1
|
Ghasemi A, Jeddi S, Kashfi K. Brain glucose metabolism: Role of nitric oxide. Biochem Pharmacol 2025; 232:116728. [PMID: 39709040 DOI: 10.1016/j.bcp.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
One possible reason for failure in achieving optimal glycemic control in patients with type 2 diabetes (T2D) is that less attention has been paid to the brain, a fundamental player in glucose homeostasis, that consumes about 25% of total glucose utilization. In addition, animal and human studies indicate that nitric oxide (NO) is a critical player in glucose metabolism. NO synthesis from L-arginine is lower in patients with T2D, and endothelial NO synthase (eNOS)-derived NO bioavailability is lower in T2D. NO in the nervous system plays a role in neurovascular coupling (NVC) and the hypothalamic control of glucose sensing and energy homeostasis, influencing glucose utilization. This review explores NO's role in the brain's glucose metabolism. Literature indicates that glucose metabolism is different between neurons and astrocytes. Unlike neurons, astrocytes have a higher rate of glycolysis and a greater ability for lactate production. Astrocytes produce a greater amount of NO than neurons. NO inhibits mitochondrial respiration in both neurons and astrocytes and decreases intracellular ATP. NO-induced inhibition of mitochondrial respiration in neurons is not accompanied by compensatory glycolysis because phosphofructokinase 2.3 (PFK2.3), the most potent activator of PFK1 and thus glycolysis, is subjected to ubiquitylation and proteasomal degradation by cadherin-1 (Cdh1)-activated anaphase-promoting complex/cyclosome (APC/C), which leads to a low glycolytic rate in neurons. In astrocytes, NO inhibits mitochondrial respiration, but astrocytes display compensatory glycolysis by activating the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA
| |
Collapse
|
2
|
Fallah A, Sedighian H, Kachuei R, Fooladi AAI. Human microbiome in post-acute COVID-19 syndrome (PACS). CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100324. [PMID: 39717208 PMCID: PMC11665312 DOI: 10.1016/j.crmicr.2024.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The global COVID-19 pandemic, which began in 2019, is still ongoing. SARS-CoV-2, also known as the severe acute respiratory syndrome coronavirus 2, is the causative agent. Diarrhea, nausea, and vomiting are common GI symptoms observed in a significant number of COVID-19 patients. Additionally, the respiratory and GI tracts express high level of transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme-2 (ACE2), making them primary sites for human microbiota and targets for SARS-CoV-2 infection. A growing body of research indicates that individuals with COVID-19 and post-acute COVID-19 syndrome (PACS) exhibit considerable alterations in their microbiome. In various human disorders, including diabetes, obesity, cancer, ulcerative colitis, Crohn's disease, and several viral infections, the microbiota play a significant immunomodulatory role. In this review, we investigate the potential therapeutic implications of the interactions between host microbiota and COVID-19. Microbiota-derived metabolites and components serve as primary mediators of microbiota-host interactions, influencing host immunity. We discuss the various mechanisms through which these metabolites or components produced by the microbiota impact the host's immune response to SARS-CoV-2 infection. Additionally, we address confounding factors in microbiome studies. Finally, we examine and discuss about a range of potential microbiota-based prophylactic measures and treatments for COVID-19 and PACS, as well as their effects on clinical outcomes and disease severity.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Mitrović N, Adžić Bukvić M, Zarić Kontić M, Dragić M, Petrović S, Paunović M, Vučić V, Grković I. Flaxseed Oil Alleviates Trimethyltin-Induced Cell Injury and Inhibits the Pro-Inflammatory Activation of Astrocytes in the Hippocampus of Female Rats. Cells 2024; 13:1184. [PMID: 39056766 PMCID: PMC11274492 DOI: 10.3390/cells13141184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Exposure to the neurotoxin trimethyltin (TMT) selectively induces hippocampal neuronal injury and astrocyte activation accompanied with resultant neuroinflammation, which causes severe behavioral, cognitive, and memory impairment. A large body of evidence suggests that flaxseed oil (FSO), as one of the richest sources of essential omega-3 fatty acids, i.e., α-linolenic acids (ALA), displays neuroprotective properties. Here, we report the preventive effects of dietary FSO treatment in a rat model of TMT intoxication. The administration of FSO (1 mL/kg, orally) before and over the course of TMT intoxication (a single dose, 8 mg/kg, i.p.) reduced hippocampal cell death, prevented the activation of astrocytes, and inhibited their polarization toward a pro-inflammatory/neurotoxic phenotype. The underlying protective mechanism was delineated through the selective upregulation of BDNF and PI3K/Akt and the suppression of ERK activation in the hippocampus. Pretreatment with FSO reduced cell death and efficiently suppressed the expression of inflammatory molecules. These beneficial effects were accompanied by an increased intrahippocampal content of n-3 fatty acids. In vitro, ALA pretreatment prevented the TMT-induced polarization of cultured astrocytes towards the pro-inflammatory spectrum. Together, these findings support the beneficial neuroprotective properties of FSO/ALA against TMT-induced neurodegeneration and accompanied inflammation and hint at a promising preventive use of FSO in hippocampal degeneration and dysfunction.
Collapse
Affiliation(s)
- Nataša Mitrović
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.K.); (I.G.)
| | - Marija Adžić Bukvić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.B.); (M.D.)
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Zarić Kontić
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.K.); (I.G.)
| | - Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia; (M.A.B.); (M.D.)
| | - Snježana Petrović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (M.P.); (V.V.)
| | - Marija Paunović
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (M.P.); (V.V.)
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (S.P.); (M.P.); (V.V.)
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Z.K.); (I.G.)
| |
Collapse
|
4
|
Duve K, Petakh P, Kamyshnyi O. COVID-19-associated encephalopathy: connection between neuroinflammation and microbiota-gut-brain axis. Front Microbiol 2024; 15:1406874. [PMID: 38863751 PMCID: PMC11165208 DOI: 10.3389/fmicb.2024.1406874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
While neurological complications of COVID-19, such as encephalopathy, are relatively rare, their potential significant impact on long-term morbidity is substantial, especially given the large number of infected patients. Two proposed hypotheses for the pathogenesis of this condition are hypoxia and the uncontrolled release of proinflammatory cytokines. The gut microbiota plays an important role in regulating immune homeostasis and overall gut health, including its effects on brain health through various pathways collectively termed the gut-brain axis. Recent studies have shown that COVID-19 patients exhibit gut dysbiosis, but how this dysbiosis can affect inflammation in the central nervous system (CNS) remains unclear. In this context, we discuss how dysbiosis could contribute to neuroinflammation and provide recent data on the features of neuroinflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Khrystyna Duve
- Department of Neurology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Biochemistry and Pharmacology, Uzhhorod National University, Uzhhorod, Ukraine
| |
Collapse
|
5
|
Plummer AM, Matos YL, Lin HC, Ryman SG, Birg A, Quinn DK, Parada AN, Vakhtin AA. Gut-brain pathogenesis of post-acute COVID-19 neurocognitive symptoms. Front Neurosci 2023; 17:1232480. [PMID: 37841680 PMCID: PMC10568482 DOI: 10.3389/fnins.2023.1232480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Approximately one third of non-hospitalized coronavirus disease of 2019 (COVID-19) patients report chronic symptoms after recovering from the acute stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some of the most persistent and common complaints of this post-acute COVID-19 syndrome (PACS) are cognitive in nature, described subjectively as "brain fog" and also objectively measured as deficits in executive function, working memory, attention, and processing speed. The mechanisms of these chronic cognitive sequelae are currently not understood. SARS-CoV-2 inflicts damage to cerebral blood vessels and the intestinal wall by binding to angiotensin-converting enzyme 2 (ACE2) receptors and also by evoking production of high levels of systemic cytokines, compromising the brain's neurovascular unit, degrading the intestinal barrier, and potentially increasing the permeability of both to harmful substances. Such substances are hypothesized to be produced in the gut by pathogenic microbiota that, given the profound effects COVID-19 has on the gastrointestinal system, may fourish as a result of intestinal post-COVID-19 dysbiosis. COVID-19 may therefore create a scenario in which neurotoxic and neuroinflammatory substances readily proliferate from the gut lumen and encounter a weakened neurovascular unit, gaining access to the brain and subsequently producing cognitive deficits. Here, we review this proposed PACS pathogenesis along the gut-brain axis, while also identifying specific methodologies that are currently available to experimentally measure each individual component of the model.
Collapse
Affiliation(s)
- Allison M. Plummer
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yvette L. Matos
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, United States
| | - Aleksandr Birg
- Division of Gastroenterology and Hepatology, University of New Mexico, Albuquerque, NM, United States
- Section of Gastroenterology, New Mexico Veterans Affairs Health Care System, Albuquerque, NM, United States
| | - Davin K. Quinn
- Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Alisha N. Parada
- Division of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrei A. Vakhtin
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States
| |
Collapse
|
6
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
7
|
Stasenko SV, Hramov AE, Kazantsev VB. Loss of neuron network coherence induced by virus-infected astrocytes: a model study. Sci Rep 2023; 13:6401. [PMID: 37076526 PMCID: PMC10115799 DOI: 10.1038/s41598-023-33622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/15/2023] [Indexed: 04/21/2023] Open
Abstract
Coherent activations of brain neuron networks underlie many physiological functions associated with various behavioral states. These synchronous fluctuations in the electrical activity of the brain are also referred to as brain rhythms. At the cellular level, rhythmicity can be induced by various mechanisms of intrinsic oscillations in neurons or the network circulation of excitation between synaptically coupled neurons. One specific mechanism concerns the activity of brain astrocytes that accompany neurons and can coherently modulate synaptic contacts of neighboring neurons, synchronizing their activity. Recent studies have shown that coronavirus infection (Covid-19), which enters the central nervous system and infects astrocytes, can cause various metabolic disorders. Specifically, Covid-19 can depress the synthesis of astrocytic glutamate and gamma-aminobutyric acid. It is also known that in the post-Covid state, patients may suffer from symptoms of anxiety and impaired cognitive functions. We propose a mathematical model of a spiking neuron network accompanied by astrocytes capable of generating quasi-synchronous rhythmic bursting discharges. The model predicts that if the release of glutamate is depressed, normal burst rhythmicity will suffer dramatically. Interestingly, in some cases, the failure of network coherence may be intermittent, with intervals of normal rhythmicity, or the synchronization can disappear.
Collapse
Affiliation(s)
- Sergey V Stasenko
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022.
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303.
| | - Alexander E Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia, 236041
- Neuroscience Research Institute, Samara State Medical University, Samara, Russia, 443099
| | - Victor B Kazantsev
- Scientific-educational mathematical center "Mathematics of future technologies", Lobachevsky University, Nizhniy Novgorod, Russia, 603022
- Laboratory of neurobiomorphic technologies, Moscow Institute of Physics and Technology, Moscow, Russia, 117303
| |
Collapse
|
8
|
Possemato E, La Barbera L, Nobili A, Krashia P, D'Amelio M. The role of dopamine in NLRP3 inflammasome inhibition: Implications for neurodegenerative diseases. Ageing Res Rev 2023; 87:101907. [PMID: 36893920 DOI: 10.1016/j.arr.2023.101907] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
In the Central Nervous System (CNS), neuroinflammation orchestrated by microglia and astrocytes is an innate immune response to counteract stressful and dangerous insults. One of the most important and best characterized players in the neuroinflammatory response is the NLRP3 inflammasome, a multiproteic complex composed by NOD-like receptor family Pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and pro-caspase-1. Different stimuli mediate NLRP3 activation, resulting in the NLRP3 inflammasome assembly and the pro-inflammatory cytokine (IL-1β and IL-18) maturation and secretion. The persistent and uncontrolled NLRP3 inflammasome activation has a leading role during the pathophysiology of neuroinflammation in age-related neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). The neurotransmitter dopamine (DA) is one of the players that negatively modulate NLRP3 inflammasome activation through DA receptors expressed in both microglia and astrocytes. This review summarizes recent findings linking the role of DA in the modulation of NLRP3-mediated neuroinflammation in PD and AD, where early deficits of the dopaminergic system are well characterized. Highlighting the relationship between DA, its glial receptors and the NLRP3-mediated neuroinflammation can provide insights to novel diagnostic strategies in early disease phases and new pharmacological tools to delay the progression of these diseases.
Collapse
Affiliation(s)
- Elena Possemato
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Livia La Barbera
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Annalisa Nobili
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Paraskevi Krashia
- Department of Sciences and Technologies for Humans and Environment, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy; Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D'Amelio
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64, 00143 Rome, Italy; Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|
9
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
10
|
Stelmashook EV, Kapkaeva MR, Rozanova NA, Alexandrova OP, Genrikhs EE, Obmolov VV, Novikova SV, Isaev NK. The in vitro Effect of the Neuroinflammation Inducer on Brain Neurovascular Unit Components. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s002209302203019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
12
|
Anbalagan S. Endocrine cross-talk between the gut microbiome and glial cells in development and disease. J Neuroendocrinol 2021; 33:e12924. [PMID: 34019340 DOI: 10.1111/jne.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 11/27/2022]
Abstract
Glial cells make up the major cellular component of the nervous system. Glial development is usually investigated through perturbations of host genetics, although non-host-derived signalling molecules can also regulate glial cells. Indeed, gut microbiome colonisation and the presence of microbiome-derived factors in the blood coincide with glial cell development. Emerging data suggest that the gut microbiome can regulate gliogenesis, myelination and glial epigenetics. Neurodegenerative diseases are characterised by changes in the gut microbiome and glial dysfunction. This perspective discusses the ways in which microbiome-derived molecules can engage in cross-talk with glial cells during development and in dysfunctional glial diseases.
Collapse
Affiliation(s)
- Savani Anbalagan
- ReMedy International Research Agenda Programme, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
13
|
Dragić M, Milićević K, Adžić M, Stevanović I, Ninković M, Grković I, Andjus P, Nedeljković N. Trimethyltin Increases Intracellular Ca 2+ Via L-Type Voltage-Gated Calcium Channels and Promotes Inflammatory Phenotype in Rat Astrocytes In Vitro. Mol Neurobiol 2021; 58:1792-1805. [PMID: 33394334 DOI: 10.1007/s12035-020-02273-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
Astrocytes are the first responders to noxious stimuli by undergoing cellular and functional transition referred as reactive gliosis. Every acute or chronic disorder is accompanied by reactive gliosis, which could be categorized as detrimental (A1) of beneficial (A2) for nervous tissue. Another signature of pathological astrocyte activation is disturbed Ca2+ homeostasis, a common denominator of neurodegenerative diseases. Deregulation of Ca+ signaling further contributes to production of pro-inflammatory cytokines and reactive oxygen species. Trimethyltin (TMT) intoxication is a widely used model of hippocampal degeneration, sharing behavioral and molecular hallmarks of Alzheimer's disease (AD), thus representing a useful model of AD-like pathology. However, the role of astrocyte in the etiopathology of TMT-induced degeneration as well as in AD is not fully understood. In an effort to elucidate the role of astrocytes in such pathological processes, we examined in vitro effects of TMT on primary cortical astrocytes. The application of a range of TMT concentrations (5, 10, 50, and 100 μM) revealed changes in [Ca2+]i in a dose-dependent manner. Specifically, TMT-induced Ca2+ transients were due to L-type voltage-gated calcium channels (VGCC). Additionally, TMT induced mitochondrial depolarization independent of extracellular Ca2+ and disturbed antioxidative defense of astrocyte in several time points (4, 6, and 24 h) after 10 μM TMT intoxication, inducing oxidative and nitrosative stress. Chronic exposure (24 h) to 10 μM TMT induced strong upregulation of main pro-inflammatory factors, components of signaling pathways in astrocyte activation, A1 markers, and VGCC. Taken together, our results provide an insight into cellular and molecular events of astrocyte activation in chronic neuroinflammation.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia.
| | - Katarina Milićević
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanović
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Ninković
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| |
Collapse
|
14
|
Bohmwald K, Soto JA, Andrade-Parra C, Fernández-Fierro A, Espinoza JA, Ríos M, Eugenin EA, González PA, Opazo MC, Riedel CA, Kalergis AM. Lung pathology due to hRSV infection impairs blood-brain barrier permeability enabling astrocyte infection and a long-lasting inflammation in the CNS. Brain Behav Immun 2021; 91:159-171. [PMID: 32979471 PMCID: PMC7513917 DOI: 10.1016/j.bbi.2020.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the most common infectious agent that affects children before two years of age. hRSV outbreaks cause a significant increase in hospitalizations during the winter season associated with bronchiolitis and pneumonia. Recently, neurologic alterations have been associated with hRSV infection in children, which include seizures, central apnea, and encephalopathy. Also, hRSV RNA has been detected in cerebrospinal fluids (CSF) from patients with neurological symptoms after hRSV infection. Additionally, previous studies have shown that hRSV can be detected in the lungs and brains of mice exposed to the virus, yet the potential effects of hRSV infection within the central nervous system (CNS) remain unknown. Here, using a murine model for hRSV infection, we show a significant behavior alteration in these animals, up to two months after the virus exposure, as shown in marble-burying tests. hRSV infection also produced the expression of cytokines within the brain, such as IL-4, IL-10, and CCL2. We found that hRSV infection alters the permeability of the blood-brain barrier (BBB) in mice, allowing the trespassing of macromolecules and leading to increased infiltration of immune cells into the CNS together with an increased expression of pro-inflammatory cytokines in the brain. Finally, we show that hRSV infects murine astrocytes both, in vitro and in vivo. We identified the presence of hRSV in the brain cortex where it colocalizes with vWF, MAP-2, Iba-1, and GFAP, which are considered markers for endothelial cells, neurons, microglia, and astrocyte, respectively. hRSV-infected murine astrocytes displayed increased production of nitric oxide (NO) and TNF-α. Our results suggest that hRSV infection alters the BBB permeability to macromolecules and immune cells and induces CNS inflammation, which can contribute to the behavioral alterations shown by infected mice. A better understanding of the neuropathy caused by hRSV could help to reduce the potential detrimental effects on the CNS in hRSV-infected patients.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Catalina Andrade-Parra
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Janyra A Espinoza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Mariana Ríos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Eliseo A Eugenin
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - María Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
15
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
16
|
Buskila Y, Bellot-Saez A, Morley JW. Generating Brain Waves, the Power of Astrocytes. Front Neurosci 2019; 13:1125. [PMID: 31680846 PMCID: PMC6813784 DOI: 10.3389/fnins.2019.01125] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Synchronization of neuronal activity in the brain underlies the emergence of neuronal oscillations termed “brain waves”, which serve various physiological functions and correlate with different behavioral states. It has been postulated that at least ten distinct mechanisms are involved in the formulation of these brain waves, including variations in the concentration of extracellular neurotransmitters and ions, as well as changes in cellular excitability. In this mini review we highlight the contribution of astrocytes, a subtype of glia, in the formation and modulation of brain waves mainly due to their close association with synapses that allows their bidirectional interaction with neurons, and their syncytium-like activity via gap junctions that facilitate communication to distal brain regions through Ca2+ waves. These capabilities allow astrocytes to regulate neuronal excitability via glutamate uptake, gliotransmission and tight control of the extracellular K+ levels via a process termed K+ clearance. Spatio-temporal synchrony of activity across neuronal and astrocytic networks, both locally and distributed across cortical regions, underpins brain states and thereby behavioral states, and it is becoming apparent that astrocytes play an important role in the development and maintenance of neural activity underlying these complex behavioral states.
Collapse
Affiliation(s)
- Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Alba Bellot-Saez
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
17
|
Ozaki T, Nakamura H, Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem Int 2019; 126:246-251. [PMID: 30946849 DOI: 10.1016/j.neuint.2019.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of death and disability globally. Although thrombolytic therapy by t-PA and mechanical thrombectomy have improved outcomes of ischemic stroke patients, both of these approaches are applicable to limited numbers of patients owing to their time constraints. Therefore, development of other treatment approaches such as developing neuroprotective drugs and nerve regeneration therapy is required to overcome ischemic stroke. The concept of the neurovascular unit (NVU) was formalized by the Stroke Progress Review Group of the National Institute of Neurological Disorders and Stroke in 2001. This concept emphasizes the importance not just of neurons but of the interactions between neurons, endothelial cells, astroglia, microglia and associated tissue matrix proteins to investigate the pathological condition of ischemic stroke. Many reports have been published about these interactions. This review focuses on the roles of cells that surround cerebral vasculature, especially endothelial cells, and reports therapeutic strategies against ischemic stroke from four points of view including angiogenesis, neurotrophic effects, protection of NVU components and regenerative therapy.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan; Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Japan.
| | - Hajime Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
18
|
Hollyer TR, Bordoni L, Kousholt BS, van Luijk J, Ritskes-Hoitinga M, Østergaard L. The evidence for the physiological effects of lactate on the cerebral microcirculation: a systematic review. J Neurochem 2019; 148:712-730. [PMID: 30472728 PMCID: PMC6590437 DOI: 10.1111/jnc.14633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Abstract Lactate's role in the brain is understood as a contributor to brain energy metabolism, but it may also regulate the cerebral microcirculation. The purpose of this systematic review was to evaluate evidence of lactate as a physiological effector within the normal cerebral microcirculation in reports ranging from in vitro experiments to in vivo studies in animals and humans. Following pre‐registration of a review protocol, we systematically searched the PubMed, EMBASE, and Cochrane databases for literature covering themes of ‘lactate’, ‘the brain’, and ‘microcirculation’. Abstracts were screened, and data extracted independently by two individuals. We excluded studies evaluating lactate in disease models. Twenty‐eight papers were identified, 18 of which were in vivo animal experiments (65%), four on human studies (14%), and six on in vitro or ex vivo experiments (21%). Approximately half of the papers identified lactate as an augmenter of the hyperemic response to functional activation by a visual stimulus or as an instigator of hyperemia in a dose‐dependent manner, without external stimulation. The mechanisms are likely to be coupled to NAD+/NADH redox state influencing the production of nitric oxide. Unfortunately, only 38% of these studies demonstrated any control for bias, which makes reliable generalizations of the conclusions insecure. This systematic review identifies that lactate may act as a dose‐dependent regulator of cerebral microcirculation by augmenting the hyperemic response to functional activation below 5 mmol/kg, and by initiating a hyperemic response above 5 mmol/kg. Open Science Badges
This article has received a badge for *Pre‐registration* because it made the data publicly available. The data can be accessed at www.radboudumc.nl/getmedia/53625326-d1df-432c-980f-27c7c80d1a90/THollyer_lactate_protocol.aspx. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. ![]()
Collapse
Affiliation(s)
- Tristan R Hollyer
- Centre for Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus C, Denmark.,Institute for Clinical Medicine, Aarhus N, Denmark
| | - Luca Bordoni
- Department of Biomedicine South, Aarhus University, Aarhus C, Denmark
| | - Birgitte S Kousholt
- Institute for Clinical Medicine, Aarhus N, Denmark.,Department of Clinical Medicine, AUGUST Centre, Aarhus University, Risskov, Denmark
| | - Judith van Luijk
- SYstematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel Ritskes-Hoitinga
- SYstematic Review Centre for Laboratory Animal Experimentation (SYRCLE), Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leif Østergaard
- Centre for Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus C, Denmark.,Institute for Clinical Medicine, Aarhus N, Denmark.,Department of Neuroradiology, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
19
|
Differential roles of hippocampal nNOS and iNOS in the control of baroreflex function in conscious rats. Brain Res 2018; 1710:109-116. [PMID: 30605625 DOI: 10.1016/j.brainres.2018.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
The baroreflex is a prominent moment-to-moment mechanism regulating the blood pressure. The hippocampus is a limbic structure in which has been pointed out as part of central network regulating baroreflex. However, the local neurochemical mechanisms involved in control of baroreflex function are not completely understood. Thus, this study aimed to investigate the involvement of nitrergic neurotransmission present in the dorsal hippocampus in baroreflex control of heart rate in conscious rats. For this, we evaluated the effect of bilateral microinjection into the dorsal hippocampus of either the nitric oxide (NO) scavenger carboxy-PTIO, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA) or the selective inducible nitric oxide synthase (iNOS) inhibitor 1400 W in bradycardia evoked by blood pressure increases in response to intravenous infusion of phenylephrine, and tachycardia caused by blood pressure decreases evoked by intravenous infusion of sodium nitroprusside. Bilateral microinjection of carboxy-PTIO into the dorsal hippocampus decreased the baroreflex tachycardic response without affecting the reflex bradycardia. Hippocampus treatment with NPLA increased the baroreflex bradycardia gain without affecting the reflex tachycardia. Bilateral hippocampal treatment with 1400 W decreased the reflex tachycardia and increased the baroreflex bradycardic response. Overall, these findings provide evidence that hippocampal nitrergic mechanisms acting in a NOS isoform-specific manner plays a prominent role in control of baroreflex function. Indeed, the results indicate that nNOS and iNOS exerts an inhibitory influence on reflex bradycardia, whereas iNOS mediates the reflex tachycardia.
Collapse
|
20
|
Gomes JAS, Oliveira MC, Gobira PH, Silva GC, Marçal AP, Gomes GF, Ferrari CZ, Lemos VS, Oliveira ACPD, Vieira LB, Ferreira AVM, Aguiar DC. A high-refined carbohydrate diet facilitates compulsive-like behavior in mice through the nitric oxide pathway. Nitric Oxide 2018; 80:61-69. [PMID: 30125695 DOI: 10.1016/j.niox.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 01/17/2023]
Abstract
Obesity is characterized by abnormal adipose tissue expansion and is associated with chronic inflammation. Obesity itself may induce several comorbidities, including psychiatric disorders. It has been previously demonstrated that proinflammatory cytokines are able to up-regulate inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release, which both have a role in compulsive related behaviors. OBJECTIVE To evaluate whether acute or chronic consumption of a high-refined carbohydrate-containing (HC) diet will modify burying-behavior in the Marble Burying Test (MBT) through augmentation of NO signaling in the striatum, a brain region related to the reward system. Further, we also verified the effects of chronic consumption of a HC diet on the reinforcing effects induced by cocaine in the Conditioned Place Preference (CPP) test. METHODS Male BALB/c mice received a standard diet (control diet) or a HC diet for 3 days or 12 weeks. RESULTS An increase in burying behavior occurred in the MBT after chronic consumption of a HC diet that was associated with an increase of nitrite levels in the striatum. The pre-treatment with Aminoguanidine (50 mg/kg), a preferential inhibitor of iNOS, prevented such alterations. Additionally, a chronic HC diet also induced a higher expression of iNOS in this region and higher glutamate release from striatal synaptosomes. Neither statistical differences were observed in the expression levels of the neuronal isoform of NOS nor in microglia number and activation. Finally, the reinforcing effects induced by cocaine (15 mg/kg, i.p.) during the expression of the conditioned response in the CPP test were not different between the chronically HC diet fed mice and the control group. However, HC diet-feeding mice presented impairment of cocaine-preference extinction. CONCLUSION Altogether, our results suggest that the chronic consumption of a HC diet induces compulsive-like behavior through a mechanism possibly associated with NO activation in the striatum.
Collapse
Affiliation(s)
- Júlia Ariana Souza Gomes
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Farmacologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina C Oliveira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Pedro Henrique Gobira
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grazielle C Silva
- Laboratório de Fisiologia Cardiovascular, Departmento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Paula Marçal
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Carolina Zaniboni Ferrari
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Virginia Soares Lemos
- Laboratório de Fisiologia Cardiovascular, Departmento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luciene Bruno Vieira
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Adaliene V M Ferreira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Abstract
Brain waves are rhythmic voltage oscillations emerging from the synchronization of individual neurons into a neuronal network. These oscillations range from slow to fast fluctuations, and are classified by power and frequency band, with different frequency bands being associated with specific behaviours. It has been postulated that at least ten distinct mechanisms are required to cover the frequency range of neural oscillations, however the mechanisms that gear the transition between distinct oscillatory frequencies are unknown. In this study, we have used electrophysiological recordings to explore the involvement of astrocytic K+ clearance processes in modulating neural oscillations at both network and cellular levels. Our results indicate that impairment of astrocytic K+ clearance capabilities, either through blockade of K+ uptake or astrocytic connectivity, enhance network excitability and form high power network oscillations over a wide range of frequencies. At the cellular level, local increases in extracellular K+ results in modulation of the oscillatory behaviour of individual neurons, which underlies the network behaviour. Since astrocytes are central for maintaining K+ homeostasis, our study suggests that modulation of their inherent capabilities to clear K+ from the extracellular milieu is a potential mechanism to optimise neural resonance behaviour and thus tune neural oscillations.
Collapse
|
22
|
Li W, Liu H, Jiang H, Wang C, Guo Y, Sun Y, Zhao X, Xiong X, Zhang X, Zhang K, Nie Z, Pu X. (S)-Oxiracetam is the Active Ingredient in Oxiracetam that Alleviates the Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. Sci Rep 2017; 7:10052. [PMID: 28855592 PMCID: PMC5577264 DOI: 10.1038/s41598-017-10283-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Chronic cerebral hypoperfusion is a pathological state that is associated with the cognitive impairments in vascular dementia. Oxiracetam is a nootropic drug that is commonly used to treat cognitive deficits of cerebrovascular origins. However, oxiracetam is currently used as a racemic mixture whose effective ingredient has not been identified to date. In this study, we first identified that (S)-oxiracetam, but not (R)-oxiracetam, was the effective ingredient that alleviated the impairments of spatial learning and memory by ameliorating neuron damage and white matter lesions, increasing the cerebral blood flow, and inhibiting astrocyte activation in chronic cerebral hypoperfused rats. Furthermore, using MALDI-MSI and LC-MS/MS, we demonstrated that (S)-oxiracetam regulated ATP metabolism, glutamine-glutamate and anti-oxidants in the cortex region of hypoperfused rats. Altogether, our results strongly suggest that (S)-oxiracetam alone could be a nootropic drug for the treatment of cognitive impairments caused by cerebral hypoperfusion.
Collapse
Affiliation(s)
- Wan Li
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hanjie Jiang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Chen Wang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yongfei Guo
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Yi Sun
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Xin Xiong
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Xianhua Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100191, P. R. China
| | - Ke Zhang
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xiaoping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China. .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
23
|
Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci Biobehav Rev 2017; 77:87-97. [PMID: 28279812 DOI: 10.1016/j.neubiorev.2017.03.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 11/22/2022]
Abstract
The human brain contains two major cell populations, neurons and glia. While neurons are electrically excitable and capable of discharging short voltage pulses known as action potentials, glial cells are not. However, astrocytes, the prevailing subtype of glia in the cortex, are highly connected and can modulate the excitability of neurons by changing the concentration of potassium ions in the extracellular environment, a process called K+ clearance. During the past decade, astrocytes have been the focus of much research, mainly due to their close association with synapses and their modulatory impact on neuronal activity. It has been shown that astrocytes play an essential role in normal brain function including: nitrosative regulation of synaptic release in the neocortex, synaptogenesis, synaptic transmission and plasticity. Here, we discuss the role of astrocytes in network modulation through their K+ clearance capabilities, a theory that was first raised 50 years ago by Orkand and Kuffler. We will discuss the functional alterations in astrocytic activity that leads to aberrant modulation of network oscillations and synchronous activity.
Collapse
|
24
|
Cameron MA, Kekesi O, Morley JW, Bellot-Saez A, Kueh S, Breen P, van Schaik A, Tapson J, Buskila Y. Prolonged Incubation of Acute Neuronal Tissue for Electrophysiology and Calcium-imaging. J Vis Exp 2017. [PMID: 28287542 DOI: 10.3791/55396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute neuronal tissue preparations, brain slices and retinal wholemount, can usually only be maintained for 6 - 8 h following dissection. This limits the experimental time, and increases the number of animals that are utilized per study. This limitation specifically impacts protocols such as calcium imaging that require prolonged pre-incubation with bath-applied dyes. Exponential bacterial growth within 3 - 4 h after slicing is tightly correlated with a decrease in tissue health. This study describes a method for limiting the proliferation of bacteria in acute preparations to maintain viable neuronal tissue for prolonged periods of time (>24 h) without the need for antibiotics, sterile procedures, or tissue culture media containing growth factors. By cycling the extracellular fluid through UV irradiation and keeping the tissue in a custom holding chamber at 15 - 16 °C, the tissue shows no difference in electrophysiological properties, or calcium signaling through intracellular calcium dyes at >24 h postdissection. These methods will not only extend experimental time for those using acute neuronal tissue, but will reduce the number of animals required to complete experimental goals, and will set a gold standard for acute neuronal tissue incubation.
Collapse
Affiliation(s)
| | - Orsolya Kekesi
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University
| | - John W Morley
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University
| | - Alba Bellot-Saez
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University
| | - Sindy Kueh
- School of Medicine, Western Sydney University
| | - Paul Breen
- The MARCS Institute, Western Sydney University
| | | | | | - Yossi Buskila
- The MARCS Institute, Western Sydney University; School of Medicine, Western Sydney University;
| |
Collapse
|
25
|
Cameron M, Kékesi O, Morley JW, Tapson J, Breen PP, van Schaik A, Buskila Y. Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue. PLoS One 2016; 11:e0155468. [PMID: 27183102 PMCID: PMC4868260 DOI: 10.1371/journal.pone.0155468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45-150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6-8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals.
Collapse
Affiliation(s)
- Morven Cameron
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Orsolya Kékesi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jonathan Tapson
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Paul P. Breen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - André van Schaik
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
26
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
27
|
Breen PP, Buskila Y. Braincubator: an incubation system to extend brain slice lifespan for use in neurophysiology. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:4864-7. [PMID: 25571081 DOI: 10.1109/embc.2014.6944713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In vitro brain slice preparations are instrumental in developing our understanding of the nervous system. However, the current lifespan of an acute brain slice is limited to approximately 6-12 hours. This reduces potential experimentation time and leads to considerable waste of neural tissue. We have designed, developed and tested a novel incubation system capable of extending the lifespan of these brain slices. This is done by controlling the temperature and pH of the artificial cerebral spinal fluid in which the slices are incubated while continuously passing the fluid through a UVC filtration system. This system is capable of maintaining extremely low bacterial levels and significantly extending the brain slice lifespan to at least 24 hours. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays.
Collapse
|
28
|
Posada-Duque RA, Palacio-Castañeda V, Cardona-Gómez GP. CDK5 knockdown in astrocytes provide neuroprotection as a trophic source via Rac1. Mol Cell Neurosci 2015; 68:151-66. [PMID: 26160434 DOI: 10.1016/j.mcn.2015.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Astrocytes perform metabolic and structural support functions in the brain and contribute to the integrity of the blood-brain barrier. Astrocytes influence neuronal survival and prevent gliotoxicity by capturing glutamate (Glu), reactive oxygen species, and nutrients. During these processes, astrocytic morphological changes are supported by actin cytoskeleton remodeling and require the involvement of Rho GTPases, such as Rac1. The protein cyclin-dependent kinase 5 (CDK5) may have a dual effect on astrocytes because it has been shown to be involved in migration, senescence, and the dysfunction of glutamate recapture; however, its role in astrocytes remains unclear. Treating a possible deregulation of CDK5 with RNAi is a strategy that has been proposed as a therapy for neurodegenerative diseases. Models of glutamate gliotoxicity in the C6 astroglioma cell line, primary cultures of astrocytes, and co-cultures with neurons were used to analyze the effects of CDK5 RNAi in astrocytes and the role of Rac1 in neuronal viability. In C6 cells and primary astrocytes, CDK5 RNAi prevented the cell death generated by glutamate-induced gliotoxicity, and this finding was corroborated by pharmacological inhibition with roscovitine. This effect was associated with the appearance of lamellipodia, protrusions, increased cell area, stellation, Rac1 activation, BDNF release, and astrocytic protection in neurons that were exposed to glutamate excitotoxicity. Interestingly, Rac1 inhibition in astrocytes blocked BDNF upregulation and the astrocyte-mediated neuroprotection. Actin cytoskeleton remodeling and stellation may be a functional phenotype for BDNF release that promotes neuroprotection. In summary, our findings suggest that CDK5- knockdown in astrocytes acts as a trophic source for neuronal protection in a Rac1-dependent manner.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Valentina Palacio-Castañeda
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, Faculty of Medicine, SIU, University of Antioquia, Calle 70, No. 52-21, Medellin, Colombia.
| |
Collapse
|
29
|
Xie AX, Petravicz J, McCarthy KD. Molecular approaches for manipulating astrocytic signaling in vivo. Front Cell Neurosci 2015; 9:144. [PMID: 25941472 PMCID: PMC4403552 DOI: 10.3389/fncel.2015.00144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Astrocytes are the predominant glial type in the central nervous system and play important roles in assisting neuronal function and network activity. Astrocytes exhibit complex signaling systems that are essential for their normal function and the homeostasis of the neural network. Altered signaling in astrocytes is closely associated with neurological and psychiatric diseases, suggesting tremendous therapeutic potential of these cells. To further understand astrocyte function in health and disease, it is important to study astrocytic signaling in vivo. In this review, we discuss molecular tools that enable the selective manipulation of astrocytic signaling, including the tools to selectively activate and inactivate astrocyte signaling in vivo. Lastly, we highlight a few tools in development that present strong potential for advancing our understanding of the role of astrocytes in physiology, behavior, and pathology.
Collapse
Affiliation(s)
- Alison X Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Jeremy Petravicz
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ken D McCarthy
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
30
|
Abstract
The lifespan of an acute brain slice is approximately 6–12 hours, limiting potential experimentation time. We have designed a new recovery incubation system capable of extending their lifespan to more than 36 hours. This system controls the temperature of the incubated artificial cerebral spinal fluid (aCSF) while continuously passing the fluid through a UVC filtration system and simultaneously monitoring temperature and pH. The combination of controlled temperature and UVC filtering maintains bacteria levels in the lag phase and leads to the dramatic extension of the brain slice lifespan. Brain slice viability was validated through electrophysiological recordings as well as live/dead cell assays. This system benefits researchers by monitoring incubation conditions and standardizing this artificial environment. It further provides viable tissue for two experimental days, reducing the time spent preparing brain slices and the number of animals required for research.
Collapse
|
31
|
Béchade C, Colasse S, Diana MA, Rouault M, Bessis A. NOS2 expression is restricted to neurons in the healthy brain but is triggered in microglia upon inflammation. Glia 2014; 62:956-63. [DOI: 10.1002/glia.22652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Catherine Béchade
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale U1024; F-75005 Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8197 F-75005 France
| | - Sabrina Colasse
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale U1024; F-75005 Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8197 F-75005 France
| | - Marco A. Diana
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale U1024; F-75005 Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8197 F-75005 France
| | - Martin Rouault
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale U1024; F-75005 Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8197 F-75005 France
| | - Alain Bessis
- Institut de Biologie de l'Ecole Normale Supérieure; F-75005 Paris France
- Institut National de la Santé et de la Recherche Médicale U1024; F-75005 Paris France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8197 F-75005 France
| |
Collapse
|
32
|
Contestabile A, Monti B, Polazzi E. Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Curr Neuropharmacol 2012; 10:303-10. [PMID: 23730254 PMCID: PMC3520040 DOI: 10.2174/157015912804143522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO) is a versatile cellular messenger performing a variety of physiologic and pathologic actions in most tissues. It is particularly important in the nervous system, where it is involved in multiple functions, as well as in neuropathology, when produced in excess. Several of these functions are based on interactions between NO produced by neurons and NO produced by glial cells, mainly astrocytes and microglia. The present paper briefly reviews some of these interactions, in particular those involved in metabolic regulation, control of cerebral blood flow, axonogenesis, synaptic function and neurogenesis. Aim of the paper is mainly to underline the physiologic aspects of these interactions rather than the pathologic ones.
Collapse
|
33
|
Shlosberg D, Buskila Y, Abu-Ghanem Y, Amitai Y. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons. Front Neural Circuits 2012; 6:3. [PMID: 22347168 PMCID: PMC3273928 DOI: 10.3389/fncir.2012.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/23/2012] [Indexed: 11/13/2022] Open
Abstract
Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.
Collapse
Affiliation(s)
- Dan Shlosberg
- Faculty of Health Sciences, Department of Physiology and Neurobiology, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | | | | | | |
Collapse
|
34
|
Montezuma K, Biojone C, Lisboa SF, Cunha FQ, Guimarães FS, Joca SRL. Inhibition of iNOS induces antidepressant-like effects in mice: pharmacological and genetic evidence. Neuropharmacology 2011; 62:485-91. [PMID: 21939674 DOI: 10.1016/j.neuropharm.2011.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 12/13/2022]
Abstract
Recent evidence has suggested that systemic administration of non-selective NOS inhibitors induces antidepressant-like effects in animal models. However, the precise involvement of the different NOS isoforms (neuronal-nNOS and inducible-iNOS) in these effects has not been clearly defined yet. Considering that mediators of the inflammatory response, that are able to induce iNOS expression, can be increased by exposure to stress, the aim of the present study was to investigate iNOS involvement in stress-induced behavioral consequences in the forced swimming test (FST), an animal model sensitive to antidepressant drugs. Therefore, we investigated the effects induced by systemic injection of aminoguanidine (preferential iNOS inhibitor), 1400W (selective iNOS inhibitor) or n-propyl-l-arginine (NPA, selective nNOS inhibitor) in mice submitted to the FST. We also investigated the behavior of mice with genetic deletion of iNOS (knockout) submitted to the FST. Aminoguanidine significantly decreased the immobility time (IT) in the FST. 1400W but not NPA, when administered at equivalent doses considering the magnitude of their Ki values for iNOS and nNOS, respectively, reduced the IT, thus suggesting that aminoguanidine-induced effects would be due to selective iNOS inhibition. Similarly, iNOS KO presented decreased IT in the FST when compared to wild-type mice. These results are the first to show that selective inhibition of iNOS or its knockdown induces antidepressant-like effects, therefore suggesting that iNOS-mediated NO synthesis is involved in the modulation of stress-induced behavioral consequences. Moreover, they further support NO involvement in the neurobiology of depression. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
Affiliation(s)
- Karina Montezuma
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Cai Y, Cho GS, Ju C, Wang SL, Ryu JH, Shin CY, Kim HS, Nam KW, Jalin AMAA, Sun W, Choi IY, Kim WK. Activated Microglia Are Less Vulnerable to Hemin Toxicity due to Nitric Oxide-Dependent Inhibition of JNK and p38 MAPK Activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:1314-21. [DOI: 10.4049/jimmunol.1002925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Zhang G, Zhao Z, Gao L, Deng J, Wang B, Xu D, Liu B, Qu Y, Yu J, Li J, Gao G. Gypenoside attenuates white matter lesions induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 2011; 99:42-51. [PMID: 21459105 DOI: 10.1016/j.pbb.2011.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/17/2011] [Accepted: 03/25/2011] [Indexed: 12/21/2022]
Abstract
Cerebral white matter lesions (WMLs) are frequently observed in vascular dementia and Alzheimer's disease and are believed to be responsible for cognitive dysfunction. The cerebral WMLs are most likely caused by chronic cerebral hypoperfusion and can be experimentally induced by permanent bilateral common carotid artery occlusion (BCCAO) in rats. Previous studies found the involvement of oxidative stress and astrocytic activation in the cerebral WMLs of BCCAO rats. Gypenoside (GP), a pure component extracted from the Gyrostemma pentaphyllum Makino, a widely reputed medicinal plants in China, has been reported to have some neuroprotective effects via anti-oxidative stress and anti-inflammatory mechanisms. In the present study, we investigated the protective effect of GP against cerebral WMLs and the underlying mechanisms for its inhibition of cognitive decline in BCCAO rats. Adult male Sprague-Dawley rats were orally administered daily doses of 200 and 400mg/kg GP for 33 days after BCCAO, and spatial learning and memory were assessed using the Morris water maze. Following behavioral testing, oxygen free radical levels and antioxidative capability were measured biochemically. The levels of lipid peroxidation and oxidative DNA damage were also assessed by immunohistochemical staining for 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine, respectively. Activated astrocytes were also assessed by immunohistochemical staining and Western blotting with GFAP antibodies. The morphological changes were stained with Klüver-Barrera. Rats receiving 400mg/kg GP per day performed significantly better in tests for spatial learning and memory than saline-treated rats. GP 400mg/kg per day were found to markedly scavenge oxygen free radicals, enhance antioxidant abilities, decrease lipid peroxide production and oxidative DNA damage, and inhibit the astrocytic activation in corpus callosum and optic tract in BCCAO rats. However, GP 200mg/kg per day had no significant effects. GP may have therapeutic potential for treating dementia induced by chronic cerebral hypoperfusion and further evaluation is warranted.
Collapse
Affiliation(s)
- Guanglin Zhang
- Institute for Functional Neurosurgery P.L.A and Institute for Functional Brain Disorders, Tang Du Hospital, The Fourth Military Medical University, Xi'an 710038, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Amitai Y. Physiologic role for "inducible" nitric oxide synthase: a new form of astrocytic-neuronal interface. Glia 2011; 58:1775-81. [PMID: 20737473 DOI: 10.1002/glia.21057] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nitric oxide (NO) has been long recognized as an atypical neuronal messenger affecting excitatory synaptic transmission, but its cellular source has remained unresolved as the neuronal isoform of NO synthase (nNOS) in many brain regions is expressed only by small subsets of inhibitory neurons. It is generally believed that the glial NO-producing isoform (iNOS) is not expressed in the normal brain, but rather it undergoes a transcription-mediated up-regulation following an immunological challenge. Therefore, the involvement of iNOS in modulating normal neuronal functions has been largely ignored. Here I review evidence to the contrary: I summarize data pointing to the existence of a functioning iNOS in normal undisturbed mammalian brains, and experimental results tracing this expression to astrocytes. Finally, I review recent findings asserting that iNOS-dependent NO modulates synaptic release from presynaptic terminals. Based on these data, I propose that astrocytes express basal levels of iNOS. Flanking synaptic elements, astrocytes are perfectly positioned to release NO and affect synaptic transmission.
Collapse
Affiliation(s)
- Yael Amitai
- Department of Physiology and Neurobiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| |
Collapse
|
38
|
Cai ZY, Yan Y, Chen R. Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 2010; 26:28-36. [PMID: 20101270 PMCID: PMC5560381 DOI: 10.1007/s12264-010-0818-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/27/2009] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To study the neuroprotective mechanism of minocycline against vascular cognitive impairment after cerebral ischemia. METHODS The rat model with vascular cognitive impairment was established by permanent bilateral common carotid artery occlusion (BCCAO). The observing time-points were determined at 4, 8 and 16 weeks after BCCAO. Animals were randomly divided into sham-operated group (n = 6), model group (subdivided into 3 groups: 4 weeks after BCCAO, n = 6; 8 weeks after BCCAO, n = 6; and 16 weeks after BCCAO, n = 6), and minocycline group (subdivided into 3 groups: 4 weeks after BCCAO, n = 6; 8 weeks after BCCAO, n = 6; and 16 weeks after BCCAO, n = 6). Minocycline was administered by douche via stomach after BCCAO until sacrifice. Glial fibrillary acidic protein (GFAP) was examined by Western blotting and immunohistochemistry. Levels of cyclooxygenase-2 (COX-2) and nuclear factor-kappaB (NF-kappaB) were measured by immunohistochemistry. IL-1beta and TNF-alpha levels were tested with ELISA method. RESULTS Levels of GFAP, COX-2, NF-kappaB, IL-1beta and TNF-alpha were all up-regulated after permanent BCCAO, which could be significantly inhibited by minocycline. CONCLUSION Minocycline could ameliorate the inflammation and oxidative stress in the hippocampus of the vascular cognitive impairment rat model.
Collapse
Affiliation(s)
- Zhi-You Cai
- Department of Neurology, Lu’an People’s Hospital, the Fifth Clinical College, Anhui Medical University, Lu’an, 237005 China
| | - Yong Yan
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016 China
| | - Ran Chen
- Department of Neurology, Lu’an People’s Hospital, the Fifth Clinical College, Anhui Medical University, Lu’an, 237005 China
| |
Collapse
|
39
|
Buskila Y, Amitai Y. Astrocytic iNOS-dependent enhancement of synaptic release in mouse neocortex. J Neurophysiol 2010; 103:1322-8. [PMID: 20071630 DOI: 10.1152/jn.00676.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) has been recognized as an atypical neuronal messenger affecting synaptic transmission, but its cellular source has remained unresolved as the neuronal NO synthase isoform (nNOS) in brain areas such as the neocortex is expressed only by a small subset of inhibitory neurons. The involvement of the glial NOS isoform (iNOS) in modulating neuronal activity has been largely ignored because it has been accepted that this enzyme is regulated by gene induction following detrimental stimuli. Using acute brain slices from mouse neocortex and electrophysiology, we found that selective inhibition of iNOS reduced both spontaneous and evoked synaptic release. Moreover, iNOS inhibition partially prevented and reversed the potentiation of excitatory synapses in layer 2/3 pyramidal neurons. NOS enzymatic assay confirmed a small but reliable Ca(2+)-independent activity fraction, consistent with the existence of functioning iNOS in the tissue. Together these data point to astrocytes as a source for the nitrosative regulation of synaptic release in the neocortex.
Collapse
Affiliation(s)
- Yossi Buskila
- Dept. of Physiology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
40
|
Ribeiro LR, Fighera MR, Oliveira MS, Furian AF, Rambo LM, Ferreira APDO, Saraiva ALL, Souza MA, Lima FD, Magni DV, Dezengrini R, Flores EF, Butterfield DA, Ferreira J, dos Santos ARS, Mello CF, Royes LFF. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci 2008; 27:157-63. [PMID: 19073247 DOI: 10.1016/j.ijdevneu.2008.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 11/06/2008] [Accepted: 11/19/2008] [Indexed: 01/23/2023] Open
Abstract
Methylmalonic acidemias consist of a group of inherited neurometabolic disorders caused by deficiency of methylmalonyl-CoA mutase activity clinically and biochemically characterized by neurological dysfunction, methylmalonic acid (MMA) accumulation, mitochondrial failure and increased reactive species production. Although previous studies have suggested that nitric oxide (NO) plays a role in the neurotoxicity of MMA, the involvement of NO-induced nitrosative damage from inducible nitric oxide synthase (iNOS) in MMA-induced seizures are poorly understood. In the present study, we showed a decrease of time spent convulsing induced by intracerebroventricular administration of MMA (2 micromol/2 microL; i.c.v.) in iNOS knockout (iNOS(-/-)) mice when compared with wild-type (iNOS(+/+)) littermates. Visual analysis of electroencephalographic recordings (EEG) showed that MMA injection induced the appearance of high-voltage synchronic spike activity in the ipsilateral cortex which spreads to the contralateral cortex while quantitative electroencephalographic analysis showed larger wave amplitude during MMA-induced seizures in wild-type mice when compared with iNOS knockout mice. We also report that administration of MMA increases NOx (NO(2) plus NO(3) content) and 3-nitrotyrosine (3-NT) levels in a greater extend in iNOS(+/+) mice than in iNOS(-/-) mice, indicating that NO overproduction and NO-mediated damage to proteins are attenuated in iNOS knockout mice. In addition, the MMA-induced decrease in Na(+), K(+)-ATPase activity, but not in succinate dehydrogenase (SDH) activity, was less pronounced in iNOS(-/-) when compared with iNOS(+/+) mice. These results reinforce the assumption that metabolic collapse contributes for the secondary toxicity elicited by MMA and suggest that oxidative attack by NO derived from iNOS on selected target such as Na(+), K(+)-ATPase enzyme might represent an important role in this excitotoxicity induced by MMA. Therefore, these results may be of value in understating the pathophysiology of the neurological features observed in patients with methylmalonic acidemia and in the development of new strategies for treatment of these patients.
Collapse
Affiliation(s)
- Leandro Rodrigo Ribeiro
- Centro de Ciências da Saúde, Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abu-Ghanem Y, Cohen H, Buskila Y, Grauer E, Amitai Y. Enhanced stress reactivity in nitric oxide synthase type 2 mutant mice: Findings in support of astrocytic nitrosative modulation of behavior. Neuroscience 2008; 156:257-65. [DOI: 10.1016/j.neuroscience.2008.07.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/15/2008] [Accepted: 07/23/2008] [Indexed: 11/28/2022]
|
42
|
|
43
|
Increased nitric oxide production and GFAP expression in the brains of influenza A/NWS virus infected mice. Neurochem Res 2007; 33:1017-23. [PMID: 18080188 PMCID: PMC2295255 DOI: 10.1007/s11064-007-9543-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 11/05/2007] [Indexed: 11/09/2022]
Abstract
The cause of influenza to the brain was investigated using the A/NWS/33 influenza virus infected BALB/c mouse model. NOS-2 mRNA levels in the infected mouse brain was greater than in control mice in all brain regions examined, particularly in the olfactory bulb and hippocampus by 1 day p.i. On the contrary, no differences in NOS-1 or NOS-3 mRNA levels were found between infected and control mice. There was also a marked increase in the levels of metabolites of nitric oxide in the olfactory bulb and hippocampus. Immunohistochemistry showed positive staining for anti-NOS-2 primarily in the hippocampus of infected mice. Further, anti-NOS-2 and GFAP staining was mostly found around capillary blood vessels of the hippocampus starting early in the course of the disease. These results indicate that the NWS enhances the activation of astrocytes and NOS-2 expression which in turn enhances NO production and the expansion of capillary blood vessels.
Collapse
|
44
|
Ye X, Rubakhin SS, Sweedler JV. Simultaneous nitric oxide and dehydroascorbic acid imaging by combining diaminofluoresceins and diaminorhodamines. J Neurosci Methods 2007; 168:373-82. [PMID: 18083236 DOI: 10.1016/j.jneumeth.2007.10.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/30/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Spatial measurements of nitric oxide (NO) production are important to understand the function and metabolism of this molecule. The reagent, 4,5-diaminofluorescein (DAF-2) and several structurally similar probes are widely used for detection and imaging of NO. However, DAF-2 also reacts with dehydroascorbic acid (DHA) in biological samples, with both products having nearly indistinguishable fluorescence spectra. Measurements using fluorimetry and fluorescence microscopy cannot easily differentiate NO-related fluorescent signals from DHA-related signals. While DAFs and the structurally related diaminorhodamines (DARs) both react with NO and DHA, they do so to different extents. We report a multiderivatization method to image NO and DHA simultaneously by using both DAF and DAR. Specifically, DAF-2 and DAR-4M are used to image NO and DHA concentrations; after reaction, the solutions are excited, at 495 nm to measure fluorescence emission from DAF-2, and at 560 nm to measure fluorescence emission from DAR-4M. Using the appropriate calibrations, images are created that depend either on the relative NO or the relative DHA concentration, even though each probe reacts to both compounds. The method has been validated by imaging NO production in both undifferentiated and differentiated pheochromocytoma (PC12) cells.
Collapse
Affiliation(s)
- Xiaoying Ye
- Department of Chemistry and the Beckman Institute, University of Illinois, 600 South Mathews Avenue 63-5, Urbana, IL 61801, USA
| | | | | |
Collapse
|
45
|
Saura J. Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation 2007; 4:26. [PMID: 17937799 PMCID: PMC2140055 DOI: 10.1186/1742-2094-4-26] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 10/15/2007] [Indexed: 01/25/2023] Open
Abstract
Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS) induces nitric oxide (NO) production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions.
Collapse
Affiliation(s)
- Josep Saura
- Department of Cerebral Ischaemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), CSIC, IDIBAPS, 08036-Barcelona, Spain.
| |
Collapse
|
46
|
Luo CX, Zhu XJ, Zhou QG, Wang B, Wang W, Cai HH, Sun YJ, Hu M, Jiang J, Hua Y, Han X, Zhu DY. Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression. J Neurochem 2007; 103:1872-82. [PMID: 17854382 DOI: 10.1111/j.1471-4159.2007.04915.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO), a free radical with signaling functions in the CNS, is implicated in some developmental processes, including neuronal survival, precursor proliferation, and differentiation. However, neuronal nitric oxide synthase (nNOS) -derived NO and inducible nitric oxide synthase (iNOS) -derived NO play opposite role in regulating neurogenesis in the dentate gyrus after cerebral ischemia. In this study, we show that focal cerebral ischemia reduced nNOS expression and enzymatic activity in the hippocampus. Ischemia-induced cell proliferation in the dentate gyrus was augmented in the null mutant mice lacking nNOS gene (nNOS-/-) and in the rats receiving 7-nitroindazole, a selective nNOS inhibitor, after stroke. Inhibition of nNOS ameliorated ischemic injury, up-regulated iNOS expression, and enzymatic activity in the ischemic hippocampus. Inhibition of nNOS increased and iNOS inhibitor decreased cAMP response element-binding protein phosphorylation in the ipsilateral hippocampus in the late stage of stroke. Moreover, the effects of 7-nitroindazole on neurogenesis after ischemia disappeared in the null mutant mice lacking iNOS gene (iNOS-/-). These results suggest that reduced nNOS is involved in ischemia-induced hippocampal neurogenesis by up-regulating iNOS expression and cAMP response element-binding protein phosphorylation.
Collapse
Affiliation(s)
- Chun Xia Luo
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Buskila Y, Abu-Ghanem Y, Levi Y, Moran A, Grauer E, Amitai Y. Enhanced astrocytic nitric oxide production and neuronal modifications in the neocortex of a NOS2 mutant mouse. PLoS One 2007; 2:e843. [PMID: 17786214 PMCID: PMC1952109 DOI: 10.1371/journal.pone.0000843] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 08/13/2007] [Indexed: 11/19/2022] Open
Abstract
Background It has been well accepted that glial cells in the central nervous system (CNS) produce nitric oxide (NO) through the induction of a nitric oxide synthase isoform (NOS2) only in response to various insults. Recently we described rapid astroglial, NOS2-dependent, NO production in the neocortex of healthy mice on a time scale relevant to neuronal activity. To explore a possible role for astroglial NOS2 in normal brain function we investigated a NOS2 knockout mouse (B6;129P2-Nos2tm1Lau/J, Jackson Laboratory). Previous studies of this mouse strain revealed mainly altered immune responses, but no compensatory pathways and no CNS abnormalities have been reported. Methodology/Principal Findings To our surprise, using NO imaging in brain slices in combination with biochemical methods we uncovered robust NO production by neocortical astrocytes of the NOS2 mutant. These findings indicate the existence of an alternative pathway that increases basal NOS activity. In addition, the astroglial mutation instigated modifications of neuronal attributes, shown by changes in the membrane properties of pyramidal neurons, and revealed in distinct behavioral abnormalities characterized by an increase in stress-related parameters. Conclusions/Significance The results strongly indicate the involvement of astrocytic-derived NO in modifying the activity of neuronal networks. In addition, the findings corroborate data linking NO signaling with stress-related behavior, and highlight the potential use of this genetic model for studies of stress-susceptibility. Lastly, our results beg re-examination of previous studies that used this mouse strain to examine the pathophysiology of brain insults, assuming lack of astrocytic nitrosative reaction.
Collapse
Affiliation(s)
- Yossi Buskila
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Yasmin Abu-Ghanem
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Yifat Levi
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Arie Moran
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ettie Grauer
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yael Amitai
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Benjamins JA, Nedelkoska L. Cyclic GMP-dependent pathways protect differentiated oligodendrocytes from multiple types of injury. Neurochem Res 2006; 32:321-9. [PMID: 17191140 DOI: 10.1007/s11064-006-9187-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 09/27/2006] [Indexed: 12/13/2022]
Abstract
The cyclic GMP analog 8-bromo-cyclic GMP (8-Br-cGMP) protects differentiated murine oligodendrocytes (OLs) from caspase-mediated death initiated by staurosporine, thapsigargin or kainate. Caspase-independent death caused by high levels of NO is also partially prevented by 8-Br-cGMP. Inhibitors of protein kinase G (cGMP-dependent protein kinase, cGK) reversed protection, supporting involvement of cGK. Since NO stimulates soluble guanylate cyclase, increasing cGMP, we treated OLs with low levels of NO and observed partial protection against thapsigargin, staurosporine and kainate. Two inhibitors of mitochondrial pore transition (MPT), cyclosporin A and bongkrekic acid, were poorly protective, indicating that cGMP is not acting primarily by blocking MPT. 8Br-cGMP was more effective than 8Br-cAMP in protecting against staurosporine or release of intracellular Ca(++) by thapsigargin. The cAMP analog exhibited little or no protection against kainate or high levels of NO. Thus cGK signaling is more effective than protein kinase A or phosphodiesterase 3 signaling in preventing OL death.
Collapse
Affiliation(s)
- Joyce A Benjamins
- Department of Neurology, Wayne State University School of Medicine, 1228 Elliman Building, 421 E. Canfield Avenue, Detroit, MI 48201, USA.
| | | |
Collapse
|
49
|
Gensert JM, Ratan RR. The metabolic coupling of arginine metabolism to nitric oxide generation by astrocytes. Antioxid Redox Signal 2006; 8:919-28. [PMID: 16771682 DOI: 10.1089/ars.2006.8.919] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Arginine, the only known precursor of nitric oxide, enters the brain parenchyma from the blood through the endothelial cells or from the cerebral spinal fluid through the ependymal cells. Astrocytes, whose processes abut the endothelium and ependymum, take up arginine through cationic amino acid transporters and release arginine through this transport system to the synapses that astrocytes shield. Some of these synapses are excitatory, and liberate glutamate into the synaptic cleft. Glutamate induces arginine release from astrocytes, making it available to the neuron. Neurons can take up arginine to be used in nitric oxide-mediated processes, such as neurotransmission. Thus, neural and nonneural cells act in concert to affect neuron physiology in an elegantly integrated system. This review focuses on the components of the interaction between astrocytes and neurons in nitric oxide biology.
Collapse
Affiliation(s)
- Joann M Gensert
- Burke/Cornell Medical Research Institute, White Plains, New York 10605, USA.
| | | |
Collapse
|
50
|
Boullerne AI, Benjamins JA. Nitric oxide synthase expression and nitric oxide toxicity in oligodendrocytes. Antioxid Redox Signal 2006; 8:967-80. [PMID: 16771686 DOI: 10.1089/ars.2006.8.967] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oligodendrocytes (OLG) have more complex interactions with nitric oxide (NO) than initially suspected. Historically, OLG were seen only as targets of high NO levels released from other cells. Expression of nitric oxide synthase type II (NOS-2) in primary cultures of OLGs stimulated by cytokines led to controversy due to the presence of small numbers of microglia, cells also inducible for NOS-2 expression. The present review summarizes the findings that immature OLG express NOS-2, but that they do not in their most mature stage in culture as membrane sheet-bearing cells. This raises questions about the regulation of NOS-2 expression in OLG. Additionally, novel data are presented on NOS-3 expression in cultured OLG. If confirmed in vivo, this finding suggests that constitutive NOS-3 expression may play a key role in OLG injury due to its activation by calcium, in interaction with pathways mediating glutamate toxicity. The authors discuss in vivo NO levels to place in vitro findings in context, and compare OLG sensitivity to NO with that of other brain cells. Lastly, the multiple interactions of NO are considered with regard to glutamate cytotoxicity, the antioxidant glutathione, mitochondrial function, and myelin architecture.
Collapse
Affiliation(s)
- Anne I Boullerne
- Department of Anesthesiology, University of Illinois at Chicago, 60612, USA.
| | | |
Collapse
|