1
|
Valenza M. Dysregulated astrocyte cholesterol synthesis in Huntington's disease: A potential intersection with other cellular dysfunctions. J Huntingtons Dis 2025:18796397251336192. [PMID: 40396448 DOI: 10.1177/18796397251336192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Astrocytes are key elements for synapse development and function. Several astrocytic dysfunctions contribute to the pathophysiology of various neurodegenerative disorders, including Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder that is characterized by motor and cognitive defects with behavioral/psychiatric disturbances. One dysfunction in HD related to astrocytes is reduced cholesterol synthesis, leading to a decreased availability of local cholesterol for synaptic activity. This review describes the specific role of astrocytes in the brain local cholesterol synthesis and presents evidence supporting a defective astrocyte-neuron cholesterol crosstalk in HD, by focusing on SREBP-2, the transcription factor that regulates the majority of genes involved in the cholesterol biosynthetic pathway. The emerging coordination of SREBP-2 with other physiological processes, such as energy metabolism, autophagy, and Sonic Hedgehog signaling, is also discussed. Finally, this review intends to stimulate future research directions to explore whether the impairment of astrocytic SREBP-2-mediated cholesterol synthesis in HD associates with other cellular dysfunctions in the disease.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Geng Z, Peng F, Cheng Z, Su J, Song J, Han X, Li R, Li X, Cui R, Li B. Astrocytic FABP7 Alleviates Depression-Like Behaviors of Chronic Unpredictable Mild Stress Mice by Regulating Neuroinflammation and Hippocampal Spinogenesis. FASEB J 2025; 39:e70606. [PMID: 40331773 PMCID: PMC12057550 DOI: 10.1096/fj.202403417rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Fatty acid binding protein 7 (FABP7) is prominently expressed in astrocytes and is a critical regulator of inflammatory responses. Accumulating evidence suggests that FABP7 is crucial in neuropsychological disease through the modulation of spinogenesis. Nonetheless, the impact of FABP7 on depressive disorders and the underlying mechanisms is not fully understood. Here, we investigated the antidepressant properties of FABP7 using the chronic unpredictable mild stress (CUMS)-induced model of depression and possible mechanisms. Our results revealed that depressive-like behavior induced by CUMS was associated with decreased levels of FABP7 protein in the hippocampus (HP). Furthermore, the overexpression of FABP7 in the HP mitigated the depressive-like behavior and increased the expression of its downstream target caveolin-1 (Cav-1). FABP7 overexpression in the HP specifically regulates the expression of the astrocyte marker protein GFAP, as well as the blood-brain barrier (BBB)-associated proteins AQP4, CLDN-5, occludin, and LRP1. Notably, the CUMS-induced upregulation of the pro-inflammatory factors IL-1β and IL-6 was also significantly reversed by FABP7 overexpression in the HP. This intervention also led to increased levels of postsynaptic proteins, including PSD95 and GluA1, as well as an increase in brain-derived neurotrophic factor (BDNF) and enhanced neuronal dendritic spine density. The findings indicate that FABP7 exerts antidepressant-like properties by inhibiting inflammation, regulating spinogenesis, and modulating BBB-related proteins.
Collapse
Affiliation(s)
- Zihui Geng
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Fanzhen Peng
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Ziqian Cheng
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Jingyun Su
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Jinfang Song
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Xu Han
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Runxin Li
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Xin Li
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Ranji Cui
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| | - Bingjin Li
- Jilin Provinicial Key Laoratory on Molecular and Chemical GeneticSencond Hospital of Jilin UniversityChangchunPeople's Republic of China
- Engineering Lab on Screening of Antidepressant DrugsJilin Province Development and Reform CommissionChangchunPeople's Republic of China
| |
Collapse
|
3
|
Wang NQ, Sun PX, Shen QQ, Deng MY. Cholesterol Metabolism in CNS Diseases: The Potential of SREBP2 and LXR as Therapeutic Targets. Mol Neurobiol 2025; 62:6283-6307. [PMID: 39775479 DOI: 10.1007/s12035-024-04672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The brain is the organ with the highest cholesterol content in the body. Cholesterol in the brain plays a crucial role in maintaining the integrity of synapses and myelin sheaths to ensure normal brain function. Disruptions in cholesterol metabolism are closely associated with various central nervous system (CNS) diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and multiple sclerosis (MS). In this review, we explore the synthesis, regulation, transport, and functional roles of cholesterol in the CNS. We discuss in detail the associations between cholesterol homeostasis imbalance and CNS diseases including AD, HD, and MS, highlighting the significant role of cholesterol metabolism abnormalities in the development of these diseases. Sterol regulatory element binding protein-2 (SREBP2) and liver X receptor (LXR) are two critical transcription factors that play central roles in cholesterol synthesis and reverse transport, respectively. Their cooperative interaction finely tunes the balance of brain cholesterol metabolism, presenting potential therapeutic value for preventing and treating CNS diseases. We particularly emphasize the alterations in SREBP2 and LXR under pathological conditions and their impacts on disease progression. This review summarizes current therapeutic agents targeting these two pathways, with the hope of broadening the perspectives of CNS drug developers and encouraging further study into SREBP2 and LXR-related therapies for CNS diseases.
Collapse
Affiliation(s)
- Ning-Qi Wang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Xiang Sun
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi-Qi Shen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng-Yan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Feeney SP, McCarthy JM, Petruconis CR, Tudor JC. Sleep loss is a metabolic disorder. Sci Signal 2025; 18:eadp9358. [PMID: 40198749 DOI: 10.1126/scisignal.adp9358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Sleep loss dysregulates cellular metabolism and energy homeostasis. Highly metabolically active cells, such as neurons, enter a catabolic state during periods of sleep loss, which consequently disrupts physiological functioning. Specific to the central nervous system, sleep loss results in impaired synaptogenesis and long-term memory, effects that are also characteristic of neurodegenerative diseases. In this review, we describe how sleep deprivation increases resting energy expenditure, leading to the development of a negative energy balance-a state with insufficient metabolic resources to support energy expenditure-in highly active cells like neurons. This disruption of energetic homeostasis alters the balance of metabolites, including adenosine, lactate, and lipid peroxides, such that energetically costly processes, such as synapse formation, are attenuated. During sleep loss, metabolically active cells shunt energetic resources away from those processes that are not acutely essential, like memory formation, to support cell survival. Ultimately, these findings characterize sleep loss as a metabolic disorder.
Collapse
Affiliation(s)
- Sierra P Feeney
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jordan M McCarthy
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Cecilia R Petruconis
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jennifer C Tudor
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| |
Collapse
|
5
|
Vanherle S, Loix M, Miron VE, Hendriks JJA, Bogie JFJ. Lipid metabolism, remodelling and intercellular transfer in the CNS. Nat Rev Neurosci 2025; 26:214-231. [PMID: 39972160 DOI: 10.1038/s41583-025-00908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Lipid metabolism encompasses the catabolism and anabolism of lipids, and is fundamental for the maintenance of cellular homeostasis, particularly within the lipid-rich CNS. Increasing evidence further underscores the importance of lipid remodelling and transfer within and between glial cells and neurons as key orchestrators of CNS lipid homeostasis. In this Review, we summarize and discuss the complex landscape of processes involved in lipid metabolism, remodelling and intercellular transfer in the CNS. Highlighted are key pathways, including those mediating lipid (and lipid droplet) biogenesis and breakdown, lipid oxidation and phospholipid metabolism, as well as cell-cell lipid transfer mediated via lipoproteins, extracellular vesicles and tunnelling nanotubes. We further explore how the dysregulation of these pathways contributes to the onset and progression of neurodegenerative diseases, and examine the homeostatic and pathogenic impacts of environment, diet and lifestyle on CNS lipid metabolism.
Collapse
Affiliation(s)
- Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Veronique E Miron
- Keenan Research Centre for Biomedical Science and Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- University MS Centre, Hasselt University, Hasselt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
- University MS Centre, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
6
|
Ferrer RM, Jaspers YRJ, Dijkstra IME, Breeuwsma N, van Klinken J, Romero C, Engelen M, Kemp S, Heine VM. Altered lipid profile and reduced neuronal support in human induced pluripotent stem cell-derived astrocytes from adrenoleukodystrophy patients. J Inherit Metab Dis 2025; 48:e12832. [PMID: 39704488 PMCID: PMC11660744 DOI: 10.1002/jimd.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
X-linked adrenoleukodystrophy (ALD) is a peroxisomal disorder resulting from pathogenic variants in the ABCD1 gene that primarily affects the nervous system and is characterized by progressive axonal degeneration in the spinal cord and peripheral nerves and leukodystrophy. Dysfunction of peroxisomal very long-chain fatty acid (VLCFA) degradation has been implicated in ALD pathology, but the impact on astrocytes, which critically support neuronal function, remains poorly understood. Fibroblasts from four ALD patients were reprogrammed to generate human-induced pluripotent stem cells (hiPSC). hiPSC-derived astrocytes were generated to study the impact of ALD on astrocytic fatty acid homeostasis. Our study reveals significant changes in the lipidome of ALD hiPSC-derived astrocytes, characterized by an enrichment of VLCFAs across multiple lipid classes, including triacylglycerols, cholesteryl esters, and phosphatidylcholines. Importantly, ALD hiPSC-derived astrocytes not only exhibit intrinsic lipid dysregulation but also affect the dendritic tree complexity of neurons in co-culture systems. These findings highlight the cell-autonomous effects of pathogenic variants in the ABCD1 protein on astrocytes and their microenvironment, shed light on potential mechanisms underlying ALD neuropathology, and underscore the critical role of astrocytes in neuronal health.
Collapse
Affiliation(s)
- Roberto Montoro Ferrer
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, University of AmsterdamAmsterdamThe Netherlands
- Department of Complex Trait GeneticsCentre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Yorrick R. J. Jaspers
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Inge M. E. Dijkstra
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Nicole Breeuwsma
- Department of Child and Adolescence PsychiatryEmma Children's Hospital, Amsterdam UMC Location, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Jan‐Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
- Core Facility MetabolomicsAmsterdam UMC Location, University of AmsterdamAmsterdamThe Netherlands
| | - Cato Romero
- Department of Complex Trait GeneticsCentre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Child and Adolescence PsychiatryEmma Children's Hospital, Amsterdam UMC Location, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marc Engelen
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam UMC, Amsterdam Leukodystrophy Center, Amsterdam Neuroscience, University of AmsterdamAmsterdamThe Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam UMC, Amsterdam Gastroenterology Endocrinology MetabolismUniversity of AmsterdamAmsterdamThe Netherlands
| | - Vivi M. Heine
- Department of Complex Trait GeneticsCentre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Child and Adolescence PsychiatryEmma Children's Hospital, Amsterdam UMC Location, Vrije Universiteit Amsterdam, Amsterdam NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
7
|
Chen P, Ji J, Chen X, Zhang J, Wen X, Liu L. Retinal glia in myopia: current understanding and future directions. Front Cell Dev Biol 2024; 12:1512988. [PMID: 39759766 PMCID: PMC11696152 DOI: 10.3389/fcell.2024.1512988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Myopia, a major public health problem, involves axial elongation and thinning of all layers of the eye, including sclera, choroid and retina, which defocuses incoming light and thereby blurs vision. How the various populations of glia in the retina are involved in the disorder is unclear. Astrocytes and Müller cells provide structural support to the retina. Astrogliosis in myopia may influence blood oxygen supply, neuronal function, and axon diameter, which in turn may affect signal conduction. Müller cells act as a sensor of mechanical stretching in myopia and trigger downstream molecular responses. Microglia, for their part, may exhibit a reactive morphology and elevated response to inflammation in myopia. This review assesses current knowledge about how myopia may involve retinal glia, and it explores directions for future research into that question.
Collapse
Affiliation(s)
- Pengfan Chen
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Ji
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Chen
- West China school of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jiali Zhang
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyi Wen
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Longqian Liu
- Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Morita S, Sueyasu T, Tokuda H, Kaneda Y, Izumo T, Nakao Y. Lutein and zeaxanthin reduce neuronal cell damage caused by lipid peroxidation. Biochem Biophys Rep 2024; 40:101835. [PMID: 39398539 PMCID: PMC11470167 DOI: 10.1016/j.bbrep.2024.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Oxidative stress and lipid peroxide levels in the brain increase with aging. The carotenoids lutein and zeaxanthin have potent antioxidant properties and the ability to improve cognitive function. However, their effects on neuronal damage via lipid peroxidation remain unknown. Therefore, we aimed to elucidate the effects of these carotenoids on neuronal damage induced by accumulated peroxidized lipids. We developed an oxidative stress model of lipid peroxidation-induced neuronal damage using differentiated neuronal cells derived from human neuroblastoma SH-SY5Y cells in vitro. Combining rotenone and RSL3 increased mitochondrial oxidative stress and lipid reactive oxygen species (ROS), which resulted in enhanced neuronal damage. Lutein and zeaxanthin were added to the cells for 1 week, and these carotenoids suppressed mitochondrial oxidative stress and lipid peroxidation in differentiated neuronal cells and mitigated neuronal damage. Further investigation is required to clarify the underlying pathways in detail.
Collapse
Affiliation(s)
- Satoshi Morita
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Toshiaki Sueyasu
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Hisanori Tokuda
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Yoshihisa Kaneda
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Takayuki Izumo
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| | - Yoshihiro Nakao
- Institute for Science of Life, Suntory Wellness Ltd., Kyoto, Japan
| |
Collapse
|
9
|
Delgado T, Emerson J, Hong M, Keillor JW, Johnson GVW. Pharmacological inhibition of astrocytic transglutaminase 2 facilitates the expression of a neurosupportive astrocyte reactive phenotype in association with increased histone acetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.06.527263. [PMID: 36798305 PMCID: PMC9934526 DOI: 10.1101/2023.02.06.527263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Astrocytes play critical roles in supporting structural and metabolic homeostasis in the central nervous system (CNS). CNS injury leads to the development of a range of reactive phenotypes in astrocytes whose molecular determinants are poorly understood. Finding ways to modulate astrocytic injury responses and leverage a pro-recovery phenotype holds promise in treating CNS injury. Recently, it has been demonstrated that ablation of astrocytic transglutaminase 2 (TG2) modulates the phenotype of reactive astrocytes in a way that improves neuronal injury outcomes both in vitro and in vivo. In an in vivo mouse model, pharmacological inhibition of TG2 with the irreversible inhibitor VA4 phenocopies the neurosupportive effects of TG2 deletion in astrocytes. In this study, we provide insights into the mechanisms by which TG2 deletion or inhibition result in a more neurosupportive astrocytic phenotype. Using a neuron-astrocyte co-culture model, we show that VA4 treatment improves the ability of astrocytes to support neurite outgrowth on an injury-relevant matrix. To better understand how pharmacologically altering TG2 affects its ability to regulate reactive astrocyte phenotypes, we assessed how VA4 inhibition impacts TG2's interaction with Zbtb7a, a transcription factor we have previously identified as a functionally relevant TG2 nuclear interactor. The results of these studies demonstrate that VA4 significantly decreases the interaction of TG2 and Zbtb7a. TG2's interactions with Zbtb7a, as well as a wide range of other transcription factors and chromatin regulatory proteins, suggest that TG2 may act as an epigenetic regulator to modulate gene expression. To begin to understand if TG2-mediated epigenetic modification may impact astrocytic phenotypes in our models, we interrogated the effect of TG2 deletion and VA4 treatment on histone acetylation and found significantly greater acetylation in both experimental groups. Consistent with these findings, previous RNA-sequencing and our present proteomic analysis also supported a predominant transcriptionally suppressive role of TG2 in astrocytes. Our proteomic data additionally unveiled pronounced changes in lipid and antioxidant metabolism in astrocytes with TG2 deletion or inhibition, which likely contribute to the enhanced neurosupportive function of these astrocytes.
Collapse
Affiliation(s)
- Thomas Delgado
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jacen Emerson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Matthew Hong
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N6N5, Canada
| | - Gail VW Johnson
- 601 Elmwood Ave, box 604, Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, NY, 14620, USA
| |
Collapse
|
10
|
Guo A, Wu Q, Yan X, Chen K, Liu Y, Liang D, Yang Y, Luo Q, Xiong M, Yu Y, Fei E, Chen F. Differential roles of lysosomal cholesterol transporters in the development of C. elegans NMJs. Life Sci Alliance 2024; 7:e202402584. [PMID: 39084875 PMCID: PMC11291935 DOI: 10.26508/lsa.202402584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Cholesterol homeostasis in neurons is critical for synapse formation and maintenance. Neurons with impaired cholesterol uptake undergo progressive synapse loss and eventual degeneration. To investigate the molecular mechanisms of neuronal cholesterol homeostasis and its role during synapse development, we studied motor neurons of Caenorhabditis elegans because these neurons rely on dietary cholesterol. Combining lipidomic analysis, we discovered that NCR-1, a lysosomal cholesterol transporter, promotes cholesterol absorption and synapse development. Loss of ncr-1 causes smaller synapses, and low cholesterol exacerbates the deficits. Moreover, NCR-1 deficiency hinders the increase in synapses under high cholesterol. Unexpectedly, NCR-2, the NCR-1 homolog, increases the use of cholesterol and sphingomyelins and impedes synapse formation. NCR-2 deficiency causes an increase in synapses regardless of cholesterol concentration. Inhibiting the degradation or synthesis of sphingomyelins can induce or suppress the synaptic phenotypes in ncr-2 mutants. Our findings indicate that neuronal cholesterol homeostasis is differentially controlled by two lysosomal cholesterol transporters and highlight the importance of neuronal cholesterol homeostasis in synapse development.
Collapse
Affiliation(s)
- Amin Guo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qi Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xin Yan
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Kanghua Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuxiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dingfa Liang
- Queen Mary School of Nanchang University, Jiangxi Medical College, Nanchang, China
| | - Yuxiao Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Mingtao Xiong
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Erkang Fei
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fei Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
12
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Chung WS, Baldwin KT, Allen NJ. Astrocyte Regulation of Synapse Formation, Maturation, and Elimination. Cold Spring Harb Perspect Biol 2024; 16:a041352. [PMID: 38346858 PMCID: PMC11293538 DOI: 10.1101/cshperspect.a041352] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Astrocytes play an integral role in the development, maturation, and refinement of neuronal circuits. Astrocytes secrete proteins and lipids that instruct the formation of new synapses and induce the maturation of existing synapses. Through contact-mediated signaling, astrocytes can regulate the formation and state of synapses within their domain. Through phagocytosis, astrocytes participate in the elimination of excess synaptic connections. In this work, we will review key findings on the molecular mechanisms of astrocyte-synapse interaction with a focus on astrocyte-secreted factors, contact-mediated mechanisms, and synapse elimination. We will discuss this in the context of typical brain development and maintenance, as well as consider the consequences of dysfunction in these pathways in neurological disorders, highlighting a role for astrocytes in health and disease.
Collapse
Affiliation(s)
- Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Korea
| | - Katherine T Baldwin
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
14
|
Abdalla MMI. Insulin resistance as the molecular link between diabetes and Alzheimer's disease. World J Diabetes 2024; 15:1430-1447. [PMID: 39099819 PMCID: PMC11292327 DOI: 10.4239/wjd.v15.i7.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) are two major health concerns that have seen a rising prevalence worldwide. Recent studies have indicated a possible link between DM and an increased risk of developing AD. Insulin, while primarily known for its role in regulating blood sugar, also plays a vital role in protecting brain functions. Insulin resistance (IR), especially prevalent in type 2 diabetes, is believed to play a significant role in AD's development. When insulin signalling becomes dysfunctional, it can negatively affect various brain functions, making individuals more susceptible to AD's defining features, such as the buildup of beta-amyloid plaques and tau protein tangles. Emerging research suggests that addressing insulin-related issues might help reduce or even reverse the brain changes linked to AD. This review aims to explore the rela-tionship between DM and AD, with a focus on the role of IR. It also explores the molecular mechanisms by which IR might lead to brain changes and assesses current treatments that target IR. Understanding IR's role in the connection between DM and AD offers new possibilities for treatments and highlights the importance of continued research in this interdisciplinary field.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
16
|
Mallick K, Paul S, Banerjee S, Banerjee S. Lipid Droplets and Neurodegeneration. Neuroscience 2024; 549:13-23. [PMID: 38718916 DOI: 10.1016/j.neuroscience.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/15/2024]
Abstract
Energy metabolism in the brain has been considered one of the critical research areas of neuroscience for ages. One of the most vital parts of brain metabolism cascades is lipid metabolism, and fatty acid plays a crucial role in this process. The fatty acid breakdown process in mitochondria undergoes through a conserved pathway known as β-oxidation where acetyl-CoA and shorter fatty acid chains are produced along with a significant amount of energy molecule. Further, the complete breakdown of fatty acids occurs when they enter the mitochondrial oxidative phosphorylation. Cells store energy as neutral lipids in organelles known as Lipid Droplets (LDs) to prepare for variations in the availability of nutrients. Fatty acids are liberated by lipid droplets and are transported to various cellular compartments for membrane biogenesis or as an energy source. Current research shows that LDs are important in inflammation, metabolic illness, and cellular communication. Lipid droplet biology in peripheral organs like the liver and heart has been well investigated, while the brain's LDs have received less attention. Recently, there has been increased awareness of the existence and role of these dynamic organelles in the central nervous system, mainly connected to neurodegeneration. In this review, we discussed the role of beta-oxidation and lipid droplet formation in the oxidative phosphorylation process, which directly affects neurodegeneration through various pathways.
Collapse
Affiliation(s)
- Keya Mallick
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India.
| | - Shuchismita Paul
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India.
| | - Sayani Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India.
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India.
| |
Collapse
|
17
|
Li Y, Luo Y, Zhu P, Liang X, Li J, Dou X, Liu L, Qin L, Zhou M, Deng Y, Jiang L, Wang S, Yang W, Tang J, Tang Y. Running exercise improves astrocyte loss, morphological complexity and astrocyte-contacted synapses in the hippocampus of CUS-induced depression model mice. Pharmacol Biochem Behav 2024; 239:173750. [PMID: 38494007 DOI: 10.1016/j.pbb.2024.173750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Although the antidepressant effects of running exercise have been widely reported, further research is still needed to determine the structural bases for these effects. Astrocyte processes physically contact many synapses and directly regulate the numbers of synapses, but it remains unclear whether running exercise can modulate astrocyte morphological complexity and astrocyte-contacted synapses in the hippocampus of the mice with depressive-like behavior. Male C57BL/6 J mice underwent four weeks of running exercise after four weeks of chronic unpredictable stress (CUS). The sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were used to assess anhedonia in mice. Western blotting was used to measure the expression of astrocyte- and synapse-related proteins. Immunofluorescence and 3D reconstruction were used to quantify the density and morphology of astrocytes, and astrocyte-contacted synapses in each hippocampal subregion. Four weeks of running exercise alleviated depressive-like symptoms in mice. The expression of astrocyte- and synapse-related proteins in the hippocampus; astrocyte process lengths, process numbers, and dendritic arborization; and the number of astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions were significantly decreased in the mice with depressive-like behavior, and running exercise successfully reserved these changes. Running exercise improved the decreases in astrocyte morphological complexity and astrocyte-contacted PSD95 positive synapses in the CA2-3 and DG regions of the mice with depressive-like behavior, suggesting that the physical interactions between astrocytes and synapses can be increased by running exercise, which might be an important structural basis for the antidepressant effects of running exercise.
Collapse
Affiliation(s)
- Yue Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Peilin Zhu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Pathology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Li
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaoyun Dou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Liu
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lu Qin
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Mei Zhou
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuhui Deng
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lin Jiang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Shun Wang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Wenyu Yang
- Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Jing Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| | - Yong Tang
- Department of Histology and Embryology, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Stem Cells and Tissue Engineering, School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
18
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Windham IA, Powers AE, Ragusa JV, Wallace ED, Zanellati MC, Williams VH, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. J Cell Biol 2024; 223:e202305003. [PMID: 38334983 PMCID: PMC10857907 DOI: 10.1083/jcb.202305003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to lipogenesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the endoplasmic reticulum (ER) lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs after a fatty acid pulse, which contain more unsaturated triglyceride after fatty acid pulse-chase. This LD size phenotype was rescued by chimeric APOE that targets only LDs. Like APOE depletion, APOE4-expressing astrocytes form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 causes aberrant LD composition and morphology. Our study contributes to accumulating evidence that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation, which could contribute to Alzheimer's disease risk.
Collapse
Affiliation(s)
- Ian A. Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alex E. Powers
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joey V. Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E. Diane Wallace
- Mass Spectrometry Core Laboratory, Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Clara Zanellati
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria H. Williams
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Colby H. Wagner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristen K. White
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
20
|
Windham IA, Cohen S. The cell biology of APOE in the brain. Trends Cell Biol 2024; 34:338-348. [PMID: 37805344 PMCID: PMC10995109 DOI: 10.1016/j.tcb.2023.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Apolipoprotein E (APOE) traffics lipids in the central nervous system. The E4 variant of APOE is a major genetic risk factor for Alzheimer's disease (AD) and a multitude of other neurodegenerative diseases, yet the molecular mechanisms by which APOE4 drives disease are still unclear. A growing collection of studies in iPSC models, knock-in mice, and human postmortem brain tissue have demonstrated that APOE4 expression in astrocytes and microglia is associated with the accumulation of cytoplasmic lipid droplets, defects in endolysosomal trafficking, impaired mitochondrial metabolism, upregulation of innate immune pathways, and a transition into a reactive state. In this review, we collate these developments and suggest testable mechanistic hypotheses that could explain common APOE4 phenotypes.
Collapse
Affiliation(s)
- Ian A Windham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Filipović D, Novak B, Xiao J, Tadić P, Turck CW. Prefrontal cortical synaptoproteome profile combined with machine learning predicts resilience towards chronic social isolation in rats. J Psychiatr Res 2024; 172:221-228. [PMID: 38412784 DOI: 10.1016/j.jpsychires.2024.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Chronic social isolation (CSIS) of rats serves as an animal model of depression and generates CSIS-resilient and CSIS-susceptible phenotypes. We aimed to investigate the prefrontal cortical synaptoproteome profile of CSIS-resilient, CSIS-susceptible, and control rats to delineate biochemical pathways and predictive biomarker proteins characteristic for the resilient phenotype. A sucrose preference test was performed to distinguish rat phenotypes. Class separation and machine learning (ML) algorithms support vector machine with greedy forward search and random forest were then used for discriminating CSIS-resilient from CSIS-susceptible and control rats. CSIS-resilient compared to CSIS-susceptible rat proteome analysis revealed, among other proteins, downregulated glycolysis intermediate fructose-bisphosphate aldolase C (Aldoc), and upregulated clathrin heavy chain 1 (Cltc), calcium/calmodulin-dependent protein kinase type II (Cam2a), synaptophysin (Syp) and fatty acid synthase (Fasn) that are involved in neuronal transmission, synaptic vesicular trafficking, and fatty acid synthesis. Comparison of CSIS-resilient and control rats identified downregulated mitochondrial proteins ATP synthase subunit beta (Atp5f1b) and citrate synthase (Cs), and upregulated protein kinase C gamma type (Prkcg), vesicular glutamate transporter 1 (Slc17a7), and synaptic vesicle glycoprotein 2 A (Sv2a) involved in signal transduction and synaptic trafficking. The combined protein differences make the rat groups linearly separable, and 100% validation accuracy is achieved by standard ML models. ML algorithms resulted in four panels of discriminative proteins. Proteomics-data-driven class separation and ML algorithms can provide a platform for accessing predictive features and insight into the molecular mechanisms underlying synaptic neurotransmission involved in stress resilience.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; National Resource Center for Non-human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
| |
Collapse
|
22
|
Zhang X, Chen C, Liu Y. Navigating the metabolic maze: anomalies in fatty acid and cholesterol processes in Alzheimer's astrocytes. Alzheimers Res Ther 2024; 16:63. [PMID: 38521950 PMCID: PMC10960454 DOI: 10.1186/s13195-024-01430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and its underlying mechanisms have been a subject of great interest. The mainstream theory of AD pathology suggests that the disease is primarily associated with tau protein and amyloid-beta (Aβ). However, an increasing body of research has revealed that abnormalities in lipid metabolism may be an important event throughout the pathophysiology of AD. Astrocytes, as important members of the lipid metabolism network in the brain, play a significant role in this event. The study of abnormal lipid metabolism in astrocytes provides a new perspective for understanding the pathogenesis of AD. This review focuses on the abnormal metabolism of fatty acids (FAs) and cholesterol in astrocytes in AD, and discusses it from three perspectives: lipid uptake, intracellular breakdown or synthesis metabolism, and efflux transport. We found that, despite the accumulation of their own fatty acids, astrocytes cannot efficiently uptake fatty acids from neurons, leading to fatty acid accumulation within neurons and resulting in lipotoxicity. In terms of cholesterol metabolism, astrocytes exhibit a decrease in endogenous synthesis due to the accumulation of exogenous cholesterol. Through a thorough investigation of these metabolic abnormalities, we can provide new insights for future therapeutic strategies by literature review to navigate this complex metabolic maze and bring hope to patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chuanying Chen
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Traditional Chinese Medicine, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yi Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
23
|
Kotah JM, Kater MSJ, Brosens N, Lesuis SL, Tandari R, Blok TM, Marchetto L, Yusaf E, Koopmans FTW, Smit AB, Lucassen PJ, Krugers HJ, Verheijen MHG, Korosi A. Early-life stress and amyloidosis in mice share pathogenic pathways involving synaptic mitochondria and lipid metabolism. Alzheimers Dement 2024; 20:1637-1655. [PMID: 38055782 PMCID: PMC10984508 DOI: 10.1002/alz.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aβ) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear. METHODS We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence. RESULTS The hippocampal synaptosomes of both ES-exposed WT and early-stage APP/PS1 mice showed a relative decrease in actin dynamics-related proteins and a relative increase in mitochondrial proteins. ES had minimal effects on older WT mice, while strongly affecting the synaptic proteome of advanced stage APP/PS1 mice, particularly the expression of astrocytic and mitochondrial proteins. DISCUSSION Our data show that ES and amyloidosis share pathogenic pathways involving synaptic mitochondrial dysfunction and lipid metabolism, which may underlie the observed impact of ES on the trajectory of AD.
Collapse
Affiliation(s)
- Janssen M. Kotah
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mandy S. J. Kater
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Niek Brosens
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Roberta Tandari
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Thomas M. Blok
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Luca Marchetto
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ella Yusaf
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frank T. W. Koopmans
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - August B. Smit
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Paul J. Lucassen
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Harm J. Krugers
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Aniko Korosi
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
24
|
Cantando I, Centofanti C, D’Alessandro G, Limatola C, Bezzi P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front Cell Neurosci 2024; 18:1354259. [PMID: 38419654 PMCID: PMC10899402 DOI: 10.3389/fncel.2024.1354259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.
Collapse
Affiliation(s)
- Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Cristiana Centofanti
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
| | - Giuseppina D’Alessandro
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed Via Atinese 18, Pozzilli, Italy
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Lausanne, Switzerland
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
25
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
26
|
Hu ZL, Yuan YQ, Tong Z, Liao MQ, Yuan SL, Jian Y, Yang JL, Liu WF. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer's Disease. Mol Neurobiol 2023; 60:6852-6868. [PMID: 37507575 DOI: 10.1007/s12035-023-03529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Collapse
Affiliation(s)
- Ze-Lin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yang-Qi Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei-Qing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shun-Ling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jia-Lun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wen-Feng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
27
|
Aw E, Zhang Y, Yalcin E, Herrmann U, Lin SL, Langston K, Castrillon C, Ma M, Moffitt JR, Carroll MC. Spatial enrichment of the type 1 interferon signature in the brain of a neuropsychiatric lupus murine model. Brain Behav Immun 2023; 114:511-522. [PMID: 37369340 PMCID: PMC10918751 DOI: 10.1016/j.bbi.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Among systemic lupus erythematosus (SLE) patients, neuropsychiatric symptoms are highly prevalent, being observed in up to 80% of adult and 95% of pediatric patients. Type 1 interferons, particularly interferon alpha (IFNα), have been implicated in the pathogenesis of SLE and its associated neuropsychiatric symptoms (NPSLE). However, it remains unclear how type 1 interferon signaling in the central nervous system (CNS) might result in neuropsychiatric sequelae. In this study, we validate an NPSLE mouse model and find an elevated peripheral type 1 interferon signature alongside clinically relevant NPSLE symptoms such as anxiety and fatigue. Unbiased single-nucleus sequencing of the hindbrain and hippocampus revealed that interferon-stimulated genes (ISGs) were among the most highly upregulated genes in both regions and that gene pathways involved in cellular interaction and neuronal development were generally repressed among astrocytes, oligodendrocytes, and neurons. Using image-based spatial transcriptomics, we found that the type 1 interferon signature is enriched as spatially distinct patches within the brain parenchyma of these mice. Our results suggest that type 1 interferon in the CNS may play an important mechanistic role in mediating NPSLE behavioral phenotypes by repressing general cellular communication pathways, and that type 1 interferon signaling modulators are a potential therapeutic option for NPSLE.
Collapse
Affiliation(s)
- Ernest Aw
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Yingying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Esra Yalcin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Uli Herrmann
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Stacie L Lin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Division of Medical Sciences, Harvard Medical School, Boston, MA, United States
| | - Kent Langston
- Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Minghe Ma
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
28
|
Valenza M, Birolini G, Cattaneo E. The translational potential of cholesterol-based therapies for neurological disease. Nat Rev Neurol 2023; 19:583-598. [PMID: 37644213 DOI: 10.1038/s41582-023-00864-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Cholesterol is an important metabolite and membrane component and is enriched in the brain owing to its role in neuronal maturation and function. In the adult brain, cholesterol is produced locally, predominantly by astrocytes. When cholesterol has been used, recycled and catabolized, the derivatives are excreted across the blood-brain barrier. Abnormalities in any of these steps can lead to neurological dysfunction. Here, we examine how precise interactions between cholesterol production and its use and catabolism in neurons ensures cholesterol homeostasis to support brain function. As an example of a neurological disease associated with cholesterol dyshomeostasis, we summarize evidence from animal models of Huntington disease (HD), which demonstrate a marked reduction in cholesterol biosynthesis with clinically relevant consequences for synaptic activity and cognition. In addition, we examine the relationship between cholesterol loss in the brain and cognitive decline in ageing. We then present emerging therapeutic strategies to restore cholesterol homeostasis, focusing on evidence from HD mouse models.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| | - Giulia Birolini
- Department of Biosciences, University of Milan, Milan, Italy
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy.
- Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy.
| |
Collapse
|
29
|
Wei P, Jia M, Kong X, Lyu W, Feng H, Sun X, Li J, Yang JJ. Human umbilical cord-derived mesenchymal stem cells ameliorate perioperative neurocognitive disorder by inhibiting inflammatory responses and activating BDNF/TrkB/CREB signaling pathway in aged mice. Stem Cell Res Ther 2023; 14:263. [PMID: 37735415 PMCID: PMC10512658 DOI: 10.1186/s13287-023-03499-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a key complication affecting older individuals after anesthesia and surgery. Failure to translate multiple pharmacological therapies for PND from preclinical studies to clinical settings has necessitated the exploration of novel therapeutic strategies. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) treatment has emerged as a promising therapeutic strategy for treating neurodegenerative diseases and has the potential to translate basic science into clinical practice. In this study, we investigated the effects and underlying mechanism of hUC-MSCs on PND in aged mice. METHODS hUC-MSCs were isolated from an infant umbilical cord and identified using flow cytometry and differentiation assays. We established PND model by undergoing aseptic laparotomy under isoflurane anesthesia maintaining spontaneous ventilation in eighteen-month-old male C57BL/6 mice. hUC-MSCs were slowly injected into mice by coccygeal vein before anesthesia. Cognitive function, systemic and neuroinflammatory responses, neuroplasticity, endogenous neurogenesis, and brain-derived neurotrophic factor (BDNF) were assessed. To determine the brain mechanisms underlying by which hUC-MSCs mediate their neuroprotective effects in PND, K252a, an antagonist of BDNF receptor, was administered intraperitoneally before surgery. Hippocampal BDNF/TrkB/CREB signaling pathway and metabolomic signatures were evaluated. RESULTS hUC-MSC treatment ameliorated the learning and memory impairment in aged mice with PND. The downstream effects were the suppression of systemic and hippocampal inflammation and restoration of neurogenesis and neuroplasticity dysregulation. Interestingly, the level of mature BDNF, but not that of proBDNF, was increased in the hippocampus after hUC-MSC treatment. Further analysis revealed that the improved cognitive recovery and the restoration of neurogenesis and neuroplasticity dysregulation elicited by exposure to hUC-MSCs were, at least partially, mediated by the activation of the BDNF/TrkB/CREB signaling pathway. Untargeted metabolomic further identified lipid metabolism dysfunction as potential downstream of the BDNF/TrkB/CREB signaling pathway in hUC-MSC-mediated neuroprotection for PND. CONCLUSIONS Our study highlights the beneficial effects of hUC-MSC treatment on PND and provides a justification to consider the potential use of hUC-MSCs in the perioperative period.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, People's Republic of China
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, People's Republic of China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, People's Republic of China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, People's Republic of China
| | - Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Xinyi Sun
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, People's Republic of China.
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, People's Republic of China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, People's Republic of China.
| |
Collapse
|
30
|
Nunes C, Proença S, Ambrosini G, Pamies D, Thomas A, Kramer NI, Zurich MG. Integrating distribution kinetics and toxicodynamics to assess repeat dose neurotoxicity in vitro using human BrainSpheres: a case study on amiodarone. Front Pharmacol 2023; 14:1248882. [PMID: 37745076 PMCID: PMC10512064 DOI: 10.3389/fphar.2023.1248882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
For ethical, economical, and scientific reasons, animal experimentation, used to evaluate the potential neurotoxicity of chemicals before their release in the market, needs to be replaced by new approach methodologies. To illustrate the use of new approach methodologies, the human induced pluripotent stem cell-derived 3D model BrainSpheres was acutely (48 h) or repeatedly (7 days) exposed to amiodarone (0.625-15 µM), a lipophilic antiarrhythmic drug reported to have deleterious effects on the nervous system. Neurotoxicity was assessed using transcriptomics, the immunohistochemistry of cell type-specific markers, and real-time reverse transcription-polymerase chain reaction for various genes involved in the lipid metabolism. By integrating distribution kinetics modeling with neurotoxicity readouts, we show that the observed time- and concentration-dependent increase in the neurotoxic effects of amiodarone is driven by the cellular accumulation of amiodarone after repeated dosing. The development of a compartmental in vitro distribution kinetics model allowed us to predict the change in cell-associated concentrations in BrainSpheres with time and for different exposure scenarios. The results suggest that human cells are intrinsically more sensitive to amiodarone than rodent cells. Amiodarone-induced regulation of lipid metabolism genes was observed in brain cells for the first time. Astrocytes appeared to be the most sensitive human brain cell type in vitro. In conclusion, assessing readouts at different molecular levels after the repeat dosing of human induced pluripotent stem cell-derived BrainSpheres in combination with the compartmental modeling of in vitro kinetics provides a mechanistic means to assess neurotoxicity pathways and refine chemical safety assessment for humans.
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Susana Proença
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nynke I. Kramer
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Toxicology Division, Wageningen University, Wageningen, Netherlands
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| |
Collapse
|
31
|
Aw E, Lin SL, Zhang Y, Herrmann U, Yalcin E, Langston K, Castrillion C, Ma M, Moffitt JR, Carroll MC. [WITHDRAWN] Spatial enrichment of the type 1 interferon signature in the brain of a neuropsychiatric lupus murine model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537814. [PMID: 37131759 PMCID: PMC10153248 DOI: 10.1101/2023.04.21.537814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
bioRxiv has withdrawn this manuscript because it was posted without the consent of all authors. If you have any questions, please contact the corresponding author.
Collapse
|
32
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
33
|
Stancioiu F, Bogdan R, Dumitrescu R. Neuron-Specific Enolase (NSE) as a Biomarker for Autistic Spectrum Disease (ASD). Life (Basel) 2023; 13:1736. [PMID: 37629593 PMCID: PMC10455327 DOI: 10.3390/life13081736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Autistic spectrum disease (ASD) is an increasingly common diagnosis nowadays with a prevalence of 1-2% in most countries. Its complex causality-a combination of genetic, immune, metabolic, and environmental factors-is translated into pleiomorphic developmental disorders of various severity, which have two main aspects in common: repetitive, restrictive behaviors and difficulties in social interaction varying from awkward habits and verbalization to a complete lack of interest for the outside world. The wide variety of ASD causes also makes it very difficult to find a common denominator-a disease biomarker and medication-and currently, there is no commonly used diagnostic and therapeutic strategy besides clinical evaluation and psychotherapy. In the CORDUS clinical study, we have administered autologous cord blood to ASD kids who had little or no improvement after other treatments and searched for a biomarker which could help predict the degree of improvement in each patient. We have found that the neuron-specific enolase (NSE) was elevated above the normal clinical range (less than 16.3 ng/mL) in the vast majority of ASD kids tested in our study (40 of 41, or 97.5%). This finding opens up a new direction for diagnostic confirmation, dynamic evaluation, and therapeutic intervention for ASD kids.
Collapse
Affiliation(s)
| | - Raluca Bogdan
- Medicover Hospital Bucharest, 013982 Bucharest, Romania
| | | |
Collapse
|
34
|
Goodarzi G, Tehrani SS, Fana SE, Moradi-Sardareh H, Panahi G, Maniati M, Meshkani R. Crosstalk between Alzheimer's disease and diabetes: a focus on anti-diabetic drugs. Metab Brain Dis 2023; 38:1769-1800. [PMID: 37335453 DOI: 10.1007/s11011-023-01225-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease (AD) and Type 2 diabetes mellitus (T2DM) are two of the most common age-related diseases. There is accumulating evidence of an overlap in the pathophysiological mechanisms of these two diseases. Studies have demonstrated insulin pathway alternation may interact with amyloid-β protein deposition and tau protein phosphorylation, two essential factors in AD. So attention to the use of anti-diabetic drugs in AD treatment has increased in recent years. In vitro, in vivo, and clinical studies have evaluated possible neuroprotective effects of anti-diabetic different medicines in AD, with some promising results. Here we review the evidence on the therapeutic potential of insulin, metformin, Glucagon-like peptide-1 receptor agonist (GLP1R), thiazolidinediones (TZDs), Dipeptidyl Peptidase IV (DPP IV) Inhibitors, Sulfonylureas, Sodium-glucose Cotransporter-2 (SGLT2) Inhibitors, Alpha-glucosidase inhibitors, and Amylin analog against AD. Given that many questions remain unanswered, further studies are required to confirm the positive effects of anti-diabetic drugs in AD treatment. So to date, no particular anti-diabetic drugs can be recommended to treat AD.
Collapse
Affiliation(s)
- Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Pereira MJ, Ayana R, Holt MG, Arckens L. Chemogenetic manipulation of astrocyte activity at the synapse- a gateway to manage brain disease. Front Cell Dev Biol 2023; 11:1193130. [PMID: 37534103 PMCID: PMC10393042 DOI: 10.3389/fcell.2023.1193130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Astrocytes are the major glial cell type in the central nervous system (CNS). Initially regarded as supportive cells, it is now recognized that this highly heterogeneous cell population is an indispensable modulator of brain development and function. Astrocytes secrete neuroactive molecules that regulate synapse formation and maturation. They also express hundreds of G protein-coupled receptors (GPCRs) that, once activated by neurotransmitters, trigger intracellular signalling pathways that can trigger the release of gliotransmitters which, in turn, modulate synaptic transmission and neuroplasticity. Considering this, it is not surprising that astrocytic dysfunction, leading to synaptic impairment, is consistently described as a factor in brain diseases, whether they emerge early or late in life due to genetic or environmental factors. Here, we provide an overview of the literature showing that activation of genetically engineered GPCRs, known as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), to specifically modulate astrocyte activity partially mimics endogenous signalling pathways in astrocytes and improves neuronal function and behavior in normal animals and disease models. Therefore, we propose that expressing these genetically engineered GPCRs in astrocytes could be a promising strategy to explore (new) signalling pathways which can be used to manage brain disorders. The precise molecular, functional and behavioral effects of this type of manipulation, however, differ depending on the DREADD receptor used, targeted brain region and timing of the intervention, between healthy and disease conditions. This is likely a reflection of regional and disease/disease progression-associated astrocyte heterogeneity. Therefore, a thorough investigation of the effects of such astrocyte manipulation(s) must be conducted considering the specific cellular and molecular environment characteristic of each disease and disease stage before this has therapeutic applicability.
Collapse
Affiliation(s)
- Maria João Pereira
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Rajagopal Ayana
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Matthew G. Holt
- Instituto de Investigação e Inovação em Saúde (i3S), Laboratory of Synapse Biology, Universidade do Porto, Porto, Portugal
| | - Lutgarde Arckens
- Department of Biology, Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
36
|
Abstract
All mammalian cell membranes contain cholesterol to maintain membrane integrity. The transport of this hydrophobic lipid is mediated by lipoproteins. Cholesterol is especially enriched in the brain, particularly in synaptic and myelin membranes. Aging involves changes in sterol metabolism in peripheral organs and also in the brain. Some of those alterations have the potential to promote or to counteract the development of neurodegenerative diseases during aging. Here, we summarize the current knowledge of general principles of sterol metabolism in humans and mice, the most widely used model organism in biomedical research. We discuss changes in sterol metabolism that occur in the aged brain and highlight recent developments in cell type-specific cholesterol metabolism in the fast-growing research field of aging and age-related diseases, focusing on Alzheimer's disease. We propose that cell type-specific cholesterol handling and the interplay between cell types critically influence age-related disease processes.
Collapse
Affiliation(s)
- Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
37
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
38
|
Windham IA, Ragusa JV, Wallace ED, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538740. [PMID: 37162939 PMCID: PMC10168303 DOI: 10.1101/2023.04.28.538740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to neutral lipid synthesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the ER lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs containing more unsaturated triglyceride. This LD size distribution phenotype was rescued by chimeric APOE that targets only LDs. APOE4 - expressing astrocytes also form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the larger LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 is a toxic gain of function variant that causes aberrant LD composition and morphology. We propose that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation or lipotoxicity, which could contribute to Alzheimer's disease risk. Summary Windham et al . discover that APOE in astrocytes can traffic to lipid droplets (LDs), where it modulates LD composition and size. Astrocytes expressing the Alzheimer's risk variant APOE4 form large LDs with impaired turnover and increased peroxidation sensitivity.
Collapse
|
39
|
Khaspekov LG, Frumkina LE. Molecular Mechanisms of Astrocyte Involvement in Synaptogenesis and Brain Synaptic Plasticity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:502-514. [PMID: 37080936 DOI: 10.1134/s0006297923040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Astrocytes perform a wide range of important functions in the brain. As structural and functional components of synapses, astrocytes secrete various factors (proteins, lipids, small molecules, etc.) that bind to neuronal receptor and contribute to synaptogenesis and regulation of synaptic contacts. Astrocytic factors play a key role in the formation of neural networks undergoing short- and long-term synaptic morphological and functional rearrangements essential in the memory formation and behavior. The review summarizes the data on the molecular mechanisms mediating the involvement of astrocyte-secreted factors in synaptogenesis in the brain and provides up-to-date information on the role of astrocytes and astrocytic synaptogenic factors in the long-term plastic rearrangements of synaptic contacts.
Collapse
|
40
|
Emerson J, Delgado T, Girardi P, Johnson GVW. Deletion of Transglutaminase 2 from Mouse Astrocytes Significantly Improves Their Ability to Promote Neurite Outgrowth on an Inhibitory Matrix. Int J Mol Sci 2023; 24:6058. [PMID: 37047031 PMCID: PMC10094709 DOI: 10.3390/ijms24076058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Astrocytes are the primary support cells of the central nervous system (CNS) that help maintain the energetic requirements and homeostatic environment of neurons. CNS injury causes astrocytes to take on reactive phenotypes with an altered overall function that can range from supportive to harmful for recovering neurons. The characterization of reactive astrocyte populations is a rapidly developing field, and the underlying factors and signaling pathways governing which type of reactive phenotype that astrocytes take on are poorly understood. Our previous studies suggest that transglutaminase 2 (TG2) has an important role in determining the astrocytic response to injury. Selectively deleting TG2 from astrocytes improves functional outcomes after CNS injury and causes widespread changes in gene regulation, which is associated with its nuclear localization. To begin to understand how TG2 impacts astrocytic function, we used a neuron-astrocyte co-culture paradigm to compare the effects of TG2-/- and wild-type (WT) mouse astrocytes on neurite outgrowth and synapse formation. Neurons were grown on a control substrate or an injury-simulating matrix comprised of inhibitory chondroitin sulfate proteoglycans (CSPGs). Compared to WT astrocytes, TG2-/- astrocytes supported neurite outgrowth to a significantly greater extent only on the CSPG matrix, while synapse formation assays showed mixed results depending on the pre- and post-synaptic markers analyzed. We hypothesize that TG2 regulates the supportive functions of astrocytes in injury conditions by modulating gene expression through interactions with transcription factors and transcription complexes. Based on the results of a previous yeast two-hybrid screen for TG2 interactors, we further investigated the interaction of TG2 with Zbtb7a, a ubiquitously expressed transcription factor. Co-immunoprecipitation and colocalization analyses confirmed the interaction of TG2 and Zbtb7a in the nucleus of astrocytes. Overexpression or knockdown of Zbtb7a levels in WT and TG2-/- astrocytes revealed that Zbtb7a robustly influenced astrocytic morphology and the ability of astrocytes to support neuronal outgrowth, which was significantly modulated by the presence of TG2. These findings support our hypothesis that astrocytic TG2 acts as a transcriptional regulator to influence astrocytic function, with greater influence under injury conditions that increase its expression, and Zbtb7a likely contributes to the overall effects observed with astrocytic TG2 deletion.
Collapse
Affiliation(s)
| | | | - Peter Girardi
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave., Box 604, Rochester, NY 14620, USA
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, 601 Elmwood Ave., Box 604, Rochester, NY 14620, USA
| |
Collapse
|
41
|
Vaughen JP, Theisen E, Clandinin TR. From seconds to days: Neural plasticity viewed through a lipid lens. Curr Opin Neurobiol 2023; 80:102702. [PMID: 36965206 DOI: 10.1016/j.conb.2023.102702] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 03/27/2023]
Abstract
Many adult neurons are dynamically remodeled across timescales ranging from the rapid addition and removal of specific synaptic connections, to largescale structural plasticity events that reconfigure circuits over hours, days, and months. Membrane lipids, including brain-enriched sphingolipids, play crucial roles in these processes. In this review, we summarize progress at the intersection of neuronal activity, lipids, and structural remodeling. We highlight how brain activity modulates lipid metabolism to enable adaptive structural plasticity, and showcase glia as key players in membrane remodeling. These studies reveal that lipids act as critical signaling molecules that instruct the dynamic architecture of the brain.
Collapse
Affiliation(s)
- John P Vaughen
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States; Department of Developmental Biology, Stanford University, Stanford, CA, 94305, United States. https://twitter.com/gliaful
| | - Emma Theisen
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States. https://twitter.com/emmaktheisen
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
42
|
Galkina OV, Vetrovoy OV, Krasovskaya IE, Eschenko ND. Role of Lipids in Regulation of Neuroglial Interactions. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:337-352. [PMID: 37076281 DOI: 10.1134/s0006297923030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/28/2023]
Abstract
Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.
Collapse
Affiliation(s)
- Olga V Galkina
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | - Oleg V Vetrovoy
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Irina E Krasovskaya
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Nataliya D Eschenko
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
43
|
Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, Wang T, Jin Y, Brinton RD, Gu H, Yin F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab 2023; 5:445-465. [PMID: 36959514 PMCID: PMC10202034 DOI: 10.1038/s42255-023-00756-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/03/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes provide key neuronal support, and their phenotypic transformation is implicated in neurodegenerative diseases. Metabolically, astrocytes possess low mitochondrial oxidative phosphorylation (OxPhos) activity, but its pathophysiological role in neurodegeneration remains unclear. Here, we show that the brain critically depends on astrocytic OxPhos to degrade fatty acids (FAs) and maintain lipid homeostasis. Aberrant astrocytic OxPhos induces lipid droplet (LD) accumulation followed by neurodegeneration that recapitulates key features of Alzheimer's disease (AD), including synaptic loss, neuroinflammation, demyelination and cognitive impairment. Mechanistically, when FA load overwhelms astrocytic OxPhos capacity, elevated acetyl-CoA levels induce astrocyte reactivity by enhancing STAT3 acetylation and activation. Intercellularly, lipid-laden reactive astrocytes stimulate neuronal FA oxidation and oxidative stress, activate microglia through IL-3 signalling, and inhibit the biosynthesis of FAs and phospholipids required for myelin replenishment. Along with LD accumulation and impaired FA degradation manifested in an AD mouse model, we reveal a lipid-centric, AD-resembling mechanism by which astrocytic mitochondrial dysfunction progressively induces neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
| | - Yan Jin
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Haiwei Gu
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
44
|
Pathogenesis of Dementia. Int J Mol Sci 2022; 24:ijms24010543. [PMID: 36613988 PMCID: PMC9820433 DOI: 10.3390/ijms24010543] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
According to Alzheimer's Disease International, 55 million people worldwide are living with dementia. Dementia is a disorder that manifests as a set of related symptoms, which usually result from the brain being damaged by injury or disease. The symptoms involve progressive impairments in memory, thinking, and behavior, usually accompanied by emotional problems, difficulties with language, and decreased motivation. The most common variant of dementia is Alzheimer's disease with symptoms dominated by cognitive disorders, particularly memory loss, impaired personality, and judgmental disorders. So far, all attempts to treat dementias by removing their symptoms rather than their causes have failed. Therefore, in the presented narrative review, I will attempt to explain the etiology of dementia and Alzheimer's disease from the perspective of energy and cognitive metabolism dysfunction in an aging brain. I hope that this perspective, though perhaps too simplified, will bring us closer to the essence of aging-related neurodegenerative disorders and will soon allow us to develop new preventive/therapeutic strategies in our struggle with dementia, Alzheimer's disease, and Parkinson's disease.
Collapse
|
45
|
Nassar A, Kodi T, Satarker S, Chowdari Gurram P, Upadhya D, SM F, Mudgal J, Nampoothiri M. Astrocytic MicroRNAs and Transcription Factors in Alzheimer's Disease and Therapeutic Interventions. Cells 2022; 11:cells11244111. [PMID: 36552875 PMCID: PMC9776935 DOI: 10.3390/cells11244111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes are important for maintaining cholesterol metabolism, glutamate uptake, and neurotransmission. Indeed, inflammatory processes and neurodegeneration contribute to the altered morphology, gene expression, and function of astrocytes. Astrocytes, in collaboration with numerous microRNAs, regulate brain cholesterol levels as well as glutamatergic and inflammatory signaling, all of which contribute to general brain homeostasis. Neural electrical activity, synaptic plasticity processes, learning, and memory are dependent on the astrocyte-neuron crosstalk. Here, we review the involvement of astrocytic microRNAs that potentially regulate cholesterol metabolism, glutamate uptake, and inflammation in Alzheimer's disease (AD). The interaction between astrocytic microRNAs and long non-coding RNA and transcription factors specific to astrocytes also contributes to the pathogenesis of AD. Thus, astrocytic microRNAs arise as a promising target, as AD conditions are a worldwide public health problem. This review examines novel therapeutic strategies to target astrocyte dysfunction in AD, such as lipid nanodiscs, engineered G protein-coupled receptors, extracellular vesicles, and nanoparticles.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Fayaz SM
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Correspondence:
| |
Collapse
|
46
|
Zhang Z, Zhang S, Huang J, Cao X, Hou C, Luo Z, Wang X, Liu X, Li Q, Zhang X, Guo Y, Xiao H, Xie T, Zhou X. Association between abnormal plasma metabolism and brain atrophy in alcohol-dependent patients. Front Mol Neurosci 2022; 15:999938. [PMID: 36583081 PMCID: PMC9792671 DOI: 10.3389/fnmol.2022.999938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Objective In this study, we aimed to characterize the plasma metabolic profiles of brain atrophy and alcohol dependence (s) and to identify the underlying pathogenesis of brain atrophy related to alcohol dependence. Methods We acquired the plasma samples of alcohol-dependent patients and performed non-targeted metabolomic profiling analysis to identify alterations of key metabolites in the plasma of BA-ADPs. Machine learning algorithms and bioinformatic analysis were also used to identify predictive biomarkers and investigate their possible roles in brain atrophy related to alcohol dependence. Results A total of 26 plasma metabolites were significantly altered in the BA-ADPs group when compared with a group featuring alcohol-dependent patients without brain atrophy (NBA-ADPs). Nine of these differential metabolites were further identified as potential biomarkers for BA-ADPs. Receiver operating characteristic curves demonstrated that these potential biomarkers exhibited good sensitivity and specificity for distinguishing BA-ADPs from NBA-ADPs. Moreover, metabolic pathway analysis suggested that glycerophospholipid metabolism may be highly involved in the pathogenesis of alcohol-induced brain atrophy. Conclusion This plasma metabolomic study provides a valuable resource for enhancing our understanding of alcohol-induced brain atrophy and offers potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sifang Zhang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyun Cao
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chao Hou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihong Luo
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyan Wang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xuejun Liu
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qiang Li
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xi Zhang
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yujun Guo
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Huiqiong Xiao
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Xie
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xuhui Zhou
- Department of Addiction Medicine, Hunan Institute of Mental Health, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, China,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China,*Correspondence: Xuhui Zhou,
| |
Collapse
|
47
|
Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, Yu W, Chen S, Ying J, Hua F. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci 2022; 12:106. [PMID: 35831869 PMCID: PMC9277953 DOI: 10.1186/s13578-022-00828-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of neuroglia in maintaining normal brain function under physiological and pathological conditions has been supported by growing evidence in recent years. The most important issues regarding glial metabolism and function include the cooperation between glial populations and neurons, morphological and functional changes in pathological states, and the role in the onset and progression of neurodegenerative diseases. Although lipid accumulation and further lipid droplet production in neurodegenerative disease brain models have been observed for a long time, the dynamic development of brain lipid droplet research in recent years suggests its role in the development and progression of neurodegenerative diseases was previously underestimated. First recognized as organelles of lipid storage, lipid droplets (LDs) have emerged as an important organelle in metabolic diseases, inflammation, and host defense. Dynamic changes in lipid metabolism within neurons and glial cells resulting in lipid accumulation and lipid droplet formation are present in brain models of various neurodegenerative diseases, yet their role in the brain remains largely unexplored. This paper first reviews the metabolism and accumulation of several major lipids in the brain and discusses the regulation of lipid accumulation in different types of brain cells. We explore the potential role of intracellular lipid accumulation in the pathogenesis of neurodegeneration, starting from lipid metabolism and LDs biogenesis in glial cells, and discuss several pathological factors that promote lipid droplet formation, mainly focusing on oxidative stress, energy metabolism and glial cell-neuron coupling, which are closely related to the etiology and progression of neurodegenerative diseases. Finally, the directions and challenges of intracellular lipid metabolism in glial cells in neurodegeneration are discussed.
Collapse
|
48
|
Abstract
In the view of progressively aging human population and increased occurrence of dysmetabolic disorders, such as diabetes mellitus, cognitive impairment becomes a major threat to the national health. To date, the molecular mechanisms of cognitive dysfunction are partially described for diabetes and diseases of different nature, such as Alzheimer disease or Parkinson disease. The emergence of data pointing towards pleotropic effects of hypoglycaemic medicines indicates involvement of their targets in pathogenesis of cognitive impairment. We are aiming here to review available data on the most widely used hypoglycaemic drug, glibenclamide and find possible relationship of its targets to the pathogenesis of cognitive impairment.
Collapse
Affiliation(s)
- Alexander Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Zamira Muruzheva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Maria Tikhomirova
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
49
|
Avraham O, Chamessian A, Feng R, Yang L, Halevi AE, Moore AM, Gereau RW, Cavalli V. Profiling the molecular signature of satellite glial cells at the single cell level reveals high similarities between rodents and humans. Pain 2022; 163:2348-2364. [PMID: 35503034 PMCID: PMC9522926 DOI: 10.1097/j.pain.0000000000002628] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Peripheral sensory neurons located in dorsal root ganglia relay sensory information from the peripheral tissue to the brain. Satellite glial cells (SGCs) are unique glial cells that form an envelope completely surrounding each sensory neuron soma. This organization allows for close bidirectional communication between the neuron and its surrounding glial coat. Morphological and molecular changes in SGC have been observed in multiple pathological conditions such as inflammation, chemotherapy-induced neuropathy, viral infection, and nerve injuries. There is evidence that changes in SGC contribute to chronic pain by augmenting the neuronal activity in various rodent pain models. Satellite glial cells also play a critical role in axon regeneration. Whether findings made in rodent model systems are relevant to human physiology have not been investigated. Here, we present a detailed characterization of the transcriptional profile of SGC in mice, rats, and humans at the single cell level. Our findings suggest that key features of SGC in rodent models are conserved in humans. Our study provides the potential to leverage rodent SGC properties and identify potential targets in humans for the treatment of nerve injuries and alleviation of painful conditions.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Alexander Chamessian
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Rui Feng
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Lite Yang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Neuroscience Program, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Alexandra E. Halevi
- Department of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Amy M. Moore
- Department of Plastic and Reconstructive Surgery, The Ohio State University, Columbus Ohio, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis 63110, Missouri, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis 63110, Missouri, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
50
|
Tabata H, Sasaki M, Agetsuma M, Sano H, Hirota Y, Miyajima M, Hayashi K, Honda T, Nishikawa M, Inaguma Y, Ito H, Takebayashi H, Ema M, Ikenaka K, Nabekura J, Nagata KI, Nakajima K. Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex. Nat Commun 2022; 13:6571. [PMID: 36323680 PMCID: PMC9630450 DOI: 10.1038/s41467-022-34184-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Astrocytes are one of the most abundant cell types in the mammalian brain. They play essential roles in synapse formation, maturation, and elimination. However, how astrocytes migrate into the gray matter to accomplish these processes is poorly understood. Here, we show that, by combinational analyses of in vitro and in vivo time-lapse observations and lineage traces, astrocyte progenitors move rapidly and irregularly within the developing cortex, which we call erratic migration. Astrocyte progenitors also adopt blood vessel-guided migration. These highly motile progenitors are generated in the restricted prenatal stages and differentiate into protoplasmic astrocytes in the gray matter, whereas postnatally generated progenitors do not move extensively and differentiate into fibrous astrocytes in the white matter. We found Cxcr4/7, and integrin β1 regulate the blood vessel-guided migration, and their functional blocking disrupts their positioning. This study provides insight into astrocyte development and may contribute to understanding the pathogenesis caused by their defects.
Collapse
Affiliation(s)
- Hidenori Tabata
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan ,grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Megumi Sasaki
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masakazu Agetsuma
- grid.467811.d0000 0001 2272 1771Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585 Japan
| | - Hitomi Sano
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yuki Hirota
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Michio Miyajima
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Kanehiro Hayashi
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Takao Honda
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masashi Nishikawa
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Yutaka Inaguma
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Hidenori Ito
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Hirohide Takebayashi
- grid.260975.f0000 0001 0671 5144Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510 Japan
| | - Masatsugu Ema
- grid.410827.80000 0000 9747 6806Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Kazuhiro Ikenaka
- grid.467811.d0000 0001 2272 1771Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787 Japan
| | - Junichi Nabekura
- grid.467811.d0000 0001 2272 1771Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi 444-8585 Japan
| | - Koh-ichi Nagata
- grid.440395.f0000 0004 1773 8175Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, Aichi 480-0392 Japan
| | - Kazunori Nakajima
- grid.26091.3c0000 0004 1936 9959Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|