1
|
Wu J, Tan S, Feng Z, Zhao H, Yu C, Yang Y, Zhong B, Zheng W, Yu H, Li H. Whole-genome de novo sequencing reveals genomic variants associated with differences of sex development in SRY negative pigs. Biol Sex Differ 2024; 15:68. [PMID: 39223676 PMCID: PMC11367908 DOI: 10.1186/s13293-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Differences of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. In more than 50% of human DSD cases, a molecular diagnosis is not available. In intensively farmed pig populations, the incidence of XX DSD pigs is relatively high, leading to economic losses for pig breeders. Interestingly, in the majority of 38, XX DSD pigs, gonads still develop into testis-like structures or ovotestes despite the absence of the testis-determining gene (SRY). However, the current understanding of the molecular background of XX DSD pigs remains limited. METHODS Anatomical and histological characteristics of XX DSD pigs were analysed using necropsy and HE staining. We employed whole-genome sequencing (WGS) with 10× Genomics technology and used de novo assembly methodology to study normal female and XX DSD pigs. Finally, the identified variants were validated in 32 XX DSD pigs, and the expression levels of the candidate variants in the gonads of XX DSD pigs were further examined. RESULTS XX DSD pigs are characterised by the intersex reproductive organs and the absence of germ cells in the seminiferous tubules of the gonads. We identified 4,950 single-nucleotide polymorphisms (SNPs) from non-synonymous mutations in XX DSD pigs. Cohort validation results highlighted two specific SNPs, "c.218T > C" in the "Interferon-induced transmembrane protein 1 gene (IFITM1)" and "c.1043C > G" in the "Newborn ovary homeobox gene (NOBOX)", which were found exclusively in XX DSD pigs. Moreover, we verified 14 candidate structural variants (SVs) from 1,474 SVs, identifying a 70 bp deletion fragment in intron 5 of the WW domain-containing oxidoreductase gene (WWOX) in 62.5% of XX DSD pigs. The expression levels of these three candidate genes in the gonads of XX DSD pigs were significantly different from those of normal female pigs. CONCLUSION The nucleotide changes of IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment of the WWOX were the most dominant variants among XX DSD pigs. This study provides a theoretical basis for better understanding the molecular background of XX DSD pigs. DSD are conditions affecting development of the gonads or genitalia. These disorders can happen in many different types of animals, including pigs, goats, dogs, and people. In people, DSD happens in about 0.02-0.13% of births, and in pigs, the rate is between 0.08% and 0.75%. Pigs have a common type of DSD where the animal has female chromosomes (38, XX) but no SRY gene, which is usually found on the Y chromosome in males. XX DSD pigs may look like both males and females on the outside and have testis-like or ovotestis (a mix of ovary and testis) gonads inside. XX DSD pigs often lead to not being able to have piglets, slower growth, lower chance of survival, and poorer meat quality. Here, we used a method called whole-genome de novo sequencing to look for variants in the DNA of XX DSD pigs. We then checked these differences in a larger group of pigs. Our results reveal the nucleotide changes in IFITM1 (c.218T > C), NOBOX (c.1043 C > G), and a 70 bp deletion fragment in intron 5 of the WWOX, all linked to XX DSD pigs. The expression levels of these three genes were also different in the gonads of XX DSD pigs compared to normal female pigs. These variants are expected to serve as valuable molecular markers for XX DSD pigs. Because pigs are a lot like humans in their genes, physiology, and body structure, this research could help us learn more about what causes DSD in people.
Collapse
Affiliation(s)
- Jinhua Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Shuwen Tan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Haiquan Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Congying Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Yin Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Bingzhou Zhong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Wenxiao Zheng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528255, P.R. China.
| |
Collapse
|
2
|
Aisha J, Sangeeta K, Yenugu S. Effect of Spag11a gene knockout on the epididymis in mice: A histopathological and molecular analyses. Cell Biochem Funct 2024; 42:e4096. [PMID: 39020527 DOI: 10.1002/cbf.4096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
The sperm-associated antigen 11a (Spag11a) gene is exclusively expressed in the caput epididymis. Our previous studies demonstrated that small interfering RNA (siRNA)-mediated ablation of this gene resulted in increased proliferation of epididymal epithelial cells. Further, active immunization-mediated ablation of SPAG11A protein increased the susceptibility of male reproductive tract tissues to diethylnitrosamine (DEN)-induced tumorigenesis. In this study, we report that the caput epididymis of Spag11a knockout mice displayed hyperplasia and inflammation, while the caput epididymis of wild-type mice exhibited normal anatomical structure. Global transcriptome analyses in the caput epididymis of knockout mice indicated differential expression of genes involved in a variety of cellular processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that the absence of Spag11a may activate microRNAs associated with cancer, chemical carcinogenesis-receptor activation, and chemical carcinogenesis-DNA adducts pathways; which may contribute to the promotion of tumorigenesis in the epididymis. The susceptibility of caput epididymis to chemically induced carcinogenesis in Spag11a knockout mice was analyzed. Histological analyses indicated that while the epididymis of wild-type mice did not show any signs of tumorigenesis, knockout mice displayed hyperplasia, anaplasia, dysplasia, neoplasia, and inflammation in the caput epididymis. Our results provide concrete evidence that deletion of Spag11a induces histopathological and molecular changes that contribute to tumorigenesis. It is possible that the expression of Spag11a gene could be one of the reasons for the rarity of epididymal cancers. The involvement of an epididymal gene in tumorigenesis is being demonstrated for the first time.
Collapse
Affiliation(s)
- Jamil Aisha
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Kumari Sangeeta
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Rosenberger A, Crossland RE, Dressel R, Kube D, Wolff D, Wulf G, Bickeböller H, Dickinson A, Holler E. A genome-wide association study on hematopoietic stem cell transplantation reveals novel genomic loci associated with transplant outcomes. Front Immunol 2024; 15:1280876. [PMID: 38384455 PMCID: PMC10879589 DOI: 10.3389/fimmu.2024.1280876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction Data on genomic susceptibility for adverse outcomes after hematopoietic stem cell transplantation (HSCT) for recipients are scarce. Methods We performed a genome wide association study (GWAS) to identify genes associated with survival/mortality, relapse, and severe graft-versus-host disease (sGvHD), fitting proportional hazard and subdistributional models to data of n=1,392 recipients of European ancestry from three centres. Results The single nucleotide polymorphism (SNP) rs17154454, intronic to the neuronal growth guidant semaphorin 3C gene (SEMA3C), was genome-wide significantly associated with event-free survival (p=7.0x10-8) and sGvHD (p=7.5x10-8). Further associations were detected for SNPs in the Paxillin gene (PXN) with death without prior relapse or sGvHD, as well as for SNPs of the Plasmacytoma Variant Translocation 1 gene (PVT1, a long non-coding RNA gene), the Melanocortin 5 Receptor (MC5R) gene and the WW Domain Containing Oxidoreductase gene (WWOX), all associated with the occurrence of sGvHD. Functional considerations support the observed associations. Discussion Thus, new genes were identified, potentially influencing the outcome of HSCT.
Collapse
Affiliation(s)
- Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Rachel E. Crossland
- Translational & Clinical Research Institute, Faculty of Medical Science, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Dieter Kube
- Department of Cellular and Molecular Immunology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Gerald Wulf
- Hematology and Medical Oncology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - Anne Dickinson
- Translational & Clinical Research Institute, Faculty of Medical Science, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
5
|
Sangeeta K, Yenugu S. Ablation of the sperm-associated antigen 11A (SPAG11A) protein by active immunization promotes epididymal oncogenesis in the rat. Cell Tissue Res 2022; 389:115-128. [PMID: 35438340 DOI: 10.1007/s00441-022-03623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Incidence of cancer in the epididymis is very rare. It is proposed that proteins specific to this organ may contribute to this unique property. We previously demonstrated that siRNA-mediated knockdown of SPAG11A mRNA resulted in increased proliferation of epididymal epithelial cells, whereas overexpression of this gene caused reduced proliferation in immortalized cell lines. In this study, we evaluated the oncogenesis-related anatomical and transcriptome changes in the epididymis of SPAG11A-immunized rats challenged with a low dose of diethyl nitrosamine (DEN). DEN treatment or SPAG11A immunization alone did not cause any histopathological changes in the epididymis. Interestingly, indications of oncogenesis were observed in SPAG11A-immunized + DEN-treated rats. Using high throughput sequencing, we observed that 3549 transcripts that were differentially expressed in the caput epididymis of DEN only-treated rats displayed similar differential expression in the caput epididymis of SPAG11A-immunized rats, indicating that the microenvironment that contributes to oncogenesis sets in when SPAG11A protein is ablated. Differential expression of genes that are involved in 10 major cancer related pathways was also analyzed. Majority of the genes related to these pathways that were differentially expressed in the caput epididymis of DEN only-treated rats also showed similar pattern in the caput epididymis of SPAG11A-immunized rats. For the first time, results of our study demonstrate that ablation of SPAG11A by active immunization renders the epididymis susceptible to oncogenesis and that this protein may be one of the factors that contributes to the rarity of epididymal cancer.
Collapse
Affiliation(s)
- Kumari Sangeeta
- Department of Animal Biology, University of Hyderabad, Hyderabad - 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad - 500046, India.
| |
Collapse
|
6
|
Baryła I, Kośla K, Bednarek AK. WWOX and metabolic regulation in normal and pathological conditions. J Mol Med (Berl) 2022; 100:1691-1702. [PMID: 36271927 PMCID: PMC9691486 DOI: 10.1007/s00109-022-02265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
WW domain-containing oxidoreductase (WWOX) spans the common fragile site FRA16D. There is evidence that translocations and deletions affecting WWOX accompanied by loss of expression are frequent in many cancers and often correlate with a worse prognosis. Additionally, WWOX germline mutations were also found to be the cause of pathologies of brain development. Because WWOX binds to some transcription factors, it is a modulator of many cellular processes, including metabolic processes. Recently, studies have linked WWOX to familial dyslipidemias, osteopenia, metabolic syndrome, and gestational diabetes, confirming its role as a regulator of steroid, cholesterol, glucose, and normal bone metabolism. The WW domain of WWOX is directly engaged in the control of the activity of transcription factors such as HIF1α and RUNX2; therefore, WWOX gene alterations are associated with some metabolic abnormalities. Presently, most interest is devoted to the associations between WWOX and glucose and basic energy metabolism disturbances. In particular, its involvement in the initiation of the Warburg effect in cancer or gestational diabetes and type II diabetes is of interest. This review is aimed at systematically and comprehensively presenting the current state of knowledge about the participation of WWOX in the metabolism of healthy and diseased organisms.
Collapse
Affiliation(s)
- Izabela Baryła
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K. Bednarek
- grid.8267.b0000 0001 2165 3025Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
8
|
Evaluation of reproductive traits and the effect of nutrigenetics on bulls submitted to fetal programming. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
10
|
Mahmud MAA, Noguchi M, Domon A, Tochigi Y, Katayama K, Suzuki H. Cellular Expression and Subcellular Localization of Wwox Protein During Testicular Development and Spermatogenesis in Rats. J Histochem Cytochem 2021; 69:257-270. [PMID: 33565365 DOI: 10.1369/0022155421991629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Md Abdullah Al Mahmud
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan.,Department of Anatomy & Histology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Maki Noguchi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Domon
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
11
|
Iacomino M, Baldassari S, Tochigi Y, Kośla K, Buffelli F, Torella A, Severino M, Paladini D, Mandarà L, Riva A, Scala M, Balagura G, Accogli A, Nigro V, Minetti C, Fulcheri E, Zara F, Bednarek AK, Striano P, Suzuki H, Salpietro V. Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development. Front Neurosci 2020; 14:644. [PMID: 32581702 PMCID: PMC7300205 DOI: 10.3389/fnins.2020.00644] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Mutations in the WWOX gene cause a broad range of ultra-rare neurodevelopmental and brain degenerative disorders, associated with a high likelihood of premature death in animal models as well as in humans. The encoded Wwox protein is a WW domain-containing oxidoreductase that participates in crucial biological processes including tumor suppression, cell growth/differentiation and regulation of steroid metabolism, while its role in neural development is less understood. We analyzed the exomes of a family affected with multiple pre- and postnatal anomalies, including cerebellar vermis hypoplasia, severe neurodevelopmental impairment and refractory epilepsy, and identified a segregating homozygous WWOX mutation leading to a premature stop codon. Abnormal cerebral cortex development due to a defective architecture of granular and molecular cell layers was found in the developing brain of a WWOX-deficient human fetus from this family. A similar disorganization of cortical layers was identified in lde/lde rats (carrying a homozygous truncating mutation which disrupts the active Wwox C-terminal domain) investigated at perinatal stages. Transcriptomic analyses of Wwox-depleted human neural progenitor cells showed an impaired expression of a number of neuronal migration-related genes encoding for tubulins, kinesins and associated proteins. These findings indicate that loss of Wwox may affect different cytoskeleton components and alter prenatal cortical development, highlighting a regulatory role of the WWOX gene in migrating neurons across different species.
Collapse
Affiliation(s)
- Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashinoi, Japan
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Francesca Buffelli
- Fetal and Perinatal Pathology Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Dario Paladini
- Fetal Medicine and Surgery Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Luana Mandarà
- Medical Genetics Unit, Maria Paternò Arezzo Hospital, Ragusa, Italy
| | - Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrea Accogli
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Ezio Fulcheri
- Fetal and Perinatal Pathology Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), Pathology Division of Anatomic Pathology, University of Genoa, Genoa, Italy
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, Łódź, Poland
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashinoi, Japan
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
12
|
Abstract
Shortly after its discovery in 2000, WWOX was hailed as a tumor suppressor gene. In subsequent years of research, this function was confirmed indisputably. Majority of tumors show high rate of loss of heterozygosity and decreased expression of WWOX. Nevertheless, over the years, the range of its known functions, at the cellular, organ and system levels, has expanded to include metabolism and endocrine system control and CNS differentiation and functioning. Despite of its function as a tumor suppressor gene, WWOX genetic alternations were found in a number of metabolic and neural diseases. A lack of WWOX protein as a consequence of germline mutations results in brain development disturbances and malfunctions.
Collapse
Affiliation(s)
- K Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| | - Ż Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| | - A K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz 90-752, Poland
| |
Collapse
|
13
|
Tochigi Y, Takamatsu Y, Nakane J, Nakai R, Katayama K, Suzuki H. Loss of Wwox Causes Defective Development of Cerebral Cortex with Hypomyelination in a Rat Model of Lethal Dwarfism with Epilepsy. Int J Mol Sci 2019; 20:ijms20143596. [PMID: 31340538 PMCID: PMC6678113 DOI: 10.3390/ijms20143596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.
Collapse
Affiliation(s)
- Yuki Tochigi
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Yutaka Takamatsu
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Jun Nakane
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Rika Nakai
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Kentaro Katayama
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - Hiroetsu Suzuki
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan.
| |
Collapse
|
14
|
McBride KM, Kil H, Mu Y, Plummer JB, Lee J, Zelazowski MJ, Sebastian M, Abba MC, Aldaz CM. Wwox Deletion in Mouse B Cells Leads to Genomic Instability, Neoplastic Transformation, and Monoclonal Gammopathies. Front Oncol 2019; 9:517. [PMID: 31275852 PMCID: PMC6593956 DOI: 10.3389/fonc.2019.00517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
WWOX (WW domain containing oxidoreductase) expression loss is common in various cancers and characteristic of poor prognosis. Deletions, translocations, and loss of expression affecting the WWOX gene are a common feature of various B cell neoplasms such as certain B cell lymphomas and multiple myeloma. However, the role of this common abnormality in B cell tumor initiation and/or progression has not been defined. In this study, we conditionally deleted Wwox early in B cell development by means of breeding Cd19-Cre transgenic mice crossed to Wwox floxed mice (Cd19 Wwox KO). We observed a significant reduced survival in Cd19 Wwox KO mice and the development of B cell neoplasms including B cell lymphomas, plasma cell neoplasias characterized by increased numbers of CD138+ populations as well as monoclonal gammopathies detected by serum protein electrophoresis. To investigate whether Wwox loss could play a role in genomic instability, we analyzed DNA repair functions during immunoglobulin class switch joining between DNA segments in antibody genes. While class switch recombination (CSR) was only slightly impaired, Wwox deficiency resulted in a dramatic shift of double strand break (DSB) repair from normal classical-NHEJ toward the microhomology-mediated alternative-NHEJ pathway, a pathway associated with chromosome translocations and genome instability. Consistent with this, Wwox deficiency resulted in a marked increase of spontaneous translocations during CSR. This work defines for the first time a role for Wwox for maintaining B cell genome stability during a process that can promote neoplastic transformation and monoclonal gammopathies.
Collapse
Affiliation(s)
- Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Joshua B Plummer
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Maciej J Zelazowski
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Manu Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| | - Martin C Abba
- School of Medicine, Center for Immunological Basic and Applied Research (CINIBA), National University of La Plata (UNLP), La Plata, Argentina
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
15
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
16
|
The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med 2018; 21:1308-1318. [PMID: 30356099 PMCID: PMC6752669 DOI: 10.1038/s41436-018-0339-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Germline WWOX pathogenic variants
have been associated with disorder of sex differentiation (DSD), spinocerebellar
ataxia (SCA), and WWOX-related epileptic
encephalopathy (WOREE syndrome). We review clinical and molecular data on
WWOX-related disorders, further
describing WOREE syndrome and phenotype/genotype correlations. Methods We report clinical and molecular findings in 20 additional patients
from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants
in the WWOX gene. Different molecular
screening approaches were used (quantitative polymerase chain reaction/multiplex
ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic
hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome
sequencing), genome sequencing. Results Two copy-number variations (CNVs) or two single-nucleotide
variations (SNVs) were found respectively in four and nine families, with
compound heterozygosity for one SNV and one CNV in five families. Eight novel
missense pathogenic variants have been described. By aggregating our patients
with all cases reported in the literature, 37 patients from 27 families with
WOREE syndrome are known. This review suggests WOREE syndrome is a very severe
epileptic encephalopathy characterized by absence of language development and
acquisition of walking, early-onset drug-resistant seizures, ophthalmological
involvement, and a high likelihood of premature death. The most severe clinical
presentation seems to be associated with null genotypes. Conclusion Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic
encephalopathy. We report here the largest cohort of individuals with WOREE
syndrome.
Collapse
|
17
|
Tanna M, Aqeilan RI. Modeling WWOX Loss of Function in vivo: What Have We Learned? Front Oncol 2018; 8:420. [PMID: 30370248 PMCID: PMC6194312 DOI: 10.3389/fonc.2018.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The WW domain–containing oxidoreductase (WWOX) gene encompasses a common fragile sites (CFS) known as FRA16D, and is implicated in cancer. WWOX encodes a 46kDa adaptor protein, which contains two N-terminal WW–domains and a catalytic domain at its C–terminus homologous to short–chain dehydrogenase/reductase (SDR) family proteins. A high sequence conservation of WWOX orthologues from insects to rodents and ultimately humans suggest its significant role in physiology and homeostasis. Indeed, data obtained from several animal models including flies, fish, and rodents demonstrate WWOX in vivo requirement and that its deregulation results in severe pathological consequences including growth retardation, post–natal lethality, neuropathy, metabolic disorders, and tumorigenesis. Altogether, these findings set WWOX as an essential protein that is necessary to maintain normal cellular/physiological homeostasis. Here, we review and discuss lessons and outcomes learned from modeling loss of WWOX expression in vivo.
Collapse
Affiliation(s)
- Mayur Tanna
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cancer Biology & Genetics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
18
|
Bonin F, Taouis K, Azorin P, Petitalot A, Tariq Z, Nola S, Bouteille N, Tury S, Vacher S, Bièche I, Rais KA, Pierron G, Fuhrmann L, Vincent-Salomon A, Formstecher E, Camonis J, Lidereau R, Lallemand F, Driouch K. VOPP1 promotes breast tumorigenesis by interacting with the tumor suppressor WWOX. BMC Biol 2018; 16:109. [PMID: 30285739 PMCID: PMC6169085 DOI: 10.1186/s12915-018-0576-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background The WW domain-containing oxidoreductase (WWOX) gene, frequently altered in breast cancer, encodes a tumor suppressor whose function is mediated through its interactions with cancer-related proteins, such as the pro-apoptotic protein p73α. Results To better understand the involvement of WWOX in breast tumorigenesis, we performed a yeast two-hybrid screen and co-immunoprecipitation assays to identify novel partners of this protein. We characterized the vesicular overexpressed in cancer pro-survival protein 1 (VOPP1) as a new regulator of WWOX. In breast cancer cells, VOPP1 sequestrates WWOX in lysosomes, impairs its ability to associate with p73α, and inhibits WWOX-dependent apoptosis. Overexpressed VOPP1 potentiates cellular transformation and enhances the growth of transplanted tumors in vivo. VOPP1 is overexpressed in breast tumors, especially in tumors that retain WWOX. Moreover, increased expression of VOPP1 is associated with reduced survival of patients with WWOX-positive, but not with WWOX-negative, tumors. Conclusions These findings emphasize the importance of the sequestration of WWOX by VOPP1 in addition to WWOX loss in breast tumors and define VOPP1 as a novel oncogene promoting breast carcinogenesis by inhibiting the anti-tumoral effect of WWOX. Electronic supplementary material The online version of this article (10.1186/s12915-018-0576-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florian Bonin
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Karim Taouis
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Paula Azorin
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Ambre Petitalot
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Zakia Tariq
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Sebastien Nola
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France.,Present address: INSERM U950, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Nadège Bouteille
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Sandrine Tury
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Sophie Vacher
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Ivan Bièche
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Khadija Ait Rais
- Somatic Genetics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Gaelle Pierron
- Somatic Genetics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - Laetitia Fuhrmann
- Pathology, Department of Tumor Biology, Institut Curie, 75005, Paris, France
| | | | | | | | - Rosette Lidereau
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| | - François Lallemand
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France.
| | - Keltouma Driouch
- Pharmacogenomics Unit, Department of Genetics, Institut Curie, 75005, Paris, France
| |
Collapse
|
19
|
Somatic loss of WWOX is associated with TP53 perturbation in basal-like breast cancer. Cell Death Dis 2018; 9:832. [PMID: 30082886 PMCID: PMC6079009 DOI: 10.1038/s41419-018-0896-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
Inactivation of WW domain-containing oxidoreductase (WWOX), the gene product of the common fragile site FRA16D, is a common event in breast cancer and is associated with worse prognosis of triple-negative breast cancer (TNBC) and basal-like breast cancer (BLBC). Despite recent progress, the role of WWOX in driving breast carcinogenesis remains unknown. Here we report that ablation of Wwox in mammary tumor-susceptible mice results in increased tumorigenesis, and that the resultant tumors resemble human BLBC. Interestingly, copy number loss of Trp53 and downregulation of its transcript levels were observed in the Wwox knockout tumors. Moreover, tumors isolated from Wwox and Trp53 mutant mice were indistinguishable histologically and transcriptionally. Finally, we find that deletion of TP53 and WWOX co-occurred and is associated with poor survival of breast cancer patients. Altogether, our data uncover an essential role for WWOX as a bona fide breast cancer tumor suppressor through the maintenance of p53 stability.
Collapse
|
20
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
21
|
Janczar S, Nautiyal J, Xiao Y, Curry E, Sun M, Zanini E, Paige AJ, Gabra H. WWOX sensitises ovarian cancer cells to paclitaxel via modulation of the ER stress response. Cell Death Dis 2017; 8:e2955. [PMID: 28749468 PMCID: PMC5550887 DOI: 10.1038/cddis.2017.346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Abstract
There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress. Here, we examine the role of WWOX (WW domain containing oxidoreductase), a gene frequently lost in several cancers, in mediating paclitaxel response. We examine the ER stress-mediated apoptotic response to paclitaxel in WWOX-transfected epithelial ovarian cancer (EOC) cells and following siRNA knockdown of WWOX. We show that WWOX-induced apoptosis following exposure of EOC cells to paclitaxel is related to ER stress and independent of the antimitotic action of taxanes. The apoptotic response to ER stress induced by WWOX re-expression could be reversed by WWOX siRNA in EOC cells. We report that paclitaxel treatment activates both the IRE-1 and PERK kinases and that the increase in paclitaxel-mediated cell death through WWOX is dependent on active ER stress pathway. Log-rank analysis of overall survival (OS) and progression-free survival (PFS) in two prominent EOC microarray data sets (Tothill and The Cancer Genome Atlas), encompassing ~800 patients in total, confirmed clinical relevance to our findings. High WWOX mRNA expression predicted longer OS and PFS in patients treated with paclitaxel, but not in patients who were treated with only cisplatin. The association of WWOX and survival was dependent on the expression level of glucose-related protein 78 (GRP78), a key ER stress marker in paclitaxel-treated patients. We conclude that WWOX sensitises EOC to paclitaxel via ER stress-induced apoptosis, and predicts clinical outcome in patients. Thus, ER stress response mechanisms could be targeted to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Szymon Janczar
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Yi Xiao
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Edward Curry
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Mingjun Sun
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisa Zanini
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Adam Jw Paige
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Department of Life Sciences, University of Bedfordshire, Luton, UK
| | - Hani Gabra
- Department of Surgery and Cancer, Molecular Therapeutics Unit and Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, UK.,Clinical Discovery Unit, Early Clinical Development, AstraZeneca, Cambridge, UK
| |
Collapse
|
22
|
Handa H, Sasaki Y, Hattori H, Alkebsi L, Kasamatsu T, Saitoh T, Mitsui T, Yokohama A, Tsukamoto N, Matsumoto M, Murakami H. Recurrent alterations of the WW domain containing oxidoreductase gene spanning the common fragile site FRA16D in multiple myeloma and monoclonal gammopathy of undetermined significance. Oncol Lett 2017; 14:4372-4378. [PMID: 28943951 DOI: 10.3892/ol.2017.6672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
The putative tumor suppressor gene WW domain containing oxidoreductase (WWOX) spans a common fragile site (CFS) on chromosome 16q23.3. CFSs are regions of profound genomic instability and sites for genomic deletions in cancer cells. Therefore, WWOX is structurally altered in diverse nonhematological cancer types. However, the function of WWOX in hematological tumor types, including multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) remains unclear. WWOX expression and methylation in patients with MM, MGUS, or noninvasive lymphoma (control) were analyzed using reverse transcription- and methylation specific-polymerase chain reaction analysis. Variant WWOX transcripts were detected in 65 and 50% of patients with MM and MGUS, respectively, compared with 10% of controls. WWOX expression was higher in patients with MM, and WWOX promoter methylation was detected in 35% of patients with MM compared with 5% of patients with MGUS and 4% of controls. WWOX promoter methylation was significantly associated with shorter overall survival time of patients, in particular those with MM who were never treated with novel agents. Genomic alterations, including deletions and promoter methylation that affect WWOX expression occur early and may be involved in the pathogenesis, progression, and prognosis of MM.
Collapse
Affiliation(s)
- Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yoshiko Sasaki
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hikaru Hattori
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Lobna Alkebsi
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Saitoh
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takeki Mitsui
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Norifumi Tsukamoto
- Oncology Center, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma 377-0280, Japan
| | - Hirokazu Murakami
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
23
|
Schrock MS, Karras JR, Guggenbiller MJ, Druck T, Batar B, Huebner K. Fhit and Wwox loss-associated genome instability: A genome caretaker one-two punch. Adv Biol Regul 2016; 63:167-176. [PMID: 27773744 DOI: 10.1016/j.jbior.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
Expression of Fhit and Wwox protein is frequently lost or reduced in many human cancers. In this report, we provide data that further characterizes the molecular consequences of Fhit loss in the initiation of DNA double-strand breaks (DSBs), and of Wwox loss in altered repair of DSBs. We show that loss of Fhit initiates mild genome instability in early passage mouse kidney cells, confirming that DNA damage associated with Fhit-deficiency is not limited to cancer cells. We also demonstrate that the cause of Fhit-deficient DSBs: thymidine deficiency-induced replication stress, can be resolved with thymidine supplementation in early passage mouse kidney cells before extensive genome instability occurs. As for consequences of Wwox loss in cancer, we show in a small panel of breast cancer cells and mouse embryonic fibroblasts that Wwox expression predicts response to radiation and mitomycin C, all agents that cause DSBs. In addition, loss of Wwox significantly reduced progression free survival in a cohort of ovarian cancer patients treated with platin-based chemotherapies. Finally, stratification of a cohort of squamous lung cancers by Fhit expression reveals that Wwox expression is significantly reduced in the low Fhit-expressing group, suggesting that loss of Fhit is quickly succeeded by loss of Wwox. We propose that Fhit and Wwox loss work synergistically in cancer progression and that DNA damage caused by Fhit could be targeted early in cancer initiation for prevention, while DNA damage caused by Wwox loss could be targeted later in cancer progression, particularly in cancers that develop resistance to genotoxic therapies.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jenna R Karras
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew J Guggenbiller
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Teresa Druck
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bahadir Batar
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
24
|
Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI. Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells. J Biol Chem 2015; 290:30728-35. [PMID: 26499798 DOI: 10.1074/jbc.r115.676346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.
Collapse
Affiliation(s)
| | - Emma Joy-Dodson
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Ora Schueler-Furman
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Rami I Aqeilan
- From the Departments of Immunology & Cancer Research and
| |
Collapse
|
25
|
O’Keefe LV, Lee CS, Choo A, Richards RI. Tumor Suppressor WWOX Contributes to the Elimination of Tumorigenic Cells in Drosophila melanogaster. PLoS One 2015; 10:e0136356. [PMID: 26302329 PMCID: PMC4547717 DOI: 10.1371/journal.pone.0136356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/31/2015] [Indexed: 01/27/2023] Open
Abstract
WWOX is a >1Mb gene spanning FRA16D Common Chromosomal Fragile Site, a region of DNA instability in cancer. Consequently, altered WWOX levels have been observed in a wide variety of cancers. In vitro studies have identified a large number and variety of potential roles for WWOX. Although its normal role in vivo and functional contribution to cancer have not been fully defined, WWOX does have an integral role in metabolism and can suppress tumor growth. Using Drosophila melanogaster as an in vivo model system, we find that WWOX is a modulator of TNFα/Egr-mediated cell death. We found that altered levels of WWOX can modify phenotypes generated by low level ectopic expression of TNFα/Egr and this corresponds to altered levels of Caspase 3 activity. These results demonstrate an in vivo role for WWOX in promoting cell death. This form of cell death is accompanied by an increase in levels of reactive oxygen species, the regulation of which we have previously shown can also be modified by altered WWOX activity. We now hypothesise that, through regulation of reactive oxygen species, WWOX constitutes a link between alterations in cellular metabolism observed in cancer cells and their ability to evade normal cell death pathways. We have further shown that WWOX activity is required for the efficient removal of tumorigenic cells from a developing epithelial tissue. Together these results provide a molecular basis for the tumor suppressor functions of WWOX and the better prognosis observed in cancer patients with higher levels of WWOX activity. Understanding the conserved cellular pathways to which WWOX contributes provides novel possibilities for the development of therapeutic approaches to restore WWOX function in cancer.
Collapse
Affiliation(s)
- Louise V. O’Keefe
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Cheng Shoou Lee
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Amanda Choo
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | - Robert I. Richards
- Department of Genetics and Evolution, Centre for Molecular Pathology, School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
26
|
Del Mare S, Aqeilan RI. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function. Sci Rep 2015; 5:12959. [PMID: 26256646 PMCID: PMC4542681 DOI: 10.1038/srep12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis bothin vitroandin vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases’ seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease.
Collapse
Affiliation(s)
- Sara Del Mare
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| |
Collapse
|
27
|
Abstract
WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3-q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox(+/-) mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of "classical" tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.
Collapse
Affiliation(s)
- Morgan S Schrock
- Biomedical Sciences Graduate Program, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|
28
|
Richards RI, Choo A, Lee CS, Dayan S, O'Keefe L. WWOX, the chromosomal fragile site FRA16D spanning gene: its role in metabolism and contribution to cancer. Exp Biol Med (Maywood) 2015; 240:338-44. [PMID: 25595186 DOI: 10.1177/1535370214565990] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The WWOX gene spans the common chromosomal fragile site FRA16D that is located within a massive (780 kb) intron. The WWOX gene is very long, at 1.1 Mb, which may contribute to the very low abundance of the full-length 1.4 kb mRNA. Alternative splicing also accounts for a variety of aberrant transcripts, most of which are devoid of C-terminal sequences required for WWOX to act as an oxidoreductase. The mouse WWOX gene also spans a chromosomal fragile site implying some sort of functional relationship that confers a selective advantage. The encoded protein domains of WWOX are conserved through evolution (between humans and Drosophila melanogaster) and include WW domains, an NAD -binding site, short-chain dehydrogenase/reductase enzyme and nuclear compartmentalization signals. This homology has enabled functional analyses in D. melanogaster that demonstrate roles for WWOX in reactive oxygen species regulation and metabolism. Indeed the human WWOX gene is also responsive to altered metabolism. Cancer cells typically exhibit altered metabolism (Warburg effect). Many cancers exhibit FRA16D DNA instability that results in aberrant WWOX expression and is associated with poor prognosis for these cancers. It is therefore thought that aberrant WWOX expression contributes to the altered metabolism in cancer. In addition, others have found that a specific (low-expression) allele of WWOX genotype contributes to cancer predisposition.
Collapse
Affiliation(s)
- Robert I Richards
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Amanda Choo
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Cheng Shoou Lee
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Sonia Dayan
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Louise O'Keefe
- Discipline of Genetics and Centre for Molecular Pathology, School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
29
|
Abstract
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
30
|
Abu-Remaileh M, Aqeilan RI. The tumor suppressor WW domain-containing oxidoreductase modulates cell metabolism. Exp Biol Med (Maywood) 2014; 240:345-50. [PMID: 25491415 DOI: 10.1177/1535370214561956] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3-4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression.
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91220, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91220, Israel Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Chang Y, Lan YY, Hsiao JR, Chang NS. Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 2014; 240:329-37. [PMID: 25488911 DOI: 10.1177/1535370214561957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX's suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein-Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just "the tip of the iceberg" regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis.
Collapse
Affiliation(s)
- Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Medical College and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
32
|
Aqeilan RI, Abu-Remaileh M, Abu-Odeh M. The common fragile site FRA16D gene product WWOX: roles in tumor suppression and genomic stability. Cell Mol Life Sci 2014; 71:4589-99. [PMID: 25245215 PMCID: PMC11113097 DOI: 10.1007/s00018-014-1724-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The fragile WWOX gene, encompassing the chromosomal fragile site FRA16D, is frequently altered in human cancers. While vulnerable to DNA damage itself, recent evidence has shown that the WWOX protein is essential for proper DNA damage response (DDR). Furthermore, the gene product, WWOX, has been associated with multiple protein networks, highlighting its critical functions in normal cell homeostasis. Targeted deletion of Wwox in murine models suggests its in vivo requirement for proper growth, metabolism, and survival. Recent molecular and biochemical analyses of WWOX functions highlighted its role in modulating aerobic glycolysis and genomic stability. Cumulatively, we propose that the gene product of FRA16D, WWOX, is a functionally essential protein that is required for cell homeostasis and that its deletion has important consequences that contribute to the neoplastic process. This review discusses the essential role of WWOX in tumor suppression and genomic stability and how its alteration contributes to cancer transformation.
Collapse
Affiliation(s)
- Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, 91220, Jerusalem, Israel,
| | | | | |
Collapse
|
33
|
Liu SY, Chiang MF, Chen YJ. Role of WW domain proteins WWOX in development, prognosis, and treatment response of glioma. Exp Biol Med (Maywood) 2014; 240:315-23. [PMID: 25432984 DOI: 10.1177/1535370214561588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant brain tumor. Delicate microenvironment and lineage heterogeneity of GBM cells including infiltration, hypoxia, angiogenesis, and stemness make them highly resistant to current conventional therapies, with an average life expectancy for GBM patients of less than 15 months. Poor response to cytotoxic agents of GBM cells remains the major challenge of GBM treatment. Resistance of GBM to clinical treatment is a result of genomic alternation and deregulated signaling pathways, such as p53 mutation and apoptosis signaling blockage, providing cancer cells more opportunities for survival rather than cell death. WW domain-containing oxidoreductase (WWOX) is a tumor suppressor gene, commonly downregulated in various types of tumors, including GBM. It has been found that the reintroduction of WWOX induced p53-mutant GBM cells to undergo apoptosis, but not in p53 wild-type GBM cells, indicating WWOX is likely to reopen apoptosis pathways in a p53-independent manner in GBM. Identifying the crucial target modulated by WWOX deficiency provides a potential therapeutic target for GBM treatment. Here, we have reviewed the literatures about the role of WWOX in development, signaling pathway, prognosis, and treatment response in malignant glioma.
Collapse
Affiliation(s)
- Shin-Yi Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Pharmacology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
34
|
Mignot C, Lambert L, Pasquier L, Bienvenu T, Delahaye-Duriez A, Keren B, Lefranc J, Saunier A, Allou L, Roth V, Valduga M, Moustaïne A, Auvin S, Barrey C, Chantot-Bastaraud S, Lebrun N, Moutard ML, Nougues MC, Vermersch AI, Héron B, Pipiras E, Héron D, Olivier-Faivre L, Guéant JL, Jonveaux P, Philippe C. WWOX-related encephalopathies: delineation of the phenotypical spectrum and emerging genotype-phenotype correlation. J Med Genet 2014; 52:61-70. [PMID: 25411445 DOI: 10.1136/jmedgenet-2014-102748] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Homozygous mutations in WWOX were reported in eight individuals of two families with autosomal recessive spinocerebellar ataxia type 12 and in two siblings with infantile epileptic encephalopathy (IEE), including one who deceased prior to DNA sampling. METHODS By combining array comparative genomic hybridisation, targeted Sanger sequencing and next generation sequencing, we identified five further patients from four families with IEE due to biallelic alterations of WWOX. RESULTS We identified eight deleterious WWOX alleles consisting in four deletions, a four base-pair frameshifting deletion, one missense and two nonsense mutations. Genotype-phenotype correlation emerges from the seven reported families. The phenotype in four patients carrying two predicted null alleles was characterised by (1) little if any psychomotor acquisitions, poor spontaneous motility and absent eye contact from birth, (2) pharmacoresistant epilepsy starting in the 1st weeks of life, (3) possible retinal degeneration, acquired microcephaly and premature death. This contrasted with the less severe autosomal recessive spinocerebellar ataxia type 12 phenotype due to hypomorphic alleles. In line with this correlation, the phenotype in two siblings carrying a null allele and a missense mutation was intermediate. CONCLUSIONS Our results obtained by a combination of different molecular techniques undoubtedly incriminate WWOX as a gene for recessive IEE and illustrate the usefulness of high throughput data mining for the identification of genes for rare autosomal recessive disorders. The structure of the WWOX locus encompassing the FRA16D fragile site might explain why constitutive deletions are recurrently reported in genetic databases, suggesting that WWOX-related encephalopathies, although likely rare, may not be exceptional.
Collapse
Affiliation(s)
- Cyril Mignot
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP; Centre de Référence des Déficiences Intellectuelles de Causes Rares, UPMC Univ Paris 06 Groupe de Recherche Clinique "Déficience Intellectuelle et Autisme", Paris, France
| | - Laetitia Lambert
- Unité Fonctionnelle de Génétique Clinique, Service de Médecine Néonatale, Maternité Régionale Universitaire, Nancy, France
| | - Laurent Pasquier
- Service de Génétique Clinique, Hôpital Sud, CLAD Ouest, Rennes, France
| | - Thierry Bienvenu
- Laboratoire de Biochimie et Génétique Moléculaire, GH Cochin-Broca-Hôtel Dieu, APHP, Inserm U1016, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | - Boris Keren
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP; Centre de Référence des Déficiences Intellectuelles de Causes Rares, UPMC Univ Paris 06 Groupe de Recherche Clinique "Déficience Intellectuelle et Autisme", Paris, France
| | - Jérémie Lefranc
- Service de Pédiatrie, Centre Hospitalo-Universitaire Morvan, Brest, France
| | - Aline Saunier
- Laboratoire de Génétique Médicale, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France
| | - Lila Allou
- Université de Lorraine, Inserm U954 Nutrition-Genetics-Environmental Risk Exposure, Medical Faculty, Vandoeuvre-les-Nancy, France
| | - Virginie Roth
- Laboratoire de Génétique Médicale, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France
| | - Mylène Valduga
- Laboratoire de Génétique Médicale, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France
| | - Aissa Moustaïne
- Laboratoire de Génétique Médicale, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France
| | - Stéphane Auvin
- APHP, Hôpital Robert Debré, Service de Neurologie Pédiatrique; Univ Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
| | - Catherine Barrey
- Service de Pédiatrie, Hôpital Saint-Camille, Bry-sur-Marne, France
| | | | - Nicolas Lebrun
- Laboratoire de Biochimie et Génétique Moléculaire, GH Cochin-Broca-Hôtel Dieu, APHP, Inserm U1016, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | - Bénédicte Héron
- Service de Neuropédiatrie, APHP, Hôpital Armand Trousseau, Paris, France Service de Pédiatrie, APHP, Hôpital Jean Verdier, Bondy, France
| | - Eva Pipiras
- Unité de Cytogénétique, Hôpital Jean Verdier, APHP, CHU-Paris 13, Bondy, France
| | - Delphine Héron
- Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP; Centre de Référence des Déficiences Intellectuelles de Causes Rares, UPMC Univ Paris 06 Groupe de Recherche Clinique "Déficience Intellectuelle et Autisme", Paris, France
| | - Laurence Olivier-Faivre
- Medical Genetics Unit, Centre Hospitalier Universitaire de Dijon; Research Unit EA 4271 Génétique des Anomalies du Développement, Université de Bourgogne, PRES Bourgogne-Franche Comté, Dijon, France
| | - Jean-Louis Guéant
- Université de Lorraine, Inserm U954 Nutrition-Genetics-Environmental Risk Exposure, Medical Faculty, Vandoeuvre-les-Nancy, France
| | - Philippe Jonveaux
- Laboratoire de Génétique Médicale, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France. Université de Lorraine, Inserm U954 Nutrition-Genetics-Environmental Risk Exposure, Medical Faculty, Vandoeuvre-les-Nancy, France
| | - Christophe Philippe
- Laboratoire de Génétique Médicale, Centre Hospitalier Régional et Universitaire, Vandoeuvre-les-Nancy, France. Université de Lorraine, Inserm U954 Nutrition-Genetics-Environmental Risk Exposure, Medical Faculty, Vandoeuvre-les-Nancy, France
| |
Collapse
|
35
|
Abstract
Mammalian sex determination is the unique process whereby a single organ, the bipotential gonad, undergoes a developmental switch that promotes its differentiation into either a testis or an ovary. Disruptions of this complex genetic process during human development can manifest as disorders of sex development (DSDs). Sex development can be divided into two distinct processes: sex determination, in which the bipotential gonads form either testes or ovaries, and sex differentiation, in which the fully formed testes or ovaries secrete local and hormonal factors to drive differentiation of internal and external genitals, as well as extragonadal tissues such as the brain. DSDs can arise from a number of genetic lesions, which manifest as a spectrum of gonadal (gonadal dysgenesis to ovotestis) and genital (mild hypospadias or clitoromegaly to ambiguous genitalia) phenotypes. The physical attributes and medical implications associated with DSDs confront families of affected newborns with decisions, such as gender of rearing or genital surgery, and additional concerns, such as uncertainty over the child's psychosexual development and personal wishes later in life. In this Review, we discuss the underlying genetics of human sex determination and focus on emerging data, genetic classification of DSDs and other considerations that surround gender development and identity in individuals with DSDs.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| | - David E Sandberg
- Department of Pediatrics, Division of Child Behavioral Health and Child Health Evaluation &Research (CHEAR) Unit, University of Michigan, 300 North Ingalls Street, Ann Arbor, MI 48109-5456, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095-7088, USA
| |
Collapse
|
36
|
Aldaz CM, Ferguson BW, Abba MC. WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim Biophys Acta Rev Cancer 2014; 1846:188-200. [PMID: 24932569 DOI: 10.1016/j.bbcan.2014.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023]
Abstract
WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas. Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical tumor suppressor gene since its deletion is not tumorigenic in most models and its role is more likely to be of relevance in tumor progression rather than in initiation. Analysis of signaling pathways associated with WWOX expression confirmed previous in vivo and in vitro observations linking WWOX function with the TGFβ/SMAD and WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we demonstrated that indeed WWOX behaves as a modulator of TGFβ/SMAD signaling by binding and sequestering SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced breast cancer would contribute to the pro-metastatic effects resulting from TGFβ/SMAD3 hyperactive signaling in breast cancer. Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and metabolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an association between WWOX expression and lipid metabolism. Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions.
Collapse
Affiliation(s)
- C Marcelo Aldaz
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Brent W Ferguson
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Martin C Abba
- CINIBA, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
37
|
Gardenswartz A, Aqeilan RI. WW domain-containing oxidoreductase's role in myriad cancers: clinical significance and future implications. Exp Biol Med (Maywood) 2014; 239:253-63. [PMID: 24510053 DOI: 10.1177/1535370213519213] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene, encodes a tumor suppressor located on 16q23.1, spanning FRA16D, one of the most active common fragile sites in the human genome, that is altered in numerous types of cancer. WWOX's alteration in these myriad cancers is due to disparate mechanisms including loss of heterozygosity, homozygous deletion and epigenetic changes. In vitro, WWOX has been found to be reduced or absent in numerous cancer cell lines and WWOX restoration has been found to inhibit tumor cell growth and invasion. Wwox knockout mice developed femoral focal lesions resembling osteosarcomas within one month of their life and aging Wwox heterozygous mice have an increased incidence of spontaneous lung and mammary tumors as well as B-cell lymphomas. We herein review WWOX's role that has been unearthed thus far in different types of malignancies, its clinical significance and future implications.
Collapse
|
38
|
Abdeen SK, Del Mare S, Hussain S, Abu-Remaileh M, Salah Z, Hagan J, Rawahneh M, Pu XA, Russell S, Stein JL, Stein GS, Lian JB, Aqeilan RI. Conditional inactivation of the mouse Wwox tumor suppressor gene recapitulates the null phenotype. J Cell Physiol 2013; 228:1377-82. [PMID: 23254685 DOI: 10.1002/jcp.24308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 11/07/2022]
Abstract
WW domain-containing oxidoreductase (WWOX) is highly conserved in both human and murine. WWOX spans the second most common human chromosomal fragile site, FRA16D, and is commonly inactivated in multiple human cancers. Modeling WWOX inactivation in mice revealed a complex phenotype including postnatal lethality, defects in bone metabolism and steroidogenesis and tumor suppressor function resulting in osteosarcomas. For better understanding of WWOX roles in different tissues at distinct stages of development and in pathological conditions, Wwox conditional knockout mice were generated in which loxp sites flank exon 1 in the Wwox allele. We demonstrated that Cre-mediated recombination using EIIA-Cre, a Cre line expressed in germline, results in postnatal lethality by age of 3 weeks and decreased bone mineralization resembling total ablation of WWOX as in conventional null mice. This animal model will be useful to study distinct roles of WWOX in multiple tissues at different ages.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu CJ, Shen WG, Peng SY, Cheng HW, Kao SY, Lin SC, Chang KW. miR-134induces oncogenicity and metastasis in head and neck carcinoma through targetingWWOXgene. Int J Cancer 2013; 134:811-21. [DOI: 10.1002/ijc.28358] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/24/2013] [Accepted: 06/11/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery; Mackay Memorial Hospital; Taipei Taiwan
- Institute of Biomedical Sciences; Mackay Medical College; Taipei Taiwan
- Department of Medical Research; Mackay Memorial Hospital; Taipei Taiwan
- Institute of Oral Biology and Department of Dentistry; School of Dentistry, National Yang-Ming University; Taipei Taiwan
| | - Wilma Grace Shen
- Institute of Oral Biology and Department of Dentistry; School of Dentistry, National Yang-Ming University; Taipei Taiwan
| | - Shih-Yuan Peng
- Institute of Oral Biology and Department of Dentistry; School of Dentistry, National Yang-Ming University; Taipei Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research; Mackay Memorial Hospital; Taipei Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology and Department of Dentistry; School of Dentistry, National Yang-Ming University; Taipei Taiwan
- Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology and Department of Dentistry; School of Dentistry, National Yang-Ming University; Taipei Taiwan
- Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology and Department of Dentistry; School of Dentistry, National Yang-Ming University; Taipei Taiwan
- Department of Stomatology; Taipei Veterans General Hospital; Taipei Taiwan
| |
Collapse
|
40
|
Baxter RM, Vilain E. Translational genetics for diagnosis of human disorders of sex development. Annu Rev Genomics Hum Genet 2013; 14:371-92. [PMID: 23875799 DOI: 10.1146/annurev-genom-091212-153417] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disorders of sex development (DSDs) are congenital conditions with discrepancies between the chromosomal, gonadal, and phenotypic sex of the individual. Such disorders have historically been difficult to diagnose and cause great stress to patients and their families. Genetic analysis of human samples has been instrumental in elucidating the molecules and pathways involved in the development of the bipotential gonad into a functioning testis or ovary. However, many DSD patients still do not receive a genetic diagnosis. New genetic and genomic technologies are expanding our knowledge of the underlying mechanism of DSDs and opening new avenues for clinical diagnosis. We review the genetic technologies that have elucidated the genes that are well established in sex determination in humans, discuss findings from more recent genomic technologies, and propose a new paradigm for clinical diagnosis of DSDs.
Collapse
|
41
|
Abstract
Formerly known as 'intersex' conditions, disorders of sex development (DSDs) are congenital conditions in which chromosomal, gonadal or anatomical sex is atypical. A complete revision of the nomenclature and classification of DSDs has been undertaken, which emphasizes the genetic aetiology of these disorders and discards pejorative terms. Uptake of the new terminology is widespread. DSDs affecting gonadal development are perhaps the least well understood. Unravelling the molecular mechanisms underlying gonadal development has revealed new causes of DSDs, although a specific molecular diagnosis is made in only ∼20% of patients. Conversely, identification of the molecular causes of DSDs has provided insight into the mechanisms of gonadal development. Studies of N-ethyl-N-nitrosourea mutagenesis in the mouse, and multigene diagnostic screening and genome-wide approaches, such as array-comparative genomic hybridization and next-generation sequencing, in patients with DSDs are accelerating the discovery of genes involved in gonadal development and DSDs. Furthermore, long-range gene regulatory mutations and multiple gene mutations are emerging as new causes of DSDs. Patients with DSDs, their parents and medical staff are confronted with challenging decisions regarding gender assignment, genital surgery and lifelong care. These advances are refining prognostic prediction and systematically improving the diagnosis and long-term management of children with DSDs.
Collapse
Affiliation(s)
- Makoto Ono
- Molecular Genetics and Development Division, Prince Henry's Institute of Medical Research, Monash Medical Centre, Department of Anatomy and Biochemistry, Monash University, Clayton, Melbourne, VIC, Australia
| | | |
Collapse
|
42
|
Bartnik M, Szczepanik E, Derwińska K, Wiśniowiecka-Kowalnik B, Gambin T, Sykulski M, Ziemkiewicz K, Kędzior M, Gos M, Hoffman-Zacharska D, Mazurczak T, Jeziorek A, Antczak-Marach D, Rudzka-Dybała M, Mazurkiewicz H, Goszczańska-Ciuchta A, Zalewska-Miszkurka Z, Terczyńska I, Sobierajewicz M, Shaw CA, Gambin A, Mierzewska H, Mazurczak T, Obersztyn E, Bocian E, Stankiewicz P. Application of array comparative genomic hybridization in 102 patients with epilepsy and additional neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:760-71. [PMID: 22825934 DOI: 10.1002/ajmg.b.32081] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/02/2012] [Indexed: 01/19/2023]
Abstract
Copy-number variants (CNVs) collectively represent an important cause of neurodevelopmental disorders such as developmental delay (DD)/intellectual disability (ID), autism, and epilepsy. In contrast to DD/ID, for which the application of microarray techniques enables detection of pathogenic CNVs in -10-20% of patients, there are only few studies of the role of CNVs in epilepsy and genetic etiology in the vast majority of cases remains unknown. We have applied whole-genome exon-targeted oligonucleotide array comparative genomic hybridization (array CGH) to a cohort of 102 patients with various types of epilepsy with or without additional neurodevelopmental abnormalities. Chromosomal microarray analysis revealed 24 non-polymorphic CNVs in 23 patients, among which 10 CNVs are known to be clinically relevant. Two rare deletions in 2q24.1q24.3, including KCNJ3 and 9q21.13 are novel pathogenic genetic loci and 12 CNVs are of unknown clinical significance. Our results further support the notion that rare CNVs can cause different types of epilepsy, emphasize the efficiency of detecting novel candidate genes by whole-genome array CGH, and suggest that the clinical application of array CGH should be extended to patients with unexplained epilepsies.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamamoto-Sugitani M, Kuroda J, Shimura Y, Nagoshi H, Chinen Y, Ohshiro M, Mizutani S, Kiyota M, Nakayama R, Kobayashi T, Uchiyama H, Matsumoto Y, Horiike S, Taniwaki M. Comprehensive cytogenetic study of primary cutaneous gamma-delta T-cell lymphoma by means of spectral karyotyping and genome-wide single nucleotide polymorphism array. Cancer Genet 2012; 205:459-64. [DOI: 10.1016/j.cancergen.2012.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
|
44
|
Lin HP, Chang JY, Lin SR, Lee MH, Huang SS, Hsu LJ, Chang NS. Identification of an In Vivo MEK/WOX1 Complex as a Master Switch for Apoptosis in T Cell Leukemia. Genes Cancer 2011; 2:550-62. [PMID: 21901168 DOI: 10.1177/1947601911418498] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 07/04/2011] [Indexed: 12/19/2022] Open
Abstract
Not all leukemia T cells are susceptible to high levels of phorbol myristate acetate (PMA)-mediated apoptosis. At micromolar levels, PMA induces apoptosis of Jurkat T cells by causing mitochondrial polarization/de-polarization, release of cytosolic granules, and DNA fragmentation. Chemical inhibitors U0126 and PD98059 block mitogen-activated protein kinase kinase 1 (MEK1)-mediated phosphorylation of extracellular signal-regulated kinase (ERK) and prevent apoptosis. Mechanistically, proapoptotic tumor suppressor WOX1 (also named WWOX or FOR) physically interacts with MEK1, in part, in the lysosomes in Jurkat cells. PMA induces the dissociation, which leads to relocation of MEK1 to lipid rafts and WOX1 to the mitochondria for causing apoptosis. U0126 inhibits PMA-induced dissociation of WOX1/MEK1 complex and supports survival of Jurkat cells. In contrast, less differentiated Molt-4 T cells are resistant to PMA-induced dissociation of the WOX1/MEK1 complex and thereby are refractory to apoptosis. U0126 overturns the resistance for enhancing apoptosis in Molt-4 cells. Together, the in vivo MEK1/WOX1 complex is a master on/off switch for apoptosis in leukemia T cells.
Collapse
Affiliation(s)
- Hsin-Ping Lin
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. Eur J Hum Genet 2011; 20:348-51. [PMID: 22071891 DOI: 10.1038/ejhg.2011.204] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Disorders of sex development (DSD) are congenital conditions where chromosomal, gonad or genital development is atypical. In a significant proportion of 46,XY DSD cases it is not possible to identify a causative mutation, making genetic counseling difficult and potentially hindering optimal treatment. Here, we describe the analysis of a 46,XY DSD patient that presented at birth with ambiguous genitalia. Histological analysis of the surgically removed gonads showed bilateral undifferentiated gonadal tissue and immature testis, both containing malignant germ cells. We screened genomic DNA from this patient for deletions and duplications using an Illumina whole-genome SNP microarray. This analysis revealed a heterozygous deletion within the WWOX gene on chromosome 16, removing exons 6-8. Analysis of parental DNA showed that the deletion was inherited from the mother. cDNA analysis confirmed that the deletion maintained the reading frame, with exon 5 being spliced directly onto exon 9. This deletion is the first description of a germline rearrangement affecting the coding sequence of WWOX in humans. Previously described Wwox knockout mouse models showed gonadal abnormalities, supporting a role for WWOX in human gonad development.
Collapse
|
46
|
Tumor suppressor genes FHIT and WWOX are deleted in primary effusion lymphoma (PEL) cell lines. Blood 2011; 118:e32-9. [PMID: 21685375 DOI: 10.1182/blood-2010-12-323659] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a diffuse-large B-cell lymphoma with poor prognosis. One hundred percent of PELs carry the genome of Kaposi sarcoma-associated herpesvirus and a majority are coinfected with Epstein-Barr virus (EBV). We profiled genomic aberrations in PEL cells using the Affymetrix 6.0 SNP array. This identified for the first time individual genes that are altered in PEL cells. Eleven of 13 samples (85%) were deleted for the fragile site tumor suppressors WWOX and FHIT. Alterations were also observed in the DERL1, ETV1, RASA4, TPK1, TRIM56, and VPS41 genes, which are yet to be characterized for their roles in cancer. Coinfection with EBV was associated with significantly fewer gross genomic aberrations, and PEL could be segregated into EBV-positive and EBV-negative clusters on the basis of host chromosome alterations. This suggests a model in which both host genetic aberrations and the 2 viruses contribute to the PEL phenotype.
Collapse
|
47
|
Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2010; 2011:984505. [PMID: 21318118 PMCID: PMC3035048 DOI: 10.1155/2011/984505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022] Open
Abstract
Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.
Collapse
|
48
|
O'Keefe LV, Colella A, Dayan S, Chen Q, Choo A, Jacob R, Price G, Venter D, Richards RI. Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species. Hum Mol Genet 2010; 20:497-509. [PMID: 21075834 PMCID: PMC3016910 DOI: 10.1093/hmg/ddq495] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Common chromosomal fragile sites FRA3B and FRA16D are frequent sites of DNA instability in cancer, but their contribution to cancer cell biology is not yet understood. Genes that span these sites (FHIT and WWOX, respectively) are often perturbed (either increased or decreased) in cancer cells and both are able to suppress tumour growth. While WWOX has some tumour suppressor characteristics, its normal role and functional contribution to cancer has not been fully determined. We find that a significant proportion of Drosophila Wwox interactors identified by proteomics and microarray analyses have roles in aerobic metabolism. Functional relationships between Wwox and either CG6439/isocitrate dehydrogenase (Idh) or Cu–Zn superoxide dismutase (Sod) were confirmed by genetic interactions. In addition, altered levels of Wwox resulted in altered levels of endogenous reactive oxygen species. Wwox (like FHIT) contributes to pathways involving aerobic metabolism and oxidative stress, providing an explanation for the ‘non-classical tumour suppressor’ behaviour of WWOX. Fragile sites, and the genes that span them, are therefore part of a protective response mechanism to oxidative stress and likely contributors to the differences seen in aerobic glycolysis (Warburg effect) in cancer cells.
Collapse
Affiliation(s)
- Louise V O'Keefe
- ARC Special Research Centre for the Molecular Genetics of Development and Discipline of Genetics, School ofMolecular and Biomedical Sciences, The University of Adelaide, Adelaide S.A. 5005, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chang JY, He RY, Lin HP, Hsu LJ, Lai FJ, Hong Q, Chen SJ, Chang NS. Signaling from membrane receptors to tumor suppressor WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 2010; 235:796-804. [PMID: 20542955 DOI: 10.1258/ebm.2010.009351] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The family of WW domain-containing proteins contains over 2000 members. The small WW domain module is responsible, in part, for protein/protein binding interactions and signaling. Many of these proteins are located at the membrane/cytoskeleton area, where they act as adaptors to receive signals from the cell surface. In this review, we provide molecular insights regarding recent novel findings on signaling from the cell surface toward WW domain-containing oxidoreductase, known as WWOX, FOR or WOX1. More specifically, transforming growth factor beta 1 utilizes cell surface hyaluronidase Hyal-2 (hyaluronoglucosaminidase 2) as a cognate receptor for signaling with WWOX and Smad4 to control gene transcription, growth and death. Complement C1q alone, bypassing the activation of classical pathway, signals a novel event of apoptosis by inducing microvillus formation and WWOX activation. Deficiency in these signaling events appears to favorably support cancer growth.
Collapse
Affiliation(s)
- Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Salah Z, Aqeilan R, Huebner K. WWOX gene and gene product: tumor suppression through specific protein interactions. Future Oncol 2010; 6:249-59. [PMID: 20146584 DOI: 10.2217/fon.09.152] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WWOX gene, an archetypal fragile gene, encompasses a chromosomal fragile site at 16q23.2, and encodes the approximately 46-kDa Wwox protein, with WW domains that interact with a growing list of interesting proteins. If the function of a protein is defined by the company it keeps, then Wwox is involved in numerous important signal pathways for bone and germ-cell development, cellular and animal growth and death, transcriptional control and suppression of cancer development. Because alterations to genes at fragile sites are exquisitely sensitive to replication stress-induced DNA damage, there has been an ongoing scientific discussion questioning whether such gene expression alterations provide a selective advantage for clonal expansion of neoplastic cells, and a parallel discussion on why important genes would be present at sites that are susceptible to inactivation. We offer some answers through a description of known WWOX functions.
Collapse
Affiliation(s)
- Zaidoun Salah
- The Lautenberg Center for Immunology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Pharmacy Building, Jerusalem 91120, Israel.
| | | | | |
Collapse
|