1
|
Bronstone GJ, Harton M, Muldowney M, Reigle J, Funk AJ, O'Donovan SM, McCullumsmith RE, Bauer DE. The C. elegans glutamate transporters GLT-4 and GLT-5 regulate protein expression, behavior, and lifespan. Neurochem Int 2025; 186:105966. [PMID: 40147734 PMCID: PMC12053503 DOI: 10.1016/j.neuint.2025.105966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Glutamate transporters are important for regulating extracellular glutamate levels, impacting neural function and metabolic homeostasis. This study explores the behavioral, lifespan, and proteomic profiles in Caenorhabditis elegans strains with either glt-4 or glt-5 null mutations, highlighting contrasting phenotypes. Δglt-4 mutants displayed impaired mechanosensory and chemotactic responses, reduced lifespans, and decreased expression levels of ribosomal proteins and chaperonins involved in protein synthesis and folding. In contrast, Δglt-5 mutants displayed heightened chemorepulsion, extended lifespans, and upregulation of mitochondrial pyruvate carriers and cytoskeletal proteins. Proteomic profiling via mass spectrometry identified 53 differentially expressed proteins in Δglt-4 mutants and 45 in Δglt-5 mutants. Δglt-4 mutants showed disruptions in ribonucleoprotein complex organization and translational processes, including downregulation of glycogen phosphorylase and V-type ATPase subunits, while Δglt-5 mutants revealed altered metabolic protein expression, such as increased levels of mitochondrial pyruvate carriers and decreased levels of fibrillarin and ribosomal proteins. Gene ontology enrichment analysis highlighted differential regulation of protein biosynthesis and metabolic pathways between the strains. Overall, these findings underscore the distinct, tissue-specific roles of GLT-4 and GLT-5 in C. elegans, with broader implications for glutamate regulation and systemic physiology. The results also reinforce the utility of C. elegans as a model for studying glutamate transporters' impact on behavior, longevity, and proteostasis.
Collapse
Affiliation(s)
- Grace J Bronstone
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| | - Moriah Harton
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - Maya Muldowney
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Medical Sciences Building 231 Albert Sabin Way, PO Box 670769, Cincinnati, OH, 45267, USA
| | - Adam J Funk
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Sinead M O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine, 179 Block Health Science Building Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614, USA; Neurosciences Institute, ProMedica, 2130 West Central Avenue, Toledo, OH, 43606, USA
| | - Deborah E Bauer
- Department of Neuroscience, Wellesley College, Science Center, 106 Central Street, Wellesley, MA, 02481, USA.
| |
Collapse
|
2
|
Purice MD, Lago‐Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2025; 73:632-656. [PMID: 39415317 PMCID: PMC11784859 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D. Purice
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| | - Inês Lago‐Baldaia
- Department of Cell and Developmental BiologyUniversity College LondonLondonUK
| | | | - Aakanksha Singhvi
- Division of Basic SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
- Department of Biological StructureSchool of Medicine, University of WashingtonSeattleWashingtonUSA
| |
Collapse
|
3
|
Kim D, Nguyen TTM, Moon Y, Kim J, Nam H, Cha DS, An YJ, de Guzman ACV, Park S. Time-Resolved Evaluation of L-Dopa Metabolism in Bacteria-Host Symbiotic System and the Effect on Parkinson's Molecular Pathology. SMALL METHODS 2025; 9:e2400469. [PMID: 39058017 PMCID: PMC11926514 DOI: 10.1002/smtd.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 07/28/2024]
Abstract
The gut microbiome influences drug metabolism and therapeutic efficacy. Still, the lack of a general label-free approach for monitoring bacterial or host metabolic contribution hampers deeper insights. Here, a 2D nuclear magnetic resonance (NMR) approach is introduced that enables real-time monitoring of the metabolism of Levodopa (L-dopa), an anti-Parkinson drug, in both live bacteria and bacteria-host (Caenorhabditis elegans) symbiotic systems. The quantitative method reveals that discrete Enterococcus faecalis substrains produce different amounts of dopamine in live hosts, even though they are a single species and all have the Tyrosine decarboxylase (TyrDC) gene involved in L-dopa metabolism. The differential bacterial metabolic activity correlates with differing Parkinson's molecular pathology concerning alpha-synuclein aggregation as well as behavioral phenotypes. The gene's existence or expression is not an indicator of metabolic activity is also shown, underscoring the significance of quantitative metabolic estimation in vivo. This simple approach is widely adaptable to any chemical drug to elucidate pharmacomicrobiomic relationships and may help rapidly screen bacterial metabolic effects in drug development.
Collapse
Affiliation(s)
- Doyeon Kim
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Tin Tin Manh Nguyen
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Yechan Moon
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Jin‐Mo Kim
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Hoonsik Nam
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Dong Seok Cha
- College of Pharmacy Woosuk UniversityJeonbuk55338South Korea
| | - Yong Jin An
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | | | - Sunghyouk Park
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
4
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
PĘkowska A, Verkhratsky A, Falcone C. Evolution of neuroglia: From worm to man. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:7-26. [PMID: 40122633 DOI: 10.1016/b978-0-443-19104-6.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglia are a highly diversified class of neural cells of ectodermal (astroglia; oligodendroglia, glia of the peripheral nervous system) and mesodermal (microglia) origin. Glial cells emerged at the earliest stages of the evolution of the nervous system, seemingly evolving several times in phylogeny. Initially, glial cells were associated with sensory organs, an arrangement conserved throughout the species from worms to humans. Enhanced complexity of the nervous system increased the need for homeostatic support, which, in turn, led to an increase in complexity, functional heterogeneity, and versatility of neuroglia. In the brain of primates, and especially in the brain of humans, astrocytes become exceedingly complex. Likewise, new types of astroglial cells involved in interlayer communication/integration have evolved in the primates evolutionary closer to humans. Increases in animal size and the density of interneuronal connections stimulated the development of the myelin sheath, which was critical for the evolution of the highly complex brains of humans. The innate brain tissue macrophages, the microglia, emerged in invertebrates such as leeches. Microglia conserved their transcriptomic, morphologic, and functional signatures throughout the animal kingdom.
Collapse
Affiliation(s)
- Aleksandra PĘkowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Carmen Falcone
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Neuroscience Department, SISSA, Trieste, Italy
| |
Collapse
|
6
|
Singhvi A, Shaham S, Rapti G. Glia Development and Function in the Nematode Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2024; 16:a041346. [PMID: 38565269 PMCID: PMC11445397 DOI: 10.1101/cshperspect.a041346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The nematode Caenorhabditis elegans is a powerful experimental setting for uncovering fundamental tenets of nervous system organization and function. Its nearly invariant and simple anatomy, coupled with a plethora of methodologies for interrogating single-gene functions at single-cell resolution in vivo, have led to exciting discoveries in glial cell biology and mechanisms of glia-neuron interactions. Findings over the last two decades reinforce the idea that insights from C. elegans can inform our understanding of glial operating principles in other species. Here, we summarize the current state-of-the-art, and describe mechanistic insights that have emerged from a concerted effort to understand C. elegans glia. The remarkable acceleration in the pace of discovery in recent years paints a portrait of striking molecular complexity, exquisite specificity, and functional heterogeneity among glia. Glial cells affect nearly every aspect of nervous system development and function, from generating neurons, to promoting neurite formation, to animal behavior, and to whole-animal traits, including longevity. We discuss emerging questions where C. elegans is poised to fill critical knowledge gaps in our understanding of glia biology.
Collapse
Affiliation(s)
- Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Rome 00015, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Czopka T, Monk K, Peri F. Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041350. [PMID: 38692835 PMCID: PMC11529855 DOI: 10.1101/cshperspect.a041350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.
Collapse
Affiliation(s)
- Tim Czopka
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Kelly Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
8
|
Slater CR. Neuromuscular Transmission in a Biological Context. Compr Physiol 2024; 14:5641-5702. [PMID: 39382166 DOI: 10.1002/cphy.c240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Neuromuscular transmission is the process by which motor neurons activate muscle contraction and thus plays an essential role in generating the purposeful body movements that aid survival. While many features of this process are common throughout the Animal Kingdom, such as the release of transmitter in multimolecular "quanta," and the response to it by opening ligand-gated postsynaptic ion channels, there is also much diversity between and within species. Much of this diversity is associated with specialization for either slow, sustained movements such as maintain posture or fast but brief movements used during escape or prey capture. In invertebrates, with hydrostatic and exoskeletons, most motor neurons evoke graded depolarizations of the muscle which cause graded muscle contractions. By contrast, vertebrate motor neurons trigger action potentials in the muscle fibers which give rise to all-or-none contractions. The properties of neuromuscular transmission, in particular the intensity and persistence of transmitter release, reflect these differences. Neuromuscular transmission varies both between and within individual animals, which often have distinct tonic and phasic subsystems. Adaptive plasticity of neuromuscular transmission, on a range of time scales, occurs in many species. This article describes the main steps in neuromuscular transmission and how they vary in a number of "model" species, including C. elegans , Drosophila , zebrafish, mice, and humans. © 2024 American Physiological Society. Compr Physiol 14:5641-5702, 2024.
Collapse
|
9
|
Beachum AN, Salazar G, Nachbar A, Krause K, Klose H, Meyer K, Maserejian A, Ross G, Boyd H, Weigel T, Ambaye L, Miller H, Coutinho-Budd J. Glia multitask to compensate for neighboring glial cell dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611719. [PMID: 39314422 PMCID: PMC11418964 DOI: 10.1101/2024.09.06.611719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
As glia mature, they undergo glial tiling to abut one another without invading each other's boundaries. Upon the loss of the secreted neurotrophin Spätzle3 (Spz3), Drosophila cortex glia transform morphologically and lose their intricate interactions with neurons and surrounding glial subtypes. Here, we reveal that all neighboring glial cell types (astrocytes, ensheathing glia, and subperineurial glia) react by extending processes into the previous cortex glial territory to compensate for lost cortex glial function and reduce the buildup of neuronal debris. However, the loss of Spz3 alone is not sufficient for glia to cross their natural borders, as blocking CNS growth via nutrient-restriction blocks the aberrant infiltration induced by the loss of Spz3. Surprisingly, even when these neighboring glia divert their cellular resources beyond their typical borders to take on new compensatory roles, they are able to multitask to continue to preserve their own normal functions to maintain CNS homeostasis.
Collapse
Affiliation(s)
- Allison N. Beachum
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Amelia Nachbar
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Kevin Krause
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Hannah Klose
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Kate Meyer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | | | - Grace Ross
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Hannah Boyd
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Thaddeus Weigel
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Lydia Ambaye
- Department of Biology, University of Vermont, Burlington, VT 05405
| | - Hayes Miller
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Jaeda Coutinho-Budd
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
10
|
Yang H, Lee D, Kim H, Cook DE, Paik YK, Andersen EC, Lee J. Glial expression of a steroidogenic enzyme underlies natural variation in hitchhiking behavior. Proc Natl Acad Sci U S A 2024; 121:e2320796121. [PMID: 38959036 PMCID: PMC11252821 DOI: 10.1073/pnas.2320796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Phoresy is an interspecies interaction that facilitates spatial dispersal by attaching to a more mobile species. Hitchhiking species have evolved specific traits for physical contact and successful phoresy, but the regulatory mechanisms involved in such traits and their evolution are largely unexplored. The nematode Caenorhabditis elegans displays a hitchhiking behavior known as nictation during its stress-induced developmental stage. Dauer-specific nictation behavior has an important role in natural C. elegans populations, which experience boom-and-bust population dynamics. In this study, we investigated the nictation behavior of 137 wild C. elegans strains sampled throughout the world. We identified species-wide natural variation in nictation and performed a genome-wide association mapping. We show that the variants in the promoter of nta-1, encoding a putative steroidogenic enzyme, underlie differences in nictation. This difference is due to the changes in nta-1 expression in glial cells, which implies that glial steroid metabolism regulates phoretic behavior. Population genetic analysis and geographic distribution patterns suggest that balancing selection maintained two nta-1 haplotypes that existed in ancestral C. elegans populations. Our findings contribute to further understanding of the molecular mechanism of species interaction and the maintenance of genetic diversity within natural populations.
Collapse
Affiliation(s)
- Heeseung Yang
- Department of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Daehan Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Biological Sciences, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Heekyeong Kim
- Yonsei Proteome Research Center, Yonsei University, Seoul03722, Republic of Korea
| | - Daniel E. Cook
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Seoul03722, Republic of Korea
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Junho Lee
- Department of Biological Sciences, Seoul National University, Seoul08826, Republic of Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
11
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Hernández-García S, García-Cano B, Martínez-Rodríguez P, Henarejos-Escudero P, Gandía-Herrero F. Olive oil tyrosols reduce α-synuclein aggregation in vitro and in vivo after ingestion in a Caenorhabditis elegans Parkinson's model. Food Funct 2024; 15:7214-7223. [PMID: 38817211 DOI: 10.1039/d4fo01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Parkinson's disease is the neurodegenerative motor disorder with the highest incidence worldwide. Among other factors, Parkinson's disease is caused by the accumulation of α-synuclein aggregates in a patient's brain. In this work, five molecules present in the diet are proposed as possible nutraceuticals to prevent and/or reduce the formation of α-synuclein oligomers that lead to Parkinson's disease. The olive oil polyphenols tyrosol, hydroxytyrosol (HT), hydroxytyrosol acetate (HTA) and dihydroxyphenyl acetic acid (DOPAC) besides vitamin C were tested using a cellular model of α-synuclein aggregation and a Caenorhabditis elegans Parkinson's disease animal model. Levodopa was included in the assays as the main drug prescribed to treat the disease as well as dopamine, its direct metabolite. HTA and DOPAC completely hindered α-synuclein aggregation in vitro, while dopamine reduced the aggregation by 28.7%. The Parallel Artificial Membrane Permeability Assay (PAMPA) showed that HTA had the highest permeability through brain lipids among the compounds tested. Furthermore, the C. elegans Parkinson's disease model made it possible to assess the chosen compounds in vivo. The more effective substances in vivo were DOPAC and HTA which reduced the αS aggregation inside the animals by 79.2% and 76.2%, respectively. Moreover, dopamine also reduced the aggregates by 67.4% in the in vivo experiment. Thus, the results reveal the potential of olive oil tyrosols as nutraceuticals against α-synuclein aggregation.
Collapse
Affiliation(s)
- Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Beatriz García-Cano
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Pedro Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Paula Henarejos-Escudero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A, Unidad Docente de Biología, Facultad de Veterinaria. Regional Campus of International Excellence "Campus Mare Nostrum". Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
13
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
14
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
15
|
Ray S, Gurung P, Manning RS, Kravchuk AA, Singhvi A. Neuron cilia restrain glial KCC-3 to a microdomain to regulate multisensory processing. Cell Rep 2024; 43:113844. [PMID: 38421867 PMCID: PMC11296322 DOI: 10.1016/j.celrep.2024.113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Glia interact with multiple neurons, but it is unclear whether their interactions with each neuron are different. Our interrogation at single-cell resolution reveals that a single glial cell exhibits specificity in its interactions with different contacting neurons. Briefly, C. elegans amphid sheath (AMsh) glia apical-like domains contact 12 neuron-endings. At these ad-neuronal membranes, AMsh glia localize the K/Cl transporter KCC-3 to a microdomain exclusively around the thermosensory AFD neuron to regulate its properties. Glial KCC-3 is transported to ad-neuronal regions, where distal cilia of non-AFD glia-associated chemosensory neurons constrain it to a microdomain at AFD-contacting glial membranes. Aberrant KCC-3 localization impacts both thermosensory (AFD) and chemosensory (non-AFD) neuron properties. Thus, neurons can interact non-synaptically through a shared glial cell by regulating microdomain localization of its cues. As AMsh and glia across species compartmentalize multiple cues like KCC-3, we posit that this may be a broadly conserved glial mechanism that modulates information processing across multimodal circuits.
Collapse
Affiliation(s)
- Sneha Ray
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - Pralaksha Gurung
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA
| | - R Sean Manning
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alexandra A Kravchuk
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
17
|
Ciani C, Ayub M, Falcone C. Evolution of Astrocyte-Neuron Interactions Across Species. ADVANCES IN NEUROBIOLOGY 2024; 39:1-17. [PMID: 39190069 DOI: 10.1007/978-3-031-64839-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Proper functioning of the central nervous system depends on various tightly regulated phenomena, among which astrocyte-neuron interactions are of critical importance. Various studies across the species have highlighted the diverse yet crucial roles of astrocytes in regulating the nervous system development and functions. In simpler organisms like worms or insects, astrocyte-like cells govern basic functions such as structural support to neurons or regulation of extracellular ions. As the species complexity increases, so does the functional and morphological complexity of astrocytes. For example, in fish and amphibians, these cells are involved in synaptic development and ion homeostasis, while in reptiles and birds, astrocytes regulate synaptic transmission and plasticity and are reported to be involved in complex behaviors. Other species like those belonging to mammals and, in particular, primates have a heterogeneous population of astrocytes, exhibiting region-specific functional properties. In primates, these cells are responsible for proper synaptic transmission, neurotransmitter release and metabolism, and higher cognitive functions like learning, memory, or information processing. This chapter highlights the well-established and somewhat conserved roles of astrocytes and astrocyte-neuron interactions across the evolution of both invertebrates and vertebrates.
Collapse
Affiliation(s)
- Caterina Ciani
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Ayub
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy
| | - Carmen Falcone
- Neuroscience Department, Scuola Internazionale di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
18
|
Tremblay MÈ, Verkhratsky A. General Pathophysiology of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:3-14. [PMID: 39207683 DOI: 10.1007/978-3-031-55529-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada.
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada.
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences,University of the Basque Country,, Leioa, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
19
|
Purice MD, Severs LJ, Singhvi A. Glia in Invertebrate Models: Insights from Caenorhabditis elegans. ADVANCES IN NEUROBIOLOGY 2024; 39:19-49. [PMID: 39190070 DOI: 10.1007/978-3-031-64839-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Glial cells modulate brain development, function, and health across all bilaterian animals, and studies in the past two decades have made rapid strides to uncover the underlying molecular mechanisms of glial functions. The nervous system of the invertebrate genetic model Caenorhabditis elegans (C. elegans) has small cell numbers with invariant lineages, mapped connectome, easy genetic manipulation, and a short lifespan, and the animal is also optically transparent. These characteristics are revealing C. elegans to be a powerful experimental platform for studying glial biology. This chapter discusses studies in C. elegans that add to our understanding of how glia modulate adult neural functions, and thereby animal behaviors, as well as emerging evidence of their roles as autonomous sensory cells. The rapid molecular and cellular advancements in understanding C. elegans glia in recent years underscore the utility of this model in studies of glial biology. We conclude with a perspective on future research avenues for C. elegans glia that may readily contribute molecular mechanistic insights into glial functions in the nervous system.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Liza J Severs
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
20
|
Lee MB, Blue B, Muir M, Kaeberlein M. The million-molecule challenge: a moonshot project to rapidly advance longevity intervention discovery. GeroScience 2023; 45:3103-3113. [PMID: 37432607 PMCID: PMC10643437 DOI: 10.1007/s11357-023-00867-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Targeting aging is the future of twenty-first century preventative medicine. Small molecule interventions that promote healthy longevity are known, but few are well-developed and discovery of novel, robust interventions has stagnated. To accelerate longevity intervention discovery and development, high-throughput systems are needed that can perform unbiased drug screening and directly measure lifespan and healthspan metrics in whole animals. C. elegans is a powerful model system for this type of drug discovery. Combined with automated data capture and analysis technologies, truly high-throughput longevity drug discovery is possible. In this perspective, we propose the "million-molecule challenge", an effort to quantitatively assess 1,000,000 interventions for longevity within five years. The WormBot-AI, our best-in-class robotics and AI data analysis platform, provides a tool to achieve the million-molecule challenge for pennies per animal tested.
Collapse
Affiliation(s)
- Mitchell B Lee
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA.
| | - Benjamin Blue
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
| | - Michael Muir
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
| | - Matt Kaeberlein
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
- Optispan Geroscience, Seattle, WA, USA
| |
Collapse
|
21
|
Chandra B, Voas MG, Davies EL, Roberts-Galbraith RH. Ets-1 transcription factor regulates glial cell regeneration and function in planarians. Development 2023; 150:dev201666. [PMID: 37665145 PMCID: PMC10508700 DOI: 10.1242/dev.201666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
Glia play multifaceted roles in nervous systems in response to injury. Depending on the species, extent of injury and glial cell type in question, glia can help or hinder the regeneration of neurons. Studying glia in the context of successful regeneration could reveal features of pro-regenerative glia that could be exploited for new human therapies. Planarian flatworms completely regenerate their nervous systems after injury - including glia - and thus provide a strong model system for exploring glia in the context of regeneration. Here, we report that planarian glia regenerate after neurons, and that neurons are required for correct glial numbers and localization during regeneration. We also identify the planarian transcription factor-encoding gene ets-1 as a key regulator of glial cell maintenance and regeneration. Using ets-1 (RNAi) to perturb glia, we show that glial loss is associated with altered neuronal gene expression, impeded animal movement and impaired nervous system architecture - particularly within the neuropil. Importantly, our work reveals the inter-relationships of glia and neurons in the context of robust neural regeneration.
Collapse
Affiliation(s)
- Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Matthew G. Voas
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Erin L. Davies
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | |
Collapse
|
22
|
Ray S, Gurung P, Manning RS, Kravchuk A, Singhvi A. Neuron cilia constrain glial regulators to microdomains around distal neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533255. [PMID: 36993507 PMCID: PMC10055228 DOI: 10.1101/2023.03.18.533255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Each glia interacts with multiple neurons, but the fundamental logic of whether it interacts with all equally remains unclear. We find that a single sense-organ glia modulates different contacting neurons distinctly. To do so, it partitions regulatory cues into molecular microdomains at specific neuron contact-sites, at its delimited apical membrane. For one glial cue, K/Cl transporter KCC-3, microdomain-localization occurs through a two-step, neuron-dependent process. First, KCC-3 shuttles to glial apical membranes. Second, some contacting neuron cilia repel it, rendering it microdomain-localized around one distal neuron-ending. KCC-3 localization tracks animal aging, and while apical localization is sufficient for contacting neuron function, microdomain-restriction is required for distal neuron properties. Finally, we find the glia regulates its microdomains largely independently. Together, this uncovers that glia modulate cross-modal sensor processing by compartmentalizing regulatory cues into microdomains. Glia across species contact multiple neurons and localize disease-relevant cues like KCC-3. Thus, analogous compartmentalization may broadly drive how glia regulate information processing across neural circuits.
Collapse
Affiliation(s)
- Sneha Ray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Neuroscience Graduate Program, University of Washington, Seattle, WA
| | - Pralaksha Gurung
- Neuroscience Graduate Program, University of Washington, Seattle, WA
| | - R. Sean Manning
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Alexandra Kravchuk
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- University of Washington School of Medicine, WA 98195
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Department of Biological Structure, University of Washington School of Medicine, WA 98195
| |
Collapse
|
23
|
Smith CJ. Evolutionarily conserved concepts in glial cell biology. Curr Opin Neurobiol 2023; 78:102669. [PMID: 36577179 PMCID: PMC9845142 DOI: 10.1016/j.conb.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022]
Abstract
The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.
Collapse
Affiliation(s)
- Cody J Smith
- Department of Biological Sciences, IN, USA; The Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
24
|
Abstract
The evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed of electrically excitable neuronal networks connected by chemical synapses and nonexcitable glial cells that provide for homeostasis and defense. The evolution of neuroglia began with the emergence of the centralized nervous system and proceeded through a continuous increase in their complexity. In the primate brain, especially in the brain of humans, the astrocyte lineage is exceedingly complex, with the emergence of new types of astroglial cells possibly involved in interlayer communication and integration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain.,Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Amaia M Arranz
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Katarzyna Ciuba
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Pękowska
- Dioscuri Centre of Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Godini R, Fallahi H, Pocock R. The regulatory landscape of neurite development in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:974208. [PMID: 36090252 PMCID: PMC9453034 DOI: 10.3389/fnmol.2022.974208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal communication requires precise connectivity of neurite projections (axons and dendrites). Developing neurites express cell-surface receptors that interpret extracellular cues to enable correct guidance toward, and connection with, target cells. Spatiotemporal regulation of neurite guidance molecule expression by transcription factors (TFs) is critical for nervous system development and function. Here, we review how neurite development is regulated by TFs in the Caenorhabditis elegans nervous system. By collecting publicly available transcriptome and ChIP-sequencing data, we reveal gene expression dynamics during neurite development, providing insight into transcriptional mechanisms governing construction of the nervous system architecture.
Collapse
Affiliation(s)
- Rasoul Godini
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Rasoul Godini,
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Roger Pocock
- Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Roger Pocock,
| |
Collapse
|
26
|
Falcone C. Evolution of astrocytes: From invertebrates to vertebrates. Front Cell Dev Biol 2022; 10:931311. [PMID: 36046339 PMCID: PMC9423676 DOI: 10.3389/fcell.2022.931311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system (CNS) shows incredible diversity across evolution at the anatomical, cellular, molecular, and functional levels. Over the past decades, neuronal cell number and heterogeneity, together with differences in the number and types of neuro-active substances, axonal conduction, velocity, and modes of synaptic transmission, have been rigorously investigated in comparative neuroscience studies. However, astrocytes, a specific type of glial cell in the CNS, play pivotal roles in regulating these features and thus are crucial for the brain's development and evolution. While special attention has been paid to mammalian astrocytes, we still do not have a clear definition of what an astrocyte is from a broader evolutionary perspective, and there are very few studies on astroglia-like structures across all vertebrates. Here, I elucidate what we know thus far about astrocytes and astrocyte-like cells across vertebrates. This information expands our understanding of how astrocytes evolved to become more complex and extremely specialized cells in mammals and how they are relevant to the structure and function of the vertebrate brain.
Collapse
Affiliation(s)
- Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
27
|
Pandey P, Kaur G, Babu K. Crosstalk between neurons and glia through G-protein coupled receptors: Insights from Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:119-144. [PMID: 36357074 DOI: 10.1016/bs.pmbts.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The past decades have witnessed a dogmatic shift from glia as supporting cells in the nervous system to their active roles in neurocentric functions. Neurons and glia communicate and show bidirectional responses through tripartite synapses. Studies across species indicate that neurotransmitters released by neurons are perceived by glial receptors, which allow for gliotransmitter release. These gliotransmitters can result in activation of neurons via neuronal GPCR receptors. However, studies of these molecular interactions are in their infancy. Caenorhabditis elegans has a conserved neuron-glia architectural repertoire with molecular and functional resemblance to mammals. Further, glia in C. elegans can be manipulated through ablation and mutations allowing for deciphering of glial dependent processes in vivo at single glial resolutions. Here, we will review recent findings from vertebrate and invertebrate organisms with a focus on how C. elegans can be used to advance our understanding of neuron-glia interactions through GPCRs.
Collapse
Affiliation(s)
- Pratima Pandey
- Indian Institute of Science Education and Research, Mohali, Punjab, India.
| | - Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Kavita Babu
- Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
28
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
29
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
30
|
Abstract
Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.
Collapse
|
31
|
Dunton AD, Göpel T, Ho DH, Burggren W. Form and Function of the Vertebrate and Invertebrate Blood-Brain Barriers. Int J Mol Sci 2021; 22:ijms222212111. [PMID: 34829989 PMCID: PMC8618301 DOI: 10.3390/ijms222212111] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
The need to protect neural tissue from toxins or other substances is as old as neural tissue itself. Early recognition of this need has led to more than a century of investigation of the blood-brain barrier (BBB). Many aspects of this important neuroprotective barrier have now been well established, including its cellular architecture and barrier and transport functions. Unsurprisingly, most research has had a human orientation, using mammalian and other animal models to develop translational research findings. However, cell layers forming a barrier between vascular spaces and neural tissues are found broadly throughout the invertebrates as well as in all vertebrates. Unfortunately, previous scenarios for the evolution of the BBB typically adopt a classic, now discredited 'scala naturae' approach, which inaccurately describes a putative evolutionary progression of the mammalian BBB from simple invertebrates to mammals. In fact, BBB-like structures have evolved independently numerous times, complicating simplistic views of the evolution of the BBB as a linear process. Here, we review BBBs in their various forms in both invertebrates and vertebrates, with an emphasis on the function, evolution, and conditional relevance of popular animal models such as the fruit fly and the zebrafish to mammalian BBB research.
Collapse
Affiliation(s)
- Alicia D. Dunton
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
- Correspondence:
| | - Torben Göpel
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| | - Dao H. Ho
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859, USA;
| | - Warren Burggren
- Developmental Integrative Biology Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (T.G.); (W.B.)
| |
Collapse
|
32
|
Abstract
The sympathetic nervous system prepares the body for 'fight or flight' responses and maintains homeostasis during daily activities such as exercise, eating a meal or regulation of body temperature. Sympathetic regulation of bodily functions requires the establishment and refinement of anatomically and functionally precise connections between postganglionic sympathetic neurons and peripheral organs distributed widely throughout the body. Mechanistic studies of key events in the formation of postganglionic sympathetic neurons during embryonic and early postnatal life, including axon growth, target innervation, neuron survival, and dendrite growth and synapse formation, have advanced the understanding of how neuronal development is shaped by interactions with peripheral tissues and organs. Recent progress has also been made in identifying how the cellular and molecular diversity of sympathetic neurons is established to meet the functional demands of peripheral organs. In this Review, we summarize current knowledge of signalling pathways underlying the development of the sympathetic nervous system. These findings have implications for unravelling the contribution of sympathetic dysfunction stemming, in part, from developmental perturbations to the pathophysiology of peripheral neuropathies and cardiovascular and metabolic disorders.
Collapse
|
33
|
Razzauti A, Laurent P. Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. eLife 2021; 10:67670. [PMID: 34533135 PMCID: PMC8492061 DOI: 10.7554/elife.67670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs' budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.
Collapse
Affiliation(s)
- Adria Razzauti
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles(ULB), Brussels, Belgium
| |
Collapse
|
34
|
Umans RA, Pollock C, Mills WA, Clark KC, Pan YA, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol 2021; 9:654338. [PMID: 34268301 PMCID: PMC8276133 DOI: 10.3389/fcell.2021.654338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
An emerging area of interest in Neuroscience is the cellular relationship between glia and blood vessels, as many of the presumptive support roles of glia require an association with the vasculature. These interactions are best studied in vivo and great strides have been made using mice to longitudinally image glial-vascular interactions. However, these methods are cumbersome for developmental studies, which could benefit from a more accessible system. Zebrafish (Danio rerio) are genetically tractable vertebrates, and given their translucency, are readily amenable for daily live imaging studies. We set out to examine whether zebrafish glia have conserved traits with mammalian glia regarding their ability to interact with and maintain the developing brain vasculature. We utilized transgenic zebrafish strains in which oligodendrocyte transcription factor 2 (olig2) and glial fibrillary acidic protein (gfap) identify different glial populations in the zebrafish brain and document their corresponding relationship with brain blood vessels. Our results demonstrate that olig2+ and gfap+ zebrafish glia have distinct lineages and each interact with brain vessels as previously observed in mouse brain. Additionally, we manipulated these relationships through pharmacological and genetic approaches to distinguish the roles of these cell types during blood vessel development. olig2+ glia use blood vessels as a pathway during their migration and Wnt signaling inhibition decreases their single-cell vessel co-option. By contrast, the ablation of gfap+ glia at the beginning of CNS angiogenesis impairs vessel development through a reduction in Vascular endothelial growth factor (Vegf), supporting a role for gfap+ glia during new brain vessel formation in zebrafish. This data suggests that zebrafish glia, akin to mammalian glia, have different lineages that show diverse interactions with blood vessels, and are a suitable model for elucidating glial-vascular relationships during vertebrate brain development.
Collapse
Affiliation(s)
- Robyn A. Umans
- Glial Biology in Health, Disease, and Cancer Center, The Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Carolyn Pollock
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - William A. Mills
- Glial Biology in Health, Disease, and Cancer Center, The Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Kareem C. Clark
- Center for Neurobiology Research, The Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Y. Albert Pan
- Center for Neurobiology Research, The Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Harald Sontheimer
- Glial Biology in Health, Disease, and Cancer Center, The Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
35
|
Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22:ijms22116093. [PMID: 34198763 PMCID: PMC8201181 DOI: 10.3390/ijms22116093] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.
Collapse
|
36
|
Shahzad U, Taccone MS, Kumar SA, Okura H, Krumholtz S, Ishida J, Mine C, Gouveia K, Edgar J, Smith C, Hayes M, Huang X, Derry WB, Taylor MD, Rutka JT. Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro Oncol 2021; 23:718-731. [PMID: 33378446 DOI: 10.1093/neuonc/noaa306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.
Collapse
Affiliation(s)
- Uswa Shahzad
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Michael S Taccone
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sachin A Kumar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Hidehiro Okura
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Joji Ishida
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Coco Mine
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Kyle Gouveia
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Julia Edgar
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Christian Smith
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada
| | - Madeline Hayes
- Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - Xi Huang
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Canada
| | - W Brent Derry
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - James T Rutka
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Arthur and Sonia Labatt Brain Tumor Research Center, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| |
Collapse
|
37
|
Bowles SN, Johnson CM. Inferences of glia-mediated control in Caenorhabditis elegans. J Neurosci Res 2021; 99:1191-1206. [PMID: 33559247 PMCID: PMC8005477 DOI: 10.1002/jnr.24803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
Astrocytes modulate synaptic transmission; yet, it remains unclear how glia influence complex behaviors. Here, we explore the effects of Caenorhabditis elegans astrocyte-like cephalic glia (CEPglia ) and the glia-specific bHLH transcription factor HLH-17 on mating behavior and the defecation motor program (DMP). In C. elegans, male mating has been explicitly described through the male tail circuit and is characterized by coordination of multiple independent behaviors to ensure that copulation is achieved. Furthermore, the sex-specific male mating circuitry shares similar components with the DMP, which is complex and rhythmic, and requires a fixed sequence of behaviors to be activated periodically. We found that loss of CEPglia reduced persistence in executing mating behaviors and hindered copulation, while males that lacked HLH-17 demonstrated repetitive prodding behavior that increased the time spent in mating but did not hinder copulation. During the DMP, we found that posterior body wall contractions (pBocs) and enteric muscle contractions (EMCs) were differentially affected by loss of HLH-17 or CEPglia in males and hermaphrodites. pBocs and EMCs required HLH-17 activity in both sexes, whereas loss of CEPglia alone did not affect DMP in males. Our data suggest that CEPglia mediate complex behaviors by signaling to the GABAergic DVB neuron, and that HLH-17 activity influences those discrete steps within those behaviors. Collectively, these data provide evidence of glia as a link in cooperative regulation of complex and rhythmic behavior that, in C. elegans links circuitry in the head and the tail.
Collapse
Affiliation(s)
- Stephanie N. Bowles
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
| | - Casonya M. Johnson
- Department of Biology, Georgia State University, Atlanta, GA, 30303, United States
- Department of Biology, James Madison University, Harrisonburg, VA, 22807
| |
Collapse
|
38
|
Zhang A, Ackley BD, Yan D. Vitamin B12 Regulates Glial Migration and Synapse Formation through Isoform-Specific Control of PTP-3/LAR PRTP Expression. Cell Rep 2021; 30:3981-3988.e3. [PMID: 32209461 PMCID: PMC7281833 DOI: 10.1016/j.celrep.2020.02.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/12/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022] Open
Abstract
Vitamin B12 is known to play critical roles during the development and aging of the brain, and vitamin B12 deficiency has been linked to neurodevelopmental and degenerative disorders. However, the underlying molecular mechanisms of how vitamin B12 affects the development and maintenance of the nervous system are still unclear. Here, we report that vitamin B12 can regulate glial migration and synapse formation through control of isoform-specific expression of PTP-3/LAR PRTP (leukocyte-common antigen-related receptor-type tyrosine-protein phosphatase). We found the uptake of diet-supplied vitamin B12 in the intestine to be critical for the expression of a long isoform of PTP-3 (PTP-3A) in neuronal and glial cells. The expression of PTP-3A cell autonomously regulates glial migration and synapse formation through interaction with an extracellular matrix protein NID-1/nidogen 1. Together, our findings demonstrate that isoform-specific regulation of PTP-3/ LAR PRTP expression is a key molecular mechanism that mediates vitamin-B12-dependent neuronal and glial development.
Collapse
Affiliation(s)
- Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brian D Ackley
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Regeneration Next Initiative, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Wang L, Bianchi L. Maintenance of protein homeostasis in glia extends lifespan in C. elegans. Exp Neurol 2021; 339:113648. [PMID: 33600813 DOI: 10.1016/j.expneurol.2021.113648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mounting evidence support that glia play a key role in organismal ageing. However, the mechanisms by which glia impact ageing are not understood. One of the processes that has significant impact on the rate of ageing is the unfolded protein response. The more robust the UPR, the more the organism can counteract the effect of environmental and genetic stressors. However, how decline of cellular UPR translates into organismal ageing and eventual death is not fully understood. Here we discuss recent findings highlighting that neuropeptides released by glia act long distance to regulate ageing in C. elegans. Taking advantage of the short lifespan and the genetic amenability of this organism, the endoplasmic reticulum unfolded protein responses (UPRER) can be activated in C. elegans glia. This leads to cell-nonautonomous activation of the UPRER in the intestine. Activation of intestinal UPRER requires the function of genes involved in neuropeptide processing and release, suggesting that neuropeptides signal from glia to the intestine to regulate ER stress response. Importantly, the cell-nonautonomous activation of UPRER leads to extension of lifespan. Taken together, these data suggest that environmental and genetic factors that impact the response of glia to stress have the potential to influence organismal ageing. Further research on the specific neuropeptides involved should cast new light on the mechanism of ageing and may suggest novel anti-ageing therapies.
Collapse
Affiliation(s)
- Lei Wang
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Laura Bianchi
- Department Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
40
|
Qu Z, Zhang A, Yan D. Robo functions as an attractive cue for glial migration through SYG-1/Neph. eLife 2020; 9:e57921. [PMID: 33211005 PMCID: PMC7676865 DOI: 10.7554/elife.57921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023] Open
Abstract
As one of the most-studied receptors, Robo plays functions in many biological processes, and its functions highly depend on Slit, the ligand of Robo. Here we uncover a Slit-independent role of Robo in glial migration and show that neurons can release an extracellular fragment of Robo upon cleavage to attract glia during migration in Caenorhabditis elegans. Furthermore, we identified the conserved cell adhesion molecule SYG-1/Neph as a receptor for the cleaved extracellular Robo fragment to mediate glial migration and SYG-1/Neph functions through regulation of the WAVE complex. Our studies reveal a previously unknown Slit-independent function and regulatory mechanism of Robo and show that the cleaved extracellular fragment of Robo can function as a ligand for SYG-1/Neph to guide glial migration. As Robo, the cleaved region of Robo, and SYG-1/Neph are all highly conserved across the animal kingdom, our findings may present a conserved Slit-independent Robo mechanism during brain development.
Collapse
Affiliation(s)
- Zhongwei Qu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Albert Zhang
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Regeneration Next Initiative, Duke Center for Neurodegeneration and Neurotherapeutics, and Duke Institute for Brain Sciences, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
41
|
Paquola C, Seidlitz J, Benkarim O, Royer J, Klimes P, Bethlehem RAI, Larivière S, Vos de Wael R, Rodríguez-Cruces R, Hall JA, Frauscher B, Smallwood J, Bernhardt BC. A multi-scale cortical wiring space links cellular architecture and functional dynamics in the human brain. PLoS Biol 2020; 18:e3000979. [PMID: 33253185 PMCID: PMC7728398 DOI: 10.1371/journal.pbio.3000979] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 12/10/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
The vast net of fibres within and underneath the cortex is optimised to support the convergence of different levels of brain organisation. Here, we propose a novel coordinate system of the human cortex based on an advanced model of its connectivity. Our approach is inspired by seminal, but so far largely neglected models of cortico-cortical wiring established by postmortem anatomical studies and capitalises on cutting-edge in vivo neuroimaging and machine learning. The new model expands the currently prevailing diffusion magnetic resonance imaging (MRI) tractography approach by incorporation of additional features of cortical microstructure and cortico-cortical proximity. Studying several datasets and different parcellation schemes, we could show that our coordinate system robustly recapitulates established sensory-limbic and anterior-posterior dimensions of brain organisation. A series of validation experiments showed that the new wiring space reflects cortical microcircuit features (including pyramidal neuron depth and glial expression) and allowed for competitive simulations of functional connectivity and dynamics based on resting-state functional magnetic resonance imaging (rs-fMRI) and human intracranial electroencephalography (EEG) coherence. Our results advance our understanding of how cell-specific neurobiological gradients produce a hierarchical cortical wiring scheme that is concordant with increasing functional sophistication of human brain organisation. Our evaluations demonstrate the cortical wiring space bridges across scales of neural organisation and can be easily translated to single individuals.
Collapse
Affiliation(s)
- Casey Paquola
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, Maryland, United States of America
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Petr Klimes
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Raul Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jeffery A. Hall
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Boris C. Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
42
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
43
|
Duan D, Zhang H, Yue X, Fan Y, Xue Y, Shao J, Ding G, Chen D, Li S, Cheng H, Zhang X, Zou W, Liu J, Zhao J, Wang L, Zhao B, Wang Z, Xu S, Wen Q, Liu J, Duan S, Kang L. Sensory Glia Detect Repulsive Odorants and Drive Olfactory Adaptation. Neuron 2020; 108:707-721.e8. [PMID: 32970991 DOI: 10.1016/j.neuron.2020.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/25/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Glia are typically considered as supporting cells for neural development and synaptic transmission. Here, we report an active role of a glia in olfactory transduction. As a polymodal sensory neuron in C. elegans, the ASH neuron is previously known to detect multiple aversive odorants. We reveal that the AMsh glia, a sheath for multiple sensory neurons including ASH, cell-autonomously respond to aversive odorants via G-protein-coupled receptors (GPCRs) distinct from those in ASH. Upon activation, the AMsh glia suppress aversive odorant-triggered avoidance and promote olfactory adaptation by inhibiting the ASH neuron via GABA signaling. Thus, we propose a novel two-receptor model where the glia and sensory neuron jointly mediate adaptive olfaction. Our study reveals a non-canonical function of glial cells in olfactory transduction, which may provide new insights into the glia-like supporting cells in mammalian sensory procession.
Collapse
Affiliation(s)
- Duo Duan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China; Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Hu Zhang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Xiaomin Yue
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yuedan Fan
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China
| | - Yadan Xue
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jiajie Shao
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Gang Ding
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Du Chen
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Shitian Li
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Hankui Cheng
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Xiaoyan Zhang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Wenjuan Zou
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jia Liu
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Jian Zhao
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Linmei Wang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Bingzhen Zhao
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China
| | - Suhong Xu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Quan Wen
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Liu
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shumin Duan
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China; Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China.
| | - Lijun Kang
- Department of Neurobiology and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 310053, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
44
|
Abstract
The regulation of gliogenesis is a fundamental process for nervous system development, as the appropriate glial number and identity is required for a functional nervous system. To investigate the molecular mechanisms involved in gliogenesis, we used C. elegans as a model and identified the function of the proneural gene lin-32/Atoh1 in gliogenesis. We found that lin-32 functions during embryonic development to negatively regulate the number of AMsh glia. The ectopic AMsh cells at least partially arise from cells originally fated to become CEPsh glia, suggesting that lin-32 is involved in the specification of specific glial subtypes. Moreover, we show that lin-32 acts in parallel with cnd-1/ NeuroD1 and ngn-1/ Neurog1 in negatively regulating an AMsh glia fate. Furthermore, expression of murine Atoh1 fully rescues lin-32 mutant phenotypes, suggesting lin-32/Atoh1 may have a conserved role in glial specification.
Collapse
|
45
|
Vest M, Guida A, Colombini C, Cordes K, Pena D, Maki M, Briones M, Antonio S, Hollifield C, Tian E, James L, Borashan C, Woodson J, Rovig J, Shihadeh H, Karabachev A, Brosious J, Pistorio A. Closing the Gap Between Mammalian and Invertebrate Peripheral Nerve Injury: Protocol for a Novel Nerve Repair. JMIR Res Protoc 2020; 9:e18706. [PMID: 32851981 PMCID: PMC7484768 DOI: 10.2196/18706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Outcomes after peripheral nerve injuries are poor despite current nerve repair techniques. Currently, there is no conclusive evidence that mammalian axons are capable of spontaneous fusion after transection. Notably, certain invertebrate species are able to auto-fuse after transection. Although mammalian axonal auto-fusion has not been observed experimentally, no mammalian study to date has demonstrated regenerating axolemmal membranes contacting intact distal segment axolemmal membranes to determine whether mammalian peripheral nerve axons have the intrinsic mechanisms necessary to auto-fuse after transection. OBJECTIVE This study aims to assess fusion competence between regenerating axons and intact distal segment axons by enhancing axon regeneration, delaying Wallerian degeneration, limiting the immune response, and preventing myelin obstruction. METHODS This study will use a rat sciatic nerve model to evaluate the effects of a novel peripheral nerve repair protocol on behavioral, electrophysiologic, and morphologic parameters. This protocol consists of a variety of preoperative, intraoperative, and postoperative interventions. Fusion will be assessed with electrophysiological conduction of action potentials across the repaired transection site. Axon-axon contact will be assessed with transmission electron microscopy. Behavioral recovery will be analyzed with the sciatic functional index. A total of 36 rats will be used for this study. The experimental group will use 24 rats and the negative control group will use 12 rats. For both the experimental and negative control groups, there will be both a behavior group and another group that will undergo electrophysiological and morphological analysis. The primary end point will be the presence or absence of action potentials across the lesion site. Secondary end points will include behavioral recovery with the sciatic functional index and morphological analysis of axon-axon contact between regenerating axons and intact distal segment axons. RESULTS The author is in the process of grant funding and institutional review board approval as of March 2020. The final follow-up will be completed by December 2021. CONCLUSIONS In this study, the efficacy of the proposed novel peripheral nerve repair protocol will be evaluated using behavioral and electrophysiologic parameters. The author believes this study will provide information regarding whether spontaneous axon fusion is possible in mammals under the proper conditions. This information could potentially be translated to clinical trials if successful to improve outcomes after peripheral nerve injury. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/18706.
Collapse
Affiliation(s)
- Maxwell Vest
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Addison Guida
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Cory Colombini
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Kristina Cordes
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Diana Pena
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Marwa Maki
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Michael Briones
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sabrina Antonio
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Carmen Hollifield
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Elli Tian
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Lucas James
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Christian Borashan
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Johnnie Woodson
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - John Rovig
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Hanaa Shihadeh
- Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Alexander Karabachev
- Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - John Brosious
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Ashley Pistorio
- Department of Plastic and Reconstructive Surgery, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
46
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 2020; 173:108158. [PMID: 32464133 DOI: 10.1016/j.neuropharm.2020.108158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Ketamine, a general anaesthetic and psychotomimetic drug, exerts rapid, potent and long-lasting antidepressant effect, albeit the cellular and molecular mechanisms of this action are yet to be discovered. Besides targeting neuronal NMDARs fundamental for synaptic transmission, ketamine affects the function of astroglia the key homeostatic cells of the central nervous system that contribute to pathophysiology of psychiatric diseases including depression. Here we review studies revealing that (sub)anaesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signalling, which regulates exocytotic secretion of gliosignalling molecules, and stabilize the vesicle fusion pore in a narrow configuration possibly hindering cargo discharge or vesicle recycling. Next we discuss how ketamine affects astroglial capacity to control extracellular K+ by reducing cytoplasmic mobility of vesicles delivering the inward rectifying potassium channel (Kir4.1) to the plasmalemma. Modified astroglial K+ buffering impacts upon neuronal excitability as demonstrated in the lateral habenula rat model of depression. Finally, we highlight the recent discovery that ketamine rapidly redistributes cholesterol in the plasmalemma of astrocytes, but not in fibroblasts nor in neuronal cells. This alteration of membrane structure may modulate a host of processes that synergistically contribute to ketamine's rapid and prominent antidepressant action.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
47
|
Coppa A, Guha S, Fourcade S, Parameswaran J, Ruiz M, Moser AB, Schlüter A, Murphy MP, Lizcano JM, Miranda-Vizuete A, Dalfó E, Pujol A. The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Free Radic Biol Med 2020; 152:797-809. [PMID: 32017990 PMCID: PMC7611262 DOI: 10.1016/j.freeradbiomed.2020.01.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Adrenoleukodystrophy is a neurometabolic disorder caused by a defective peroxisomal ABCD1 transporter of very long-chain fatty acids (VLCFAs). Its pathogenesis is incompletely understood. Here we characterize a nematode model of X-ALD with loss of the pmp-4 gene, the worm orthologue of ABCD1. These mutants recapitulate the hallmarks of X-ALD: i) VLCFAs accumulation and impaired mitochondrial redox homeostasis and ii) axonal damage coupled to locomotor dysfunction. Furthermore, we identify a novel role for PMP-4 in modulating lipid droplet dynamics. Importantly, we show that the mitochondria targeted antioxidant MitoQ normalizes lipid droplets size, and prevents axonal degeneration and locomotor disability, highlighting its therapeutic potential. Moreover, PMP-4 acting solely in the hypodermis rescues axonal and locomotion abnormalities, suggesting a myelin-like role for the hypodermis in providing essential peroxisomal functions for the nematode nervous system.
Collapse
Affiliation(s)
- Andrea Coppa
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | - Ann B Moser
- Peroxisomal Diseases Laboratory, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain
| | | | - Jose Miguel Lizcano
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío /CSIC/ Universidad de Sevilla, E-41013, Sevilla, Spain
| | - Esther Dalfó
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra (Barcelona), Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain.
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, L'Hospitalet de Llobregat, Spain; CIBERER U759, Center for Biomedical Research on Rare Diseases, Spain; ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain.
| |
Collapse
|
48
|
Affiliation(s)
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Tang Y, Illes P, Verkhratsky A. Glial-neuronal Sensory Organs: Evolutionary Journey from Caenorhabditis elegans to Mammals. Neurosci Bull 2020; 36:561-564. [PMID: 31960268 DOI: 10.1007/s12264-020-00464-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/08/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Acupuncture and Tuina School, Chengdu University of TCM, Chengdu, 610075, China.
- Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu, 610075, China.
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Leipzig, 04107, Germany
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purine Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
50
|
Katz M, Corson F, Keil W, Singhal A, Bae A, Lu Y, Liang Y, Shaham S. Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nat Commun 2019; 10:1882. [PMID: 31015396 PMCID: PMC6478929 DOI: 10.1038/s41467-019-09581-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Glutamate is a major excitatory neurotransmitter, and impaired glutamate clearance following synaptic release promotes spillover, inducing extra-synaptic signaling. The effects of glutamate spillover on animal behavior and its neural correlates are poorly understood. We developed a glutamate spillover model in Caenorhabditis elegans by inactivating the conserved glial glutamate transporter GLT-1. GLT-1 loss drives aberrant repetitive locomotory reversal behavior through uncontrolled oscillatory release of glutamate onto AVA, a major interneuron governing reversals. Repetitive glutamate release and reversal behavior require the glutamate receptor MGL-2/mGluR5, expressed in RIM and other interneurons presynaptic to AVA. mgl-2 loss blocks oscillations and repetitive behavior; while RIM activation is sufficient to induce repetitive reversals in glt-1 mutants. Repetitive AVA firing and reversals require EGL-30/Gαq, an mGluR5 effector. Our studies reveal that cyclic autocrine presynaptic activation drives repetitive reversals following glutamate spillover. That mammalian GLT1 and mGluR5 are implicated in pathological motor repetition suggests a common mechanism controlling repetitive behaviors. Katz and colleagues examine glutamate spillover effects on C. elegans behaviour. They show that impaired synaptic glutamate clearance in glial glutamate transporter mutants, causes presynaptic mgl-2/mGluR5 activation, generating postsynaptic neural activity oscillations driving repetitive behaviour.
Collapse
Affiliation(s)
- Menachem Katz
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Francis Corson
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 75005, Paris, France
| | - Wolfgang Keil
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.,Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Anupriya Singhal
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Andrea Bae
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Yupu Liang
- Research Bioinformatics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|