1
|
Wang J, Li B, Luo M, Huang J, Zhang K, Zheng S, Zhang S, Zhou J. Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther 2024; 9:83. [PMID: 38570490 PMCID: PMC10991592 DOI: 10.1038/s41392-024-01779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Ductal carcinoma in situ (DCIS) represents pre-invasive breast carcinoma. In untreated cases, 25-60% DCIS progress to invasive ductal carcinoma (IDC). The challenge lies in distinguishing between non-progressive and progressive DCIS, often resulting in over- or under-treatment in many cases. With increasing screen-detected DCIS in these years, the nature of DCIS has aroused worldwide attention. A deeper understanding of the biological nature of DCIS and the molecular journey of the DCIS-IDC transition is crucial for more effective clinical management. Here, we reviewed the key signaling pathways in breast cancer that may contribute to DCIS initiation and progression. We also explored the molecular features of DCIS and IDC, shedding light on the progression of DCIS through both inherent changes within tumor cells and alterations in the tumor microenvironment. In addition, valuable research tools utilized in studying DCIS including preclinical models and newer advanced technologies such as single-cell sequencing, spatial transcriptomics and artificial intelligence, have been systematically summarized. Further, we thoroughly discussed the clinical advancements in DCIS and IDC, including prognostic biomarkers and clinical managements, with the aim of facilitating more personalized treatment strategies in the future. Research on DCIS has already yielded significant insights into breast carcinogenesis and will continue to pave the way for practical clinical applications.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Baizhou Li
- Department of Pathology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Meng Luo
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
- Department of Plastic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Huang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China
| | - Suzhan Zhang
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
| | - Jiaojiao Zhou
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Breast Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Sun Z, Wang J, Zhang Q, Meng X, Ma Z, Niu J, Guo R, Tran LJ, Zhang J, Liu Y, Ye F, Ma B. Coordinating single-cell and bulk RNA-seq in deciphering the intratumoral immune landscape and prognostic stratification of prostate cancer patients. ENVIRONMENTAL TOXICOLOGY 2024; 39:657-668. [PMID: 37565774 DOI: 10.1002/tox.23928] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Prostate cancer is a common cancer among male population. The aberrant expression of histone modifiers has been identified as a potential driving force in numerous cancer types. However, the mechanism of histone modifiers in the development of prostate cancer remains unknown. METHODS Expression profiles and clinical data were obtained from GSE70769, GSE46602, and GSE67980. Seruat R package was utilized to calculate the gene set enrichment of the histone modification pathway and obtain the Histone score. Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were employed to identify marker genes with prognostic value. Kaplan-Meier survival analysis was conducted to assess the efficacy of the prognostic model. In addition, microenvironment cell populations counter (MCPcounter), single-sample gene set enrichment analysis (ssGSEA), and xCell algorithms were employed for immune infiltration analysis. Drug sensitivity prediction was performed using oncoPredict R package. RESULTS We screened differentially expressed genes (DEGs) between Histone-high score (Histone-H) and Histone-low score (Histone-L) groups, which were enriched in RNA splicing and DNA-binding transcription factor binding pathways. We retained four prognostic marker genes, including TACC3, YWHAH, TAF1C and TTLL5. The risk model showed significant efficacy in stratification of the prognosis of prostate cancer patients in both internal and external cohorts (p < .0001 and p = .032, respectively). In addition, prognostic gene YWHAH was infiltrated in abundance of fibroblasts and highly correlated with Entinostat_1593 drug sensitivity score and the value of risk score. CONCLUSION We innovatively developed a histone modification-related prognostic model with high prognostic potency and identified YWHAH as possible diagnostic and therapeutic biomarkers for prostate cancer. It provides novel insights to address prostate cancer and enhance clinical outcomes, thereby opening up a new avenue for customized treatment alternatives.
Collapse
Affiliation(s)
- Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Jie Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Qiang Zhang
- Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China
| | - Xiangdi Meng
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Zhaosen Ma
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Jiqiang Niu
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Rui Guo
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fangdie Ye
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baoluo Ma
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin, China
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
3
|
Zuo J, Zheng A, Wang X, Luo Z, Chen Y, Cheng X, Zhao Y, Zhou X, Tang KF, Du X. Upregulation of CELSR1 expression promotes ovarian cancer cell proliferation, migration, and invasion. Med Oncol 2023; 41:10. [PMID: 38070011 DOI: 10.1007/s12032-023-02232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Cadherin epidermal growth factor and laminin-G seven-pass G-type receptor 1 (CELSR1) is a planar cell polarity protein involved in the transmission of directional cues to align either individual cells within an epithelial sheet or multicellular clusters. CELSR1 has been suggested to play a role in glioma, breast cancer, and chronic lymphocytic leukemia development; however, whether it has a role in the pathogenesis of ovarian cancer remains unknown. The aim of this study was to determine the role of CELSR1 in ovarian cancer and elucidate its underlying molecular mechanisms. By analyzing gene expression data downloaded from the Cancer Genome Atlas database, we found that CELSR1 expression was upregulated in ovarian cancer tissues compared to that in normal ovarian tissues. High CELSR1 expression levels were associated with poor prognosis in patients with ovarian cancer. Cell proliferation, scratch, and transwell assays revealed that CELSR1 promoted the proliferation, migration, and invasion of ovarian cancer cells in vitro. In addition, transcriptome sequencing analysis revealed that CELSR1 knockdown in T29H cells resulted in the dysregulation of the expression of 1320 genes. Further analysis revealed that genes involved in proliferation- and migration-associated signaling pathways were regulated by CELSR1. Our study demonstrates that CELSR1 is highly expressed in ovarian cancer cells and regulates their proliferation and migration, suggesting its potential as a diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Jiwei Zuo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Anqi Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xingyue Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Zhicheng Luo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yueming Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xiaoxiao Cheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Yuemei Zhao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China
| | - Xian Zhou
- Department of Radiation Oncology, Chongqing University Cancer Hospital, 181, Hanyu Road, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, Zhejiang, People's Republic of China.
- Key Laboratory of Molecular Biology On Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
4
|
Wang K, Kumar T, Wang J, Minussi DC, Sei E, Li J, Tran TM, Thennavan A, Hu M, Casasent AK, Xiao Z, Bai S, Yang L, King LM, Shah V, Kristel P, van der Borden CL, Marks JR, Zhao Y, Zurita AJ, Aparicio A, Chapin B, Ye J, Zhang J, Gibbons DL, Sawyer E, Thompson AM, Futreal A, Hwang ES, Wesseling J, Lips EH, Navin NE. Archival single-cell genomics reveals persistent subclones during DCIS progression. Cell 2023; 186:3968-3982.e15. [PMID: 37586362 PMCID: PMC11831769 DOI: 10.1016/j.cell.2023.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.
Collapse
Affiliation(s)
- Kaile Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tapsi Kumar
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junke Wang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Darlan Conterno Minussi
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Emi Sei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianzhuo Li
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tuan M Tran
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Hu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna K Casasent
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhenna Xiao
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shanshan Bai
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Yang
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Lorraine M King
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Vandna Shah
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London WC2R 2LS, UK
| | - Petra Kristel
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Carolien L van der Borden
- Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Yuehui Zhao
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amado J Zurita
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Chapin
- Department of Urology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Ye
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ellinor Sawyer
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Cancer Centre, King's College London, London WC2R 2LS, UK
| | - Alastair M Thompson
- Department of Surgery, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew Futreal
- Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC 27707, USA
| | - Jelle Wesseling
- Department of Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Esther H Lips
- Department of Pathology, the Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam 1066 CX, the Netherlands; Department of Pathology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Nicholas E Navin
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Bioinformatics, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Milan KL, Jayasuriya R, Harithpriya K, Anuradha M, Sarada DVL, Siti Rahayu N, Ramkumar KM. Vitamin D resistant genes - promising therapeutic targets of chronic diseases. Food Funct 2022; 13:7984-7998. [PMID: 35856462 DOI: 10.1039/d2fo00822j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D is an essential vitamin indispensable for calcium and phosphate metabolism, and its deficiency has been implicated in several extra-skeletal pathologies, including cancer and chronic kidney disease. Synthesized endogenously in the layers of the skin by the action of UV-B radiation, the vitamin maintains the integrity of the bones, teeth, and muscles and is involved in cell proliferation, differentiation, and immunity. The deficiency of Vit-D is increasing at an alarming rate, with nearly 32% of children and adults being either deficient or having insufficient levels. This has been attributed to Vit-D resistant genes that cause a reduction in circulatory Vit-D levels through a set of signaling pathways. CYP24A1, SMRT, and SNAIL are three genes responsible for Vit-D resistance as their activity either lowers the circulatory levels of Vit-D or reduces its availability in target tissues. The hydroxylase CYP24A1 inactivates analogs and prohormonal and/or hormonal forms of calcitriol. Elevation of the expression of CYP24A1 is the major cause of exacerbation of several diseases. CYP24A1 is rate-limiting, and its induction has been correlated with increased prognosis of diseases, while loss of function mutations cause hypersensitivity to Vit-D. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and its corepressor are involved in the transcriptional repression of VDR-target genes. SNAIL1 (SNAIL), SNAIL2 (Slug), and SNAIL3 (Smuc) are involved in transcriptional repression and binding to histone deacetylases and methyltransferases in addition to recruiting polycomb repressive complexes to the target gene promoters. An inverse relationship between the levels of calcitriol and the epithelial-to-mesenchymal transition is reported. Studies have demonstrated a strong association between Vit-D deficiency and chronic diseases, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, infectious diseases, etc. Vit-D resistant genes associated with the aforementioned chronic diseases could serve as potential therapeutic targets. This review focuses on the basic structures and mechanisms of the repression of Vit-D regulated genes and highlights the role of Vit-D resistant genes in chronic diseases.
Collapse
Affiliation(s)
- Kunnath Lakshmanan Milan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Murugesan Anuradha
- Department of Obstetrics & Gynaecology, SRM Medical College Hospital and Research Centre, Kattankulathur 603 203, Tamil Nadu, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Nadhiroh Siti Rahayu
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Indonesia
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Heller SL, Plaunova A, Gao Y. Ductal Carcinoma In Situ and Progression to Invasive Cancer: A Review of the Evidence. JOURNAL OF BREAST IMAGING 2021; 3:135-143. [PMID: 38424826 DOI: 10.1093/jbi/wbaa119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 03/02/2024]
Abstract
Ductal carcinoma in situ (DCIS), breast cancer confined to the milk ducts, is a heterogeneous entity. The question of how and when a case of DCIS will extend beyond the ducts to become invasive breast cancer has implications for both patient prognosis and optimal treatment approaches. The natural history of DCIS has been explored through a variety of methods, from mouse models to biopsy specimen reviews to population-based screening data to modeling studies. This article will review the available evidence regarding progression pathways and will also summarize current trials designed to assess DCIS progression.
Collapse
Affiliation(s)
- Samantha L Heller
- NYU Grossman School of Medicine, Department of Radiology, New York, NY
| | | | - Yiming Gao
- NYU Grossman School of Medicine, Department of Radiology, New York, NY
| |
Collapse
|
7
|
Zhu H, Yue H, Xie Y, Chen B, Zhou Y, Liu W. Bioinformatics and integrated analyses of prognosis-associated key genes in lung adenocarcinoma. J Thorac Dis 2021; 13:1172-1186. [PMID: 33717590 PMCID: PMC7947492 DOI: 10.21037/jtd-21-49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The objective of the present study was to predict candidate genes with prognostic information for lung adenocarcinoma (LUAD). Methods Weighted correlation network analysis (WGCNA) was utilized to build the co-expression network of deferentially expressed genes (DEGs) in GSE32863. Key genes were identified as the intersecting genes of the modules of WGCNA and DEGs. Kaplan-Meier plotter was employed to conduct survival analysis. Enrichment analysis was performed. The expression of key genes in LUAD was validated. Then, we performed in vitro experiments to explore functions of key genes. We overexpressed DYNLRB2 in A549 cell. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were test expression levels and functional analyses were performed, including cell viability, apoptosis. Results A total of 1,587 DEGs in GSE32863 were identified, including 649 up-regulated genes and 938 down-regulated genes. In coexpression analysis, there were 1,271 hubgenes from the modules that were chosen for further analysis. 15 key genes were identified as the intersecting genes of the modules of WGCNA and DEGs. The expressions of dynein light chain roadblock-type 2 (DYNLRB2) and mouse homolog of ß1 spectrin (SPTBN1) were lower in LUAD, and were associated with survival time of LUAD patients. GSEA results showed that high expressed DYNLRB2 and SPTBN1 were enriched in Drug metabolism cytochrome P450, Cardiac muscle contraction, Retinol metabolism. Down-regulated DYNLRB2 and SPTBN1 were associated with Homologous recombination, Progesterone mediated oocyte maturation, Base excision repair. The in vitro experiment confirmed the overexpression of DYNLRB2 in A549 transferred cells. The overexpress DYNLRB2 inhibited cell viability and induced apoptosis. Conclusions Our study suggested that DYNLRB2 and SPTBN1 might be potential tumor suppressor genes and could serve as biomarkers for predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haiying Yue
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiting Xie
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binlin Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanhua Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Terkelsen T, Pernemalm M, Gromov P, Børresen-Dale AL, Krogh A, Haakensen VD, Lethiö J, Papaleo E, Gromova I. High-throughput proteomics of breast cancer interstitial fluid: identification of tumor subtype-specific serologically relevant biomarkers. Mol Oncol 2021; 15:429-461. [PMID: 33176066 PMCID: PMC7858121 DOI: 10.1002/1878-0261.12850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/13/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Despite significant advancements in breast cancer (BC) research, clinicians lack robust serological protein markers for accurate diagnostics and tumor stratification. Tumor interstitial fluid (TIF) accumulates aberrantly externalized proteins within the local tumor space, which can potentially gain access to the circulatory system. As such, TIF may represent a valuable starting point for identifying relevant tumor-specific serological biomarkers. The aim of the study was to perform comprehensive proteomic profiling of TIF to identify proteins associated with BC tumor status and subtype. A liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of 35 TIFs of three main subtypes: luminal (19), Her2 (4), and triple-negative (TNBC) (12) resulted in the identification of > 8800 proteins. Unsupervised hierarchical clustering segregated the TIF proteome into two major clusters, luminal and TNBC/Her2 subgroups. High-grade tumors enriched with tumor infiltrating lymphocytes (TILs) were also stratified from low-grade tumors. A consensus analysis approach, including differential abundance analysis, selection operator regression, and random forest returned a minimal set of 24 proteins associated with BC subtypes, receptor status, and TIL scoring. Among them, a panel of 10 proteins, AGR3, BCAM, CELSR1, MIEN1, NAT1, PIP4K2B, SEC23B, THTPA, TMEM51, and ULBP2, was found to stratify the tumor subtype-specific TIFs. In particular, upregulation of BCAM and CELSR1 differentiates luminal subtypes, while upregulation of MIEN1 differentiates Her2 subtypes. Immunohistochemistry analysis showed a direct correlation between protein abundance in TIFs and intratumor expression levels for all 10 proteins. Sensitivity and specificity were estimated for this protein panel by using an independent, comprehensive breast tumor proteome dataset. The results of this analysis strongly support our data, with eight of the proteins potentially representing biomarkers for stratification of BC subtypes. Five of the most representative proteomics databases currently available were also used to estimate the potential for these selected proteins to serve as putative serological markers.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anna-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Anders Krogh
- Department of Computer Science, University of Copenhagen, Denmark.,Department of Biology, University of Copenhagen, Denmark
| | - Vilde D Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Janne Lethiö
- Cancer Proteomics Mass Spectrometry, Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease System Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
9
|
Wang G, Li Y, Zhang D, Zhao S, Zhang Q, Luo C, Sun X, Zhang B. CELSR1 Acts as an Oncogene Regulated by miR-199a-5p in Glioma. Cancer Manag Res 2020; 12:8857-8865. [PMID: 33061581 PMCID: PMC7520142 DOI: 10.2147/cmar.s258835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Purpose This study aimed to elucidate the biological function and upstream regulatory mechanism of CELSR1 in glioma. Materials and Methods We evaluated the expression of CELSR1 in glioma by TCGA_GEPIA tool, RT-qPCR, and Western blot assays. CCK-8, wound healing, and transwell invasion assays were, respectively, performed to detect the effect of CELSR1 on cell proliferation, migration, and invasion. The upstream regulatory miRNAs of CELSR1 were predicted by TargetScan and validated by luciferase activity reporter assay. Results CELSR1 is overexpressed in glioma (P<0.05). CELSR1 promoted glioma cell proliferation, migration and invasion (P<0.01). CELSR1 was a direct target of miR-199a-5p. miR199a-5p mimics significantly inhibited CELSR1 mRNA and protein expression (P<0.01). miR199a-5p mimics reversed the effects of CELSR1 on glioma cell behaviors (P<0.01). Conclusion CELSR1 acts as an oncogene promoting glioma cell proliferation, migration, and invasion, which is regulated by miR199a-5p.
Collapse
Affiliation(s)
- Guang Wang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Dongxia Zhang
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Songtao Zhao
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Qiong Zhang
- National Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital Affiliated to Third Military Medical University, Chongqing, People's Republic of China
| | - Chao Luo
- Department of Neurosurgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bingqian Zhang
- Department of Clinical Medicine, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| |
Collapse
|
10
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin Drug Discov 2020; 15:1291-1307. [DOI: 10.1080/17460441.2020.1791075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrey D. Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
11
|
Omics Integration Analyses Reveal the Early Evolution of Malignancy in Breast Cancer. Cancers (Basel) 2020; 12:cancers12061460. [PMID: 32512721 PMCID: PMC7352609 DOI: 10.3390/cancers12061460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
The majority of cancer evolution studies involve individual-based approaches that neglect the population dynamics necessary to build a global picture of cancer evolution for each cancer type. Here, we conducted a population-based study in breast cancer to understand the timing of malignancy evolution and its correlation to the genetic evolution of pathological stages. In an omics integrative approach, we integrated gene expression and genomic aberration data for pre-invasive (ductal carcinoma in situ; DCIS, early-stage) and post-invasive (invasive ductal carcinoma; IDC, late-stage) samples and investigated the evolutionary role of further genetic changes in later stages compared to the early ones. We found that single gene alterations (SGAs) and copy-number alterations (CNAs) work together in forward and backward evolution manners to fine-tune the signaling pathways operating in tumors. Analyses of the integrated point mutation and gene expression data showed that (i) our proposed fine-tuning concept is also applicable to metastasis, and (ii) metastases sometimes diverge from the primary tumor at the DCIS stage. Our results indicated that the malignant potency of breast tumors is constant over the pre- and post-invasive pathological stages. Indeed, further genetic alterations in later stages do not establish de novo malignancy routes; however, they serve to fine-tune antecedent signaling pathways.
Collapse
|
12
|
Lin CY, Vennam S, Purington N, Lin E, Varma S, Han S, Desa M, Seto T, Wang NJ, Stehr H, Troxell ML, Kurian AW, West RB. Genomic landscape of ductal carcinoma in situ and association with progression. Breast Cancer Res Treat 2019; 178:307-316. [PMID: 31420779 PMCID: PMC6800639 DOI: 10.1007/s10549-019-05401-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE The detection rate of breast ductal carcinoma in situ (DCIS) has increased significantly, raising the concern that DCIS is overdiagnosed and overtreated. Therefore, there is an unmet clinical need to better predict the risk of progression among DCIS patients. Our hypothesis is that by combining molecular signatures with clinicopathologic features, we can elucidate the biology of breast cancer progression, and risk-stratify patients with DCIS. METHODS Targeted exon sequencing with a custom panel of 223 genes/regions was performed for 125 DCIS cases. Among them, 60 were from cases having concurrent or subsequent invasive breast cancer (IBC) (DCIS + IBC group), and 65 from cases with no IBC development over a median follow-up of 13 years (DCIS-only group). Copy number alterations in chromosome 1q32, 8q24, and 11q13 were analyzed using fluorescence in situ hybridization (FISH). Multivariable logistic regression models were fit to the outcome of DCIS progression to IBC as functions of demographic and clinical features. RESULTS We observed recurrent variants of known IBC-related mutations, and the most commonly mutated genes in DCIS were PIK3CA (34.4%) and TP53 (18.4%). There was an inverse association between PIK3CA kinase domain mutations and progression (Odds Ratio [OR] 10.2, p < 0.05). Copy number variations in 1q32 and 8q24 were associated with progression (OR 9.3 and 46, respectively; both p < 0.05). CONCLUSIONS PIK3CA kinase domain mutations and the absence of copy number gains in DCIS are protective against progression to IBC. These results may guide efforts to distinguish low-risk from high-risk DCIS.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/pathology
- DNA Copy Number Variations
- Female
- Genetic Predisposition to Disease
- Genome-Wide Association Study/methods
- Genomics/methods
- Humans
- In Situ Hybridization, Fluorescence
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Staging
- Tumor Burden
Collapse
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sujay Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Natasha Purington
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Eric Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Summer Han
- Department of Medicine, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Manisha Desa
- Department of Medicine and of Biomedical Data Science, Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | - Tina Seto
- Research Information Technology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas J Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Megan L Troxell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Allison W Kurian
- Departments of Medicine and of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert B West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Van Bockstal MR, Agahozo MC, Koppert LB, van Deurzen CHM. A retrospective alternative for active surveillance trials for ductal carcinoma in situ of the breast. Int J Cancer 2019; 146:1189-1197. [PMID: 31018242 PMCID: PMC7004157 DOI: 10.1002/ijc.32362] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a nonobligate precursor of invasive breast cancer, accounting for 20 % of screen-detected breast cancers. Little is known about the natural progression of DCIS because most patients undergo surgery upon diagnosis. Many DCIS patients are likely being overtreated, as it is believed that only around 50 % of DCIS will progress to invasive carcinoma. Robust prognostic markers for progression to invasive carcinoma are lacking. In the past, studies have investigated women who developed a recurrence after breast-conserving surgery (BCS) and compared them with those who did not. However, where there is no recurrence, the patient has probably been adequately treated. The present narrative review advocates a new research strategy, wherein only those patients with a recurrence are studied. Approximately half of the recurrences are invasive cancers, and half are DCIS. So-called "recurrences" are probably most often the result of residual disease. The new approach allows us to ask: why did some residual DCIS evolve to invasive cancers and others not? This novel strategy compares the group of patients that developed in situ recurrence with the group of patients that developed invasive recurrence after BCS. The differences between these groups could then be used to develop a robust risk stratification tool. This tool should estimate the risk of synchronous and metachronous invasive carcinoma when DCIS is diagnosed in a biopsy. Identification of DCIS patients at low risk for developing invasive carcinoma will individualize future therapy and prevent overtreatment.
Collapse
Affiliation(s)
- Mieke R Van Bockstal
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marie C Agahozo
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Linetta B Koppert
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
14
|
Sinha VC, Piwnica-Worms H. Intratumoral Heterogeneity in Ductal Carcinoma In Situ: Chaos and Consequence. J Mammary Gland Biol Neoplasia 2018; 23:191-205. [PMID: 30194658 PMCID: PMC6934090 DOI: 10.1007/s10911-018-9410-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a non-invasive proliferative growth in the breast that serves as a non-obligate precursor to invasive ductal carcinoma. The widespread adoption of screening mammography has led to a steep increase in the detection of DCIS, which now comprises approximately 20% of new breast cancer diagnoses in the United States. Interestingly, the intratumoral heterogeneity (ITH) that has been observed in invasive breast cancers may have been established early in tumorigenesis, given the vast and varied ITH that has been detected in DCIS. This review will discuss the intratumoral heterogeneity of DCIS, focusing on the phenotypic and genomic heterogeneity of tumor cells, as well as the compositional heterogeneity of the tumor microenvironment. In addition, we will assess the spatial heterogeneity that is now being appreciated in these lesions, and summarize new approaches to evaluate heterogeneity of tumor and stromal cells in the context of their spatial organization. Importantly, we will discuss how a growing understanding of ITH has led to a more holistic appreciation of the complex biology of DCIS, specifically its evolution and natural history. Finally, we will consider ways in which our knowledge of DCIS ITH might be translated in the future to guide clinical care for DCIS patients.
Collapse
Affiliation(s)
- Vidya C Sinha
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Kitamura M, Nakayama T, Mukaisho KI, Mori T, Umeda T, Moritani S, Kushima R, Tani M, Sugihara H. Progression Potential of Ductal Carcinoma in situ Assessed by Genomic Copy Number Profiling. Pathobiology 2018; 86:92-101. [PMID: 30332671 DOI: 10.1159/000492833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of the breast is heterogeneous in terms of the risk of progression to invasive ductal carcinoma (IDC). To treat DCIS appropriately for its progression risk, we classified individual DCIS by its profile of genomic changes into 2 groups and correlated them with clinicopathological progression factors. METHODS We used surgically resected, formalin-fixed, paraffin-embedded tissues of 22 DCIS and 30 IDC lesions. We performed immunohistochemical intrinsic subtyping, array-based comparative genomic hybridization, and unsupervised clustering. RESULTS The samples were divided into 2 major clusters, A and B. Cluster A showed a greater number of gene and chromosome copy number alterations, a larger IDC/DCIS ratio, a higher frequency of nonluminal subtype, a lower frequency of luminal subtype, and a higher nuclear grade, when compared with cluster B. However, there was no difference in the frequencies of lymph node metastasis between clusters A and B. We identified 9 breast-cancer-related genes, including TP53 and GATA3, that highly contributed to the discrimination of A and B clusters. CONCLUSION Classification of breast tumors into rapidly progressive cluster A and the other (cluster B) may contribute to select the treatment appropriate for their progression risk.
Collapse
Affiliation(s)
- Mina Kitamura
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan.,Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Takahisa Nakayama
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Ken-Ichi Mukaisho
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Tsuyoshi Mori
- Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Tomoko Umeda
- Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Suzuko Moritani
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Ryoji Kushima
- Division of Diagnostic Pathology, Shiga University of Medical Science Hospital, Otsu, Japan
| | - Masaji Tani
- Division of Digestive, Breast and General Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Sugihara
- Division of Molecular Diagnostic Pathology, Department of Pathology, Shiga University of Medical Science, Otsu, Japan,
| |
Collapse
|
16
|
Toss M, Miligy I, Thompson A, Khout H, Green A, Ellis I, Rakha E. Current trials to reduce surgical intervention in ductal carcinoma in situ of the breast: Critical review. Breast 2017; 35:151-156. [DOI: 10.1016/j.breast.2017.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
|
17
|
|
18
|
Casasent AK, Edgerton M, Navin NE. Genome evolution in ductal carcinoma in situ: invasion of the clones. J Pathol 2016; 241:208-218. [PMID: 27861897 DOI: 10.1002/path.4840] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Ductal carcinoma in situ (DCIS) is the most frequently diagnosed early-stage breast cancer. Only a subset of patients progress to invasive ductal carcinoma (IDC), and this presents a formidable clinical challenge for determining which patients to treat aggressively and which patients to monitor without therapeutic intervention. Understanding the molecular and genomic basis of invasion has been difficult to study in DCIS cancers due to several technical obstacles, including low tumour cellularity, lack of fresh-frozen tissues, and intratumour heterogeneity. In this review, we discuss the role of intratumour heterogeneity in the progression of DCIS to IDC in the context of three evolutionary models: independent lineages, evolutionary bottlenecks, and multiclonal invasion. We examine the evidence in support of these models and their relevance to the diagnosis and treatment of patients with DCIS. We also discuss how emerging technologies, such as single-cell sequencing, STAR-FISH, and imaging mass spectrometry, are likely to provide new insights into the evolution of this enigmatic disease. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Pang JMB, Gorringe KL, Fox SB. Ductal carcinoma in situ - update on risk assessment and management. Histopathology 2016; 68:96-109. [PMID: 26768032 DOI: 10.1111/his.12796] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20-25% of breast cancers. While DCIS is not life-threatening, it may progress to invasive carcinoma over time, and treatment intended to prevent invasive progression may itself cause significant morbidity. Accurate risk assessment is therefore necessary to avoid over- or undertreatment of an individual patient. In this review we will outline the evidence for current management of DCIS, discuss approaches to DCIS risk assessment and challenges facing identification of novel DCIS biomarkers.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | - Kylie L Gorringe
- Department of Pathology, University of Melbourne, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic., Australia.,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, Vic., Australia.,Department of Pathology, University of Melbourne, Melbourne, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
20
|
Geradts J, Groth J, Wu Y, Jin G. Validation of an oligo-gene signature for the prognostic stratification of ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 2016; 157:447-59. [DOI: 10.1007/s10549-016-3838-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022]
|
21
|
Tamura N, Tsuda H, Yoshida M, Hojo T, Akashi-Tanaka S, Kinoshita T, Sugihara K. Clinicopathological predictive factors for ipsilateral and contralateral events following initial surgery to treat ductal carcinoma in situ. Breast Cancer 2016; 23:510-8. [PMID: 25666939 PMCID: PMC4839035 DOI: 10.1007/s12282-015-0595-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 01/28/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ipsilateral breast tumor recurrence (IBTR) after partial breast resection and contralateral breast tumor recurrence (CBTR) have been shown to occur relatively frequently in patients with ductal carcinoma in situ (DCIS). However, there is only limited data from Japanese institutes to support this. METHODS Of 301 consecutive DCIS patients, 179 patients underwent a mastectomy, and the other 122 underwent partial resection in the National Cancer Center Hospital, Tokyo, with a median follow-up period of 2,106 days. We reviewed clinicopathological parameters including age, menopausal status, body mass index, family history (FH) of breast cancer, tumor size, histological subtype, nuclear grade (NG), hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) status, treatment, and the surgical margin status of partially resected specimens. The risk associated with each of these parameters for IBTR in 122 patients who underwent partial resections, and for CBTR in a total of 301 patients were calculated using Cox proportional hazard general linear models. RESULTS Of the 122 patients who underwent partial breast resection, IBTR occurred in 7 (5.7%). The risk of IBTR was higher or tended to be higher in younger patients or those with lower NG tumors, but did not change significantly with respect to margin status or irradiation. Amongst the entire cohort of 301 patients, CBTR occurred in 18 cases (6.0%). CBTR occurred significantly more frequently in patients with a FH of breast cancer and with HR+/HER2- subtype tumors by univariate analyses, and tumor subtype was an independent risk factor for CBTR by multivariate analysis. CONCLUSIONS The local recurrence rate was low following partial resection of DCIS. Younger age was a risk factor for IBTR, whereas the HR+/HER2- tumor subtype and a FH of breast cancer were risk factors for CBTR.
Collapse
Affiliation(s)
- Nobuko Tamura
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Tokyo, Japan
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
- Surgical Oncology Division, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Tsuda
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.
- Department of Basic Pathology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan.
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Hojo
- Breast Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Sadako Akashi-Tanaka
- Division of breast Surgical Oncology, Showa University School of Medicine, Tokyo, Japan
| | | | - Kenichi Sugihara
- Surgical Oncology Division, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
22
|
Abstract
Alterations in the homeostasis of several adhesion GPCRs (aGPCRs) have been observed in cancer. The main cellular functions regulated by aGPCRs are cell adhesion, migration, polarity, and guidance, which are all highly relevant to tumor cell biology. Expression of aGPCRs can be induced, increased, decreased, or silenced in the tumor or in stromal cells of the tumor microenvironment, including fibroblasts and endothelial and/or immune cells. For example, ADGRE5 (CD97) and ADGRG1 (GPR56) show increased expression in many cancers, and initial functional studies suggest that both are relevant for tumor cell migration and invasion. aGPCRs can also impact the regulation of angiogenesis by releasing soluble fragments following the cleavage of their extracellular domain (ECD) at the conserved GPCR-proteolytic site (GPS) or other more distal cleavage sites as typical for the ADGRB (BAI) family. Interrogation of in silico cancer databases suggests alterations in other aGPCR members and provides the impetus for further exploration of their potential role in cancer. Integration of knowledge on the expression, regulation, and function of aGPCRs in tumorigenesis is currently spurring the first preclinical studies to examine the potential of aGPCR or the related pathways as therapeutic targets.
Collapse
Affiliation(s)
- Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Liebigstraße 19, Leipzig, 04103, Germany.
| | - Dan Zhu
- Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Lei Xu
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
23
|
Cedolini C, Bertozzi S, Londero AP, Seriau L, Andretta M, Agakiza D, Fongione S, Uzzau A, Risaliti A. Impact of the presence and quantity of ductal carcinoma in situ component on the outcome of invasive breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13304-13. [PMID: 26722534 PMCID: PMC4680479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/23/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION The role of ductal carcinoma in situ (DCIS) component on the outcome of invasive breast cancer is not yet completely clear. Our study aims to assess the impact of the presence and quantity of DCIS component on the outcome of patients operated for invasive breast cancer. MATERIALS AND METHODS We collected retrospective data about patients operated at their breast for invasive cancer between 2007 and 2012, focusing on the presence of DCIS component. Then, we divided patients into four groups based on the quantity of DCIS component as follows: not found (group A), minimal (group B, <25%), extensive (group C, 25-75%), and prevalent (group D, >75%). We further defined "extensive intraductal component" (EIC) groups C and D together. RESULTS DCIS component was associated with young age, familial history of breast cancer and worse biological characteristics, including high grading, higher prevalence of Her2/Neu overexpression, hormone receptors negativity, comedo-like necrosis and multifocality/multicentricity. Despite the unfavorable prognostic factors, invasive cancers associated with EIC were frequently treated with radical surgery and resulted to have long disease-free survival and low local recurrence rate. In patients with DCIS component (groups B, C, and D) the extension of this component resulted indirectly correlated with local recurrence rate, tumor lymphovascular invasion, and lymphnode extracapsular invasion. The highest prevalence of local recurrences was found in group B, which tended to be less frequently treated with radical surgery than group D (P<0.05) and C (P=n.s.). CONCLUSIONS Different clinical and tumor features among invasive breast cancer with and without DCIS component indicate that they are distinct entities probably originating by different pathways that deserve to be studied. Furthermore, the controversial results about the management of cancer with minimal intraductal component require further studies in order to reduce local recurrence.
Collapse
Affiliation(s)
- Carla Cedolini
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
| | - Serena Bertozzi
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
- Department of Surgical Oncology, IRCSS CROVia Franco Gallini, Aviano (PN) 2-33081, Italy
| | - Ambrogio P Londero
- Unit of Obstetrics and Gynecology, S Polo Hospitalvia Galvani, Monfalcone (GO) 1-34074, Italy
| | - Luca Seriau
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
| | - Michela Andretta
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
| | - Diane Agakiza
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
| | - Sandro Fongione
- Radiotherapy Unit, AOU “Santa Maria della Misericordia”Udine 33100, Italy
| | - Alessandro Uzzau
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
| | - Andrea Risaliti
- Clinic of Surgery, AOU “Santa Maria della Misericordia”, DISM, DSMB, University of Udine, Piazzale Santa Maria della MisericordiaUdine 15-33100, Italy
| |
Collapse
|
24
|
Elsarraj HS, Hong Y, Valdez KE, Michaels W, Hook M, Smith WP, Chien J, Herschkowitz JI, Troester MA, Beck M, Inciardi M, Gatewood J, May L, Cusick T, McGinness M, Ricci L, Fan F, Tawfik O, Marks JR, Knapp JR, Yeh HW, Thomas P, Carrasco DR, Fields TA, Godwin AK, Behbod F. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion. Breast Cancer Res 2015; 17:128. [PMID: 26384318 PMCID: PMC4574212 DOI: 10.1186/s13058-015-0630-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Introduction There are an estimated 60,000 new cases of ductal carcinoma in situ (DCIS) each year. A lack of understanding in DCIS pathobiology has led to overtreatment of more than half of patients. We profiled the temporal molecular changes during DCIS transition to invasive ductal carcinoma (IDC) using in vivo DCIS progression models. These studies identified B cell lymphoma-9 (BCL9) as a potential molecular driver of early invasion. BCL9 is a newly found co-activator of Wnt-stimulated β-catenin-mediated transcription. BCL9 has been shown to promote progression of multiple myeloma and colon carcinoma. However BCL9 role in breast cancer had not been previously recognized. Methods Microarray and RNA sequencing were utilized to characterize the sequential changes in mRNA expression during DCIS invasive transition. BCL9-shRNA knockdown was performed to assess the role of BCL9 in in vivo invasion, epithelial-mesenchymal transition (EMT) and canonical Wnt-signaling. Immunofluorescence of 28 patient samples was used to assess a correlation between the expression of BCL9 and biomarkers of high risk DCIS. The cancer genome atlas data were analyzed to assess the status of BCL9 gene alterations in breast cancers. Results Analysis of BCL9, by RNA and protein showed BCL9 up-regulation to be associated with DCIS transition to IDC. Analysis of patient DCIS revealed a significant correlation between high nuclear BCL9 and pathologic characteristics associated with DCIS recurrence: Estrogen receptor (ER) and progesterone receptor (PR) negative, high nuclear grade, and high human epidermal growth factor receptor2 (HER2). In vivo silencing of BCL9 resulted in the inhibition of DCIS invasion and reversal of EMT. Analysis of the TCGA data showed BCL9 to be altered in 26 % of breast cancers. This is a significant alteration when compared to HER2 (ERBB2) gene (19 %) and estrogen receptor (ESR1) gene (8 %). A significantly higher proportion of basal like invasive breast cancers compared to luminal breast cancers showed BCL9 amplification. Conclusion BCL9 is a molecular driver of DCIS invasive progression and may predispose to the development of basal like invasive breast cancers. As such, BCL9 has the potential to serve as a biomarker of high risk DCIS and as a therapeutic target for prevention of IDC. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0630-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanan S Elsarraj
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Yan Hong
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Kelli E Valdez
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Whitney Michaels
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Marcus Hook
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - William P Smith
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, University at Albany-SUNY, Rensselaer, NY, 12144, USA.
| | - Melissa A Troester
- School of Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Moriah Beck
- Department of Chemistry, Wichita State University, Wichita, KS, 67260, USA.
| | - Marc Inciardi
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Jason Gatewood
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Lisa May
- School of Medicine, University of Kansas, Wichita, KS, 67214, USA.
| | - Therese Cusick
- School of Medicine, University of Kansas, Wichita, KS, 67214, USA.
| | - Marilee McGinness
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Lawrence Ricci
- Department of Radiology, Truman Medical Center, Kansas City, MO, 64108, USA.
| | - Fang Fan
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Ossama Tawfik
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Jeffrey R Marks
- Department of Surgery, Duke University, Durham, NC, 27710, USA.
| | - Jennifer R Knapp
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Hung-Wen Yeh
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Patricia Thomas
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - D R Carrasco
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115-5450, USA.
| | - Timothy A Fields
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Andrew K Godwin
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| | - Fariba Behbod
- Department of Pathology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mail Stop 3003, Kansas City, KS, 66160, USA.
| |
Collapse
|
25
|
Copy number analysis of ductal carcinoma in situ with and without recurrence. Mod Pathol 2015; 28:1174-84. [PMID: 26321097 DOI: 10.1038/modpathol.2015.75] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 11/08/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer and a frequent mammographic finding requiring treatment. Up to 25% of DCIS can recur and half of recurrences are invasive, but there are no reliable biomarkers for recurrence. We hypothesised that copy number aberrations could predict likelihood of recurrence. We analysed a cohort of pure DCIS cases treated only with wide local excision for genome-wide copy number and loss of heterozygosity using Affymetrix OncoScan MIP arrays. Cases included those without recurrence within 7 years (n = 25) and with recurrence between 1 and 5 years after diagnosis (n = 15). Pure DCIS were broadly similar in copy number changes compared with invasive breast cancer, with the consistent exception of a greater frequency of ERBB2 amplification in DCIS. There were no significant differences in age or ER status between the cases with a recurrence vs those without. Overall, the DCIS cases with recurrence had more copy number events than the DCIS without recurrence. The increased copy number appeared non-random with several genomic regions showing an increase in frequency in recurrent cases, including 20 q gain, ERBB2 amplification and 15q loss. Copy number changes may provide prognostic information for DCIS recurrence, but validation in additional cohorts is required.
Collapse
|
26
|
Rane SU, Mirza H, Grigoriadis A, Pinder SE. Selection and evolution in the genomic landscape of copy number alterations in ductal carcinoma in situ (DCIS) and its progression to invasive carcinoma of ductal/no special type: a meta-analysis. Breast Cancer Res Treat 2015; 153:101-21. [PMID: 26255059 DOI: 10.1007/s10549-015-3509-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/18/2015] [Indexed: 12/18/2022]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive malignancy detected with an increasing frequency through screening mammography. One of the primary aims of therapy is to prevent local recurrence, as in situ or as invasive carcinoma, the latter arising in half of the recurrent cases. Reliable biomarkers predictive of its association with recurrence, particularly as invasive disease, are however lacking. In this study, we perform a meta-analysis of 26 studies which report somatic copy number aberrations (SCNAs) in 288 cases of 'pure' DCIS and 328 of DCIS associated with invasive carcinoma, along with additional unmatched cases of 145 invasive carcinoma of ductal/no special type (IDC) and 50 of atypical ductal hyperplasia (ADH). SCNA frequencies across the genome were calculated at cytoband resolution (UCSC genome build 19) to maximally utilize the available information in published literature. Fisher's exact test was used to identify significant differences in the gain-loss distribution in each cytoband in different group comparisons. We found synchronous DCIS to be at a more advanced stage of genetic aberrations than pure DCIS and was very similar to IDC. Differences in gains and losses in each disease process (i.e. invasive or in situ) at each cytoband were used to infer evidence of selection and conservation for each cytoband and to define an evolutionary conservation scale (ECS) as a tool to identify and distinguish driver SCNA from the passenger SCNA. Using ECS, we have identified aberrations that show evidence of selection from the early stages of neoplasia (i.e. in ADH and pure DCIS) and persist in IDC; we postulate these to be driver aberrations and that their presence may predict progression to invasive disease.
Collapse
Affiliation(s)
- Swapnil Ulhas Rane
- Department of Research Oncology, King's Health Partners AHSC, King's College London, London, UK,
| | | | | | | |
Collapse
|
27
|
Pang JMB, Gorringe KL, Wong SQ, Dobrovic A, Campbell IG, Fox SB. Appraisal of the technologies and review of the genomic landscape of ductal carcinoma in situ of the breast. Breast Cancer Res 2015; 17:80. [PMID: 26078038 PMCID: PMC4469314 DOI: 10.1186/s13058-015-0586-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ductal carcinoma in situ is a biologically diverse entity. Whereas some lesions are cured by local surgical excision, others recur as in situ disease or progress to invasive carcinoma with subsequent potential for metastatic spread. Reliable prognostic biomarkers are therefore desirable for appropriate clinical management but remain elusive. In common with invasive breast cancer, ductal carcinoma in situ exhibits many genomic changes, predominantly copy number alterations. Although studies have revealed the genomic heterogeneity within individual ductal carcinoma in situ lesions and the association of certain copy number alterations with nuclear grade, none of the genomic changes defined so far is consistently associated with invasive transformation or recurrence risk in pure ductal carcinoma in situ. This article will review the current landscape of genomic alterations in ductal carcinoma in situ and their potential as prognostic biomarkers together with the technologies used to define these.
Collapse
Affiliation(s)
- Jia-Min B Pang
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| | - Kylie L Gorringe
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen Q Wong
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Translational Research Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Alexander Dobrovic
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Translational Genomics & Epigenomics Laboratory, Olivia Newton-John Cancer Research Institute, Studley Road, Heidelberg, VIC, 3084, Australia.
| | - Ian G Campbell
- Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Pathology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
28
|
Li Q, Stram A, Chen C, Kar S, Gayther S, Pharoah P, Haiman C, Stranger B, Kraft P, Freedman ML. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum Mol Genet 2014; 23:5294-302. [PMID: 24907074 PMCID: PMC4215106 DOI: 10.1093/hmg/ddu228] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/17/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
The majority of trait-associated loci discovered through genome-wide association studies are located outside of known protein coding regions. Consequently, it is difficult to ascertain the mechanism underlying these variants and to pinpoint the causal alleles. Expression quantitative trait loci (eQTLs) provide an organizing principle to address both of these issues. eQTLs are genetic loci that correlate with RNA transcript levels. Large-scale data sets such as the Cancer Genome Atlas (TCGA) provide an ideal opportunity to systematically evaluate eQTLs as they have generated multiple data types on hundreds of samples. We evaluated the determinants of gene expression (germline variants and somatic copy number and methylation) and performed cis-eQTL analyses for mRNA expression and miRNA expression in five tumor types (breast, colon, kidney, lung and prostate). We next tested 149 known cancer risk loci for eQTL effects, and observed that 42 (28.2%) were significantly associated with at least one transcript. Lastly, we described a fine-mapping strategy for these 42 eQTL target-gene associations based on an integrated strategy that combines the eQTL level of significance and the regulatory potential as measured by DNaseI hypersensitivity. For each of the risk loci, our analyses suggested 1 to 81 candidate causal variants that may be prioritized for downstream functional analysis. In summary, our study provided a comprehensive landscape of the genetic determinants of gene expression in different tumor types and ranked the genes and loci for further functional assessment of known cancer risk loci.
Collapse
Affiliation(s)
- Qiyuan Li
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, USA Medical College of Xiamen University, Xiamen, China Program in Medical and Population Genetics, The Broad Institute, Cambridge, MA, USA
| | | | - Constance Chen
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Siddhartha Kar
- Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | - Simon Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Log Angeles, CA, USA
| | - Paul Pharoah
- Strangeways Research Laboratory, University of Cambridge, Cambridge, UK
| | | | - Barbara Stranger
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Matthew L Freedman
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, MA, USA Program in Medical and Population Genetics, The Broad Institute, Cambridge, MA, USA
| |
Collapse
|
29
|
Blackmore JK, Karmakar S, Gu G, Chaubal V, Wang L, Li W, Smith CL. The SMRT coregulator enhances growth of estrogen receptor-α-positive breast cancer cells by promotion of cell cycle progression and inhibition of apoptosis. Endocrinology 2014; 155:3251-61. [PMID: 24971610 PMCID: PMC4138560 DOI: 10.1210/en.2014-1002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SMRT coregulator functions as a dual coactivator and corepressor for estrogen receptor-α (ERα) in a gene-specific manner, and in several studies its elevated expression correlates with poor outcome for breast cancer patients. A specific role of SMRT in breast cancer progression has not been elucidated, but SMRT knock-down limits estradiol-dependent growth of MCF-7 breast cancer cells. In this study, small-interfering RNA (siRNA) and short-hairpin RNA (shRNA) approaches were used to determine the effects of SMRT depletion on growth of ERα-positive MCF-7 and ZR-75-1 breast cancer cells, as well as the ERα-negative MDA-MB-231 breast cancer line. Depletion of SMRT inhibited growth of ERα-positive cells grown in monolayer but had no effect on growth of the ERα-negative cells. Reduced SMRT levels also negatively impacted the anchorage-independent growth of MCF-7 cells as assessed by soft agar colony formation assays. The observed growth inhibitions were due to a loss of estradiol-induced progression through the G1/S transition of the cell cycle and increased apoptosis in SMRT-depleted compared with control cells. Gene expression analyses indicated that SMRT inhibits apoptosis by a coordinated regulation of genes involved in apoptosis. Functioning as a dual coactivator for anti-apoptotic genes and corepressor for pro-apoptotic genes, SMRT can limit apoptosis. Together these data indicate that SMRT promotes breast cancer progression through multiple pathways leading to increased proliferation and decreased apoptosis.
Collapse
Affiliation(s)
- Julia K Blackmore
- Molecular and Cellular Biology (J.K.B., S.K., V.C., C.L.S.), Lester and Sue Smith Breast Center (G.G.), and Dan L Duncan Cancer Center (L.W., W.L.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | |
Collapse
|
30
|
Sakr RA, Weigelt B, Chandarlapaty S, Andrade VP, Guerini-Rocco E, Giri D, Ng CKY, Cowell CF, Rosen N, Reis-Filho JS, King TA. PI3K pathway activation in high-grade ductal carcinoma in situ--implications for progression to invasive breast carcinoma. Clin Cancer Res 2014; 20:2326-37. [PMID: 24634376 PMCID: PMC4015460 DOI: 10.1158/1078-0432.ccr-13-2267] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To assess the prevalence of phosphoinositide 3-kinase (PI3K) pathway alterations in pure high-grade ductal carcinoma in situ (DCIS) and DCIS associated with invasive breast cancer (IBC), and to determine whether DCIS and adjacent IBCs harbor distinct PI3K pathway aberrations. EXPERIMENTAL DESIGN Eighty-nine cases of pure high-grade DCIS and 119 cases of high-grade DCIS associated with IBC were characterized according to estrogen receptor (ER) and HER2 status, subjected to immunohistochemical analysis of PTEN, INPP4B, phosphorylated (p)AKT and pS6 expression, and to microdissection followed by Sequenom genotyping of PIK3CA and AKT1 hotspot mutations. RESULTS Alterations affecting the PI3K pathway were found in a subset of pure DCIS and DCIS adjacent to IBC. A subtype-matched comparison of pure DCIS and DCIS adjacent to IBC revealed that PIK3CA hotspot mutations and pAKT expression were significantly more prevalent in ER-positive/HER2-negative DCIS adjacent to IBC (P values, 0.005 and 0.043, respectively), and that in ER-negative/HER2-positive cases INPP4B loss of expression was more frequently observed in pure DCIS (a P value of 0.013). No differences in the parameters analyzed were observed in a pairwise comparison of the in situ and invasive components of cases of DCIS and adjacent IBC. Analysis of the PIK3CA-mutant allelic frequencies in DCIS and synchronous IBC revealed cases in which PIK3CA mutations were either restricted to the DCIS or to the invasive components. CONCLUSION Molecular aberrations affecting the PI3K pathway may play a role in the progression from high-grade DCIS to IBC in a subset of cases (e.g., a subgroup of ER-positive/HER2-negative lesions).
Collapse
Affiliation(s)
- Rita A. Sakr
- Breast Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Victor P. Andrade
- Breast Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elena Guerini-Rocco
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Dilip Giri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Charlotte K. Y. Ng
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Catherine F. Cowell
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Neal Rosen
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Tari A. King
- Breast Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Bartlett JMS, Nofech-Moses S, Rakovitch E. Ductal carcinoma in situ of the breast: can biomarkers improve current management? Clin Chem 2013; 60:60-7. [PMID: 24262106 DOI: 10.1373/clinchem.2013.207183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Screening for invasive cancer has led to a marked increase in the detection of ductal carcinoma in situ (DCIS). DCIS is, if appropriately managed, a low-risk disease which has a small chance of impacting on patient life expectancy. However, despite significant advances in prognostic marker development in invasive breast cancer, there are no validated diagnostic assays to inform treatment choice for women with DCIS. Therefore we are unable to target effective treatment strategies to women at high risk and avoid over-treatment of women at low risk of progression to invasive breast cancer. Paradoxically, one effect of this uncertainty is undertreatment of some women. CONTENT We review current practice and research in the field to identify key challenges in the management of DCIS. The impact of clinical research, particularly on the over and undertreatment of women with DCIS is assessed. We note slow progress toward development of diagnostic biomarkers and highlight key opportunities to accelerate advances in this area. SUMMARY DCIS is a low-risk disease, its incidence is increasing, and current treatment is effective. However, many women are either over- or undertreated. Despite repeated calls for development of diagnostic biomarkers, progress in this area has been slow, reflecting a relative lack of investment of research effort and funding. Given the low event rate in treated patients and the lateness of recurrences, many previous studies have only limited power to identify independent prognostic and predictive biomarkers. However, the potential for such biomarkers to personalize treatment for DCIS is extremely high.
Collapse
|
32
|
Cowell CF, Weigelt B, Sakr RA, Ng CKY, Hicks J, King TA, Reis-Filho JS. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 2013; 7:859-69. [PMID: 23890733 DOI: 10.1016/j.molonc.2013.07.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an intraductal neoplastic proliferation of epithelial cells that is separated from the breast stroma by an intact layer of basement membrane and myoepithelial cells. DCIS is a non-obligate precursor of invasive breast cancer, and up to 40% of these lesions progress to invasive disease if untreated. Currently, it is not possible to predict accurately which DCIS would be more likely to progress to invasive breast cancer as neither the significant drivers of the invasive transition have been identified, nor has the clinical utility of tests predicting the likelihood of progression been demonstrated. Although molecular studies have shown that qualitatively, synchronous DCIS and invasive breast cancers are remarkably similar, there is burgeoning evidence to demonstrate that intra-tumor genetic heterogeneity is observed in a subset of DCIS, and that the process of progression to invasive disease may constitute an 'evolutionary bottleneck', resulting in the selection of subsets of tumor cells with specific genetic and/or epigenetic aberrations. Here we review the clinical challenge posed by DCIS, the contribution of the microenvironment and genetic aberrations to the progression from in situ to invasive breast cancer, the emerging evidence of the impact of intra-tumor genetic heterogeneity on this process, and strategies to combat this heterogeneity.
Collapse
Affiliation(s)
- Catherine F Cowell
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|