to be involved in virulence and may mediate important host-pathogen interactions. In this study, when the stationary phase culture supernatant of Burkholderia pseudomallei was subjected to 2-DE, 113 protein spots were detected. Fifty-four of the secreted proteins, which included metabolic enzymes, transcription/translation regulators, potential virulence factors, chaperones, transport regulators, and hypothetical proteins, were identified using MS and database search. Twelve of these proteins were apparently reactive to antisera of mice that were immunised with B. pseudomallei secreted proteins. These proteins might be excellent candidates to be used as diagnostic markers or putative candidate vaccines against B. pseudomallei infections.
Collapse
Affiliation(s)
- Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|
33
|
Zen M, Bassi N, Campana C, Bettio S, Tarricone E, Nalotto L, Ghirardello A, Doria A. Protective molecules and their cognate antibodies: new players in autoimmunity. AUTO- IMMUNITY HIGHLIGHTS 2010; 1:63-72. [PMID: 26000109 PMCID: PMC4389047 DOI: 10.1007/s13317-010-0010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/08/2010] [Indexed: 12/21/2022]
Abstract
Impairment of the clearance of apoptotic material seems to contribute to autoantigen exposure, which can initiate or maintain an autoimmune response in predisposed individuals. Complement component C1q, Creactive protein (CRP), serum amyloid P (SAP), mannose-binding lectin (MBL), apolipoprotein A-1 (Apo A-1) and long pentraxin 3 (PTX3) are molecules involved in the removal of apoptotic bodies and pathogens, and in other antiinflammatory pathways. For this reason they have been called "protective" molecules. C1q has a key role in the activation of the complement cascade and acts as a bridging molecule between apoptotic bodies and macrophages favouring phagocytosis. In addition to other functions, CRP, SAP and MBL bind to the surface of numerous pathogens as well as cellular debris and activate the complement cascade, thus stimulating their clearance by immune cells. The role of PTX3 is more controversial. In fact, PTX also promotes the clearance of microorganisms, but the activation of the complement cascade through C1q and removal of apoptotic material can be either stimulated or inhibited by this molecule. Antibodies against protective molecules have been recently reported in systemic lupus erythematosus and other autoimmune rheumatic diseases. Some of them seem to be pathogenetic and others protective. Thus, protective molecules and their cognate antibodies may constitute a regulatory network involved in autoimmunity. Dysregulation of this system might contribute to the development of autoimmune diseases in predisposed individuals.
Collapse
Affiliation(s)
- Margherita Zen
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Nicola Bassi
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Carla Campana
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Silvano Bettio
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Elena Tarricone
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Linda Nalotto
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Anna Ghirardello
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Andrea Doria
- Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| |
Collapse
|
34
|
Relationship between serum acute-phase proteins and high disease activity in patients with rheumatoid arthritis. Adv Med Sci 2010; 55:80-5. [PMID: 20371432 DOI: 10.2478/v10039-010-0006-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The aim of this study was to assess the relationship between serum acute-phase proteins and high disease activity evaluated by activity score (DAS28) in patients with rheumatoid arthritis. MATERIAL/METHODS Studies were carried out on 27 females with RA and 32 control women. Acute-phase proteins were divided into 4 fractions as follows: alpha1-globulins represented by alpha1-acid glycoprotein (AGP) and alpha1-antitrypsin (AAT); alpha2-globulins - haptoglobin (Hp); beta-globulins - complement C3 (C3) and total transferrin (Tf); gamma-globulins - C reactive protein (CRP), rheumatoid factor (RF) and immunoglobulin G (IgG), and determined by immunoturbidimetric methods. RESULTS The serum levels of acute-phase proteins changed in RA patients. On account of the alterations of concentration, acute-phase proteins are placed in the downgrade scale as follows: CRP, Hp, AGP, C3, AAT and Tf. None of the acute-phase proteins correlated with the RF and the majority of them were closely related to ESR. Almost all of the acute-phase proteins (without C3) were closely related to RA activity (based on DAS28) and their places in the downgrade scale were as follows: CRP, Tf, AGP, Hp and AAT. The degree of disability evaluated by Health Assessment Questionnaire has affected on the concentrations of AGP, Tf and CRP. Serum AGP, AAT and RF levels significantly correlated with the patient's age. No correlations were observed between IgG, TP levels, and clinical data. CONCLUSIONS Among the entire panel, the CRP and AGP appeared to be the most useful biochemical markers for evaluation of the disease activity of patients with RA.
Collapse
|
35
|
Holland C, Mak TN, Zimny-Arndt U, Schmid M, Meyer TF, Jungblut PR, Brüggemann H. Proteomic identification of secreted proteins of Propionibacterium acnes. BMC Microbiol 2010; 10:230. [PMID: 20799957 PMCID: PMC3224659 DOI: 10.1186/1471-2180-10-230] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 08/27/2010] [Indexed: 01/24/2023] Open
Abstract
Background The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that resides preferentially within sebaceous follicles; however, it also exhibits many traits of an opportunistic pathogen, playing roles in a variety of inflammatory diseases such as acne vulgaris. To date, the underlying disease-causing mechanisms remain ill-defined and knowledge of P. acnes virulence factors remains scarce. Here, we identified proteins secreted during anaerobic cultivation of a range of skin and clinical P. acnes isolates, spanning the four known phylogenetic groups. Results Culture supernatant proteins of P. acnes were separated by two-dimensional electrophoresis (2-DE) and all Coomassie-stained spots were subsequently identified by MALDI mass spectrometry (MALDI-MS). A set of 20 proteins was secreted in the mid-exponential growth phase by the majority of strains tested. Functional annotation revealed that many of these common proteins possess degrading activities, including glycoside hydrolases with similarities to endoglycoceramidase, β-N-acetylglucosaminidase and muramidase; esterases such as lysophospholipase and triacylglycerol lipase; and several proteases. Other secreted factors included Christie-Atkins-Munch-Petersen (CAMP) factors, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and several hypothetical proteins, a few of which are unique to P. acnes. Strain-specific differences were apparent, mostly in the secretion of putative adhesins, whose genes exhibit variable phase variation-like sequence signatures. Conclusions Our proteomic investigations have revealed that the P. acnes secretome harbors several proteins likely to play a role in host-tissue degradation and inflammation. Despite a large overlap between the secretomes of all four P. acnes phylotypes, distinct differences between predicted host-tissue interacting proteins were identified, providing potential insight into the differential virulence properties of P. acnes isolates. Thus, our data presents a rich resource for guiding much-needed investigations on P. acnes virulence factors and host interacting properties.
Collapse
Affiliation(s)
- Carsten Holland
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Niu Q, Huang Z, Shi Y, Wang L, Pan X, Hu C. Specific serum protein biomarkers of rheumatoid arthritis detected by MALDI-TOF-MS combined with magnetic beads. Int Immunol 2010; 22:611-8. [PMID: 20497952 DOI: 10.1093/intimm/dxq043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES To identify novel serum protein biomarkers and establish diagnostic pattern for rheumatoid arthritis (RA) by using proteomic technology. METHODS Serum proteomic spectra were generated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) combined with weak cationic exchange magnetic beads. A training set of spectra, derived from analyzing sera from 22 patients with RA, 26 patients with other autoimmune diseases and 25 age- and sex-matched healthy volunteers, was used to train and develop a decision tree model with a machine learning algorithm called decision boosting. A blinded testing set, including 21 patients with RA, 24 patients with other autoimmune diseases and 25 healthy people, was used to examine the accuracy of the model. RESULTS A decision tree model was established, consisting of four potential protein biomarkers whose m/z values were 4966.88, 5065.3, 5636.97 and 7766.87, respectively. In validation test, the decision tree model could differentiate RA from other autoimmune diseases and healthy people with the sensitivity of 85.71% and specificity of 87.76%, respectively. CONCLUSIONS The present data suggested that MALDI-TOF-MS combined with magnetic beads could screen and identify some novel serum protein biomarkers related to RA. The proteomic pattern based on the four candidate biomarkers is of value for laboratory diagnosis of RA.
Collapse
Affiliation(s)
- Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, No. 37, Guo Xue Xiang, Chengdu 610041, The People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Jose J, Park M, Pyun JC. Highly sensitive immunoassay based on E. coli with autodisplayed Z-domain. Anal Chim Acta 2010; 667:113-8. [DOI: 10.1016/j.aca.2010.03.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 01/07/2010] [Accepted: 03/22/2010] [Indexed: 11/30/2022]
|
38
|
Schmidt F, Dahlmann B, Hustoft HK, Koehler CJ, Strozynski M, Kloss A, Zimny-Arndt U, Jungblut PR, Thiede B. Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids 2010; 41:351-61. [PMID: 20364280 DOI: 10.1007/s00726-010-0575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/17/2010] [Indexed: 01/27/2023]
Abstract
Regulated proteolysis plays important roles in cell biology and pathological conditions. A crosstalk exists between apoptosis and the ubiquitin-proteasome system, two pathways responsible for regulated proteolysis executed by different proteases. To investigate whether the apoptotic process also affects the 20S proteasome, we performed three independent SILAC-based quantitative proteome approaches: 1-DE/MALDI-MS, small 2-DE/MALDI-MS and large 2-DE/nano-LC-ESI-MS. Taking the results of all experiments together, no quantitative changes were observed for the α- and β-subunits of the 20S proteasome except for subunit α7. This protein was identified in two protein spots with a down-regulation of the more acidic protein species (α7a) and up-regulation of the more basic protein species (α7b) during apoptosis. The difference in these two α7 protein species could be attributed to oxidation of cysteine-41 to cysteine sulfonic acid and phosphorylation at serine-250 near the C terminus in α7a, whereas these modifications were missing in α7b. These results pointed to the biological significance of posttranslational modifications of proteasome subunit α7 after induction of apoptosis.
Collapse
Affiliation(s)
- Frank Schmidt
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, Blindern, P.O. Box 1125, 0317, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jungblut PR, Schiele F, Zimny-Arndt U, Ackermann R, Schmid M, Lange S, Stein R, Pleissner KP. Helicobacter pylori proteomics by 2-DE/MS, 1-DE-LC/MS and functional data mining. Proteomics 2010; 10:182-93. [PMID: 19941309 DOI: 10.1002/pmic.200900361] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With its predicted proteome of 1550 proteins (data set Etalon) Helicobacter pylori 26695 represents a perfect model system of medium complexity for investigating basic questions in proteomics. We analyzed urea-solubilized proteins by 2-DE/MS (data set 2-DE) and by 1-DE-LC/MS (Supprot); proteins insoluble in 9 M urea but solubilized by SDS (Pellet); proteins precipitating in the Sephadex layer at the application side of IEF (Sephadex) by 1-DE-LC/MS; and proteins precipitating close to the application side within the IEF gel by LC/MS (Startline). The experimental proteomics data of H. pylori comprising 567 proteins (protein coverage: 36.6%) were stored in the Proteome Database System for Microbial Research (http://www.mpiib-berlin.mpg.de/2D-PAGE/), which gives access to raw mass spectra (MALDI-TOF/TOF) in T2D format, as well as to text files of peak lists. For data mining the protein mapping and comparison tool PROMPT (http://webclu.bio.wzw.tum.de/prompt/) was used. The percentage of proteins with transmembrane regions, relative to all proteins detected, was 0, 0.2, 0, 0.5, 3.8 and 6.3% for 2-DE, Supprot, Startline, Sephadex, Pellet, and Etalon, respectively. 2-DE does not separate membrane proteins because they are insoluble in 9 M urea/70 mM DTT and 2% CHAPS. SDS solubilizes a considerable portion of the urea-insoluble proteins and makes them accessible for separation by SDS-PAGE and LC. The 2-DE/MS analysis with urea-solubilized proteins and the 1-DE-LC/MS analysis with the urea-insoluble protein fraction (Pellet) are complementary procedures in the pursuit of a complete proteome analysis. Access to the PROMPT-generated diagrams in the Proteome Database allows the mining of experimental data with respect to other functional aspects.
Collapse
Affiliation(s)
- Peter R Jungblut
- Core Facility Protein Analysis, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cardiac isoform of alpha 2 macroglobulin: a marker of cardiac involvement in pediatric HIV and AIDS. Pediatr Cardiol 2010; 31:203-7. [PMID: 19915889 DOI: 10.1007/s00246-009-9584-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
Cardiac involvement in children with human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) is known but less often considered. Our objectives were to determine cardiac manifestations in pediatric HIV/AIDS and estimate the cardiac isoform of alpha-2 macroglobulin [CA2M] among them. We recruited 67 pediatric HIV/AIDS patients, 37 with cardiac involvement (group A) and 30 without (group B); 30 cardiac patients without HIV infection (group C); and 30 healthy control subjects without any comorbid illness (group D). Their sociodemographic and clinical information were collected along with echocardiogram and blood for CA2M. Patterns of cardiac involvement in HIV/AIDS (group A) were pericardial effusion, left ventricular dysfunction, pulmonary hypertension, and cardiomyopathy and observed in 43, 30, 16, and 11% of subjects, respectively. CA2M levels among groups A, B, C, and D were 132.67 +/- 5.01, 41.25 +/- 3.33, 65.99 +/- 2.48 and 29.59 +/- 2.76 microgm/ml, respectively. It was elevated significantly in group A (P = 0.001; 95% confidence interval [CI] 87.27-95.55) compared with group B and was independent of sex and CD4 count among HIV/AIDS subjects. Although CA2M was elevated in HIV-negative patients with cardiac involvement, it was much less than in HIV/AIDS subjects with cardiac involvement (P = 0.001; 95% CI 62.54-70.82). Because CA2M is a cardiac biomarker, further research with larger population is needed to ascertain the role of CA2M as a diagnostic/therapeutic/prognostic marker in cardiac patients with and without HIV infection.
Collapse
|
41
|
Gibson DS, Finnegan S, Jordan G, Scaife C, Brockbank S, Curry J, McAllister C, Pennington S, Dunn M, Rooney ME. Stratification and monitoring of juvenile idiopathic arthritis patients by synovial proteome analysis. J Proteome Res 2009; 8:5601-9. [PMID: 19848415 DOI: 10.1021/pr900680w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Juvenile idiopathic arthritis (JIA) comprises a poorly understood group of chronic, childhood onset, autoimmune diseases with variable clinical outcomes. We investigated whether profiling of the synovial fluid (SF) proteome by a fluorescent dye based, two-dimensional gel (DIGE) approach could distinguish patients in whom inflammation extends to affect a large number of joints, early in the disease process. SF samples from 22 JIA patients were analyzed: 10 with oligoarticular arthritis, 5 extended oligoarticular and 7 polyarticular disease. SF samples were labeled with Cy dyes and separated by two-dimensional electrophoresis. Multivariate analyses were used to isolate a panel of proteins which distinguish patient subgroups. Proteins were identified using MALDI-TOF mass spectrometry with expression further verified by Western immunoblotting and immunohistochemistry. Hierarchical clustering based on the expression levels of a set of 40 proteins segregated the extended oligoarticular from the oligoarticular patients (p < 0.05). Expression patterns of the isolated protein panel have also been observed over time, as disease spreads to multiple joints. The data indicates that synovial fluid proteome profiles could be used to stratify patients based on risk of disease extension. These protein profiles may also assist in monitoring therapeutic responses over time and help predict joint damage.
Collapse
Affiliation(s)
- David S Gibson
- Arthritis Research Group, Microbiology Building (RVH), Queen's University Belfast, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Salgado FJ, Vázquez S, Iglesias A, Pérez-Díaz A, Mera-Varela A, Arias P, Nogueira M. Application of thiophilic chromatography to deplete serum immunoglobulins in sample preparation for bidimensional electrophoresis. Anal Chim Acta 2009; 658:18-31. [PMID: 20082770 DOI: 10.1016/j.aca.2009.10.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 01/05/2023]
Abstract
Serum is a typical sample for non-invasive studies in clinical research. Its proteome characterization is challenging, since requires extensive protein depletion. Methods used nowadays for removal of high-abundance proteins are expensive or show quite often a low loading capacity, which has strong repercussions on the number of samples and replicates per analysis. In order to deplete immunoglobulins (Igs) and albumin (HSA) from 1 mL serum samples, we have developed a protocol based on a combination of thiophilic chromatography, not previously used in clinical proteomics, and a HSA-specific resin. Ig/HSA-depleted samples, immunoglobulinome and albuminone were analyzed by 2-DE. Thiophilic chromatography, coupled with HSA-depletion, allows a good 2-DE resolution as well as the visualization of new spots. Moreover, it yields enough protein to evaluate technical variability and facilitate subsequent protein identification. To validate the protocol, we carried out a preliminary comparative study between triplicate Igs/HSA-depleted serum samples from healthy control individuals and recently diagnosed/untreated rheumatoid arthritis (RA) patients. RA patients showed several acute phase proteins, as well as additional serum proteins, differentially and significantly regulated. Therefore, thiophilic chromatography can be used as an efficient and economical method in 2-DE to deplete immunoglobulins from large human serum samples before a more extensive fractioning.
Collapse
Affiliation(s)
- Francisco J Salgado
- Department of Biochemistry and Molecular Biology, Biological Research Centre of University of Santiago/CIBUS, University of Santiago de Compostela, Lope Gómez de Marzoa, 15782 Santiago de Compostela, A Coruña, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Findeisen P, Neumaier M. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective. Clin Chem Lab Med 2009; 47:666-84. [PMID: 19445650 DOI: 10.1515/cclm.2009.159] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.
Collapse
Affiliation(s)
- Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
44
|
Zech H, Thole S, Schreiber K, Kalhöfer D, Voget S, Brinkhoff T, Simon M, Schomburg D, Rabus R. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics 2009; 9:3677-97. [PMID: 19639587 DOI: 10.1002/pmic.200900120] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The marine heterotrophic roseobacter Phaeobacter gallaeciensis DSM 17395 was grown with glucose in defined mineral medium. Relative abundance changes of global protein (2-D DIGE) and metabolite (GC-MS) profiles were determined across five different time points of growth. In total, 215 proteins were identified and 147 metabolites detected (101 structurally identified), among which 60 proteins and 87 metabolites displayed changed abundances upon entry into stationary growth phase. Glucose breakdown to pyruvate apparently proceeds via the Entner-Doudoroff (ED) pathway, since phosphofructokinase of the Embden-Meyerhof-Parnas pathway is missing and the key metabolite of the ED-pathway, 2-keto-3-desoxygluconate, was detected. The absence of pfk in other genome-sequenced roseobacters suggests that the use of the ED pathway is an important physiological property among these heterotrophic marine bacteria. Upon entry into stationary growth phase (due to glucose starvation), sulfur assimilation (including cysteine biosynthesis) and parts of cell envelope synthesis (e.g. the lipid precursor 1-monooleoylglycerol) were down-regulated and cadaverine formation up-regulated. In contrast, central carbon catabolism remained essentially unchanged, pointing to a metabolic "stand-by" modus as an ecophysiological adaptation strategy. Stationary phase response of P. gallaeciensis differs markedly from that of standard organisms such as Escherichia coli, as evident e.g. by the absence of an rpoS gene.
Collapse
Affiliation(s)
- Hajo Zech
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Agoston DV, Gyorgy A, Eidelman O, Pollard HB. Proteomic biomarkers for blast neurotrauma: targeting cerebral edema, inflammation, and neuronal death cascades. J Neurotrauma 2009; 26:901-11. [PMID: 19397421 DOI: 10.1089/neu.2008.0724] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteomics for blast traumatic brain injury (bTBI) research represents an exciting new approach that can greatly help to address the complex pathology of this condition. Antibody-based platforms, antibody microarrays (AbMA), and reverse capture protein microarrays (RCPM) can complement the classical methods based on 2D gel electrophoresis and mass spectrometry (2DGE/MS). These new technologies can address problematic issues, such as sample complexity, sensitivity, quantitation, reproducibility, and analysis time, which are typically associated with 2DGE/MS. Combined with bioinformatics analysis and interpretation of primary microarray data, these methods will generate a new level of understanding about bTBI at the level of systems biology. As biological and clinical knowledge and the availability of these systems become more widely established, we expect that AbMA and RCPM will be used routinely in clinical diagnostics, and also for following therapeutic progress. At the technical level, we anticipate that these platforms will evolve to accommodate comprehensive, high-speed, label-free analysis on a human proteome-wide scale.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Program in Neuroscience, Neurosurgery Program National Capital Consortium, Uniformed Services University School of Medicine (USU), 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
46
|
Trocmé C, Marotte H, Baillet A, Pallot-Prades B, Garin J, Grange L, Miossec P, Tebib J, Berger F, Nissen MJ, Juvin R, Morel F, Gaudin P. Apolipoprotein A-I and platelet factor 4 are biomarkers for infliximab response in rheumatoid arthritis. Ann Rheum Dis 2009; 68:1328-33. [PMID: 18664547 PMCID: PMC2921545 DOI: 10.1136/ard.2008.093153] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES The use of biologicals such as infliximab has dramatically improved the treatment of rheumatoid arthritis (RA). However, factors predictive of therapeutic response need to be identified. A proteomic study was performed prior to infliximab therapy to identify a panel of candidate protein biomarkers of RA predictive of treatment response. METHODS Plasma profiles of 60 patients with RA (28 non-responders (as defined by the American College of Rheumatology 20% improvement criteria (ACR20)) negative and 32 responders (ACR70 positive) to infliximab) were studied by surface enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF MS) technology on two types of arrays, an anion exchange array (SAX2) and a nickel affinity array (IMAC3-Ni). Biomarker characterisation was carried out using classical biochemical methods (purification by ammonium sulfate precipitation or metal affinity chromatography) and identification by matrix assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS analysis. RESULTS Two distinct protein profiles were observed on both arrays and several proteins were differentially expressed in both patient populations. Five proteins at 3.86, 7.77, 7.97, 8.14 and 74.07 kDa were overexpressed in the non-responder group, whereas one at 28 kDa was increased in the responder population (sensitivity>56%, specificity>77.5%). Moreover, combination of several biomarkers improved the sensitivity and specificity of the detection of patient response to over 97%. The 28 kDa protein was characterised as apolipoprotein A-I and the 7.77 kDa biomarker was identified as platelet factor 4. CONCLUSIONS Six plasma biomarkers are characterised, enabling the detection of patient response to infliximab with high sensitivity and specificity. Apolipoprotein A-1 was predictive of a good response to infliximab, whereas platelet factor 4 was associated with non-responders.
Collapse
Affiliation(s)
- Candice Trocmé
- TIMC, Techniques de l'Ingénierie Médicale et de la Complexité
CNRS : UMR5525Université Joseph Fourier - Grenoble IDomaine de la Merci 38710 La Tronche,FR
- Laboratoire d'enzymologie/DBPC
CHU GrenobleHôpital MichallonGrenoble,FR
| | | | - Athan Baillet
- TIMC, Techniques de l'Ingénierie Médicale et de la Complexité
CNRS : UMR5525Université Joseph Fourier - Grenoble IDomaine de la Merci 38710 La Tronche,FR
- Service de Rhumatologie
Hôpital MichallonCHU GrenobleUniversité Joseph Fourier - Grenoble IGrenoble,FR
| | | | - Jérome Garin
- Laboratoire de chimie des protéines
INSERM : ERM0201CEA : DSV/IRTSVUniversité Joseph Fourier - Grenoble IFR
| | - Laurent Grange
- TIMC, Techniques de l'Ingénierie Médicale et de la Complexité
CNRS : UMR5525Université Joseph Fourier - Grenoble IDomaine de la Merci 38710 La Tronche,FR
- Service de Rhumatologie
Hôpital MichallonCHU GrenobleUniversité Joseph Fourier - Grenoble IGrenoble,FR
| | | | | | - François Berger
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | - Michael J. Nissen
- Service de Rhumatologie
Hôpital MichallonCHU GrenobleUniversité Joseph Fourier - Grenoble IGrenoble,FR
| | - Robert Juvin
- Service de Rhumatologie
Hôpital MichallonCHU GrenobleUniversité Joseph Fourier - Grenoble IGrenoble,FR
| | - Françoise Morel
- TIMC, Techniques de l'Ingénierie Médicale et de la Complexité
CNRS : UMR5525Université Joseph Fourier - Grenoble IDomaine de la Merci 38710 La Tronche,FR
- Laboratoire d'enzymologie/DBPC
CHU GrenobleHôpital MichallonGrenoble,FR
| | - Philippe Gaudin
- TIMC, Techniques de l'Ingénierie Médicale et de la Complexité
CNRS : UMR5525Université Joseph Fourier - Grenoble IDomaine de la Merci 38710 La Tronche,FR
- Service de Rhumatologie
Hôpital MichallonCHU GrenobleUniversité Joseph Fourier - Grenoble IGrenoble,FR
| |
Collapse
|
47
|
Gibson DS, Blelock S, Curry J, Finnegan S, Healy A, Scaife C, McAllister C, Pennington S, Dunn M, Rooney M. Comparative analysis of synovial fluid and plasma proteomes in juvenile arthritis--proteomic patterns of joint inflammation in early stage disease. J Proteomics 2009; 72:656-76. [PMID: 19367684 PMCID: PMC7185434 DOI: 10.1016/j.jprot.2009.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synovial fluid is a potential source of novel biomarkers for many arthritic disorders involving joint inflammation, including juvenile idiopathic arthritis. We first compared the distinctive protein 'fingerprints' of local inflammation in synovial fluid with systemic profiles within matched plasma samples. The synovial fluid proteome at the time of joint inflammation was then evaluated across clinical subgroups to identify early disease associated proteins. We measured the synovial fluid and plasma proteomes using the two-dimensional fluorescence difference gel electrophoresis approach. Image analysis software was used to highlight the expression levels of joint and subgroup associated proteins across the study cohort (n = 32). A defined subset of 30 proteins had statistically significant differences (p < 0.05) between sample types such that synovial fluid could be differentiated from plasma. Furthermore distinctive synovial proteome expression patterns segregate patient subgroups. Protein expression patterns localized in the chronically inflamed joint therefore have the potential to identify patients more likely to suffer disease which will spread from a single joint to multiple joints. The proteins identified could act as criteria to prevent disease extension by more aggressive therapeutic intervention directed at an earlier stage than is currently possible.
Collapse
Affiliation(s)
- David S Gibson
- Arthritis Research Group, Musculoskeletal Research Unit, Queen's University Belfast, 97 Lisburn Road, Belfast, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Agoston DV, Gyorgy A, Eidelman O, Pollard HB. Proteomic Biomarkers for Blast Neurotrauma: Targeting Cerebral Edema, Inflammation, and Neuronal Death Cascades. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0724 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, School of Medicine
| | - Andrea Gyorgy
- Department of Anatomy, Physiology and Genetics, School of Medicine
| | - Ofer Eidelman
- Center for Medical Proteomics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Harvey B. Pollard
- Center for Medical Proteomics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
49
|
Fully phosphorylated fetuin-A forms a mineral complex in the serum of rats with adenine-induced renal failure. Kidney Int 2009; 75:915-28. [DOI: 10.1038/ki.2008.700] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Camafeita E, Lamas JR, Calvo E, López JA, Fernández-Gutiérrez B. Proteomics: New insights into rheumatic diseases. Proteomics Clin Appl 2009; 3:226-241. [DOI: 10.1002/prca.200800146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|