1
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Resende BC, Cassiano CSS, Rios DL, Ladeira TQ, Azevedo VAC, dos Santos LL, Valenzuela-Pérez L, Cabrera G, Machado CR, Lopes DDO. Mismatch uracil DNA glycosylase (Mug) is maintained in the Corynebacterium pseudotuberculosis genome and exhibits affinity for uracil but not other types of damage. Genet Mol Biol 2025; 48:e20230353. [PMID: 40233271 PMCID: PMC12001322 DOI: 10.1590/1678-4685-gmb-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/09/2024] [Indexed: 04/17/2025] Open
Abstract
The genome of Corynebacterium pseudotuberculosis, etiologic agent of Caseous Lymphadenitis (CLA), was sequenced to comprehend its genetics, pathogenicity, and virulence mechanisms due to its economic importance. A focus was placed on the G/U mismatch-specific DNA glycosylase (Mug), an enzyme vital for base excision repair in DNA that can play an important role in uracil repair, since the high G+C content of C. pseudotuberculosis makes it prone to deamination events, accentuating the potential significance of Mug. Through in silico and in vitro analyses, the Corynebacterium pseudotuberculosis Mug protein (CpMug) was characterized to confirm its DNA glycosylase activity and lesion affinity. The mug gene was identified in both pathogenic and non-pathogenic Corynebacterium species, lacking a discernible ancestry pattern. Bioinformatics analyses revealed the preservation of essential uracil DNA glycosylase catalytic residues in CpMug. The 3D structure of CpMug was constructed, and molecular docking analysis demonstrated its interaction with DNA containing uracil and other lesions. Comparative analyses revealed a higher affinity of CpMug's catalytic residues for uracil over other DNA lesions and enzymatic assays with purified CpMug affirmed its uracil DNA glycosylase activity, while it exhibited no activity on 8-oxoguanine, tetrahydrofuran, or thymine glycol, consistent with computational simulations.
Collapse
Affiliation(s)
- Bruno Carvalho Resende
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas (ICB), Belo Horizonte, MG, Brazil
| | | | - Diego Lisboa Rios
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas (ICB), Belo Horizonte, MG, Brazil
| | | | | | | | - Lucía Valenzuela-Pérez
- Universidad de Chile, Faculdad de Medicina, Instituto de Ciencias Biomédicas, Santiago, Chile
| | - Gonzalo Cabrera
- Universidad de Chile, Faculdad de Medicina, Instituto de Ciencias Biomédicas, Santiago, Chile
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais (UFMG), Instituto de Ciências Biológicas (ICB), Belo Horizonte, MG, Brazil
| | | |
Collapse
|
3
|
Qi S, Fu J, Li Y, Fei C, Zhang J, Sui L, Zhou S, Li J, Zhao Y, Wu D. Electrochemical response mechanism of DNA damaged cells: DNA damage repair and purine metabolism activation. Bioelectrochemistry 2025; 161:108832. [PMID: 39395363 DOI: 10.1016/j.bioelechem.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
In modern society, due to the sharp increase in pollutants that cause DNA damage, there is a growing demand for innovative detection techniques and biomarkers. In this paper, the electrochemical behavior of HepG2 cells exposed to CdCl2 was investigated, and the electrochemical response mechanism of DNA damage was identified by exploring the correlation between the DNA damage response and purine metabolism. Western blot analysis revealed that the expression levels of ATM and Ku70 increased at 0.3 μM CdCl2, indicating a DNA damage response and activation of DNA repair processes. Simultaneously, elevated expression levels of PRPP aminotransferase, HPRT, and XOD were observed, leading to an increase in intracellular purine levels and electrochemical signals. The expression of Ku70 peaked at 0.5 μM CdCl2, indicating the highest DNA repair activity. The expression profiles of these purine metabolism proteins mirrored those of Ku70, suggesting a strong correlation between the activation of purine metabolism and DNA damage repair. Consistently, intracellular purine levels exhibited a similar trend, leading to corresponding changes in electrochemical signals. In summary, electrochemical using intracellular purines as biomarkers has the potential to emerge as a novel method for detecting early DNA damage.
Collapse
Affiliation(s)
- Shulan Qi
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jiaqi Fu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Yue Li
- Related Diseases College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province 154000, PR China
| | - Chaoqun Fei
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jiahuan Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Liyuan Sui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Shi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| | - Yanli Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
4
|
Wu Y, Adeel M, Xia D, Sancar A, Li W. Nucleotide excision repair of aflatoxin-induced DNA damage within the 3D human genome organization. Nucleic Acids Res 2024; 52:11704-11719. [PMID: 39258558 PMCID: PMC11514448 DOI: 10.1093/nar/gkae755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the environmental risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. Here, we adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts at single-nucleotide resolution on a genome-wide scale, and compared it with repair data obtained from conventional UV-damage XR-seq. Our results showed that transcription-coupled repair plays a major role in the damage removal process. We further analyzed the distribution of nucleotide excision repair sites for AFB1-induced DNA adducts within the 3D human genome organization. Our analysis revealed a heterogeneous AFB1-dG repair across four different organization levels, including chromosome territories, A/B compartments, TADs, and chromatin loops. We found that chromosomes positioned closer to the nuclear center and regions within A compartments have higher levels of nucleotide excision repair. Notably, we observed high repair activity around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between AFB1-induced DNA damage repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced mutagenesis.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Muhammad Muzammal Adeel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Dian Xia
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Wentao Li
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
6
|
Blandon IR, DiBona E, Battenhouse A, Vargas S, Mace C, Seemann F. Analysis of the Skin and Brain Transcriptome of Normally Pigmented and Pseudo-Albino Southern Flounder ( Paralichthys lethostigma) Juveniles to Study the Molecular Mechanisms of Hypopigmentation and Its Implications for Species Survival in the Natural Environment. Int J Mol Sci 2024; 25:7775. [PMID: 39063015 PMCID: PMC11277284 DOI: 10.3390/ijms25147775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Southern flounder skin pigmentation is a critical phenotypic characteristic for this species' survival in the natural environment. Normal pigmentation allows rapid changes of color for concealment to capture prey and UV light protection. In contrast, highly visible hypopigmented pseudo-albinos exhibit a compromised immune system and are vulnerable to predation, sensitive to UV exposure, and likely have poor survival in the wild. Skin and brain tissue samples from normally pigmented and hypopigmented individuals were analyzed with next-generation RNA sequencing. A total of 1,589,613 transcripts were used to identify 952,825 genes to assemble a de novo transcriptome, with 99.43% of genes mapped to the assembly. Differential gene expression and gene enrichment analysis of contrasting tissues and phenotypes revealed that pseudo-albino individuals appeared more susceptible to environmental stress, UV light exposure, hypoxia, and osmotic stress. The pseudo-albinos' restricted immune response showed upregulated genes linked to cancer development, signaling and response, skin tissue formation, regeneration, and healing. The data indicate that a modified skin collagen structure likely affects melanocyte differentiation and distribution, generating the pseudo-albino phenotype. In addition, the comparison of the brain transcriptome revealed changes in myelination and melanocyte stem cell activity, which may indicate modified brain function, reduced melanocyte migration, and impaired vision.
Collapse
Affiliation(s)
- Ivonne R. Blandon
- Coastal Fisheries Division CCA Marine Development Center, Texas Parks and Wildlife Department, 4300 Waldron Rd., Corpus Christi, TX 78418, USA
| | - Elizabeth DiBona
- Department of Life Sciences, College of Science, Texas A and M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Anna Battenhouse
- Center for Biochemical Research Computing Facility, University of Texas at Austin, 100 East 24th, Austin, TX 78712, USA
| | - Sean Vargas
- Genomic Core Facility, University of Texas at San Antonio, UTSA Circle, San Antonio, TX 78249, USA;
| | - Christopher Mace
- Coastal Fisheries Division CCA Marine Development Center, Texas Parks and Wildlife Department, 4300 Waldron Rd., Corpus Christi, TX 78418, USA
| | - Frauke Seemann
- Department of Life Sciences, College of Science, Texas A and M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
7
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
8
|
Ye C, Guo H, Wei Y, Zhou S, Zhang S, Li J, Cui J, Wu D. K 2Cr 2O 7-induced DNA damage in HT1080 cells: Electrochemical signal response mechanism. Int J Biol Macromol 2024; 261:129629. [PMID: 38266843 DOI: 10.1016/j.ijbiomac.2024.129629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The existing DNA damage detection technology cannot meet the current detection requirements. It is critical to build new methods and discover novel biomarkers. In this study, alkaline comet and 8-OHDG ELISA assays were used to identify DNA damage in HT-1080 cells exposed to K2Cr2O7, and electrochemical behaviors of HT-1080 cells with DNA damage was studied. With an increase in K2Cr2O7 exposure time, two electrochemical signals from HT-1080 cells at 0.69 and 1.01 V steadily grew before decreasing after reaching their highest values. The electrochemical signal's initial response time and peak time decreased as the concentration of K2Cr2O7 increased. The duration of the high dose group was 0.5 and 1 h, while the low dose group was 1.5 and 6 h. Western blotting analysis revealed that DNA damage increased the expression of proteins involved in catabolism and de novo purine synthesis, particularly de novo purine synthesis. Expressions of PRPP amidotransferase, IMPDH, and ADA were all higher than those of ADSS, XOD, and GDA, which resulted in larger concentrations of hypoxanthine, guanine, and xanthine, and in turn improved electrochemical signaling. These findings suggest that intracellular purine identified by linear scan voltammetry is predicted to evolve as a marker of early DNA damage.
Collapse
Affiliation(s)
- Cai Ye
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Haohuan Guo
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Ying Wei
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Shi Zhou
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Simiao Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Jiwen Cui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China.
| |
Collapse
|
9
|
Yadav V, Fuentes JL, Krishnan A, Singh N, Vohora D. Guidance for the use and interpretation of assays for monitoring anti-genotoxicity. Life Sci 2024; 337:122341. [PMID: 38101613 DOI: 10.1016/j.lfs.2023.122341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Since DNA damage can occur spontaneously or be produced by the environmental genotoxins in living cells, it is important to investigate compounds that can reverse or protect DNA damage. An appropriate methodology is essential for the responsive identification of protection offered against DNA damage. This review includes information on the current state of knowledge on prokaryotic cell-based assays (SOS chromotest, umu test, vitotox assay) and cytogenetic techniques (micronucleus assay, chromosome aberration test and sister chromatid exchange assay) with an emphasis on the possibility to explore genoprotective compounds. Throughout the last decade, studies have extrapolated the scientific methodologies utilized for genotoxicity to assess genoprotective compounds. Therefore, shortcomings of genotoxicity studies are also mirrored in antigenotoxicity studies. While regulatory authorities around the world (OECD, US-EPA and ICH) continue to update diverse genotoxic assay strategies, there are still no clear guidelines/approaches for efficient experimental design to screen genoprotective compounds. As a consequence, non-synergetic and inconsistent implementation of the test method by the researchers to execute such simulations has been adopted, which inevitably results in unreliable findings. The review has made the first attempt to collect various facets of experimentally verified approaches for evaluating genoprotective compounds, as well as to acknowledge potential significance and constraints, and further focus on the assessment of end points which are required to validate such action. Henceforth, the review makes an incredible commitment by permitting readers to equate several components of their test arrangement with the provided simplified information, allowing the selection of convenient technique for the predefined compound from a central repository.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Jorge L Fuentes
- School of Biology, Science Faculty, Industrial University of Santander, Bucaramanga 680002, Santander, Colombia
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Neenu Singh
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
11
|
Wu Y, Adeel MM, Sancar A, Li W. Nucleotide Excision Repair of Aflatoxin-induced DNA Damage within the 3D Human Genome Organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559858. [PMID: 37808841 PMCID: PMC10557652 DOI: 10.1101/2023.09.27.559858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the two primary risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. We have adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts. We have found that transcription-coupled repair plays a major role in the damage removal process and the released excision products have a distinctive length distribution pattern. We further analyzed the impact of 3D genome organization on the repair of AFB1-induced DNA adducts. We have revealed that chromosomes close to the nuclear center and A compartments undergo expedited repair processes. Notably, we observed an accelerated repair around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced liver cancer.
Collapse
Affiliation(s)
- Yiran Wu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602
| | - Muhammad Muzammal Adeel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Wentao Li
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602
| |
Collapse
|
12
|
Soldi KC, Londero JEL, Schavinski CR, Schuch AP. Genotoxicity of surface waters in Brazil. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503638. [PMID: 37188436 DOI: 10.1016/j.mrgentox.2023.503638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
Brazil has abundant surface water resources, huge aquatic biodiversity and is home to 213 million people. Genotoxicity assays are sensitive tools to detect the effects of contaminants in surface waters and wastewaters, as well as to determine potential risks of contaminated waters to aquatic organisms and human health. This work aimed to survey the articles published in 2000-2021 that evaluated the genotoxicity of surface waters within Brazilian territory to unveil the profile and trends of this topic over time. In our searches, we considered articles focused on assessing aquatic biota, articles that conducted experiments with caged organisms or standardized tests in the aquatic sites, as well as articles that transported water or sediment samples from aquatic sites to the laboratory, where exposures were performed with organisms or standardized tests. We retrieved geographical information on the aquatic sites evaluated, the genotoxicity assays used, the percentage of genotoxicity detected, and, when possible, the causative agent of aquatic pollution. A total of 248 articles were identified. There was a trend of increase in the number of publications and annual diversity of hydrographic regions evaluated over time. Most articles focused on rivers from large metropolises. A very low number of articles were conducted on coastal and marine ecosystems. Water genotoxicity was detected in most articles, regardless of methodological approach, even in little-studied hydrographic regions. The micronucleus test and the alkaline comet assay were widely applied with blood samples, mainly derived from fish. Allium and Salmonella tests were the most frequently used standard protocols. Despite most articles did not confirm polluting sources and genotoxic agents, the detection of genotoxicity provides useful information for the management of water pollution. We discuss key points to be assessed to reach a more complete picture of the genotoxicity of surface waters in Brazil.
Collapse
Affiliation(s)
- Karen Costa Soldi
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Animal Biodiversity, Department of Ecology and Evolution, Federal University of Santa Maria, Santa Maria, RS, Brazil; Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
14
|
Kufner CL, Krebs S, Fischaleck M, Philippou-Massier J, Blum H, Bucher DB, Braun D, Zinth W, Mast CB. Sequence dependent UV damage of complete pools of oligonucleotides. Sci Rep 2023; 13:2638. [PMID: 36788271 PMCID: PMC9929323 DOI: 10.1038/s41598-023-29833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding the sequence-dependent DNA damage formation requires probing a complete pool of sequences over a wide dose range of the damage-causing exposure. We used high throughput sequencing to simultaneously obtain the dose dependence and quantum yields for oligonucleotide damages for all possible 4096 DNA sequences with hexamer length. We exposed the DNA to ultraviolet radiation at 266 nm and doses of up to 500 absorbed photons per base. At the dimer level, our results confirm existing literature values of photodamage, whereas we now quantified the susceptibility of sequence motifs to UV irradiation up to previously inaccessible polymer lengths. This revealed the protective effect of the sequence context in preventing the formation of UV-lesions. For example, the rate to form dipyrimidine lesions is strongly reduced by nearby guanine bases. Our results provide a complete picture of the sensitivity of oligonucleotides to UV irradiation and allow us to predict their abundance in high-UV environments.
Collapse
Affiliation(s)
- Corinna L. Kufner
- grid.38142.3c000000041936754XHarvard-Smithsonian Center for Astrophysics, Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 USA
| | - Stefan Krebs
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Marlis Fischaleck
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Julia Philippou-Massier
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Helmut Blum
- grid.5252.00000 0004 1936 973XLaboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dominik B. Bucher
- grid.6936.a0000000123222966Chemistry Department, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Dieter Braun
- grid.5252.00000 0004 1936 973XSystems Biophysics, Ludwig Maximilians University Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Wolfgang Zinth
- grid.5252.00000 0004 1936 973XBiomolecular Optics and Center for Integrated Protein Science, Ludwig Maximilians University Munich, Oettingenstrasse 67, 80538 Munich, Germany
| | - Christof B. Mast
- grid.5252.00000 0004 1936 973XSystems Biophysics, Ludwig Maximilians University Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
15
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Effects of replication domains on genome-wide UV-induced DNA damage and repair. PLoS Genet 2022; 18:e1010426. [PMID: 36155646 PMCID: PMC9536635 DOI: 10.1371/journal.pgen.1010426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/06/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Nucleotide excision repair is the primary repair mechanism that removes UV-induced DNA lesions in placentals. Unrepaired UV-induced lesions could result in mutations during DNA replication. Although the mutagenesis of pyrimidine dimers is reasonably well understood, the direct effects of replication fork progression on nucleotide excision repair are yet to be clarified. Here, we applied Damage-seq and XR-seq techniques and generated replication maps in synchronized UV-treated HeLa cells. The results suggest that ongoing replication stimulates local repair in both early and late replication domains. Additionally, it was revealed that lesions on lagging strand templates are repaired slower in late replication domains, which is probably due to the imbalanced sequence context. Asymmetric relative repair is in line with the strand bias of melanoma mutations, suggesting a role of exogenous damage, repair, and replication in mutational strand asymmetry.
Collapse
|
17
|
Atha DH, Tona A, Reipa V. Development of a Reference Method and Materials for Quantitative Measurement of UV-Induced DNA Damage in Mammalian Cells: Comparison of Comet Assay and Cell Viability. J Nucleic Acids 2022; 2022:9188636. [PMID: 36164440 PMCID: PMC9509282 DOI: 10.1155/2022/9188636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/06/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Application of DNA damage diagnostic tests is rapidly growing, in particular for ovarian, prostate, and skin cancers; environmental monitoring; chronic and degenerative diseases; and male infertility. Such tests suffer from significant variability among different laboratories due the lack of standardization, experimental validation, and differences in data interpretation. Reference methods and materials for quantitative measurement of UVA-induced DNA damage in mammalian cells are frequently needed. In this study, we examined the use of the single-cell gel electrophoresis (comet) assay to assess the UVA-induced DNA damage in surface-attached Chinese hamster ovary (CHO) cells treated with a photosensitizer as a candidate cellular oxidative damage reference material. We found that the comet images became diffused and the viability of the cells decreased substantially (>20%) as the UVA dose and benzo [a] pyrene (BaP) concentration exceeded 6.3 J/cm2 and 10-6 mol/L BaP. Maintaining the conditions of exposure within this range can improve DNA damage measurement fidelity, particularly if used as a quantitative reference method and to produce materials considered as an in vitro standard for the comet assay.
Collapse
Affiliation(s)
- Donald H. Atha
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Alessandro Tona
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Vytas Reipa
- National Institute of Standards and Technology, Biosystems and Biomaterials Division, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| |
Collapse
|
18
|
Zhang X, Yin M, Hu J. Nucleotide excision repair: a versatile and smart toolkit. Acta Biochim Biophys Sin (Shanghai) 2022; 54:807-819. [PMID: 35975604 PMCID: PMC9828404 DOI: 10.3724/abbs.2022054] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nucleotide excision repair (NER) is a major pathway to deal with bulky adducts induced by various environmental toxins in all cellular organisms. The two sub-pathways of NER, global genome repair (GGR) and transcription-coupled repair (TCR), differ in the damage recognition modes. In this review, we describe the molecular mechanism of NER in mammalian cells, especially the details of damage recognition steps in both sub-pathways. We also introduce new sequencing methods for genome-wide mapping of NER, as well as recent advances about NER in chromatin by these methods. Finally, the roles of NER factors in repairing oxidative damages and resolving R-loops are discussed.
Collapse
Affiliation(s)
| | | | - Jinchuan Hu
- Correspondence address. Tel: +86-21-54237702; E-mail:
| |
Collapse
|
19
|
Wilson KA, Jeong YER, Wetmore SD. Multiscale computational investigations of the translesion synthesis bypass of tobacco-derived DNA adducts: critical insights that complement experimental biochemical studies. Phys Chem Chem Phys 2022; 24:10667-10683. [PMID: 35502640 DOI: 10.1039/d2cp00481j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute (ARRTI) and Southern Alberta Genome Sciences Center (SAGSC), University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
20
|
Li W, Jones K, Burke TJ, Hossain MA, Lariscy L. Epigenetic Regulation of Nucleotide Excision Repair. Front Cell Dev Biol 2022; 10:847051. [PMID: 35465333 PMCID: PMC9023881 DOI: 10.3389/fcell.2022.847051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Genomic DNA is constantly attacked by a plethora of DNA damaging agents both from endogenous and exogenous sources. Nucleotide excision repair (NER) is the most versatile repair pathway that recognizes and removes a wide range of bulky and/or helix-distorting DNA lesions. Even though the molecular mechanism of NER is well studied through in vitro system, the NER process inside the cell is more complicated because the genomic DNA in eukaryotes is tightly packaged into chromosomes and compacted into a nucleus. Epigenetic modifications regulate gene activity and expression without changing the DNA sequence. The dynamics of epigenetic regulation play a crucial role during the in vivo NER process. In this review, we summarize recent advances in our understanding of the epigenetic regulation of NER.
Collapse
|
21
|
Reid DM, Barber RC, Thorpe RJ, Sun J, Zhou Z, Phillips NR. Mitochondrial DNA oxidative mutations are elevated in Mexican American women potentially implicating Alzheimer's disease. NPJ AGING 2022; 8:2. [PMID: 35927256 PMCID: PMC9158774 DOI: 10.1038/s41514-022-00082-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/15/2022] [Indexed: 11/08/2022]
Abstract
Mexican Americans (MAs) are the fastest-growing Hispanic population segment in the US; as this population increases in age, so will the societal burden of age-related diseases such as Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be implicated in MA AD risk since metabolic comorbidities are more prevalent in this group. Oxidative damage to guanosine (8oxoG) is one of the most prevalent DNA lesions and a putative indicator of mitochondrial dysfunction. Testing blood samples from participants of the Texas Alzheimer's Research and Care Consortium, we found mtDNA 8oxoG mutational load to be significantly higher in MAs compared to non-Hispanic whites and that MA females are differentially affected. Furthermore, we identified specific mtDNA haplotypes that confer increased risk for oxidative damage and suggestive evidence that cognitive function may be related to 8oxoG burden. Our understanding of these phenomena will elucidate population- and sex-specific mechanisms of AD pathogenesis, informing the development of more precise interventions and therapeutic approaches for MAs with AD in the future.
Collapse
Affiliation(s)
- Danielle Marie Reid
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Robert C Barber
- Pharmacology & Neuroscience, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Roland J Thorpe
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
- Johns Hopkins Center for Health Disparities Solutions, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jie Sun
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA
| | - Zhengyang Zhou
- Biostatistics & Epidemiology, School of Public Health, UNT Health Science Center, Fort Worth, TX, USA
| | - Nicole R Phillips
- Microbiology, Immunology, and Genetics, School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
22
|
Clementi E, Garajova Z, Markkanen E. Measurement of DNA Damage Using the Neutral Comet Assay in Cultured Cells. Bio Protoc 2021; 11:e4226. [PMID: 34909447 DOI: 10.21769/bioprotoc.4226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/02/2022] Open
Abstract
Maintenance of DNA integrity is of pivotal importance for cells to circumvent detrimental processes that can ultimately lead to the development of various diseases. In the face of a plethora of endogenous and exogenous DNA damaging agents, cells have evolved a variety of DNA repair mechanisms that are responsible for safeguarding genetic integrity. Given the relevance of DNA damage and its repair for disease pathogenesis, measuring them is of considerable interest, and the comet assay is a widely used method for this. Cells treated with DNA damaging agents are embedded into a thin layer of agarose on top of a microscope slide. Subsequent lysis removes all protein and lipid components to leave 'nucleoids' consisting of naked DNA remaining in the agarose. These nucleoids are then subjected to electrophoresis, whereby the negatively charged DNA migrates towards the anode depending on its degree of fragmentation, creating shapes resembling comets, which can be visualized and analysed by fluorescence microscopy. The comet assay can be adapted to assess a wide variety of genotoxins and repair kinetics, and both DNA single-strand and double-strand breaks. In this protocol, we describe in detail how to perform the neutral comet assay to assess double-strand breaks and their repair using cultured human cell lines. We describe the workflow for assessing the amount of DNA damage generated by ionizing radiation or present endogenously in the cells, and how to assess the repair kinetics after such an insult. The procedure described herein is easy to follow and cost-effective.
Collapse
Affiliation(s)
- Elena Clementi
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Zuzana Garajova
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Clementi E, Garajova Z, Markkanen E. Measuring DNA Damage Using the Alkaline Comet Assay in Cultured Cells. Bio Protoc 2021; 11:e4119. [PMID: 34541038 DOI: 10.21769/bioprotoc.4119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/28/2023] Open
Abstract
Maintenance of DNA integrity is of pivotal importance for cells to circumvent detrimental processes that can ultimately lead to the development of various diseases. In the face of a plethora of endogenous and exogenous DNA-damaging agents, cells have evolved a variety of DNA repair mechanisms that are responsible for safeguarding genetic integrity. Given the relevance of DNA damage and its repair in disease, measuring the amount of both aspects is of considerable interest. The comet assay is a widely used method that allows the measurement of both DNA damage and its repair in cells. For this, cells are treated with DNA-damaging agents and embedded into a thin layer of agarose on top of a microscope slide. Subsequent lysis removes all protein and lipid components to leave so-called 'nucleoids' consisting of naked DNA remaining in the agarose. These nucleoids are then subjected to electrophoresis, whereby the negatively charged DNA migrates toward the anode depending on its degree of fragmentation and creates shapes resembling comets, which can be subsequently visualized and analyzed by fluorescence microscopy. The comet assay can be adapted to assess a wide variety of genotoxins and repair kinetics, in addition to both DNA single-strand and double-strand breaks. In this protocol, we describe in detail how to perform the alkaline comet assay to assess single-strand breaks and their repair using cultured human cell lines. We describe the workflow for assessing the amount of DNA damage generated by agents such as hydrogen peroxide (H2O2) and methyl-methanesulfonate (MMS) or present endogenously in cells, and how to assess the repair kinetics after such an insult. The procedure described herein is easy to follow and allows the cost-effective assessment of single-strand breaks and their repair kinetics in cultured cells.
Collapse
Affiliation(s)
- Elena Clementi
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Zuzana Garajova
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Akkose U, Kaya VO, Lindsey-Boltz L, Karagoz Z, Brown AD, Larsen PA, Yoder AD, Sancar A, Adebali O. Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events. BMC Genomics 2021; 22:600. [PMID: 34362292 PMCID: PMC8349011 DOI: 10.1186/s12864-021-07898-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nucleotide excision repair is the primary DNA repair mechanism that removes bulky DNA adducts such as UV-induced pyrimidine dimers. Correspondingly, genome-wide mapping of nucleotide excision repair with eXcision Repair sequencing (XR-seq), provides comprehensive profiling of DNA damage repair. A number of XR-seq experiments at a variety of conditions for different damage types revealed heterogenous repair in the human genome. Although human repair profiles were extensively studied, how repair maps vary between primates is yet to be investigated. Here, we characterized the genome-wide UV-induced damage repair in gray mouse lemur, Microcebus murinus, in comparison to human. Results We derived fibroblast cell lines from mouse lemur, exposed them to UV irradiation, and analyzed the repair events genome-wide using the XR-seq protocol. Mouse lemur repair profiles were analyzed in comparison to the equivalent human fibroblast datasets. We found that overall UV sensitivity, repair efficiency, and transcription-coupled repair levels differ between the two primates. Despite this, comparative analysis of human and mouse lemur fibroblasts revealed that genome-wide repair profiles of the homologous regions are highly correlated, and this correlation is stronger for highly expressed genes. With the inclusion of an additional XR-seq sample derived from another human cell line in the analysis, we found that fibroblasts of the two primates repair UV-induced DNA lesions in a more similar pattern than two distinct human cell lines do. Conclusion Our results suggest that mouse lemurs and humans, and possibly primates in general, share a homologous repair mechanism as well as genomic variance distribution, albeit with their variable repair efficiency. This result also emphasizes the deep homologies of individual tissue types across the eukaryotic phylogeny. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07898-3.
Collapse
Affiliation(s)
- Umit Akkose
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Veysel Ogulcan Kaya
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Laura Lindsey-Boltz
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Zeynep Karagoz
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Adam D Brown
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA.,Present Address: Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, 55112, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Ogun Adebali
- Molecular Biology, Genetics & Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
25
|
Vijg J. From DNA damage to mutations: All roads lead to aging. Ageing Res Rev 2021; 68:101316. [PMID: 33711511 PMCID: PMC10018438 DOI: 10.1016/j.arr.2021.101316] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
Damage to the repository of genetic information in cells has plagued life since its very beginning 3-4 billion years ago. Initially, in the absence of an ozone layer, especially damage from solar UV radiation must have been frequent, with other sources, most notably endogenous sources related to cell metabolism, gaining in importance over time. To cope with this high frequency of damage to the increasingly long DNA molecules that came to encode the growing complexity of cellular functions in cells, DNA repair evolved as one of the earliest genetic traits. Then as now, errors during the repair of DNA damage generated mutations, which provide the substrate for evolution by natural selection. With the emergence of multicellular organisms also the soma became a target of DNA damage and mutations. In somatic cells selection against the adverse effects of DNA damage is greatly diminished, especially in postmitotic cells after the age of first reproduction. Based on an abundance of evidence, DNA damage is now considered as the single most important driver of the degenerative processes that collectively cause aging. Here I will first briefly review the evidence for DNA damage as a cause of aging since the beginning of life. Then, after discussing the possible direct adverse effects of DNA damage and its cellular responses, I will provide an overview of the considerable progress that has recently been made in analyzing a major consequence of DNA damage in humans and other complex organisms: somatic mutations and the resulting genome mosaicism. Recent advances in studying somatic mutagenesis and genome mosaicism in different human and animal tissues will be discussed with a focus on the possible mechanisms through which loss of DNA sequence integrity could cause age-related functional decline and disease.
Collapse
Affiliation(s)
- Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Bodulev OL, Zhao S, Sakharov IY. Improving the Sensitivity of the miRNA Assay Coupled with the Mismatched Catalytic Hairpin Assembly Reaction by Optimization of Hairpin Annealing Conditions. Anal Chem 2021; 93:6824-6830. [PMID: 33899474 DOI: 10.1021/acs.analchem.1c00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mismatched catalytic hairpin assembly (mCHA), a programmable oligonucleotide circuit, is one of the promising isothermal amplification methods used in nucleic acid detection. Its limitations are related to a high background noise observed due to the target-independent hybridization of the reacting hairpins (HPs). In this work, it was shown that the introduction of salts such as NaCl and MgCl2 to HP1/HP2 annealing solutions sharply reduces the background in mCHA and simultaneously increases the signal-to-background (S/B) ratio. A comparison of the salts demonstrated the higher activity of MgCl2 as compared to NaCl. A similar effect of reducing the background was observed with a decrease in the concentration of H1/H2 probes in annealing solutions. Using the favorable annealing conditions allowed the development of an ultrasensitive chemiluminescence assay coupled with mCHA for miRNA quantitation. Except mCHA, the use of a streptavidin-polyHRP conjugate and an enhanced chemiluminescence reaction additionally increased the assay sensitivity. Notably, the optimization of the HP annealing diminished the detection limit of the assay by 2 orders of magnitude and increased the sensitivity and precision of miRNA-141 determination. The discovered fact of reducing the background by the variation of HP annealing conditions may be valuable not only for the mCHA performance but also likely for other HP-based biochemical methods.
Collapse
Affiliation(s)
- Oleg L Bodulev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, bldg. 1, Moscow 119991, Russia
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, bldg. 1, Moscow 119991, Russia
| |
Collapse
|
27
|
Duan M, Speer RM, Ulibarri J, Liu KJ, Mao P. Transcription-coupled nucleotide excision repair: New insights revealed by genomic approaches. DNA Repair (Amst) 2021; 103:103126. [PMID: 33894524 DOI: 10.1016/j.dnarep.2021.103126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
Elongation of RNA polymerase II (Pol II) is affected by many factors including DNA damage. Bulky damage, such as lesions caused by ultraviolet (UV) radiation, arrests Pol II and inhibits gene transcription, and may lead to genome instability and cell death. Cells activate transcription-coupled nucleotide excision repair (TC-NER) to remove Pol II-impeding damage and allow transcription resumption. TC-NER initiation in humans is mediated by Cockayne syndrome group B (CSB) protein, which binds to the stalled Pol II and promotes assembly of the repair machinery. Given the complex nature of the TC-NER pathway and its unique function at the interface between transcription and repair, new approaches are required to gain in-depth understanding of the mechanism. Advances in genomic approaches provide an important opportunity to investigate how TC-NER is initiated upon damage-induced Pol II stalling and what factors are involved in this process. In this Review, we discuss new mechanisms of TC-NER revealed by genome-wide DNA damage mapping and new TC-NER factors identified by high-throughput screening. As TC-NER conducts strand-specific repair of mutagenic damage, we also discuss how this repair pathway causes mutational strand asymmetry in the cancer genome.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jenna Ulibarri
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
28
|
Detection of Genomic Uracil Patterns. Int J Mol Sci 2021; 22:ijms22083902. [PMID: 33918885 PMCID: PMC8070346 DOI: 10.3390/ijms22083902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 01/06/2023] Open
Abstract
The appearance of uracil in the deoxyuridine moiety of DNA is among the most frequently occurring genomic modifications. Three different routes can result in genomic uracil, two of which do not require specific enzymes: spontaneous cytosine deamination due to the inherent chemical reactivity of living cells, and thymine-replacing incorporation upon nucleotide pool imbalances. There is also an enzymatic pathway of cytosine deamination with multiple DNA (cytosine) deaminases involved in this process. In order to describe potential roles of genomic uracil, it is of key importance to utilize efficient uracil-DNA detection methods. In this review, we provide a comprehensive and critical assessment of currently available uracil detection methods with special focus on genome-wide mapping solutions. Recent developments in PCR-based and in situ detection as well as the quantitation of genomic uracil are also discussed.
Collapse
|
29
|
Londero JEL, Schavinski CR, Silva FDD, Piccoli BC, Schuch AP. Development of a rapid electrophoretic assay for genomic DNA damage quantification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111859. [PMID: 33429319 DOI: 10.1016/j.ecoenv.2020.111859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Accuracy, sensitivity, simplicity, reproducibility, and low-cost are desirable requirements for genotoxicity assessment techniques. Here we describe a simple electrophoretic assay for genomic DNA lesions quantification (EAsy-GeL) based on subjecting DNA samples to rapid unwinding/renaturation treatments and neutral agarose gel electrophoresis. The experiments performed in this work involved different biological samples exposed to increasing environmental-simulated doses of ultraviolet-B (UVB) radiation, such as Escherichia coli, human leukocytes, and isolated human genomic DNA. DNA extraction was carried out using a universal and low-cost protocol, which takes about 4 h. Before electrophoresis migration, DNA samples were kept into a neutral buffer to detect double-strand breaks (DSBs) or subjected to a 5-min step of alkaline unwinding and neutral renaturation to detect single-strand breaks (SSBs) or incubated with the DNA repair enzyme T4-endonuclease V for the detection of cyclobutane pyrimidine dimers (CPDs) before the 5-min step of DNA unwinding/renaturation. Then, all DNA samples were separated by neutral agarose gel electrophoresis, the DNA average length of each lane was calculated through the use of free software, and the frequency of DNA breaks per kbp was determined by a simple rule of three. Dose-response experiments allowed the quantification of different levels of DNA damage per electrophoretic run, varying from a constant and low amount of DSBs/SSBs to high and dose-dependent levels of CPDs. Compared with other assays based on alkaline unwinding and gel electrophoresis, EAsy-GeL has important advantages for both environmental monitoring and laboratory testing purposes. The simplicity and applicability of this protocol to other types of DNA lesions, biological models, and agents make it ideal for genotoxicity, DNA repair studies, as well as for assessing exposure risks to ecosystems and human health.
Collapse
Affiliation(s)
- James Eduardo Lago Londero
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Cassiano Ricardo Schavinski
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda D'Avila da Silva
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bruna Candia Piccoli
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - André Passaglia Schuch
- Post-Graduation Program in Biological Sciences: Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
30
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
31
|
Aloisi CMN, Sandell ES, Sturla SJ. A Chemical Link between Meat Consumption and Colorectal Cancer Development? Chem Res Toxicol 2021; 34:12-23. [PMID: 33417435 DOI: 10.1021/acs.chemrestox.0c00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O6-carboxymethylguanine (O6-CMG) is a mutagenic DNA adduct that forms at increased levels when people eat meat. It has been studied as a potential initiating event in colorectal carcinogenesis. It can arise from alkylation of guanine in DNA by electrophilic degradation products of N-nitroso compounds. There is significant data regarding biochemical and cellular process, including DNA repair and translesion DNA synthesis that control O6-CMG accumulation, persistence, and mutagenicity. Mutation spectra arising from the adduct closely resemble common mutations in colorectal cancer; however, gaps remain in understanding the biochemical processes that regulate how and where the damage persists in the genome. Addressing such questions relies on advances in chemistry such as synthesis approaches and bioanalytical methods. Results of research in this area help advance our understanding of the toxicological relevance of O6-CMG-modified DNA. Further attention should focus on understanding how a combination of genetic and environmental factors control its biological persistence and how this information can be used as a basis of biomoniotoring and prevention efforts to help mitigate colon cancer risk.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Emma S Sandell
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
32
|
Jiang Y, Li W, Lindsey-Boltz LA, Yang Y, Li Y, Sancar A. Super hotspots and super coldspots in the repair of UV-induced DNA damage in the human genome. J Biol Chem 2021; 296:100581. [PMID: 33771559 PMCID: PMC8081918 DOI: 10.1016/j.jbc.2021.100581] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of UV-induced DNA damage and its repair are influenced by many factors that modulate lesion formation and the accessibility of repair machinery. However, it remains unknown which genomic sites are prioritized for immediate repair after UV damage induction, and whether these prioritized sites overlap with hotspots of UV damage. We identified the super hotspots subject to the earliest repair for (6-4) pyrimidine-pyrimidone photoproduct by using the eXcision Repair-sequencing (XR-seq) method. We further identified super coldspots for (6-4) pyrimidine-pyrimidone photoproduct repair and super hotspots for cyclobutane pyrimidine dimer repair by analyzing available XR-seq time-course data. By integrating datasets of XR-seq, Damage-seq, adductSeq, and cyclobutane pyrimidine dimer-seq, we show that neither repair super hotspots nor repair super coldspots overlap hotspots of UV damage. Furthermore, we demonstrate that repair super hotspots are significantly enriched in frequently interacting regions and superenhancers. Finally, we report our discovery of an enrichment of cytosine in repair super hotspots and super coldspots. These findings suggest that local DNA features together with large-scale chromatin features contribute to the orders of magnitude variability in the rates of UV damage repair.
Collapse
Affiliation(s)
- Yuchao Jiang
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - Wentao Li
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura A Lindsey-Boltz
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yuchen Yang
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yun Li
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Computer Science, College of Arts and Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aziz Sancar
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
33
|
Abstract
Cellular DNA is constantly chemically altered by exogenous and endogenous agents. As all processes of life depend on the transmission of the genetic information, multiple biological processes exist to ensure genome integrity. Chemically damaged DNA has been linked to cancer and aging, therefore it is of great interest to map DNA damage formation and repair to elucidate the distribution of damage on a genome-wide scale. While the low abundance and inability to enzymatically amplify DNA damage are obstacles to genome-wide sequencing, new developments in the last few years have enabled high-resolution mapping of damaged bases. Recently, a number of DNA damage sequencing library construction strategies coupled to new data analysis pipelines allowed the mapping of specific DNA damage formation and repair at high and single nucleotide resolution. Strikingly, these advancements revealed that the distribution of DNA damage is heavily influenced by chromatin states and the binding of transcription factors. In the last seven years, these novel approaches have revealed new genomic maps of DNA damage distribution in a variety of organisms as generated by diverse chemical and physical DNA insults; oxidative stress, chemotherapeutic drugs, environmental pollutants, and sun exposure. Preferred sequences for damage formation and repair have been elucidated, thus making it possible to identify persistent weak spots in the genome as locations predicted to be vulnerable for mutation. As such, sequencing DNA damage will have an immense impact on our ability to elucidate mechanisms of disease initiation, and to evaluate and predict the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Cécile Mingard
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
34
|
Yan S, Vaziri C. An introduction for the special issue on environmental health and genome integrity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:660-663. [PMID: 32683747 PMCID: PMC7442621 DOI: 10.1002/em.22400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 05/23/2023]
Abstract
Environmental exposures and genome maintenance mechanisms that respond to environmentally-induced genotoxicity have a profound impact on human health. Eight review articles in this Special Issue (SI) titled "Environmental Health and Genome Integrity" describe emerging new mechanisms by which distinct forms of environmentally-induced DNA damage are remediated, and explain how DNA repair pathway choices impact genome integrity and disease propensity. Here, we provide an introduction to reviews from this SI. Our expanding knowledge of how genotoxic exposures impact the genome will allow us to better predict, prevent and treat environmentally-induced human diseases such as cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|