1
|
Shaffer KW, Ye X, Lee CS, Shipley ON, McDonough CA, Venkatesan AK, Gobler CJ. Accumulation and trophic transfer of per- and polyfluoroalkyl substances (PFAS) in estuarine organisms determined via stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178742. [PMID: 39946876 DOI: 10.1016/j.scitotenv.2025.178742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants in estuaries. In this study, 19 PFAS were quantified in surface waters, sediments, marine invertebrates (aquatic worms, Eastern oysters, and blue crab), and forage fish (Atlantic silverside, four-spine stickleback, mummichog, sheepshead minnow, and rainwater killifish) in an aqueous film forming foam (AFFF)-contaminated estuary, Georgica Pond (NY, USA). Carbon and nitrogen stable isotopes (δ13C and δ15N) were used to determine trophic position of organisms and to identify modes of PFAS exposure. The influence of salinity (8 to 26 practical salinity units, PSU) on the relative and absolute abundance of PFAS in all matrices was also investigated. Eleven long- and short-chain perfluoroalkyl acids (PFAAs) were found to have bioaccumulation potential (bioaccumulation factor, BAF; biota-sediment accumulation factor, BSAF) and were positively correlated with relative trophic position. Among these, long-chain PFAAs (perfluorohexanesulfonic acid, PFHxS; perfluorooctane sulfonic acid, PFOS; perfluorooctanoic acid, PFOA; perfluorononanoic acid, PFNA) were the greatest contributors to total body burden and bioaccumulated in all organisms, with PFOS (log BAF = 3.55 ± 0.83) and PFNA (log BAF = 3.17 ± 0.46) having the highest mean values of all compounds. PFOS was present in all biota samples and concentrations significantly increased with food web trophic position (ranging from 0.18 to 777 μg kg-1). Perfluorobutane sulfonic acid (PFBS) was also ubiquitous among all organisms, bioaccumulating in both invertebrate and vertebrate species. Total PFAS concentrations in aquatic worms were significantly higher in lower salinity water while the PFAS profile of Eastern oysters shifted from predominately perfluorocarboxylic acids (66 % of total composition) to perfluorosulfonic acids (62 %) as the ecosystem transitioned from low (9 PSU) to high (25 PSU) salinity. Collectively, this study demonstrates the utility of applying δ13C and δ15N to determine bioaccumulation patterns of both legacy PFAS and short-chain replacement compounds and underscores how shifts in salinity can alter the concentration and speciation of PFAS in estuaries.
Collapse
Affiliation(s)
- Kevin W Shaffer
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States
| | - Xiayan Ye
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States; Research Center for Environmental Changes, Academia Sinica, Taipei 115201, Taiwan
| | - Oliver N Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Carrie A McDonough
- Carnegie Mellon University, Department of Chemistry, Pittsburgh, PA, United States
| | - Arjun K Venkatesan
- New Jersey Institute of Technology, Department of Civil and Environmental Engineering, Newark, NJ, United States
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
2
|
Zhu M, Xiao Z, Zhang T, Lu G. Construction of interpretable ensemble learning models for predicting bioaccumulation parameters of organic chemicals in fish. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136606. [PMID: 39579709 DOI: 10.1016/j.jhazmat.2024.136606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Accurate prediction of bioaccumulation parameters is essential for assessing exposure, hazards, and risks of chemicals. However, the majority of prediction models on bioaccumulation parameters are individual models based on a single algorithm and lack model interpretation, resulting in unsatisfactory prediction accuracy due to inherent constraints of the algorithm and weak interpretability. Ensemble learning (EL) that combine multiple algorithms, coupled with SHapley Additive exPlanation (SHAP) method, may overcome the limitations. Herein, EL models were constructed for three bioaccumulation parameters using datasets covering 2496 chemicals. The EL models demonstrated superior prediction accuracy compared to both individual models developed in this study and those from previous research, achieving a coefficient of determination of up to 0.861 on the validation sets. Applicability domains were characterized using a structure-activity landscape-based (abbreviated as ADSAL) methodology. The optimal EL models, together with the ADSAL, were successfully used to predict bioaccumulation parameters for 4374 chemicals included in the Inventory of Existing Chemical Substances of China. Model interpretation using the SHAP method offered insight into key features influencing bioaccumulation potential, including hydrophobicity, water solubility, polarizability, ionization potential, weight, and volume of molecules. Overall, the study provides data and models to support the sound management and risk assessment of chemicals.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zijun Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Sgariboldi A, Posté E, Chirico N, Sangion A, Evangelista M, Morosini C, Re A, Torretta V, Papa E. Global Assessment of Emerging Contaminant Removal in Wastewater Treatment Plants: In Silico Hazard Screening and Risk Evaluation. TOXICS 2024; 13:6. [PMID: 39853006 PMCID: PMC11768813 DOI: 10.3390/toxics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants (ECs), whose presence in the environment is of increasing concern due to their widespread use and possible detrimental effects on wildlife and humans. These chemicals may present multiple hazardous properties such as environmental persistence, toxicity, high mobility, and the potential for bioaccumulation. In this study, extended bibliographic research was conducted to characterize the removal efficiency (RE) of PPCPs in wastewater treatment plants (WWTPs) considering different technologies. Measured values of RE were collected from the literature or calculated for 251 compounds. The molecular structure of the 245 PPCPs were used as the input to generate predictions of multiple properties using several QSAR tools, such as the OECD Toolbox, OPERA, EPI Suite™, and QSAR-ME Profiler. These predictions were compared to regulatory thresholds to identify hazardous chemicals and to screen persistent, mobile and toxic (PMT) or persistent, bioaccumulative and toxic (PBT) substances. Finally, chemicals were prioritized by combining values of RE and QSAR predictions for multiple properties. A total of 16 out of the 245 molecules were prioritized as the most hazardous compounds to the aquatic environment and, among these, six were associated with potential risk due to their exposure concentrations reported in the literature.
Collapse
Affiliation(s)
- Arianna Sgariboldi
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Elena Posté
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- AIR CLEAN S.r.l., via Trento 37, 20017 Rho, Italy
| | - Nicola Chirico
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| | | | - Marco Evangelista
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Cristiana Morosini
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Andrea Re
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
- Xylem Water Solutions Italia S.r.l., Via G. Rossini, 1/A, 20045 Lainate, Italy
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| | - Ester Papa
- Department of Theoretical and Applied Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (A.S.)
| |
Collapse
|
4
|
Wamboldt JJ, Steiner JN, Sauey BW, Lada BM, Putnam JG, Korducki BM, Saari GN. Toxicity of a management bait for grass carp (Ctenopharyngodon idella) incorporated with Antimycin A. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:984-995. [PMID: 39096418 DOI: 10.1007/s10646-024-02771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 08/05/2024]
Abstract
No current technology can specifically target grass carp (Ctenopharyngodon idella) for control within aquatic ecosystems. Rotenone and Carbon Dioxide-Carp are currently the only available registered pesticides for grass carp; they are nonselective and typically applied throughout the water, equally exposing target and native species. A more selective control tool or pesticide application could be used by resource managers to support mitigation efforts. Development of delivery systems that exploit carp feeding strategies could increase selectivity of pesticides and minimize effects on native fishes. A pesticide with selective delivery could be less labor intensive and used within an integrative pest management strategy. The present study examined Antimycin A toxicity in juvenile and sub-adult grass carp and rainbow trout (Oncorhynchus mykiss) across two routes of exposure. Water-based toxicity studies were used to calculate the concentration to cause lethality in 50% of treated fish (LC50) at 24-h, while oral gavage toxicity studies were used to calculate the dose to cause lethality in 50% of treated grass carp and rainbow trout (LD50) 24- to 96-h. Although rainbow trout were more sensitive than grass carp to Antimycin A through water-based exposure, oral toxicity was similar between species, even with inherent gastrointestinal morphological differences. Successful delivery of a lethal dose of Antimycin A to grass carp was achieved through an oral route of exposure using the rapeseed bait and shows promise for registration as a control tool and eventual use in pest management plans. Although a lethal dose of Antimycin A could be incorporated into a single bait pellet, more bait was required to achieve desired mortality when fed to fish under laboratory conditions.
Collapse
Affiliation(s)
- James J Wamboldt
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA.
| | - J Nolan Steiner
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Blake W Sauey
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Bryan M Lada
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Joel G Putnam
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
- Conagen, Inc., 15 DeAngelo Drive, Bedford, MA, 01730, USA
| | - Brianne M Korducki
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| | - Gavin N Saari
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Road, La Crosse, WI, 54603, USA
| |
Collapse
|
5
|
Castillo NA, Santos RO, James WR, Rezek R, Cerveny D, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Differential tissue distribution of pharmaceuticals in a wild subtropical marine fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107064. [PMID: 39208620 DOI: 10.1016/j.aquatox.2024.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
To date, the presence of pharmaceuticals has been extensively documented across a wide range of aquatic systems and biota. Further, substantial progress has been made in transitioning from laboratory assessments of pharmaceutical fate and effects in fish to in situ assessments of exposure and effects; however, certain research areas remain understudied. Among these is investigation of differential accumulation across multiple internal tissues in wild marine fish beyond the species commonly sampled in laboratory and freshwater field settings. This study examined the presence of pharmaceuticals across four tissues (plasma, muscle, brain, and liver) in a wild marine fish, bonefish (Albula vulpes), throughout coastal South Florida, USA. Differential accumulation across tissues was assessed for the number and concentration, identity, and composition of accumulated pharmaceuticals by sampling 25 bonefish and analyzing them for 91 pharmaceuticals. The concentration of pharmaceuticals was highest in plasma > liver > brain > muscle, while the number of pharmaceuticals was highest in liver > brain > plasma > muscle. The identity of detected pharmaceuticals was tissue specific, and there was an inverse relationship between the number of detections for each pharmaceutical and its log Kow. The composition of pharmaceuticals was tissue specific for both pharmaceutical presence/absence and concentration. Across all tissues, the greatest similarity was between brain and liver, which were more similar to plasma than to muscle, and muscle was the most distinct tissue. For tissue compositional variability, muscle was the most diverse in accumulated pharmaceuticals, while plasma, brain, and liver were similarly variable. With the highest concentrations in plasma and highest number in liver, and documented variability in accumulated pharmaceuticals across tissues, our results highlight the importance of tissue selection when surveying exposure in wild fish, suggesting that multi-tissue analysis would allow for a more comprehensive assessment of exposure diversity and risk of adverse effects.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Florida International University, Miami, FL, USA.
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - W R James
- Earth and Environment Department, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Castillo NA, James WR, Santos RO, Rezek R, Cerveny D, Boucek RE, Adams AJ, Trabelsi S, Distrubell A, Sandquist M, Fick J, Brodin T, Rehage JS. Identifying pathways of pharmaceutical exposure in a mesoconsumer marine fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135382. [PMID: 39088947 DOI: 10.1016/j.jhazmat.2024.135382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Pharmaceutical uptake involves processes that vary across aquatic systems and biota. However, single studies examining multiple environmental compartments, microhabitats, biota, and exposure pathways in mesoconsumer fish are sparse. We investigated the pharmaceutical burden in bonefish (Albula vulpes), pathways of exposure, and estimated exposure to a human daily dose. To evaluate exposure pathways, the number and composition of pharmaceuticals across compartments and the bioconcentration in prey and bonefish were assessed. To evaluate bioaccumulation, we proposed the use of a field-derived bioaccumulation factor (fBAF), due to variability inherent to natural systems. Exposure to a human daily dose was based on bonefish daily energetic requirements and consumption rates using pharmaceutical concentrations in prey. Pharmaceutical number and concentration were highest in prey, followed by bonefish, water and sediment. Fifteen pharmaceuticals were detected in common among bonefish, prey, and water; all of which bioconcentrated in prey and bonefish, and four bioaccumulated in bonefish. The composition of detected pharmaceuticals was compartment specific, and prey were most similar to bonefish. Bonefish were exposed to a maximum of 1.2 % of a human daily dose via prey consumption. Results highlight the need for multicompartment assessments of exposure and consideration of prey along with water as a pathway of exposure.
Collapse
Affiliation(s)
- N A Castillo
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA.
| | - W R James
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA; Department of Biology, Florida International University, Miami, FL, USA
| | - R O Santos
- Department of Biology, Florida International University, Miami, FL, USA
| | - R Rezek
- Department of Marine Science, Coastal Carolina University, Conway, SC, USA
| | - D Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodňany, Czech Republic
| | - R E Boucek
- Bonefish and Tarpon Trust, Miami, FL, USA
| | - A J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - S Trabelsi
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - A Distrubell
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - M Sandquist
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - T Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - J S Rehage
- Earth and Environment Department, Institute of Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
7
|
Xiao Z, Zhu M, Chen J, You Z. Integrated Transfer Learning and Multitask Learning Strategies to Construct Graph Neural Network Models for Predicting Bioaccumulation Parameters of Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15650-15660. [PMID: 39051472 DOI: 10.1021/acs.est.4c02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Accurate prediction of parameters related to the environmental exposure of chemicals is crucial for the sound management of chemicals. However, the lack of large data sets for training models may result in poor prediction accuracy and robustness. Herein, integrated transfer learning (TL) and multitask learning (MTL) was proposed for constructing a graph neural network (GNN) model (abbreviated as TL-MTL-GNN model) using n-octanol/water partition coefficients as a source domain. The TL-MTL-GNN model was trained to predict three bioaccumulation parameters based on enlarged data sets that cover 2496 compounds with at least one bioaccumulation parameter. Results show that the TL-MTL-GNN model outperformed single-task GNN models with and without the TL, as well as conventional machine learning models trained with molecular descriptors or fingerprints. Applicability domains were characterized by a state-of-the-art structure-activity landscape-based (abbreviated as ADSAL) methodology. The TL-MTL-GNN model coupled with the optimal ADSAL was employed to predict bioaccumulation parameters for around 60,000 chemicals, with more than 13,000 compounds identified as bioaccumulative chemicals. The high predictive accuracy and robustness of the TL-MTL-GNN model demonstrate the feasibility of integrating the TL and MTL strategy in modeling small-sized data sets. The strategy holds significant potential for addressing small data challenges in modeling environmental chemicals.
Collapse
Affiliation(s)
- Zijun Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zecang You
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Pihlaja TLM, Pätsi J, Ollikainen E, Sikanen TM. Comparative in vitro hepatic clearances of commonly used antidepressants, antipsychotics, and anti-inflammatory agents in rainbow trout liver S9 fractions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 274:107048. [PMID: 39146846 DOI: 10.1016/j.aquatox.2024.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Residues of human pharmaceuticals are widely detected in surface waters and can be taken up by and bioaccumulate in aquatic organisms, especially fish. One of the key challenges in assessing the bioaccumulation potential of ionizable organic compounds, such as the pharmaceuticals, is the lack of empirical data for biotransformation. In the present study, we assessed the in vitro intrinsic clearances (CLINT) of twelve pharmaceuticals, individually and some additionally as mixtures, in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (RT-S9) adhering to the OECD test guidance 319B. The test substances included four anti-inflammatory agents (diclofenac, ibuprofen, ketoprofen, naproxen), seven antidepressants/antipsychotics (citalopram, haloperidol, levomepromazine, mirtazapine, risperidone, sertraline, venlafaxine) and the O-desmethyl metabolite of venlafaxine. Quantifiable intrinsic clearances were detected for diclofenac, ibuprofen, naproxen, levomepromazine, and sertraline. Apart from diclofenac, the in vitro clearances of the other four pharmaceuticals were shown to be critically dependent on the cytochrome P450 (CYP) metabolism. Therefore, we also determined the half-maximal inhibitory concentrations (IC50) of the same twelve pharmaceuticals toward CYP1A-like (7-ethoxyresorufin-O-deethylation, EROD) and CYP3A-like (benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylation, BFCOD) activities in RT-S9 using IC50 shift assay. As a result, levomepromazine and sertraline were identified as the most potent inhibitors of both EROD and BFCOD activity (unbound IC50 < 10 µM each), followed by citalopram and haloperidol (10 µM < IC50 < 100 µM). Additionally, mirtazapine was a selective EROD inhibitor (IC50 ∼ 30 µM). The inhibitory impacts of haloperidol and sertraline were indicatively time dependent. Finally, we carried out intrinsic clearance assays with mixtures of diclofenac, ibuprofen, naproxen, levomepromazine, and sertraline to examine the impacts of EROD and BFCOD inhibitions on their in vitro CLINT in RT-S9. Our in vitro data suggests that the intrinsic clearances of ibuprofen, levomepromazine, and sertraline in rainbow trout can be significantly reduced as the result of P450 inhibition by pharmaceutical mixtures, whereas the clearances of diclofenac and naproxen are less impacted.
Collapse
Affiliation(s)
- Tea L M Pihlaja
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, 00100 Helsinki, Finland
| | - Jade Pätsi
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Elisa Ollikainen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
| | - Tiina M Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland; Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, 00100 Helsinki, Finland.
| |
Collapse
|
9
|
Constantine LA, Burden N, Davidson T, Dolan DG, Janer G, Häner A, Lee MR, Maynard SK, Nfon E, Nimrod Perkins A, Ryan JJ, Tell J. Evaluation of the EMA log kow trigger for fish BCF testing based on data for several human pharmaceuticals. Regul Toxicol Pharmacol 2024; 151:105651. [PMID: 38825065 DOI: 10.1016/j.yrtph.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
In the European Medicines Agency (EMA) "Guideline for Environmental Risk Assessment of Medicinal Products for Human Use," a fish bioconcentration factor (BCF) study is triggered in Phase I for pharmaceuticals having log Kow >4.5, to support Persistence, Bioaccumulation and Toxicity (PBT) screening, and in Phase II to assess secondary poisoning and bioaccumulation ('B') potential when log Kow ≥3. The standard sampling schedule outlined in OECD Test Guideline 305 (TG305) may require assessment of approximately 200 fish following exposure to low- and high-test concentrations and a negative control. We report experimental log Kow and BCF values for 64 human pharmaceuticals that were used to evaluate the current BCF testing trigger of log Kow ≥3, and whether a single BCF exposure concentration allows accurate classification of bioaccumulation potential. Our data support raising the BCF testing trigger to log Kow ≥4, and use of a single test concentration. The resulting reduction in the use of fish is consistent with the 3 R s principle and did not adversely affect classification accuracy. An assessment of potential risk of secondary poisoning was also conducted for three drugs classified as either B or vB, and no risks were identified.
Collapse
|
10
|
Zhang L, Gao S, Song Y, Chen H, Wang L, Zhao Y, Cui J, Tang W. Trophic transfer of antibiotics in the benthic-pelagic coupling foodweb in a macrophyte-dominated shallow lake: The importance of pelagic-benthic coupling strength and baseline organism. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134171. [PMID: 38569339 DOI: 10.1016/j.jhazmat.2024.134171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
In lake ecosystems, pelagic-benthic coupling strength (PBCS) is closely related to foodweb structure and pollutant transport. However, the trophic transfer of antibiotics in a benthic-pelagic coupling foodweb (BPCFW) and the manner in which PBCS influences the trophic magnification factor (TMFs) of antibiotics is still not well understood in the whole lake. Herein, the trophic transfer behavior of 12 quinolone antibiotics (QNs) in the BPCFW of Baiyangdian Lake were studied during the period of 2018-2019. It was revealed that 24 dominant species were contained in the BPCFW, and the trophic level was 0.42-2.94. Seven QNs were detected in organisms, the detection frequencies of ofloxacin (OFL), flumequine (FLU), norfloxacin (NOR), and enrofloxacin (ENR) were higher than other QNs. The ∑QN concentration in all species was 11.3-321 ng/g dw. The TMFs for ENR and NOR were trophic magnification, while for FLU/OFL it was trophic dilution. The PBCS showed spatial-temporal variation, with a range of 0.6977-0.7910. The TMFs of ENR, FLU, and OFL were significantly positively correlated with PBCS. Phytoplankton and macrophyte biomasses showed indirect impact on the TMFs of QNs by directly influencing the PBCS. Therefore, the PBCS was the direct influencing factor for the TMFs of chemicals.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Sai Gao
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yuanmeng Song
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Haoda Chen
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Linjing Wang
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, 100085 Beijing, China.
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, Hebei Province, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, 100085 Beijing, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Wu R, Sin YY, Cai L, Wang Y, Hu M, Liu X, Xu W, Kwan KY, Gonçalves D, Chan BKK, Zhang K, Chui APY, Chua SL, Fang JKH, Leung KMY. Pharmaceutical Residues in Edible Oysters along the Coasts of the East and South China Seas and Associated Health Risks to Humans and Wildlife. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5512-5523. [PMID: 38478581 PMCID: PMC10976893 DOI: 10.1021/acs.est.3c10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.
Collapse
Affiliation(s)
- Rongben Wu
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hung
Hom, Hong Kong SAR 999077, China
| | - Yan Yin Sin
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
| | - Lin Cai
- Shenzhen
Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youji Wang
- International
Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International
Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Xiaoshou Liu
- College
of Marine Life Sciences and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenzhe Xu
- College of
Marine and Environmental Sciences, Tianjin
University of Science and Technology, Tianjin 300457, China
| | - Kit Yue Kwan
- College of
Marine Science, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity
Conservation, Beibu Gulf University, Qinzhou City, Guangxi Zhuang
Autonomous Region 535011, China
| | - David Gonçalves
- Institute
of Science and Environment, University of
Saint Joseph, Nossa
Senhora de Fátima, Macao SAR 999078, China
| | | | - Kai Zhang
- National
Observation and Research Station of Coastal Ecological Environments
in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Apple Pui-Yi Chui
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Simon F.S.
Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Song Lin Chua
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, and Research Center for Deep
Space Explorations, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong SAR 999077, China
| | - James Kar-Hei Fang
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hung
Hom, Hong Kong SAR 999077, China
- Research
Institute for Future Food, and Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Kenneth Mei-Yee Leung
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
SAR 999077, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
12
|
Mo J, Guo J, Iwata H, Diamond J, Qu C, Xiong J, Han J. What Approaches Should be Used to Prioritize Pharmaceuticals and Personal Care Products for Research on Environmental and Human Health Exposure and Effects? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:488-501. [PMID: 36377688 DOI: 10.1002/etc.5520] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are released from multiple anthropogenic sources and thus have a ubiquitous presence in the environment. The environmental exposure and potential effects of PPCPs on biota and humans has aroused concern within the scientific community and the public. Risk assessments are commonly conducted to evaluate the likelihood of chemicals including PPCPs that pose health threats to organisms inhabiting various environmental compartments and humans. Because thousands of PPCPs are currently used, it is impractical to assess the environmental risk of all of them due to data limitations; in addition, new PPCPs are continually being produced. Prioritization approaches, based either on exposure, hazard, or risk, provide a possible means by which those PPCPs that are likely to pose the greatest risk to the environment are identified, thereby enabling more effective allocation of resources in environmental monitoring programs in specific geographical locations and ecotoxicological investigations. In the present review, the importance and current knowledge concerning PPCP occurrence and risk are discussed and priorities for future research are proposed, in terms of PPCP exposure (e.g., optimization of exposure modeling in freshwater ecosystems and more monitoring of PPCPs in the marine environment) or hazard (e.g., differential risk of PPCPs to lower vs. higher trophic level species and risks to human health). Recommended research questions for the next 10 years are also provided, which can be answered by future studies on prioritization of PPCPs. Environ Toxicol Chem 2024;43:488-501. © 2022 SETAC.
Collapse
Affiliation(s)
- Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, China
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Jiuqiang Xiong
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Carter LJ, Armitage JM, Brooks BW, Nichols JW, Trapp S. Predicting the Accumulation of Ionizable Pharmaceuticals and Personal Care Products in Aquatic and Terrestrial Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:502-512. [PMID: 35920339 PMCID: PMC12022761 DOI: 10.1002/etc.5451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The extent to which chemicals bioaccumulate in aquatic and terrestrial organisms represents a fundamental consideration for chemicals management efforts intended to protect public health and the environment from pollution and waste. Many chemicals, including most pharmaceuticals and personal care products (PPCPs), are ionizable across environmentally relevant pH gradients, which can affect their fate in aquatic and terrestrial systems. Existing mathematical models describe the accumulation of neutral organic chemicals and weak acids and bases in both fish and plants. Further model development is hampered, however, by a lack of mechanistic insights for PPCPs that are predominantly or permanently ionized. Targeted experiments across environmentally realistic conditions are needed to address the following questions: (1) What are the partitioning and sorption behaviors of strongly ionizing chemicals among species? (2) How does membrane permeability of ions influence bioaccumulation of PPCPs? (3) To what extent are salts and associated complexes with PPCPs influencing bioaccumulation? (4) How do biotransformation and other elimination processes vary within and among species? (5) Are bioaccumulation modeling efforts currently focused on chemicals and species with key data gaps and risk profiles? Answering these questions promises to address key sources of uncertainty for bioaccumulation modeling of ionizable PPCPs and related contaminants. Environ Toxicol Chem 2024;43:502-512. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura J. Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds, United Kingdom and Northern Ireland
| | | | - Bryan W. Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - John W. Nichols
- Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Stefan Trapp
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Zhang Z, Sangion A, Wang S, Gouin T, Brown T, Arnot JA, Li L. Chemical Space Covered by Applicability Domains of Quantitative Structure-Property Relationships and Semiempirical Relationships in Chemical Assessments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38263624 PMCID: PMC10882972 DOI: 10.1021/acs.est.3c05643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A significant number of chemicals registered in national and regional chemical inventories require assessments of their potential "hazard" concerns posed to humans and ecological receptors. This warrants knowledge of their partitioning and reactivity properties, which are often predicted by quantitative structure-property relationships (QSPRs) and other semiempirical relationships. It is imperative to evaluate the applicability domain (AD) of these tools to ensure their suitability for assessment purpose. Here, we investigate the extent to which the ADs of commonly used QSPRs and semiempirical relationships cover seven partitioning and reactivity properties of a chemical "space" comprising 81,000+ organic chemicals registered in regulatory and academic chemical inventories. Our findings show that around or more than half of the chemicals studied are covered by at least one of the commonly used QSPRs. The investigated QSPRs demonstrate adequate AD coverage for organochlorides and organobromines but limited AD coverage for chemicals containing fluorine and phosphorus. These QSPRs exhibit limited AD coverage for atmospheric reactivity, biodegradation, and octanol-air partitioning, particularly for ionizable organic chemicals compared to nonionizable ones, challenging assessments of environmental persistence, bioaccumulation capability, and long-range transport potential. We also find that a predictive tool's AD coverage of chemicals depends on how the AD is defined, for example, by the distance of a predicted chemical from the centroid of the training chemicals or by the presence or absence of structural features.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | | - Shenghong Wang
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, Bedford MK44 1PL, U.K
| | - Trevor Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Jon A Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
15
|
Du D, Lu Y, Yang S, Wang R, Wang C, Yu M, Chen C, Zhang M. Biomagnification and health risks of perflfluoroalkyl acids (PFAAs) in seafood from the Yangtze river estuary of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122930. [PMID: 37972680 DOI: 10.1016/j.envpol.2023.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Bioaccumulation and human health risk assessment of Perfluoroalkyl acids (PFAAs) is important for pollutant hazard assessment. In this study, 26 aquatic organisms were collected from the Yangtze River estuary, the PFAAs concentrations in organisms were detected by liquid chromatography-mass spectrometry, and the trophic levels of organisms were constructed using nitrogen isotope analysis. The results showed that Perfluorobutane sulfonate (PFBS) was predominant in organisms with the mean concentration of 6.43 ± 8.21 ng/g ww. The biomagnification of organisms along the food chain was widespread, and the biomagnification factor (BMF) of perfluorooctane sulfonic (PFOS) was the most prominent. Trophic magnifcation factors (TMFs) of PFAAs were estimated in the marine food web, and TMFs >1 were observed in Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUnDA), Perfluorododecanoic acid (PFDoDA), and PFOS, indicating the biomagnifcation effects of these 4 individual PFAAs in organisms at Yangtze River estuary. The estimated daily intake (EDI) of PFBS was highest in adolescents aged 6-18 years, with EDIs of 18.9 ng/kg·bw/day for males and 14.0 ng/kg·bw/day for females. The hazard ratio (HR) of PFAAs reported in different age and gender groups were lower than 1.
Collapse
Affiliation(s)
- Di Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shengjie Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Ecology, School of Life Science, Nanjing University, Nanjing, 210023, China
| | - Rui Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenchen Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Mingzhao Yu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunci Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Song Z, Li B, Chen L. Occurrence, Distribution, and Trophic Transfer of Pharmaceuticals and Personal Care Products in the Bohai Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21823-21834. [PMID: 38078887 DOI: 10.1021/acs.est.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihua Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Sharma K, Koundal S, Chadha P, Saini HS. Assessment of textile industry effluent (untreated and microbially treated) induced genotoxic, haematological, biochemical, histopathological and ultrastructural alterations in fresh water fish Channa punctata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112086-112103. [PMID: 37824055 DOI: 10.1007/s11356-023-30057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The unregulated expulsion of untreated textile water into water bodies is a major hazard to aquatic ecosystems. The present investigation was contrived to estimate the impact of textile dye bath effluent (untreated and microbially treated) on fish Channa punctata. Untreated effluent-exposed fish showed extremely altered behaviour (air gulping, erratic and speedy movements, increased opercular activity) and morphology (deposition of dyes on skin and scales, high pigmentation, mucus exudation). Significantly increased micronuclei (1.61-, 1.28-, 1.38-fold) and aberrant cell frequency (1.37-, 1.45-, 1.28-fold) was observed in untreated group as compared to treated group after 15, 30, and 45 days of exposure. Tail length, % tail intensity, tail moment and olive tail moment were also enhanced in all the exposed tissues. However, maximum damage was noticed in gill tissues showing 1.19-, 1.37-, 1.34- and 1.50-fold increased TL, %TI, TM and OTM in untreated group as compared to treated group after 45 days of exposure. On comparing untreated and treated groups, increased blood parameters and significantly reduced white blood cell count (WBC) were noticed in treated group. Significantly enhanced alterations in biochemical parameters were also analysed in untreated group. Reduced alterations in enzymological levels of fishes exposed to treated effluent indicate lesser toxic nature of the degraded metabolites of dye. Histological analysis in fishes exposed to untreated effluent showed several deformities in liver (necrosis, congestion, fusion of cells and melanomacrophage infiltration) and gill tissues (necrosis, bending of lamellae and severe aneurysm). Scanning electron microscopy (SEM) analysis further reaffirmed the pathologies observed in histological analysis. Fewer structural alterations were noticed in treated effluent fishes. The results concluded that untreated effluent inflicted toxicity potential on morphology as well as physiological defects in fish, and the severity increased with increasing duration of exposure, whereas reduction in toxicity in microbially treated groups can be analysed for aquacultural purposes owing to their lesser toxic nature.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pooja Chadha
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | | |
Collapse
|
18
|
Gkika IS, Xie G, van Gestel CAM, Ter Laak TL, Vonk JA, van Wezel AP, Kraak MHS. Research Priorities for the Environmental Risk Assessment of Per- and Polyfluorinated Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2302-2316. [PMID: 37589402 DOI: 10.1002/etc.5729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Per- and polyfluorinated substances (PFAS) are a group of thousands of ubiquitously applied persistent industrial chemicals. The field of PFAS environmental research is developing rapidly, but suffers from substantial biases toward specific compounds, environmental compartments, and organisms. The aim of our study was therefore to highlight current developments and to identify knowledge gaps and subsequent research needs that would contribute to a comprehensive environmental risk assessment for PFAS. To this end, we consulted the open literature and databases and found that knowledge of the environmental fate of PFAS is based on the analysis of <1% of the compounds categorized as PFAS. Moreover, soils and suspended particulate matter remain largely understudied. The bioavailability, bioaccumulation, and food web transfer studies of PFAS also focus on a very limited number of compounds and are biased toward aquatic biota, predominantly fish, and less frequently aquatic invertebrates and macrophytes. The available ecotoxicity data revealed that only a few PFAS have been well studied for their environmental hazards, and that PFAS ecotoxicity data are also strongly biased toward aquatic organisms. Ecotoxicity studies in the terrestrial environment are needed, as well as chronic, multigenerational, and community ecotoxicity research, in light of the persistency and bioaccumulation of PFAS. Finally, we identified an urgent need to unravel the relationships among sorption, bioaccumulation, and ecotoxicity on the one hand and molecular descriptors of PFAS chemical structures and physicochemical properties on the other, to allow predictions of exposure, bioaccumulation, and toxicity. Environ Toxicol Chem 2023;42:2302-2316. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ioanna S Gkika
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ge Xie
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas L Ter Laak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | - J Arie Vonk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie P van Wezel
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Kowalska D, Dołżonek J, Żamojć K, Samsonov SA, Maszota-Zieleniak M, Makowska J, Stepnowski P, Białk-Bielińska A, Wyrzykowski D. Insights into the interaction of human serum albumin with ionic liquids - Thermodynamic, spectroscopic and molecular modelling studies. Int J Biol Macromol 2023; 249:125883. [PMID: 37499721 DOI: 10.1016/j.ijbiomac.2023.125883] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Human serum albumin (HSA) effectively binds different types of low-molecular-weight compounds and thus enables their distribution in living organisms. Recently, it has been reported that the protein-ligand interactions play a crucial role in bioaccumulation processes and provide an important sorption phase, especially for ionogenic compounds. Therefore, the binding interactions of such compounds with proteins are the subject of an ongoing interest in environmental and life sciences. In this paper, the influence of some counter-ions, namely [B(CN)4]- and [C(CN)3]- on the affinity of the [IM1-12]+ towards HSA has been investigated and discussed based on experimental methods (isothermal titration calorimetry and steady-state fluorescence spectroscopy) and molecular dynamics-based computational approaches. Furthermore, the thermal stability of the resulting HSA/ligand complexes was assessed using DSC and CD spectroscopy. As an outcome of the work, it has been ascertained that the protein is able to bind simultaneously the ligands under study but in different regions of HSA. Thus, the presence in the system of [IM1-12]+ does not disturb the binding of [C(CN)3]- and [B(CN)4]-. The presented results provide important information on the presence of globular proteins and some ionogenic compounds in the distribution and bioaccumulation of ILs in the environment and living organisms.
Collapse
Affiliation(s)
- Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Krzysztof Żamojć
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
20
|
Tang J, Zhang C, Jia Y, Fang J, Mai BX. Phytoplankton Biological Pump Controls the Spatiotemporal Bioaccumulation and Trophic Transfer of Antibiotics in a Large Subtropical River. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14002-14014. [PMID: 37667590 DOI: 10.1021/acs.est.3c03478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The spatiotemporal bioaccumulation, trophic transfer of antibiotics, and regulation of the phytoplankton biological pump were quantitatively evaluated in the Pearl River, South China. The occurrence of antibiotics in organisms indicated a significant spatiotemporal trend associated with the life cycle of phytoplankton. Higher temporal bioaccumulation factors (BAFs) were found in phytoplankton at the bloom site, while lower BAFs of antibiotics in organisms could not be explained by phytoplankton biomass dilution but were attributed to the low bioavailability of antibiotics, which was highly associated with distribution coefficients (R2 = 0.480-0.595, p < 0.05). Such lower BAFs of antibiotics in phytoplankton at higher biomass sites hampered the entry of antibiotics into food webs, and trophic dilutions were subsequently observed for antibiotics except for ciprofloxacin (CFX) and sulfamerazine (SMZ) at sites with blooms in all seasons. Distribution of CFX, norfloxacin (NFX), and sulfapyridine (SPD) showed further significant positive relationships with the plasma protein fraction (R2 = 0.275-0.216, p < 0.05). Both mean BAFs and trophic magnification factors (TMFs) were significantly negatively correlated with phytoplankton biomass (R2 = 0.661-0.741, p < 0.05). This study highlights the importance of the biological pump in the regulation of spatiotemporal variations in bioaccumulation and trophic transfer of antibiotics in anthropogenic-impacted eutrophic rivers in subtropical regions.
Collapse
Affiliation(s)
- Jinpeng Tang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chencheng Zhang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, P. R. China
| | - Yanyan Jia
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, P. R. China
| | - Ji Fang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P. R. China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, P. R. China
| |
Collapse
|
21
|
Arnot JA, Toose L, Armitage JM, Embry M, Sangion A, Hughes L. A weight of evidence approach for bioaccumulation assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1235-1253. [PMID: 35049141 DOI: 10.1002/ieam.4583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Bioaccumulation assessments conducted by regulatory agencies worldwide use a variety of methods, types of data, metrics, and categorization criteria. Lines of evidence (LoE) for bioaccumulation assessment can include bioaccumulation metrics such as in vivo bioconcentration factor (BCF) and biomagnification factor (BMF) data measured from standardized laboratory experiments, and field (monitoring) data such as BMFs, bioaccumulation factors (BAFs), and trophic magnification factors (TMFs). In silico predictions from mass-balance models and quantitative structure-activity relationships (QSARs) and a combination of in vitro biotransformation rates and in vitro-in vivo extrapolation (IVIVE) models can also be used. The myriad bioaccumulation metrics and categorization criteria and underlying uncertainty in measured or modeled data can make decision-making challenging. A weight of evidence (WoE) approach is recommended to address uncertainty. The Bioaccumulation Assessment Tool (BAT) guides a user through the process of collecting and generating various LoE required for assessing the bioaccumulation of neutral and ionizable organic chemicals in aquatic (water-respiring) and air-breathing organisms. The BAT includes data evaluation templates (DETs) to critically evaluate the reliability of the LoE used in the assessment. The DETs were developed from standardized testing guidance. The approach used in the BAT is consistent with OECD and SETAC WoE principles and facilitates the implementation of chemical policy objectives in chemical assessment and management. The recommended methods are also iterative and tiered, providing pragmatic methods to reduce unnecessary animal testing. General concepts of the BAT are presented and case study applications of the tool for hexachlorobenzene (HCB) and β-hexachlorocyclohexane (β-HCH) are demonstrated. The BAT provides a consistent and transparent WoE framework to address uncertainty in bioaccumulation assessment and is envisaged to evolve with scientific and regulatory developments. Integr Environ Assess Manag 2023;19:1235-1253. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Jon A Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario, Canada
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Liisa Toose
- ARC Arnot Research & Consulting, Toronto, Ontario, Canada
| | - James M Armitage
- AES Armitage Environmental Sciences, Inc., Ottawa, Ontario, Canada
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Alessandro Sangion
- ARC Arnot Research & Consulting, Toronto, Ontario, Canada
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Lauren Hughes
- ARC Arnot Research & Consulting, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Zhou J, Zuo S, Wang Y, An R, Zheng S, Cao L, Zhang F, Jin Y, Shen J, Meng H, Zheng X, Wang C, Shi H, Zhao Y, Giesy JP, Zhang K, Dai J. Prioritization of risks posed by synthetic chemicals manufactured in China toward humans and the environment via persistence, bioaccumulation, mobility and toxicity properties. ENVIRONMENT INTERNATIONAL 2023; 178:108042. [PMID: 37399767 DOI: 10.1016/j.envint.2023.108042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
Over a third of the global chemical production and sales occurred in China, which make effective assessment and management for chemicals produced by China's chemical industry essential not just for China but for the world. Here, we systematical assessed the persistence (P), bioaccumulation (B), mobility (M) and toxicity (T) potency properties for the chemicals listed in Inventory of Existing Chemical Substances of China (IECSC) via experimental data retrieved from large scale databases and in silico data generated with well-established models. Potential PBT, PMT and PB&MT substances were identified. High risk potentials were highlighted for groups of synthetic intermediates, raw materials, as well as a series of biocides. The potential PBT and PMT synthetic intermediates and/or raw materials unique to the IECSC were dominated with organofluorines, for example, the intermediates used as electronic light-emitting materials. Meanwhile, the biocides unique to the IECSC were mainly organochlorines. Some conventional classes of insecticides, such as organochlorines and pyrethroids, were classified as being of high concern. We further identified a group of PB&MT substances that were considered to be both "bioaccumulative" and "mobile". Their properties and common substructures for several major clusters were characterized. The present results prioritized groups of substances with high potentials to cause adverse effects to the environment and humans, many of which have not yet been fully recognized.
Collapse
Affiliation(s)
- Jie Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoqi Zuo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yang Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ruiqi An
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuping Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingzhi Cao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fan Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiheng Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jing Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haoyu Meng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xuehan Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, USA; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
23
|
Li Z, Xiong J. A dynamic inventory database for assessing age-, gender-, and route-specific chronic internal exposure to chemicals in support of human exposome research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117867. [PMID: 37027904 DOI: 10.1016/j.jenvman.2023.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
In this study, we proposed a dynamic inventory database to evaluate chronic internal exposure to chemicals at a population level, which enables users to perform modeling exercises specific to a particular chemical, route of exposure, age group, and gender. The database was built based on the steady-state solution of physiologically based kinetic (PBK) models. The biotransfer factors [BTF, the steady-state ratio between the chemical concentration in human tissues and the average daily dose (ADD) of the chemical] of 931 organic chemicals in major organs and tissues were simulated for a total of 14 population age groups for males and females. The results indicated that infants and children had the highest simulated BTFs of chemicals, and middle-aged adults had the lowest simulated BTFs. The route-specific analysis of the simulated BTFs indicated that the biotransformation half-life and octanol-water partition coefficient of chemicals had a profound impact on the BTFs. Organ- and chemical-specific results indicated that the biotransfer potential of chemicals in human bodies was primarily determined by bio-thermodynamic variables (e.g., lipid contents). In conclusion, the proposed inventory database can be conveniently used to access chronic internal exposure doses of chemicals by multiplying the route-specific ADD values for different population groups. In future studies, we recommend incorporating human biotransformation data, partition coefficients of ionizable chemicals, age-specific vulnerable indicators (e.g., the degree of maturation of immune systems), physiological variations within the same age group (e.g., intensity of daily physical activities), growth rates (i.e., the dilution effect on chemical biotransfer), and all possible target organs of carcinogenicity (e.g., bladder) into the proposed dynamic inventory database to help promote human exposome research.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Jie Xiong
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
24
|
Niu S, Cao Y, Chen R, Bedi M, Sanders AP, Ducatman A, Ng C. A State-of-the-Science Review of Interactions of Per- and Polyfluoroalkyl Substances (PFAS) with Renal Transporters in Health and Disease: Implications for Population Variability in PFAS Toxicokinetics. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:76002. [PMID: 37418334 PMCID: PMC10328216 DOI: 10.1289/ehp11885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and have been shown to cause various adverse health impacts. In animals, sex- and species-specific differences in PFAS elimination half-lives have been linked to the activity of kidney transporters. However, PFAS molecular interactions with kidney transporters are still not fully understood. Moreover, the impact of kidney disease on PFAS elimination remains unclear. OBJECTIVES This state-of-the-science review integrated current knowledge to assess how changes in kidney function and transporter expression from health to disease could affect PFAS toxicokinetics and identified priority research gaps that should be addressed to advance knowledge. METHODS We searched for studies that measured PFAS uptake by kidney transporters, quantified transporter-level changes associated with kidney disease status, and developed PFAS pharmacokinetic models. We then used two databases to identify untested kidney transporters that have the potential for PFAS transport based on their endogenous substrates. Finally, we used an existing pharmacokinetic model for perfluorooctanoic acid (PFOA) in male rats to explore the influence of transporter expression levels, glomerular filtration rate (GFR), and serum albumin on serum half-lives. RESULTS The literature search identified nine human and eight rat kidney transporters that were previously investigated for their ability to transport PFAS, as well as seven human and three rat transporters that were confirmed to transport specific PFAS. We proposed a candidate list of seven untested kidney transporters with the potential for PFAS transport. Model results indicated PFOA toxicokinetics were more influenced by changes in GFR than in transporter expression. DISCUSSION Studies on additional transporters, particularly efflux transporters, and on more PFAS, especially current-use PFAS, are needed to better cover the role of transporters across the PFAS class. Remaining research gaps in transporter expression changes in specific kidney disease states could limit the effectiveness of risk assessment and prevent identification of vulnerable populations. https://doi.org/10.1289/EHP11885.
Collapse
Affiliation(s)
- Shan Niu
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuexin Cao
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison P. Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Ducatman
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Zhang X, Li Z. Generalizing routes of plant exposure to pesticides by plant uptake models to assess pesticide application efficiency. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115145. [PMID: 37327522 DOI: 10.1016/j.ecoenv.2023.115145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Pesticide application techniques are critical not only for integrated pest management (IPM) but also for food and environmental safety. Assessing pesticide application efficiency on plants can help optimize IPM and reduce pesticide environmental impacts. With hundreds of pesticides registered for use in agriculture, this study proposed a modeling approach based on plant uptake models for generalizing routes of plant chemical exposures that can correspond to different types of pesticide application methods and evaluating their respective efficiency on plants. Three representative pesticide application methods (i.e., drip irrigation, foliar spray, and broadcast application) were selected for modeling simulations. The simulation results for three representative pesticides (i.e., halofenozide, pymetrozine, and paraquat) revealed that the soil-based transpiration exposure route facilitated the bioaccumulation of moderately lipophilic compounds in leaves and fruits. While the plant surface-based exposure route (i.e., leaf cuticle penetration) made it easier for highly lipophilic compounds to enter plants, moderately lipophilic pesticides (i.e., log KOW ∼ 2) were more soluble in phloem sap, which enhanced their subsequent transport within plant tissues. In general, moderately lipophilic pesticides had the highest simulated residue concentrations in plant tissues for the three specific application methods, indicating they had the highest application efficiency due to their enhanced uptake routes (via transpiration and surface penetration) and increased solubility in xylem and phloem saps. Compared to foliar spray and broadcast application, drip irrigation produced higher residue concentrations for a wide variety of pesticides, exhibiting the highest application efficiency for many pesticides, especially for moderately lipophilic compounds. Future research should incorporate plant growth stages, crop safety, pesticide formulations, and multiple application events into the modeling approach for understanding pesticide application efficiency evaluation.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
26
|
Potter TD, Haywood N, Teixeira A, Hodges G, Barrett EL, Miller MA. Partitioning into phosphatidylcholine-cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37158124 DOI: 10.1039/d3em00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Nicola Haywood
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
27
|
Balk F, Hollender J, Schirmer K. Investigating the bioaccumulation potential of anionic organic compounds using a permanent rainbow trout liver cell line. ENVIRONMENT INTERNATIONAL 2023; 174:107798. [PMID: 36965398 DOI: 10.1016/j.envint.2023.107798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Permanent rainbow trout (Oncorhynchus mykiss) cell lines represent potential in vitro alternatives to experiments with fish. We here developed a method to assess the bioaccumulation potential of anionic organic compounds in fish, using the rainbow trout liver-derived RTL-W1 cell line. Based on the availability of high quality in vivo bioconcentration (BCF) and biomagnification (BMF) data and the substances' charge state at physiological pH, four anionic compounds were selected: pentachlorophenol (PCP), diclofenac (DCF), tecloftalam (TT) and benzotriazol-tert-butyl-hydroxyl-phenyl propanoic acid (BHPP). The fish cell line acute toxicity assay (OECD TG249) was used to derive effective concentrations 50 % and non-toxic exposure concentrations to determine exposure concentrations for bioaccumulation experiments. Bioaccumulation experiments were performed over 48 h with a total of six time points, at which cell, medium and plastic fractions were sampled and measured using high resolution tandem mass spectrometry after online solid phase extraction. Observed cell internal concentrations were over-predicted by KOW-derived predictions while pH-dependent octanol-water partitioning (DOW) and membrane lipid-water partitioning (DMLW) gave better predictions of cell internal concentrations. Measured medium and cell internal concentrations at steady state were used to calculate RTL-W1-based BCF, which were compared to DOW- or DMLW-based model approaches and in vivo data. With the exception of PCP, the cell-derived BCF best compared to DOW-based model predictions, which were higher than predictions based on DMLW. All methods predicted the in vivo BCF for diclofenac well. For PCP, the cell-derived BCF was lowest although all BCF predictions underestimated the in vivo BCF by ≥ 1 order of magnitude. The RTL-W1 cells, and all other prediction methods, largely overestimated in vivo BMF, which were available for PCP, TT and BHPP. We conclude that the RTL-W1 cell line can supplement BCF predictions for anionic compounds. For BMF estimations, however, in vitro-in vivo extrapolations need adaptation or a multiple cell line approach.
Collapse
Affiliation(s)
- Fabian Balk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland.
| |
Collapse
|
28
|
Qadeer A, Ajmal Z, Hanxia L, Ran D, Bekele TG, Kirsten KL, Liu S, Liu M, Zhifeng H, Jing D, Wang S, Xia J, Xingru Z. Influence of habitats and physicochemical factors on trophic transfer processes of antibiotics in a freshwater ecosystem: Application of stable isotopes and human health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160765. [PMID: 36513226 DOI: 10.1016/j.scitotenv.2022.160765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Habitats of species and physicochemical factors are of great importance in determining the trophic transfer of contaminants in freshwater ecosystems. There is little information on how multiple physicochemical factors and habitats influence the trophic transfer of antibiotics in freshwater food webs. This study investigated the concentrations of 7 sulfonamides (SAs), 4 fluoroquinolones (FQs), 4 tetracyclines (TCs) and 2 macrolides (MLs) in the Lake Dianshan food web. Stable isotope analysis (SIA), and mathematical models were used to assign trophic levels and distinguish between the benthic food web (BFW) and pelagic food web (PFW). Values of stable nitrogen isotope (δ15N‰) and stable carbon isotope (δ13C‰) ranged from 10.2 ± 0.11 to 19.72 ± 0.05 and -33.67 ± 0.18 to -20.79 ± 0.50, respectively. Total concentrations of antibiotics ranged from 36.63 ± 12.73 ng/g dry weight (dw) to 105.85 ± 12.95 ng/g dw for all species. The relative abundance of antibiotics was in the following order: ∑FQs (36.49 %) > ∑SAs (26.70 %), >∑MLs (12.63 %) for all biotas. Trophic magnification factor (TMFs) values for individual antibiotics ranged from 0.10 to 1.20 and 0.31 to 1.82 for PFW and BFW, respectively. Three classes of antibiotics ∑FQs (p < 0.05), ∑TCs (p < 0.05), and ∑MLs (p < 0.05) showed significant trophic dilution in PFW, opposite to non-significant trophic dilution in BFW. The influence of various physicochemical factors was not strong over trophic transfer (e.g., octanol-water partition coefficient-LogKow (r = -0.05 in PFW, r = -0.14 in BFW) and distribution coefficient-LogD (r = 0.06 in PWF, r = -0.28 in BFW)) except for aqueous solubility (LogS). Results indicated a significantly higher trophic dilution of antibiotics in the PFW than in the BFW. Among the studied six physicochemical factors, only LogS significantly influences (p < 0.05) the trophic transfer of antibiotics in the freshwater food web. Health risk assessments indicated that currently, there were no serious risks present for urban and rural populations.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Zeeshan Ajmal
- College of Engineering, China Agricultural University, 100083 Beijing, China
| | - Liu Hanxia
- Chinese Academy of Inspection and Quarantine, Beijing 100123, China
| | - Dai Ran
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Tadiyose Girma Bekele
- School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Kelly L Kirsten
- Department of Geological Sciences, University of Cape Town, Cape Town 8001, South Africa
| | - Sisi Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077, Hong Kong
| | - Huang Zhifeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Dong Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Jiang Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Zhao Xingru
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| |
Collapse
|
29
|
Wronski AR, Brooks BW. Global occurrence and aquatic hazards of antipsychotics in sewage influents, effluent discharges and surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121042. [PMID: 36646406 DOI: 10.1016/j.envpol.2023.121042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Despite increasing reports of pharmaceuticals in surface waters, aquatic hazard information remains limited for many contaminants, particularly for sublethal, chronic responses plausibly linked to molecular initiation events that are largely conserved across vertebrates. Here, we critically examined available refereed information on the occurrence of 67 antipsychotics in wastewater effluent and surface waters. Because the majority of sewage remains untreated around the world, we also examined occurrence in sewage influents. When sufficient information was available, we developed probabilistic environmental exposure distributions (EEDs) for each compound in each matrix by geographic region. We then performed probabilistic environmental hazard assessments (PEHAs) using therapeutic hazard values (THVs) of each compound, due to limited sublethal aquatic toxicology information for this class of pharmaceuticals. From these PEHAs, we determined predicted exceedances of the respective THVs for each chemical among matrices and regions, noting that THV values of antipsychotic contaminants are typically lower than other classes of human pharmaceuticals. Diverse exceedances were observed, and these aquatic hazards varied by compound, matrix and geographic region. In wastewater effluent discharges and surface waters, sulpiride was the most detected antipsychotic; however, percent exceedances of the THV were minimal (0.6%) for this medication. In contrast, we observed elevated aquatic hazards for chlorpromazine (30.5%), aripiprazole (37.5%), and perphenazine (68.7%) in effluent discharges, and for chlorprothixene (35.4%) and flupentixol (98.8%) in surface waters. Elevated aquatic hazards for relatively understudied antipsychotics were identified, which highlight important data gaps for future environmental chemistry and toxicology research.
Collapse
Affiliation(s)
- Adam R Wronski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
30
|
Dong H, Lu G, Wang X, Zhang P, Yang H, Yan Z, Liu J, Jiang R. Tissue-specific accumulation, depuration, and effects of perfluorooctanoic acid on fish: Influences of aqueous pH and sex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160567. [PMID: 36455738 DOI: 10.1016/j.scitotenv.2022.160567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely distributed in nature, particularly in aquatic environments. Its bioaccumulation and toxicity in aquatic organisms can be affected by both the chemical status of PFOA in water and the physiology of the organism. However, research on the patterns of these effects is scarce. In this study, we investigated the influence of aqueous pH (pH 6, acidic; pH 7.5, neutral; pH 9, basic) and fish sex on PFOA uptake, clearance, and biochemical effects in crucian carp (C. auratus) using flow-through exposure. In the 17-d kinetic experiment, PFOA bioaccumulation adhered to a uniform first-order model in which PFOA uptake rates from water to blood and liver in acidic conditions were faster than those in other conditions, indicating possible acidic pH influence on PFOA uptake. PFOA clearance rates in these compartments of males were slower than in females, which was attributed to the notably stronger expression of Oat2 (organic anion transporter 2, responsible for reabsorption) in the kidneys of males. Similar responses were observed for peroxisome proliferation-related biomarkers at different pH levels and in different sexes. These biochemical responses were driven by the internal concentrations of PFOA. The inhibition acetylcholinesterase activity in the fish brain was closely linked to changes in P-glycoprotein content, demonstrating a protective relationship. Collectively, an aqueous pH lower than 7.5 might affect the uptake of PFOA by fish. The clearance discrepancies between the sexes highlight the importance of anion carriers for ionizable organic compounds in aquatic organisms.
Collapse
Affiliation(s)
- Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
31
|
Liu D, Yan S, Wang P, Chen Q, Liu Y, Cui J, Liang Y, Ren S, Gao Y. Perfluorooctanoic acid (PFOA) exposure in relation to the kidneys: A review of current available literature. Front Physiol 2023; 14:1103141. [PMID: 36776978 PMCID: PMC9909492 DOI: 10.3389/fphys.2023.1103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Perfluorooctanoic acid is an artificial and non-degradable chemical. It is widely used due to its stable nature. It can enter the human body through food, drinking water, inhalation of household dust and contact with products containing perfluorooctanoic acid. It accumulates in the human body, causing potential harmful effects on human health. Based on the biodegradability and bioaccumulation of perfluorooctanoic acid in the human body, there are increasing concerns about the adverse effects of perfluorooctanoic acid exposure on kidneys. Research shows that kidney is the main accumulation organ of Perfluorooctanoic acid, and Perfluorooctanoic acid can cause nephrotoxicity and produce adverse effects on kidney function, but the exact mechanism is still unknown. In this review, we summarize the relationship between Perfluorooctanoic acid exposure and kidney health, evaluate risks more clearly, and provide a theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Dongge Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuqi Yan
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Pingwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qianqian Chen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanping Liu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiajing Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yujun Liang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Shuping Ren
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ying Gao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Burkhard LP, Votava LK. Review of per- and polyfluoroalkyl substances (PFAS) bioaccumulation in earthworms. ENVIRONMENTAL ADVANCES 2022; 11:1-10. [PMID: 38481605 PMCID: PMC10936581 DOI: 10.1016/j.envadv.2022.100335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used across the globe in commercial products such textiles, firefighting foams, and surface coatings. Some PFAS, such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are known to be bioaccumulative. Numerous terrestrial ecosystems including sites near PFAS manufacturing facilities, facilities using PFAS in their manufacturing processes, firefighting training areas, landfills, and agricultural fields treated with some pesticide formulations, have been contaminated with PFAS. Earthworms reside at the base of the terrestrial food chain and to perform risk assessments at terrestrial sites contaminated with PFAS, information on the bioaccumulation of PFAS is needed. To understand the bioaccumulation of PFAS by earthworms, a literature search was performed, and biota-soil accumulation factors (BSAFs), measured in laboratory tests and at field sites contaminated with PFAS, were assembled and evaluated in this review. Based on this review, we conclude that there is enough data available for carboxylic and sulfonic acid PFAS classes to derive useful BSAFs for terrestrial risk assessments. Laboratory tests with PFOS and PFOA will be close to or at steady-state conditions with standardized testing protocols, and for the longer chain carboxylic and sulfonic acids, it is unlikely they will reach steady-state with the completion of the uptake exposure. For PFAS classes beyond the carboxylic and sulfonic acids, data are limited and performing terrestrial risk assessments with these PFAS will be difficult. Lastly, additional measurements are needed for non-acid PFAS classes as well as from field settings for all PFAS classes. Across all studies, PFOS and PFOA had average (standard deviation, count) BSAFs (kg-OC/kg-ww) of 0.167 (0.311, 60) and 0.0413 (0.175, 47), respectively.
Collapse
Affiliation(s)
- Lawrence P. Burkhard
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804 USA
| | - Lauren K. Votava
- Oak Ridge Associated Universities Student Services Contractor to U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804 USA
| |
Collapse
|
33
|
Glover CN, Klaczek CE, Goss GG, Saari GN. Factors Affecting the Binding of Diltiazem to Rainbow Trout Plasma: Implications for the Risk Assessment of Pharmaceuticals in Aquatic Systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3125-3133. [PMID: 36177769 DOI: 10.1002/etc.5493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The accumulation of organic toxicants in fish plasma, and how they partition between the bound and unbound fraction once absorbed, are important metrics in models that seek to predict the risk of such contaminants in aquatic settings. Rapid equilibrium dialysis of diltiazem, an ionizable weak base and important human pharmaceutical contaminant of freshwaters, was conducted with rainbow trout (Oncorhynchus mykiss) plasma. The effect of fed state, fish sex, fish strain/size, and dialysis buffer pH on the binding of radiolabeled diltiazem (9 ng ml-1 ) was assessed. In fed fish, 24.6%-29.5% of diltiazem was free, unbound to plasma proteins. Although starvation of fish resulted in a decrease in plasma protein, the bound fraction of diltiazem remained relatively constant. Consequently, the protein-bound concentration of diltiazem increased with length of starvation. In general, rainbow trout strain was a significant factor affecting plasma binding, although the two strains tested also differed markedly in size. Dialysis buffer pH significantly influenced plasma binding, with a higher unbound diltiazem fraction at pH 6.8 than pH 8.0. These data indicate that empirical measures of plasma binding in fish are important for accurate risk assessment and that the physiological status of a fish is likely to impact its sensitivity to toxicants such as diltiazem. Environ Toxicol Chem 2022;41:3125-3133. © 2022 SETAC.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chantelle E Klaczek
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin N Saari
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Upper Midwest Environmental Science Center, United States Geological Survey, La Crosse, Wisconsin, USA
| |
Collapse
|
34
|
Bourgeois ZM, Comfort J, Schultz M, Challis JK, Cantin J, Ji X, Giesy JP, Brinkmann M. Predicting Hepatic Clearance of Psychotropic Drugs in Isolated Perfused Fish Livers Using a Combination of Two In Vitro Assays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15839-15847. [PMID: 36268931 DOI: 10.1021/acs.est.2c03017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In vitro biotransformation assays with primary trout hepatocytes (RT-HEP) or liver subcellular fractions (RT-S9) have been proposed as valuable tools to help scientists and regulators better understand the toxicokinetics of chemicals. While both assays have been applied successfully to a diversity of neutral organic chemicals, only the RT-S9 assay has been applied to a large number of ionizable organic chemicals. Here, a combination of an in vitro biotransformation assay with RT-HEP with an active transport assay based on the permanent rainbow trout liver cell line RTL-W1 was used to qualitatively predict the potential hepatic clearance of nine psychotropic drugs with various degrees of ionization. Predictions were compared with rates of clearance measured in isolated perfused rainbow trout livers, and the importance of active transport was verified in the presence of the active transport inhibitor cyclosporin A. For the first time, it was demonstrated that a combination of biotransformation and active transport assays is powerful for the prediction of rates of hepatic clearance of ionizable chemicals. Ultimately, it is expected that this approach will allow for use of fewer animals while at the same time improving our confidence in the use of data from in vitro assays in chemical risk assessment.
Collapse
Affiliation(s)
- Zoey M Bourgeois
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
| | - Jordan Comfort
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
| | - Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
| | - Jonathan K Challis
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
| | - Jenna Cantin
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
| | - Xiaowen Ji
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, SaskatchewanS7N 5C8, Canada
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Dr, Saskatoon, SaskatchewanS7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, 784 Wilson Rd, East Lansing, Michigan48824, United States
- Department of Environmental Science, Baylor University, 97266 One Bear Place, Waco, Texas76798, United States
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, SaskatchewanS7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, SaskatchewanS7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, SaskatchewanS7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, SaskatchewanS7N 1K2, Canada
| |
Collapse
|
35
|
Londhe K, Lee CS, McDonough CA, Venkatesan AK. The Need for Testing Isomer Profiles of Perfluoroalkyl Substances to Evaluate Treatment Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15207-15219. [PMID: 36314557 PMCID: PMC9670843 DOI: 10.1021/acs.est.2c05518] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Many environmentally relevant poly-/perfluoroalkyl substances (PFASs) including perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exist in different isomeric (branched and linear) forms in the natural environment. The isomeric distribution of PFASs in the environment and source waters is largely controlled by the source of contamination and varying physicochemical properties imparted by their structural differences. For example, branched isomers of PFOS are relatively more reactive and less sorptive compared to the linear analogue. As a result, the removal of branched and linear PFASs during water treatment can vary, and thus the isomeric distribution in source waters can influence the overall efficiency of the treatment process. In this paper, we highlight the need to consider the isomeric distribution of PFASs in contaminated matrices while designing appropriate remediation strategies. We additionally summarize the known occurrence and variation in the physicochemical properties of PFAS isomers influencing their detection, fate, toxicokinetics, and treatment efficiency.
Collapse
Affiliation(s)
- Kaushik Londhe
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Cheng-Shiuan Lee
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
- Research
Center for Environmental Changes, Academia
Sinica, Taipei 115, Taiwan
| | - Carrie A. McDonough
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Arjun K. Venkatesan
- Department
of Civil Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- New
York State Center for Clean Water Technology, Stony Brook University, Stony
Brook, New York 11794, United States
- School
of Marine and Atmospheric Sciences, Stony
Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
36
|
Disdier Z, Savoye S, Dagnelie RVH. Effect of solutes structure and pH on the n-octanol/water partition coefficient of ionizable organic compounds. CHEMOSPHERE 2022; 304:135155. [PMID: 35660394 DOI: 10.1016/j.chemosphere.2022.135155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Liquid-liquid partition coefficient is a useful tool to predict biological and environmental fate of organic compounds, for example bioaccumulation or toxicity of lipophilic contaminants. Conversely, the partitioning of ionizable compounds is poorly studied in contrast to that of neutral compounds. Yet, such topic deserves attention, since numerous organic contaminants are ionizable as well as their degradation products. Hence, the contribution of charged species has to be considered in order to model accurately the mass balance or partition of ionizable compounds. In this context, we investigated the liquid-liquid partition of 13 ionizable compounds (oxalic acid, histidine, benzimidazole, etc.), covering various classes of compounds (carboxylic acids, amino-acids, etc.). The n-octanol/water partition coefficient was measured from pH 1 up to 13, in order to fully gather the distribution of both neutral and charged species. Empirical models describing these results are reviewed and partition parameters adjusted for charged species. The study of benzoic acid derivatives (benzoic, salicylic, ortho- and iso-phthalic acids) provides insights on the influence of chemical groups on the partitioning. In the case of tryptophan, the use of acid/base microconstants allowed to estimate the partition of both the zwitterion and its neutral tautomer. Despite a major zwitterionic form (log PZ(tryptophan) = -1.58 ± 0.30), the minor but neutral tautomer (log PN(tryptophan) = +0.03 ± 0.30) drives the partition equilibrium. Overall, the provided data may be useful to assess the retention of contaminants, its dependency on pH and salinity variations, and thus understanding their environmental fate. Such data may also be useful as well for molecular simulation involving solvation of organic ions in aqueous and non-aqueous solvents.
Collapse
Affiliation(s)
- Zoé Disdier
- Université Paris-Saclay, CEA, Service d'Étude du Comportement des Radionucléides, 91191, Gif-sur-Yvette, France
| | - Sébastien Savoye
- Université Paris-Saclay, CEA, Service d'Étude du Comportement des Radionucléides, 91191, Gif-sur-Yvette, France
| | - Romain V H Dagnelie
- Université Paris-Saclay, CEA, Service d'Étude du Comportement des Radionucléides, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
37
|
Wania F, Lei YD, Baskaran S, Sangion A. Identifying organic chemicals not subject to bioaccumulation in air-breathing organisms using predicted partitioning and biotransformation properties. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1297-1312. [PMID: 34783167 PMCID: PMC9541168 DOI: 10.1002/ieam.4555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 05/12/2023]
Abstract
Because the respiration processes contributing to the elimination of organic chemicals deviate between air- and water-breathing organisms, existing and widely used procedures for identifying chemicals not subject to bioaccumulation in aquatic organisms based on the octanol-water partition ratio KOW need to be complemented with similar procedures for organisms respiring air. Here, we propose such a procedure that relies on the comparison of a compound's predicted KOW , octanol-air partition ratio KOA , and biotransformation half-life HLB with three threshold values, below which elimination is judged to be sufficiently rapid to prevent bioaccumulation. The method allows for the consideration of the effect of dissociation on the efficiency of urinary and respiratory elimination. Explicit application of different types of the prediction error, such as the 95% prediction interval or the standard error, allows for variable tolerance for false-negative decisions, that is, the potential to judge a chemical as not bioaccumulative even though it is. A test with a set of more than 1000 diverse organic chemicals confirms the applicability of the prediction methods for a wide range of compounds and the procedure's ability to categorize approximately four-fifth of compounds as being of no bioaccumulation concern, suggesting its usefulness to screen large numbers of commercial chemicals to identify those worthy of further scrutiny. The test also demonstrates that a screening based solely on KOW and KOA would be far less effective because the fraction of chemicals that can be judged as sufficiently volatile and/or sufficiently water soluble for rapid respiratory and urinary elimination based on the partitioning properties predicted for their neutral form is relatively small. Future improvements of the proposed procedure depend largely on the development of prediction methods for the biotransformation kinetics in air-breathing organisms and for the potential for renal reabsorption. Integr Environ Assess Manag 2022;18:1297-1312. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Ying Duan Lei
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Sivani Baskaran
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| | - Alessandro Sangion
- Department of Physical and Environmental SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
| |
Collapse
|
38
|
El-Masri H, Paul Friedman K, Isaacs K, Wetmore BA. Advances in computational methods along the exposure to toxicological response paradigm. Toxicol Appl Pharmacol 2022; 450:116141. [PMID: 35777528 PMCID: PMC9619339 DOI: 10.1016/j.taap.2022.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Human health risk assessment is a function of chemical toxicity, bioavailability to reach target biological tissues, and potential environmental exposure. These factors are complicated by many physiological, biochemical, physical and lifestyle factors. Furthermore, chemical health risk assessment is challenging in view of the large, and continually increasing, number of chemicals found in the environment. These challenges highlight the need to prioritize resources for the efficient and timely assessment of those environmental chemicals that pose greatest health risks. Computational methods, either predictive or investigative, are designed to assist in this prioritization in view of the lack of cost prohibitive in vivo experimental data. Computational methods provide specific and focused toxicity information using in vitro high throughput screening (HTS) assays. Information from the HTS assays can be converted to in vivo estimates of chemical levels in blood or target tissue, which in turn are converted to in vivo dose estimates that can be compared to exposure levels of the screened chemicals. This manuscript provides a review for the landscape of computational methods developed and used at the U.S. Environmental Protection Agency (EPA) highlighting their potentials and challenges.
Collapse
Affiliation(s)
- Hisham El-Masri
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kristin Isaacs
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, U. S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
39
|
Sun JM, Kelly BC, Gobas FAPC, Sunderland EM. A food web bioaccumulation model for the accumulation of per- and polyfluoroalkyl substances (PFAS) in fish: how important is renal elimination? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1152-1164. [PMID: 35678632 PMCID: PMC9384792 DOI: 10.1039/d2em00047d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/18/2022] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large class of highly fluorinated anthropogenic chemicals. Some PFAS bioaccumulate in aquatic food webs, thereby posing risks for seafood consumers. Existing models for persistent organic pollutants (POPs) perform poorly for ionizable PFAS. Here we adapt a well-established food web bioaccumulation model for neutral POPs to predict the bioaccumulation behavior of six perfluoroalkyl acids (PFAAs) and two perfluoroalkyl ether acids (HFPO-DA, 9-Cl-PF3ONS) produced as PFAA replacements. The new model includes sorption to blood plasma proteins and phospholipids, empirically parameterized membrane transport, and renal elimination for PFAAs. Improved performance relative to prior models without these updates is shown by comparing simulations to field and lab measurements. PFAS with eight or more perfluorinated carbons (ηpfc ≥ 8, i.e., C8 perfluorosulfonic acid, C10-C11 perfluorocarboxylic acid, 9-Cl-PF3ONS) are often the most abundant in aquatic food webs. The new model reproduces their observed bioaccumulation potential within a factor of two for >80% of fish species, indicating its readiness to support development of fish consumption advisories for these compounds. Results suggest bioaccumulation of ηpfc ≥ 8 PFAS is primarily driven by phospholipid partitioning, and that renal elimination is negligible for these compounds. However, specific protein binding mechanisms are important for reproducing the observed tissue concentrations of many shorter-chain PFAAs, including protein transporter-mediated renal elimination. Additional data on protein-binding and membrane transport mechanisms for PFAS are needed to better understand the biological behavior of shorter-chain PFAAs and their alternatives.
Collapse
Affiliation(s)
- Jennifer M Sun
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, 02138. jennifersun@.g.harvard.edu
| | - Barry C Kelly
- Meta Analytical Inc., Calgary, AB, T3H 2Z5, Canada
- School of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Frank A P C Gobas
- School of Resource and Environmental Management, Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA, 02138. jennifersun@.g.harvard.edu
| |
Collapse
|
40
|
Zhang L, Brooks BW, Liu F, Zhou Z, Li H, You J. Human Apparent Volume of Distribution Predicts Bioaccumulation of Ionizable Organic Chemicals in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11547-11558. [PMID: 35896009 DOI: 10.1021/acs.est.2c03421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemicals with elevated bioaccumulation profiles present potential hazards to public health and the environment. Ionizable organic compounds (IOCs) increasingly represent a large proportion of commercial chemicals; however, historical approaches for bioaccumulation determinations are mainly developed for neutral chemicals, which were not appropriate for IOCs. Herein, we employed the zebrafish embryo, a common vertebrate model in environmental and biomedical studies, to elucidate toxicokinetics and bioconcentration of eight IOCs with diverse physicochemical properties and pharmacokinetic parameters. At an environmentally relevant pH (7.5), most IOCs exhibited rapid uptake and depuration in zebrafish, suggesting the ionized forms of IOCs are readily bioavailable. Bioconcentration factors (BCF) of these IOCs ranged from 0.0530 to 250 L·kg-1 wet weight. The human pharmacokinetic proportionality factor, apparent volume of distribution (VD), better predicted the BCF of selected IOCs than more commonly used hydrophobicity-based parameters (e.g., pH-dependent octanol-water distribution ratio, Dow). Predictive bioaccumulation models for IOCs were constructed and validated using VD alone or with Dow. Significant relationships between fish BCF and human VD, which is readily available for pharmaceuticals, highlighted the utility of biologically based "read-across" approaches for predicting bioaccumulative potential of IOCs. Our novel findings thus provided an understanding of the partitioning behavior and improved predictive bioconcentration modeling for IOCs.
Collapse
Affiliation(s)
- Ling Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Bryan W Brooks
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Fen Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Zhimin Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
41
|
Macorps N, Le Menach K, Pardon P, Guérin-Rechdaoui S, Rocher V, Budzinski H, Labadie P. Bioaccumulation of per- and polyfluoroalkyl substance in fish from an urban river: Occurrence, patterns and investigation of potential ecological drivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119165. [PMID: 35306089 DOI: 10.1016/j.envpol.2022.119165] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C9-C14 perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22-3.8 ng g-1 wet weight (ww) and 11-140 ng g-1 ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.
Collapse
Affiliation(s)
| | | | - Patrick Pardon
- CNRS/Université de Bordeaux, UMR 5805 EPOC, Talence, France
| | | | | | | | - Pierre Labadie
- CNRS/Université de Bordeaux, UMR 5805 EPOC, Talence, France.
| |
Collapse
|
42
|
Koubová A, Van Nguyen T, Grabicová K, Burkina V, Aydin FG, Grabic R, Nováková P, Švecová H, Lepič P, Fedorova G, Randák T, Žlábek V. Metabolome adaptation and oxidative stress response of common carp (Cyprinus carpio) to altered water pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119117. [PMID: 35276249 DOI: 10.1016/j.envpol.2022.119117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.
Collapse
Affiliation(s)
- Anna Koubová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Farah Gönül Aydin
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Ankara University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Diskapi, 06110, Altindag, Ankara, Turkey
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Pavel Lepič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
43
|
Niu L, Henneberger L, Huchthausen J, Krauss M, Ogefere A, Escher BI. pH-Dependent Partitioning of Ionizable Organic Chemicals between the Silicone Polymer Polydimethylsiloxane (PDMS) and Water. ACS ENVIRONMENTAL AU 2022; 2:253-262. [PMID: 37102138 PMCID: PMC10114720 DOI: 10.1021/acsenvironau.1c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The silicone polymer polydimethysiloxane (PDMS) is a popular passive sampler for in situ and ex situ sampling of hydrophobic organic chemicals. Despite its limited sorptive capacity for polar and ionizable organic chemicals (IOC), IOCs have been found in PDMS when extracting sediment and suspended particulate matter. The pH-dependent partitioning of 190 organics and IOCs covering a range of octanol-water partition constants log K ow from -0.3 to 7.7 was evaluated with a 10-day shaking method using mixtures composed of all chemicals at varying ratios of mass of PDMS to volume of water. This method reproduced the PDMS-water partition constant K PDMS/w of neutral chemicals from the literature and extended the dataset by 93 neutral chemicals. The existing quantitative structure-activity relationship between the log K ow and K PDMS/w could be extended with the measured K PDMS/w linearly to a log K ow of -0.3. Fully charged organics were not taken up into PDMS. Thirty-eight monoprotic organic acids and 42 bases showed negligible uptake of the charged species, and the pH dependence of the apparent D PDMS/w(pH) could be explained by the fraction of neutral species multiplied by the K PDMS/w of the neutral species of these IOCs. Seventeen multiprotic chemicals with up to three acidity constants pK a also showed a pH dependence of D PDMS/w(pH) with the tendency that the neutral and zwitterionic forms showed the highest D PDMS/w(pH). D PDMS/w(pH) of charged species of more hydrophobic multiprotic chemicals such as tetrabromobisphenol A and telmisartan was smaller but not negligible. Since these chemicals show high bioactivity, their contribution to mixture effects has to be considered when testing passive sampling extracts with in vitro bioassays. This work has further implications for understanding the role of microplastic as a vector for organic micropollutants.
Collapse
Affiliation(s)
- Lili Niu
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Key
Laboratory of Pollution Exposure and Health Intervention of Zhejiang
Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect Directed Analysis, Helmholtz Centre
for Environmental Research, 04318 Leipzig, Germany
| | - Audrey Ogefere
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ − Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Center
for Applied Geoscience, Eberhard Karls University
of Tübingen, Schnarrenbergstr.
94-96, 72076 Tübingen, Germany
| |
Collapse
|
44
|
Wang J, Nolte TM, Owen SF, Beaudouin R, Hendriks AJ, Ragas AM. A Generalized Physiologically Based Kinetic Model for Fish for Environmental Risk Assessment of Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6500-6510. [PMID: 35472258 PMCID: PMC9118555 DOI: 10.1021/acs.est.1c08068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An increasing number of pharmaceuticals found in the environment potentially impose adverse effects on organisms such as fish. Physiologically based kinetic (PBK) models are essential risk assessment tools, allowing a mechanistic approach to understanding chemical effects within organisms. However, fish PBK models have been restricted to a few species, limiting the overall applicability given the countless species. Moreover, many pharmaceuticals are ionizable, and fish PBK models accounting for ionization are rare. Here, we developed a generalized PBK model, estimating required parameters as functions of fish and chemical properties. We assessed the model performance for five pharmaceuticals (covering neutral and ionic structures). With biotransformation half-lives (HLs) from EPI Suite, 73 and 41% of the time-course estimations were within a 10-fold and a 3-fold difference from measurements, respectively. The performance improved using experimental biotransformation HLs (87 and 59%, respectively). Estimations for ionizable substances were more accurate than any of the existing species-specific PBK models. The present study is the first to develop a generalized fish PBK model focusing on mechanism-based parameterization and explicitly accounting for ionization. Our generalized model facilitates its application across chemicals and species, improving efficiency for environmental risk assessment and supporting an animal-free toxicity testing paradigm.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Tom M. Nolte
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Stewart F. Owen
- AstraZeneca,
Global Sustainability, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Rémy Beaudouin
- Institut
national de l’environnement industriel et des risques (INERIS), Verneuil-en-Halatte 60550, France
| | - A. Jan Hendriks
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Ad M.J. Ragas
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
- Department
of Environmental Sciences, Faculty of Science, Open University, Heerlen 6419 AT, The Netherlands
| |
Collapse
|
45
|
Regnery J, Riegraf C, Jacob S, Friesen A. New insights on in vitro biotransformation of anticoagulant rodenticides in fish. CHEMOSPHERE 2022; 294:133727. [PMID: 35085616 DOI: 10.1016/j.chemosphere.2022.133727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The assessment of the bioaccumulation potential of chemicals is an essential and mandatory part of their regulatory environmental risk and hazard assessment. So far, in vitro data on fish metabolism is rarely available for biocidal active substances such as anticoagulant rodenticides. In this case study we present in vitro biotransformation rates of eight biocidal and one pharmaceutical anticoagulants in rainbow trout (Oncorhynchus mykiss) liver subcellular S9 fraction (RT-S9) determined following the Organisation for Economic Co-operation and Development test guideline 319B method at two different incubation temperatures (i.e., 12 ± 1 °C and 23 ± 2 °C). Furthermore, we address challenges associated with the usability and interpretation of in vitro data to support the decision making within the regulatory bioaccumulation assessment in bridging the gap between in silico methods and in vivo studies. According to our results, four of the tested substances (i.e., chlorophacinone, coumatetralyl, bromadiolone, and difenacoum) exhibited significant intrinsic clearance (p < .001) in the RT-S9 assay. Overall, the observed metabolism was (very) slow and clearance rates were temperature-dependent. Whether the determined in vitro biotransformation rate had a substantial influence on the predicted bioconcentration factor during extrapolation was subject to the lipophilicity of the test substance. Further improvements of existing concepts are needed to overcome uncertainties in the prediction of bioconcentration factors for chemicals such as anticoagulants.
Collapse
Affiliation(s)
- Julia Regnery
- Federal Institute of Hydrology, Department of Biochemistry, Ecotoxicology, 56068 Koblenz, Germany.
| | - Carolin Riegraf
- Federal Institute of Hydrology, Department of Biochemistry, Ecotoxicology, 56068 Koblenz, Germany
| | - Stefanie Jacob
- German Environment Agency, Section IV 1.2 Biocides, 06844 Dessau-Rosslau, Germany
| | - Anton Friesen
- German Environment Agency, Section IV 1.2 Biocides, 06844 Dessau-Rosslau, Germany
| |
Collapse
|
46
|
Sigmund G, Arp HPH, Aumeier BM, Bucheli TD, Chefetz B, Chen W, Droge STJ, Endo S, Escher BI, Hale SE, Hofmann T, Pignatello J, Reemtsma T, Schmidt TC, Schönsee CD, Scheringer M. Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4702-4710. [PMID: 35353522 PMCID: PMC9022425 DOI: 10.1021/acs.est.2c00570] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.
Collapse
Affiliation(s)
- Gabriel Sigmund
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, 1090 Wien, Austria
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
- Norwegian
University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Benedikt M. Aumeier
- RWTH
Aachen University, Institute of Environmental Engineering, Mies-van-der-Rohe Straße 1, 52074 Aachen, Germany
| | | | - Benny Chefetz
- Department
of Soil and Water Sciences, Institute of Environmental Sciences; Faculty
of Agriculture, Food and Environment, The
Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Wei Chen
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Steven T. J. Droge
- Wageningen
Environmental Research, Wageningen University
and Research, P.O. Box 47, 6700AA, Wageningen, Netherlands
| | - Satoshi Endo
- Health
and Environmental Risk Division, National
Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki Japan
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz Centre for
Environmental Research − UFZ, Permoser Strasse 15, DE-04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Sarah E. Hale
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, 1090 Wien, Austria
| | - Joseph Pignatello
- Department
of Environmental Sciences, The Connecticut
Agricultural Experiment Station, New Haven; 123 Huntington St., New Haven, Connecticut 06504-1106, United States
| | - Thorsten Reemtsma
- Department
of Analytical Chemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- Institute for Analytical Chemistry, University
of Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| | - Torsten C. Schmidt
- Instrumental
Analytical Chemistry and Centre for Water and Environmental Research
(ZWU), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | | | - Martin Scheringer
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
47
|
Wang Z, Adu-Kumi S, Diamond ML, Guardans R, Harner T, Harte A, Kajiwara N, Klánová J, Liu J, Moreira EG, Muir DCG, Suzuki N, Pinas V, Seppälä T, Weber R, Yuan B. Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2936-2949. [PMID: 35167273 DOI: 10.1021/acs.est.1c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland
| | - Sam Adu-Kumi
- Chemicals Control and Management Centre, Environmental Protection Agency, Ministries, P.O. Box MB 326, Accra GR, Ghana
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Ramon Guardans
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Adviser on POPs, Ministry for the Ecological Transition and Demographic Challenge (MITECO), 28046 Madrid, Spain
| | - Tom Harner
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Agustín Harte
- National Chemicals and Hazardous Waste Directorate, Secretariat of Environmental Control and Monitoring, Ministry of Environment and Sustainable Development, San Martin 451, Autonomous City of Buenos Aires C1004AAI, Argentina
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jana Klánová
- RECETOX Centre of Masaryk University, the Stockholm Convention Regional Centre for Capacity Building and the Transfer of Technology in Central and Eastern Europe, 611 37 Brno, Czech Republic
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Noriyuki Suzuki
- Planning Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Victorine Pinas
- Institute for Graduate Studies and Research, Anton de Kom University of Suriname, P.O.B: 9212, Paramaribo, Suriname
| | - Timo Seppälä
- Finnish Environment Institute, Contaminants Unit, 00790, Helsinki, Finland
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd Germany
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
48
|
Henneberger L, Klüver N, Mühlenbrink M, Escher B. Trout and Human Plasma Protein Binding of Selected Pharmaceuticals Informs the Fish Plasma Model. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:559-568. [PMID: 33201515 DOI: 10.1002/etc.4934] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Concerns are increasing that pharmaceuticals released into the environment pose a risk to nontarget organism such as fish. The fish plasma model is a read-across approach that uses human therapeutic blood plasma concentrations for estimating likely effects in fish. However, the fish plasma model neglects differences in plasma protein binding between fish and humans. Because binding data for fish plasma are scarce, the binding of 12 active pharmaceutical ingredients (APIs; acidic, basic, and neutral) to rainbow trout (Oncorhynchus mykiss) and human plasma was measured using solid-phase microextraction (SPME). The plasma/water distribution ratios (D plasma/w ) of neutral and basic APIs were similar for trout and human plasma, differing by no more than a factor of 2.7 for a given API. For the acidic APIs, the D plasma/w values of trout plasma were much lower than for human plasma, by up to a factor of 71 for naproxen. The lower affinity of the acidic APIs to trout plasma compared with human plasma suggests that the bioavailability of these APIs is higher in trout. Read-across approaches like the fish plasma model should account for differences in plasma protein binding to avoid over- or underestimation of effects in fish. For the acidic APIs, the effect ratio of the fish plasma model would increase by a factor of 5 to 60 if the unbound plasma concentrations were used to calculate the effect ratio. Environ Toxicol Chem 2022;41:559-568. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Nils Klüver
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | | | - Beate Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Coors A, Falkenhain AM, Scheurer M, Länge R. Evidence for Specific Receptor-Mediated Toxicity of Pharmaceuticals in Aquatic Organisms Derived from Acute and Chronic Standard Endpoints. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:601-613. [PMID: 33595135 DOI: 10.1002/etc.5018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of 17 active pharmaceutical ingredients (APIs) was investigated using standardized acute and chronic tests with Daphnia magna and 2 algae species. Chronic toxicity was generally greater for Daphnia than for algae. Compilation of additional data resulted in 100 APIs for which the acute-to-chronic ratio (ACR) was determined for Daphnia. The frequency of high ACRs (~20% with ACRs > 100) indicates that specific receptor-mediated toxicity toward D. magna is rather common among APIs. The 11 APIs with ACRs > 1000 included lipid-modifying agents, immunosuppressants, antibiotics, antineoplastics, antiobesics, antivirals, and antihistamines. There was no consistent association between ACR and chronic toxicity, ionization status, or lipophilicity. High ACRs were not exclusively associated with the presence of orthologs of the pharmacological target in Daphnia. Statins, acetylcholinesterase inhibitors, and antihistamines are discussed in more detail regarding the link between targets and toxic mode of action. For acetylcholinesterase inhibitors, receptor-mediated toxicity was already apparent after acute exposure, whereas the high ACR and chronic toxicity of some antihistamines probably related to interaction with a secondary rather than the primary pharmacological target. Acute or modeled chronic toxicity estimates have often been used for prioritizing pharmaceuticals. This may be seriously misleading because chronic effects are currently not predictable for APIs with specific receptor-mediated toxicity. However, it is exactly these APIs that are the most relevant in terms of environmental risks. Environ Toxicol Chem 2022;41:601-613. © 2021 SETAC.
Collapse
Affiliation(s)
- Anja Coors
- ECT Oekotoxikologie, Flörsheim/Main, Germany
- Environment Department, University of York, Heslington, York, UK
| | | | - Marco Scheurer
- Deutscher Verein des Gas- und Wasserfaches-Technologiezentrum Wasser, Karlsruhe, Germany
| | | |
Collapse
|
50
|
Gao C, Hua ZL, Li XQ. Distribution, sources, and dietetic-related health risk assessment of perfluoroalkyl acids (PFAAs) in the agricultural environment of an industrial-agricultural interaction region (IAIR), Changshu, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152159. [PMID: 34896133 DOI: 10.1016/j.scitotenv.2021.152159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The exploration of the distribution and dietetic-related health risks of perfluoroalkyl acids (PFAAs) in industrial-agricultural interaction regions (IAIRs) is of significant importance, due to the transfer of many PFAA-related factories to developing countries with intensive agricultural activities. In the present study, based on the local diet, edible parts of rice, vegetables, fish, and their corresponding soils and irrigation/aquaculture water were investigated in a typical Chinese city (Changshu). The concentrations of total perfluoroalkyl acids (ΣPFAAs) in the edible parts of rice /vegetables and fish tissues ranged from 26.69 to 37.09 ng/g dw, 12.93 to 40.77 ng/g dw, and 13.27 to 29.82 ng/g ww, with perfluorohexanoic acid (PFPeA) and perfluorooctane sulfonic acid (PFOS) as the most dominant compounds. The PFAA concentrations in the corresponding rice soils, vegetable soils, irrigation water, and aquaculture water ranged from 11.99 to 26.33 ng/g dw, 14.06 to 36.19 ng/g dw, 141.36 to 297.00 ng/L, and 179.23 to 235.82 ng/L, respectively. Biota-sediment accumulation factor (BSAF) values for the plant-soil system were far greater than those for bioaccumulation factor (BAF) values for the plant-irrigation water system. PFAAs were more inclined to accumulate in the gills of fish as determined by their highest BAF values. Correlation analysis showed that PFAAs in root vegetables had a stronger correlation with those in soil compared with those in irrigation water. Source analysis showed that emissions from fluoride industries, textiles, and food industries may be the dominant sources of PFAAs in agricultural environments. The estimated dietary intake (EDI) for the selected diet was lower than that for rice/vegetables but was higher than that found in fish. Toddlers (2-5 years) had the highest exposure risk, and rural residents were more exposed to PFAAs than urban residents under the selected diet.
Collapse
Affiliation(s)
- Chang Gao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China
| |
Collapse
|