1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 PMCID: PMC12022100 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Xu H, Fan Z. The role and mechanism of Schwann cells in the repair of peripheral nerve injury. Cell Tissue Res 2025; 400:81-95. [PMID: 39954051 DOI: 10.1007/s00441-025-03957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Limb injuries such as severe strains, deep cuts, gunshot wounds, and ischemia can cause peripheral nerve damage. This can result in a range of clinical symptoms including sensory deficits, limb paralysis and atrophy, neuralgia, and sweating abnormalities in the innervated areas affected by the damaged nerves. These symptoms can have a significant impact on patients' daily lives and work. Despite existing clinical treatments, some patients cannot achieve satisfactory therapeutic effects and continue to experience persistent paralysis and pain. Schwann cells are responsible for repairing and regenerating damaged nerves in the peripheral nervous system. They play a crucial role in the healing of nerve injuries and are essential for the restoration of proper nerve function. An increasing number of studies have focused on the various regulatory mechanisms that specifically affect the repair of damage by Schwann cells. This article aims to provide information on the different types of peripheral nerve injuries and their available treatments. We also discuss the various molecular mechanisms that regulate Schwann cell function during peripheral nerve repair and how they can be used to promote nerve repair and regeneration. Furthermore, we explore the potential therapeutic applications of precision regulation of Schwann cells for the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Huiyue Xu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Ai X, Yu H, Cai Y, Guan Y. Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neurosci Bull 2024; 40:992-1006. [PMID: 38421513 PMCID: PMC11251008 DOI: 10.1007/s12264-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 03/02/2024] Open
Abstract
Neuroimmune disorders, such as multiple sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis, and Guillain-Barré syndrome, are characterized by the dysfunction of both the immune system and the nervous system. Increasing evidence suggests that extracellular vesicles and autophagy are closely associated with the pathogenesis of these disorders. In this review, we summarize the current understanding of the interactions between extracellular vesicles and autophagy in neuroimmune disorders and discuss their potential diagnostic and therapeutic applications. Here we highlight the need for further research to fully understand the mechanisms underlying these disorders, and to develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xiwen Ai
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Haojun Yu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Yu Cai
- Department of Neurology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yangtai Guan
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| |
Collapse
|
5
|
Van Lent J, Prior R, Pérez Siles G, Cutrupi AN, Kennerson ML, Vangansewinkel T, Wolfs E, Mukherjee-Clavin B, Nevin Z, Judge L, Conklin B, Tyynismaa H, Clark AJ, Bennett DL, Van Den Bosch L, Saporta M, Timmerman V. Advances and challenges in modeling inherited peripheral neuropathies using iPSCs. Exp Mol Med 2024; 56:1348-1364. [PMID: 38825644 PMCID: PMC11263568 DOI: 10.1038/s12276-024-01250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/04/2024] Open
Abstract
Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.
Collapse
Grants
- R01 NS119678 NINDS NIH HHS
- U01 ES032673 NIEHS NIH HHS
- Wellcome Trust
- R01 AG072052 NIA NIH HHS
- DOC-PRO4 Universiteit Antwerpen (University of Antwerp)
- RF1 AG072052 NIA NIH HHS
- This work was supported in part by the University of Antwerp (DOC-PRO4 PhD fellowship to J.V.L. and TOP-BOF research grant no. 38694 to V.T.), the Association Française contre les Myopathies (AFM research grant no. 24063 to V.T.), Association Belge contre les Maladies Neuromusculaires (ABMM research grant no. 1 to J.V.L and V.T), the interuniversity research fund (iBOF project to. L.V.D.B, E.W. and V.T.). V.T. is part of the μNEURO Research Centre of Excellence of the University of Antwerp and is an active member of the European Network for Stem Cell Core Facilities (CorEUStem, COST Action CA20140). Work in the M.L.K group was supported by the NHMRC Ideas Grant (APP1186867), CMT Australia Grant awarded to M.L.K and G.P.-S and the Australian Medical Research Future Fund (MRFF) Genomics Health Futures Mission Grant 2007681. B.M.C. is supported by the American Academy of Neurology and the Passano Foundation. L.M.J. and B.R.C. are supported by the Charcot-Marie-Tooth Association, NINDS R01 NS119678, NIEHS U01 ES032673. H.T. is supported by Academy of Finland Centre of Excellence in Stem Cell Metabolism and Sigrid Juselius Foundation. Work in the D.L.B. group is supported by a Wellcome Investigator Grant (223149/Z/21/Z), the MRC (MR/T020113/1), and with funding from the MRC and Versus Arthritis to the PAINSTORM consortium as part of the Advanced Pain Discovery Platform (MR/W002388/1).
- Australian Medical Association (Australian Medical Association Limited)
- Universiteit Hasselt (UHasselt)
- American Academy of Neurology (AAN)
- Gladstone Institutes (J. David Gladstone Institutes)
- Academy of Finland (Suomen Akatemia)
- Academy of Medical Royal Colleges (AoMRC)
- Wellcome Trust (Wellcome)
- Oxford University Hospitals NHS Trust (Oxford University Hospitals National Health Service Trust)
- KU Leuven (Katholieke Universiteit Leuven)
- Vlaams Instituut voor Biotechnologie (Flanders Institute for Biotechnology)
- Miami University | Leonard M. Miller School of Medicine (Miller School of Medicine)
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium
- Institute of Oncology Research (IOR), BIOS+, 6500, Bellinzona, Switzerland
- Università della Svizzera Italiana, 6900, Lugano, Switzerland
| | - Robert Prior
- Universitätsklinikum Bonn (UKB), University of Bonn, Bonn, Germany
| | - Gonzalo Pérez Siles
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony N Cutrupi
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute Sydney Local Health District and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Tim Vangansewinkel
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
| | - Esther Wolfs
- UHasselt - Hasselt University, BIOMED, Laboratory for Functional Imaging and Research on Stem Cells (FIERCE Lab), Agoralaan, 3590, Diepenbeek, Belgium
| | | | | | - Luke Judge
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Conklin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Alex J Clark
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - Ludo Van Den Bosch
- VIB-Center for Brain and Disease Research, Laboratory of Neurobiology, 3000, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000, Leuven, Belgium
| | - Mario Saporta
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium.
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, 2610, Antwerp, Belgium.
| |
Collapse
|
6
|
Yoon BA, Kim YH, Nam SH, Lee HJ, Oh SI, Kim N, Kim KH, Jo YR, Kim JK, Choi BO, Park HT. p62/sequestosome-1 as a severity-reflecting plasma biomarker in Charcot-Marie-Tooth disease type 1A. Sci Rep 2024; 14:10972. [PMID: 38745059 PMCID: PMC11094036 DOI: 10.1038/s41598-024-61794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Autophagy is a self-degradation system for recycling to maintain homeostasis. p62/sequestosome-1 (p62) is an autophagy receptor that accumulates in neuroglia in neurodegenerative diseases. The objective of this study was to determine the elevation of plasma p62 protein levels in patients with Charcot-Marie-Tooth disease 1A (CMT1A) for its clinical usefulness to assess disease severity. We collected blood samples from 69 CMT1A patients and 59 healthy controls. Plasma concentrations of p62 were analyzed by ELISA, and we compared them with Charcot-Marie-Tooth neuropathy score version 2 (CMTNSv2). A mouse CMT1A model (C22) was employed to determine the source and mechanism of plasma p62 elevation. Plasma p62 was detected in healthy controls with median value of 1978 pg/ml, and the levels were significantly higher in CMT1A (2465 pg/ml, p < 0.001). The elevated plasma p62 levels were correlated with CMTNSv2 (r = 0.621, p < 0.0001), motor nerve conduction velocity (r = - 0.490, p < 0.0001) and disease duration (r = 0.364, p < 0.01). In C22 model, increased p62 expression was observed not only in pathologic Schwann cells but also in plasma. Our findings indicate that plasma p62 measurement could be a valuable tool for evaluating CMT1A severity and Schwann cell pathology.
Collapse
Affiliation(s)
- Byeol-A Yoon
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hye-Jin Lee
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, 02447, Republic of Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Kyeong-Hee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Rae Jo
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Department of Neurology, Samsung Medical Center, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, 49201, Republic of Korea.
- Department of Molecular Neuroscience and Translational Biomedical Sciences, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| |
Collapse
|
7
|
Wu G, Wen X, Kuang R, Lui KW, He B, Li G, Zhu Z. Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury. Cell Mol Neurobiol 2023; 44:11. [PMID: 38150045 PMCID: PMC11407145 DOI: 10.1007/s10571-023-01442-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/02/2023] [Indexed: 12/28/2023]
Abstract
The adult peripheral nervous system has a significant ability for regeneration compared to the central nervous system. This is related to the unique neuroimmunomodulation after peripheral nerve injury (PNI). Unlike the repair of other tissues after injury, Schwann cells (SCs) respond immediately to the trauma and send out signals to precisely recruit macrophages to the injured site. Then, macrophages promote the degradation of the damaged myelin sheath by phagocytosis of local debris. At the same time, macrophages and SCs jointly secrete various cytokines to reconstruct a microenvironment suitable for nerve regeneration. This unique pathophysiological process associated with macrophages provides important targets for the repair and treatment of PNI, as well as an important reference for guiding the repair of other nerve injuries. To understand these processes more systematically, this paper describes the characteristics of macrophage activation and metabolism in PNI, discusses the underlying molecular mechanism of interaction between macrophages and SCs, and reviews the latest research progress of crosstalk regulation between macrophages and SCs. These concepts and therapeutic strategies are summarized to provide a reference for the more effective use of macrophages in the repair of PNI.
Collapse
Affiliation(s)
- Guanggeng Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Xiaoyue Wen
- Joint and Orthopedic Trauma, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Rui Kuang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - KoonHei Winson Lui
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
- Department of Plastic and Cosmetic Surgery, Liwan's People Hospital of Guangzhou, Guangzhou, 510370, Guangdong, China
| | - Bo He
- Joint and Orthopedic Trauma, Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
- Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Medical Research Center, Guangdong Provincial People's Hospital(Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
- Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
8
|
Ghanbari A, Ghasemi S, Zarbakhsh S. Exercise induced myelin protein zero improvement in neuropathic pain rats. Somatosens Mot Res 2023; 40:141-146. [PMID: 36630644 DOI: 10.1080/08990220.2022.2158800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Aerobic exercise including swimming plays a suitable role in improving somatosensory injuries. Neuropathic pain is a debilitating condition that occurs following injury or diseases of somatosensory system. In the present study, we tried to investigate the effect of exercise on myelin protein zero of sciatic nerve injured rats. MATERIALS AND METHODS Forty male rats (180-220 g) were divided into five groups (intact, sham, sham + exercise, neuropathy, and neuropathy + exercise). Right Sciatic nerve of anesthetized rats was exposed and loosely ligated (four ligations with 1 mm apart) using catgut chromic sutures to induce neuropathy. After 3 days of recovery, swimming exercise began (20 min/day/5 days a week/4 weeks). Mechanical allodynia and thermal hyperalgesia were detected using Von Frey filaments and plantar test, respectively. Sciatic nerve at the place of injury was dissected out to measure the myelin protein zero by western blot analysis. In the intact and sham groups, sciatic nerve removed at the place similar to injured group. RESULTS We found that neuropathy significantly (p < 0.05) reduced paw withdrawal mechanical and thermal thresholds and swimming exercise significantly (p < 0.05) increased paw withdrawal mechanical and thermal thresholds compared to the neuropathy group. Moreover, we found that MPZ level significantly (p < 0.01) decreased in neuropathy group against that in sham group, and exercise prominently (p < 0.05) reversed MPZ level towards control level. CONCLUSIONS Swimming exercise improves myelin protein zero level in neuropathic rats along with attenuating neuropathic pain. This is a promising approach in improving neuropathological disorders including Charcot-Marie-Tooth and Dejerine-Sottas disease.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of anatomical sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
9
|
Zou Y, Wu S, Wen F, Ge Y, Luo S. PGC-1α Inhibits Schwann Cell Dedifferentiation and Delays Peripheral Nerve Degeneration by Targeting PON1. Cell Mol Neurobiol 2023; 43:3767-3781. [PMID: 37526811 PMCID: PMC11409949 DOI: 10.1007/s10571-023-01395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
PPARγ coactivator-1 alpha (PGC-1α) is an essential transcription factor co-activator that regulates gene transcription and neural regeneration. Schwann cells, which are unique glial cells in peripheral nerves that dedifferentiate after peripheral nerve injury (PNI) and are released from degenerative nerves. Wallerian degeneration is a series of stereotypical events that occurs in response to nerve fibers after PNI. The role of PGC-1α in Schwann cell dedifferentiation and Wallerian degeneration is not yet clear. As Wallerian degeneration plays a crucial role in PNI, we conducted a study to determine whether PGC-1α has an effect on peripheral nerve degeneration after injury. We examined the expression of PGC-1α after sciatic nerve crush or transection using Western blotting and found that PGC-1α expression increased after PNI. Then we utilized ex vivo and in vitro models to investigate the effects of PGC-1α inhibition and activation on Schwann cell dedifferentiation and nerve degeneration. Our findings indicate that PGC-1α negatively regulates Schwann cell dedifferentiation and nerve degeneration. Through the use of RNA-seq, siRNA/plasmid transfection and reversal experiments, we identified that PGC-1α targets inhibit the expression of paraoxonase 1 (PON1) during Schwann cell dedifferentiation in degenerated nerves. In summary, PGC-1α plays a crucial role in preventing Schwann cell dedifferentiation and its activation can reduce peripheral nerve degeneration by targeting PON1. PGC-1α inhibits Schwann cell dedifferentiation and peripheral nerve degeneration. PGC-1α negatively regulates Schwann cell dedifferentiation and peripheral nerve degeneration after injury by targeting PON1.
Collapse
Affiliation(s)
- Ying Zou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
| | - Shu Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China
| | - Fei Wen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, No. 601, West Huangpu Avenue, Tianhe District, Guangzhou, China.
| |
Collapse
|
10
|
Weiß EM, Geldermann M, Martini R, Klein D. Macrophages influence Schwann cell myelin autophagy after nerve injury and in a model of Charcot-Marie-Tooth disease. J Peripher Nerv Syst 2023; 28:341-350. [PMID: 37209383 DOI: 10.1111/jns.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The complex cellular and molecular interactions between Schwann cells (SCs) and macrophages during Wallerian degeneration are a prerequisite to allow rapid uptake and degradation of myelin debris and axonal regeneration after peripheral nerve injury. In contrast, in non-injured nerves of Charcot-Marie-Tooth 1 neuropathies, aberrant macrophage activation by SCs carrying myelin gene defects is a disease amplifier that drives nerve damage and subsequent functional decline. Consequently, targeting nerve macrophages might be a translatable treatment strategy to mitigate disease outcome in CMT1 patients. Indeed, in previous approaches, macrophage targeting alleviated the axonopathy and promoted sprouting of damaged fibers. Surprisingly, this was still accompanied by robust myelinopathy in a model for CMT1X, suggesting additional cellular mechanisms of myelin degradation in mutant peripheral nerves. We here investigated the possibility of an increased SC-related myelin autophagy upon macrophage targeting in Cx32def mice. METHODS Combining ex vivo and in vivo approaches, macrophages were targeted by PLX5622 treatment. SC autophagy was investigated by immunohistochemical and electron microscopical techniques. RESULTS We demonstrate a robust upregulation of markers for SC autophagy after injury and in genetically-mediated neuropathy when nerve macrophages are pharmacologically depleted. Corroborating these findings, we provide ultrastructural evidence for increased SC myelin autophagy upon treatment in vivo. INTERPRETATION These findings reveal a novel communication and interaction between SCs and macrophages. This identification of alternative pathways of myelin degradation may have important implications for a better understanding of therapeutic mechanisms of pharmacological macrophage targeting in diseased peripheral nerves.
Collapse
Affiliation(s)
- Eva Maria Weiß
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Geldermann
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Zhang H, Lan D, Wu B, Chen X, Li X, Li Z, Dai F. Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury. Biomacromolecules 2023. [PMID: 37329512 DOI: 10.1021/acs.biomac.3c00311] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Collapse
Affiliation(s)
- Haiqiang Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xia Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Lysosomal dysfunction in Schwann cells is involved in bortezomib-induced peripheral neurotoxicity. Arch Toxicol 2023; 97:1385-1396. [PMID: 36826473 DOI: 10.1007/s00204-023-03468-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Bortezomib (BTZ) is a proteasome inhibitor serves as a first-line drug for multiple myeloma treatment. BTZ-induced peripheral neuropathy (BIPN) is the most common adverse effect of BTZ with an incidence as high as 40-60%. However, the pathological mechanisms underlying BIPN remain largely unclear. BTZ leads to dramatic Schwann cell demyelination in sciatic nerves. Previous studies implied that myelin debris was predominantly degraded via autophagy-lysosome pathway in Schwann cells. However, the association of autophagy with BIPN has not been made. Mice were treated with BTZ (2 mg/kg, i.v.) on Day1 and Day4 each week for continuous 4 weeks. BTZ-treated mice showed enhanced mechanical hyperalgesia, decreased tail nerve conduction and sciatic nerve demyelination. Unexpectedly, BTZ led to the accumulation of autophagic vesicles, LC3-II and p62 in the sciatic nerve. Moreover, BTZ blocked autophagic flux in RSC96 Schwann cells as determined by mcherry-GFP-LC3 assay, suggesting BTZ may impair lysosomal function rather than inducing autophagy in Schwann cells. BTZ significantly reduced the lysosomal activity in Schwann cells as determined by reduced LysoTracker Red and DQ-Red-BSA staining and increased the level of immature Cathepsin B (CTSB). Remarkably, lysosomal activators PP242 and Torin1, significantly reversed the blockage of autophagic flux by BTZ. We further verified that Torin1 rescued the demyelination, nerve conduction and reduced the mechanical hyperalgesia in BIPN mice. Additionally, Torin1 did not compromise the efficacy of BTZ in suppressing multiple myeloma RPMI8226 cell. Taken together, we identified that lysosomal dysfunction in Schwann cells caused by BTZ is involved in the BIPN pathology. Improved lysosomal function in Schwann cells can be a promising strategy for BIPN treatment.
Collapse
|
13
|
Jo YR, Oh Y, Kim YH, Shin YK, Kim HR, Go H, Shin J, Park HJ, Koh H, Kim JK, Shin JE, Lee KE, Park HT. Adaptive autophagy reprogramming in Schwann cells during peripheral demyelination. Cell Mol Life Sci 2023; 80:34. [PMID: 36622429 PMCID: PMC9829575 DOI: 10.1007/s00018-022-04683-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The myelin sheath is an essential structure for the rapid transmission of electrical impulses through axons, and peripheral myelination is a well-programmed postnatal process of Schwann cells (SCs), the myelin-forming peripheral glia. SCs transdifferentiate into demyelinating SCs (DSCs) to remove the myelin sheath during Wallerian degeneration after axonal injury and demyelinating neuropathies, and macrophages are responsible for the degradation of myelin under both conditions. In this study, the mechanism by which DSCs acquire the ability of myelin exocytosis was investigated. Using serial ultrastructural evaluation, we found that autophagy-related gene 7-dependent formation of a "secretory phagophore (SP)" and tubular phagophore was necessary for exocytosis of large myelin chambers by DSCs. DSCs seemed to utilize myelin membranes for SP formation and employed p62/sequestosome-1 (p62) as an autophagy receptor for myelin excretion. In addition, the acquisition of the myelin exocytosis ability of DSCs was associated with the decrease in canonical autolysosomal flux and was demonstrated by p62 secretion. Finally, this SC demyelination mechanism appeared to also function in inflammatory demyelinating neuropathies. Our findings show a novel autophagy-mediated myelin clearance mechanism by DSCs in response to nerve damage.
Collapse
Affiliation(s)
- Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Yuna Oh
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Hye Ran Kim
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Hana Go
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Jaekyoon Shin
- Department of Molecular and Cellular Biology, College of Medicine, Sungkyunkwan University, Suwon-Si, 16419 Republic of Korea
| | - Hye Ji Park
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, College of Medicine, Dong-A University, Busan, 49201 Republic of Korea
| | - Jung Eun Shin
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Department of Molecular Neuroscience, College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Dong-A University, Busan, 49201 Republic of Korea
| |
Collapse
|
14
|
UNC5B Overexpression Alleviates Peripheral Neuropathic Pain by Stimulating Netrin-1-Dependent Autophagic Flux in Schwann Cells. Mol Neurobiol 2022; 59:5041-5055. [PMID: 35668343 DOI: 10.1007/s12035-022-02861-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/28/2022] [Indexed: 01/18/2023]
Abstract
Lesions or diseases of the somatosensory system can cause neuropathic pain (NP). Schwann cell (SC) autophagy plays an important role in NP. Uncoordinated gene 5 homolog B (UNC5B), the canonical dependent receptor of netrin-1, is known to be exclusively expressed in SCs and involved in NP; however, the underlying mechanisms were unclear. A rat model of sciatic nerve chronic constriction injury (CCI) was used to induce peripheral neuropathic pain. Adeno-associated virus (AAV) overexpressing UNC5B was applied to the injured nerve, and an autophagy inhibitor, 3-mechyladenine (3-MA), was intraperitoneally injected in some animals. Behavioral tests were performed to evaluate NP, the morphology of the injured nerves was analyzed, and autophagy-related proteins were detected. A rat SC line (RSC96) undergoing oxygen and glucose deprivation (OGD) was used to mimic an ischemic setting to examine the role of UNC5B in autophagy. Local UNC5B overexpression alleviated CCI-induced NP and rescued myelin degeneration. Meanwhile, UNC5B overexpression improved CCI-induced impairment of autophagic flux, while the autophagy inhibitor 3-MA reversed the analgesic effect of UNC5B. In cultured SCs, UNC5B helped recruit netrin-1 to the cell membrane. UNC5B overexpression promoted autophagic flux while inhibiting apoptosis, which was further augmented with exogenous netrin-1 and reversed by netrin-1 knockdown. The enhanced phosphorylation of AMP-activated protein kinase (AMPK) and Unc51-like autophagy activating kinase 1 (ULK1) by UNC5B overexpression was also correlated with netrin-1. Our results suggest that UNC5B facilitates autophagic flux in SCs via phosphorylation of AMPK and ULK1, dependent on its ligand netrin-1, protecting myelin and partly preventing injury-induced NP.
Collapse
|
15
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Liu J, Li L, Zou Y, Fu L, Ma X, Zhang H, Xu Y, Xu J, Zhang J, Li M, Hu X, Li Z, Wang X, Sun H, Zheng H, Zhu L, Guo J. Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury. Neural Regen Res 2022; 17:673-681. [PMID: 34380909 PMCID: PMC8504388 DOI: 10.4103/1673-5374.320997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Wallerian degeneration, the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury, is essential for creating a permissive microenvironment for nerve regeneration, and involves cytoskeletal reconstruction. However, it is unclear whether microtubule dynamics play a role in this process. To address this, we treated cultured sciatic nerve explants, an in vitro model of Wallerian degeneration, with the microtubule-targeting agents paclitaxel and nocodazole. We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation, whereas nocodazole-induced microtubule destabilization inhibited these processes. Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration, as well as functional recovery of nerve conduction and target muscle and motor behavior, respectively. These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration. This study was approved by the Animal Care and Use Committee of Southern Medical University, China (approval No. SMU-L2015081) on October 15, 2015.
Collapse
Affiliation(s)
- Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lixia Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haowen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mi Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Hao Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory); Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Szepanowski F, Winkelhausen M, Steubing RD, Mausberg AK, Kleinschnitz C, Stettner M. LPA 1 signaling drives Schwann cell dedifferentiation in experimental autoimmune neuritis. J Neuroinflammation 2021; 18:293. [PMID: 34920725 PMCID: PMC8680309 DOI: 10.1186/s12974-021-02350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a pleiotropic lipid messenger that addresses at least six specific G-protein coupled receptors. Accumulating evidence indicates a significant involvement of LPA in immune cell regulation as well as Schwann cell physiology, with potential relevance for the pathophysiology of peripheral neuroinflammation. However, the role of LPA signaling in inflammatory neuropathies has remained completely undefined. Given the broad expression of LPA receptors on both Schwann cells and cells of the innate and adaptive immune system, we hypothesized that inhibition of LPA signaling may ameliorate the course of disease in experimental autoimmune neuritis (EAN). METHODS We induced active EAN by inoculation of myelin protein 2 peptide (P255-78) in female Lewis rats. Animals received the orally available LPA receptor antagonist AM095, specifically targeting the LPA1 receptor subtype. AM095 was administered daily via oral gavage in a therapeutic regimen from 10 until 28 days post-immunization (dpi). Analyses were based on clinical testing, hemogram profiles, immunohistochemistry and morphometric assessment of myelination. RESULTS Lewis rats treated with AM095 displayed a significant improvement in clinical scores, most notably during the remission phase. Cellular infiltration of sciatic nerve was only discretely affected by AM095. Hemogram profiles indicated no impact on circulating leukocytes. However, sciatic nerve immunohistochemistry revealed a reduction in the number of Schwann cells expressing the dedifferentiation marker Sox2 paralleled by a corresponding increase in differentiating Sox10-positive Schwann cells. In line with this, morphometric analysis of sciatic nerve semi-thin sections identified a significant increase in large-caliber myelinated axons at 28 dpi. Myelin thickness was unaffected by AM095. CONCLUSION Thus, LPA1 signaling may present a novel therapeutic target for the treatment of inflammatory neuropathies, potentially affecting regenerative responses in the peripheral nerve by modulating Schwann cell differentiation.
Collapse
Affiliation(s)
- Fabian Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Maximilian Winkelhausen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rebecca D Steubing
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Anne K Mausberg
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
18
|
Huang G, Hu M, Lu D, Hong L. Protective effect and potential mechanism of Schwann cell-derived exosomes on mechanical damage of rat dorsal root ganglion cells. J Obstet Gynaecol Res 2021; 47:3691-3701. [PMID: 34365704 DOI: 10.1111/jog.14968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pudendal nerve (PN) injury was one of the most important pathogenesis of stress urinary incontinence (SUI). Schwann cell (SC)-derived exosomes could promote axonal regeneration. Wnt protein could significantly promote axonal regeneration and participate in the regulation of proliferation and differentiation of neural stem cells. Therefore, we sought to determine whether SCs-derived exosomes might also protect against damaged dorsal root ganglion cells (DRGs) through the Wnt/β-catenin pathway. MATERIAL AND METHODS The DRGs injury model was fabricated using a four-point bending system. The exosomes were separated from the SCs supernatant. XAV939, which was a small molecule inhibitor, was used to inhibit the Wnt/β-catenin pathway. Next, Cell Counting Kit-8 (CCK8) kit was used to detect cell activity. We evaluated the proliferative activity of DRG cells using the cell cycle and apoptosis detection kit. We assessed the cell apoptotic rates through the Annexin V/PE double staining. Finally, we detect the expression of downstream proteins of Wnt/β-catenin pathway in DRG cells using western blotting. RESULTS SC-derived exosomes had protective effects on DRGs after mechanical damage, which could promote cell proliferation, transition of the cell cycle to the G2 phase, and inhibit cell apoptosis. Exogenous administration of XAV939 suppressed the promoting effect of SCs -derived exosomes on DRG cells and the expression of downstream proteins of Wnt/β-catenin pathway in DRG cells was also suppressed. CONCLUSION These results suggested that SC-derived exosomes have a repairing effect on DRG cells injury caused by cyclic mechanical stretching (CMS) and the Wnt/β-catenin pathway is potentially involved in the process.
Collapse
Affiliation(s)
- Guotao Huang
- Dept. of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Hu
- Dept. of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danhua Lu
- Dept. of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Dept. of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Abstract
Schwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia. Here, we briefly describe the development and activation of Schwann cells after nerve injury. Moreover, we expound on the occurrence, regulation, and treatment of trigeminal neuralgia; further, we point out the current research deficiencies and future research directions.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Stomatology College of Nanchang University, Nanchang, China
| | - Tian-Hua Zhou
- Basic Medical School, Nanchang University, Nanchang, China
| | - Bao-Kang Chen
- First Clinical Medical College of Nanchang University, Nanchang, China
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: mechanistic insights and therapeutic implications. Autophagy 2021; 18:254-282. [PMID: 34057020 PMCID: PMC8942428 DOI: 10.1080/15548627.2021.1926656] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mechanisms of protein homeostasis are crucial for overseeing the clearance of misfolded and toxic proteins over the lifetime of an organism, thereby ensuring the health of neurons and other cells of the central nervous system. The highly conserved pathway of autophagy is particularly necessary for preventing and counteracting pathogenic insults that may lead to neurodegeneration. In line with this, mutations in genes that encode essential autophagy factors result in impaired autophagy and lead to neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS). However, the mechanistic details underlying the neuroprotective role of autophagy, neuronal resistance to autophagy induction, and the neuron-specific effects of autophagy-impairing mutations remain incompletely defined. Further, the manner and extent to which non-cell autonomous effects of autophagy dysfunction contribute to ALS pathogenesis are not fully understood. Here, we review the current understanding of the interplay between autophagy and ALS pathogenesis by providing an overview of critical steps in the autophagy pathway, with special focus on pivotal factors impaired by ALS-causing mutations, their physiologic effects on autophagy in disease models, and the cell type-specific mechanisms regulating autophagy in non-neuronal cells which, when impaired, can contribute to neurodegeneration. This review thereby provides a framework not only to guide further investigations of neuronal autophagy but also to refine therapeutic strategies for ALS and related neurodegenerative diseases.Abbreviations: ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CHMP2B: charged multivesicular body protein 2B; DPR: dipeptide repeat; FTD: frontotemporal dementia; iPSC: induced pluripotent stem cell; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PINK1: PTEN induced kinase 1; RNP: ribonuclear protein; sALS: sporadic ALS; SPHK1: sphingosine kinase 1; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK-binding kinase 1; TFEB: transcription factor EB; ULK: unc-51 like autophagy activating kinase; UPR: unfolded protein response; UPS: ubiquitin-proteasome system; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Jason P Chua
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Hortense De Calbiac
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Edor Kabashi
- Recherche translationnelle sur les maladies neurologiques, Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | - Sami J Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Li M, Zhu Y, Tang L, Xu H, Zhong J, Peng W, Yuan Y, Gu X, Wang H. Protective effects and molecular mechanisms of Achyranthes bidentata polypeptide k on Schwann cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:381. [PMID: 33842602 PMCID: PMC8033397 DOI: 10.21037/atm-20-2900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Achyranthes bidentata polypeptide k (ABPPk) is an active ingredient used in traditional Chinese medicine separated from Achyranthes bidentata polypeptides. So far, the role of ABPPk in peripheral nerve protection has not been comprehensively studied. Methods In this study, primary Schwann cells exposed to serum deprivation were treated with ABPPk or nerve growth factor (NGF) in vitro. Cell viability, cell apoptosis, apoptosis-related protein expression, and antioxidant enzyme activity were analyzed. To further explore the underlying molecular mechanisms and key regulatory molecules involved in the effects of ABPPk, integrative and dynamic bioinformatics analysis at different time points was carried out following RNA-seq of Schwann cells subjected to serum deprivation. Results We found that ABPPk could effectively reduce Schwann cell apoptosis caused by serum deprivation, which was comparable to NGF’s anti-apoptotic effects. ABPPk had the largest number of upregulated and downregulated differential expression genes at the earliest 0.5 h time, while NGF had fewer differential expression genes at this early stage. The significant difference at this time point between the two groups was also displayed in heatmaps. The molecular regulation of diseases and functions and canonical pathways revealed that ABPPk had more participation and advantages in the vasculature and immune system areas, especially angiogenesis regulation. Also, ABPPk demonstrated an earlier start in these molecular regulations than NGF. Furthermore, the analysis of transcription factors also illustrated that ABPPk not only had more key initial regulatory factors participating in vascular-related processes, but these also remained for a longer period. There was no significant difference in neural-related molecular regulation between the two groups. Conclusions Using high-throughput sequencing technology, our work unveiled the protective effects of ABPPk on Schwann cells after serum deprivation in a more comprehensive manner. These results further enrich the positive functions and molecular mechanisms of ABPPk and traditional Chinese medicine and benefit the discovery of novel therapeutic targets for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Leili Tang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hua Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | | | - Wenqiang Peng
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu, Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
22
|
Yin G, Yu B, Liu C, Lin Y, Xie Z, Hu Y, Lin H. Exosomes produced by adipose-derived stem cells inhibit schwann cells autophagy and promote the regeneration of the myelin sheath. Int J Biochem Cell Biol 2021; 132:105921. [PMID: 33421632 DOI: 10.1016/j.biocel.2021.105921] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury (PNI) is encountered relatively commonly in the clinic and often results in long-term functional deficits. Research to develop methods to improve regeneration following nerve injury is ongoing. Numerous studies have shown that adipose-derived stem cells (ADSCs) promote the regeneration of peripheral nerve injury; however, the mechanism is unclear. Autophagy, a highly conserved intracellular process responsible for maintaining cellular homeostasis, and Schwann cells (SCs), play important roles in regeneration after PNI. In the present study, we explored the effect and mechanism of exosomes produced by adipose-derived stem cells (ADSC-Exos) on autophagy of SCs in PNI, as well as their effect on the regeneration of the nerve myelin sheath. The levels of autophagy and the expression of karyopherin subunit alpha 2 (Kpna2) in SCs increased markedly after the sciatic nerve was injured in SCs (SNI-SCs). The enhanced autophagy and the upregulated Kpna2 in SNI-SCs were inhibited after treatment with ADSC-Exos in vivo and in vitro. The effect of ADSC-Exos on inhibiting SC autophagy was blocked by overexpression of Kpna2 in SNI-SCs. Using quantitative real-time reverse transcription PCR, ADSC-Exos were demonstrated to contain a large amount of miRNA-26b, which was predicted to regulate Kpna2 on the TargetScan website. The effect of ADSC-Exos on inhibiting SCs autophagy was blocked after the silencing of miRNA-26b. Moreover, ADSC-Exos promoted the regeneration of the myelin sheath by inhibiting SC autophagy in rat SNI models. In conclusion, our results indicated that ADSC-Exos promote the regeneration of the myelin sheath by moderately reducing autophagy of injured SCs via miRNA-26b downregulation of Kpna2.
Collapse
Affiliation(s)
- Gang Yin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Caiyue Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yaofa Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng Xie
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yiping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
23
|
Chkheidze R, Pytel P. What Every Neuropathologist Needs to Know: Peripheral Nerve Biopsy. J Neuropathol Exp Neurol 2020; 79:355-364. [PMID: 32167544 DOI: 10.1093/jnen/nlaa012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peripheral neuropathy is a common disorder with many possible etiologies including metabolic diseases, inflammatory conditions, infections, malignancy, inherited diseases, drugs, and toxins. In most instances, diagnosis and treatment plan can be established based on clinical presentation, family history, laboratory results, genetic testing, and electrophysiological studies. But in some situations, a peripheral nerve biopsy remains a valuable tool. This is especially true in patients with rapidly progressive disease, with atypical presentation or for whom other approaches fail to yield a definitive diagnosis. The pathologic examination starts with basic decisions about specimen triage. A few basic questions help to provide an initial framework for the assessment of a nerve biopsy-is the specimen adequate; are there inflammatory changes; are there vascular changes; is there amyloid; are there changes to axonal density and the Schwann cell-myelin-axon unit. In the appropriate context and with such an approach peripheral nerve biopsies can still represent a clinically helpful test.
Collapse
Affiliation(s)
- Rati Chkheidze
- From the Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, Illinois
| |
Collapse
|
24
|
Zhang SH, Shurin GV, Khosravi H, Kazi R, Kruglov O, Shurin MR, Bunimovich YL. Immunomodulation by Schwann cells in disease. Cancer Immunol Immunother 2020; 69:245-253. [PMID: 31676924 PMCID: PMC11027810 DOI: 10.1007/s00262-019-02424-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Schwann cells are the principal glial cells of the peripheral nervous system which maintain neuronal homeostasis. Schwann cells support peripheral nerve functions and play a critical role in many pathological processes including injury-induced nerve repair, neurodegenerative diseases, infections, neuropathic pain and cancer. Schwann cells are implicated in a wide range of diseases due, in part, to their ability to interact and modulate immune cells. We discuss the accumulating examples of how Schwann cell regulation of the immune system initiates and facilitates the progression of various diseases. Furthermore, we highlight how Schwann cells may orchestrate an immunosuppressive tumor microenvironment by polarizing and modulating the activity of the dendritic cells.
Collapse
Affiliation(s)
- Sophia H Zhang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hasan Khosravi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Rashek Kazi
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yuri L Bunimovich
- Department of Dermatology, University of Pittsburgh Medical Center, E1157 Thomas E. Starzl Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Belgrad J, De Pace R, Fields RD. Autophagy in Myelinating Glia. J Neurosci 2020; 40:256-266. [PMID: 31744863 PMCID: PMC6948934 DOI: 10.1523/jneurosci.1066-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is the cellular process involved in transportation and degradation of membrane, proteins, pathogens, and organelles. This fundamental cellular process is vital in development, plasticity, and response to disease and injury. Compared with neurons, little information is available on autophagy in glia, but it is paramount for glia to perform their critical responses to nervous system disease and injury, including active tissue remodeling and phagocytosis. In myelinating glia, autophagy has expanded roles, particularly in phagocytosis of mature myelin and in generating the vast amounts of membrane proteins and lipids that must be transported to form new myelin. Notably, autophagy plays important roles in removing excess cytoplasm to promote myelin compaction and development of oligodendrocytes, as well as in remyelination by Schwann cells after nerve trauma. This review summarizes the cell biology of autophagy, detailing the major pathways and proteins involved, as well as the roles of autophagy in Schwann cells and oligodendrocytes in development, plasticity, and diseases in which myelin is affected. This includes traumatic brain injury, Alexander's disease, Alzheimer's disease, hypoxia, multiple sclerosis, hereditary spastic paraplegia, and others. Promising areas for future research are highlighted.
Collapse
Affiliation(s)
| | - Raffaella De Pace
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
26
|
Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020; 10:1649-1677. [PMID: 32042328 PMCID: PMC6993217 DOI: 10.7150/thno.40919] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Autophagy in Schwann cells (SCs) is crucial for myelin debris degradation and clearance following peripheral nerve injury (PNI). Nerve growth factor (NGF) plays an important role in reconstructing peripheral nerve fibers and promoting axonal regeneration. However, it remains unclear if NGF effect in enhancing nerve regeneration is mediated through autophagic clearance of myelin debris in SCs. Methods: In vivo, free NGF solution plus with/without pharmacological inhibitors were administered to a rat sciatic nerve crush injury model. In vitro, the primary Schwann cells (SCs) and its cell line were cultured in normal medium containing NGF, their capable of swallowing or clearing degenerated myelin was evaluated through supplement of homogenized myelin fractions. Results: Administration of exogenous NGF could activate autophagy in dedifferentiated SCs, accelerate myelin debris clearance and phagocytosis, as well as promote axon and myelin regeneration at early stage of PNI. These NGF effects were effectively blocked by autophagy inhibitors. In addition, inhibition of the p75 kD neurotrophin receptor (p75NTR) signal or inactivation of the AMP-activated protein kinase (AMPK) also inhibited the NGF effect as well. Conclusions: NGF effect on promoting early nerve regeneration is closely associated with its accelerating autophagic clearance of myelin debris in SCs, which probably regulated by the p75NTR/AMPK/mTOR axis. Our studies thus provide strong support that NGF may serve as a powerful pharmacological therapy for peripheral nerve injuries.
Collapse
|
27
|
Park HT, Kim YH, Lee KE, Kim JK. Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cell Mol Life Sci 2019; 77:2497-2506. [PMID: 31884566 PMCID: PMC7320037 DOI: 10.1007/s00018-019-03431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 03/11/2023]
Abstract
In inflammatory peripheral demyelinating disorders, demyelination represents segmental demyelination in which the myelin sheath of a myelinating Schwann cell (SC) is completely removed by macrophages or a partial myelin degeneration in the paranode occurring due to autoantibodies attacking the node/paranode. For the segmental demyelination from living myelin-forming SCs, macrophages infiltrate within the endoneurium and insinuate between myelin lamellae and the cytoplasm of SCs, and the myelin is then removed via phagocytosis. During the macrophage invasion into the SC cytoplasm from the node of Ranvier and internodal areas, the attacked SCs do not remain quiescent but transdifferentiate into inflammatory demyelinating SCs (iDSCs), which exhibit unique demyelination pathologies, such as myelin uncompaction from Schmidt-Lanterman incisures with myelin lamellae degeneration. The longitudinal extension of this self-myelin clearance process of iDSCs into the nodal region is associated with the degeneration of nodal microvilli and paranodal loops, which provides a potential locus for macrophage infiltration. In addition to the nodal intrusion, macrophages appear to be able to invade fenestrated internodal plasma membrane or the degenerated outer mesaxon of iDSC. These SC demyelination morphologies indicate that the SC reprogramming to iDSCs may be a prerequisite for macrophage-mediated inflammatory demyelination. In contrast, paranodal demyelination caused by autoantibodies to nodal/paranodal antigens does not result in iDSC-dependent macrophage infiltration and subsequent segmental demyelination. In the context of inflammatory demyelination, the novel perspective of iDSCs provides an important viewpoint to understand the pathophysiology of demyelinating peripheral neuropathies and establish diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, South Korea. .,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, South Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, South Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, South Korea.,Department of Neurology, Dong-A University College of Medicine, Busan, 49201, South Korea
| |
Collapse
|
28
|
Kim YH, Jang SY, Shin YK, Jo YR, Yoon BA, Nam SH, Choi BO, Shin HY, Kim SW, Kim SH, Kim JK, Park HT. Serum CXCL13 reflects local B-cell mediated inflammatory demyelinating peripheral neuropathy. Sci Rep 2019; 9:16535. [PMID: 31712675 PMCID: PMC6848485 DOI: 10.1038/s41598-019-52643-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/16/2019] [Indexed: 12/27/2022] Open
Abstract
Immune damages on the peripheral myelin sheath under pro-inflammatory milieu result in primary demyelination in inflammatory demyelinating neuropathy. Inflammatory cytokines implicating in the pathogenesis of inflammatory demyelinating neuropathy have been used for the development of potential biomarkers for the diagnosis of the diseases. In this study, we have found that macrophages, which induce demyelination, expressed a B-cell-recruiting factor CXC chemokine ligand 13 (CXCL13) in mouse and human inflammatory demyelinating nerves. The serum levels of CXCL13 were also higher in inflammatory demyelinating neuropathic patients but not in acute motor axonal neuropathy or a hereditary demyelinating neuropathy, Charcot-Marie-Tooth disease type 1a. In addition, CXCL13-expressing macrophages were not observed in the sciatic nerves after axonal injury, which causes the activation of innate immunity and Wallerian demyelination. Our findings indicate that the detection of serum CXCL13 will be useful to specifically recognize inflammatory demyelinating neuropathies in human.
Collapse
Affiliation(s)
- Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - So Young Jang
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Byeol-A Yoon
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea
| | - Soo Hyun Nam
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03772, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
- Department of Neurology, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC), Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
- Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, 49201, Republic of Korea.
| |
Collapse
|
29
|
Shi G, Zhou X, Wang X, Zhang X, Zhang P, Feng S. Signatures of altered DNA methylation gene expression after central and peripheral nerve injury. J Cell Physiol 2019; 235:5171-5181. [PMID: 31691285 DOI: 10.1002/jcp.29393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
Abstract
Nerve damage can lead to movement and sensory dysfunction, with high morbidity and disability rates causing severe burdens on patients, families, and society. DNA methylation is a kind of epigenetics, and a great number of previous studies have demonstrated that DNA methylation plays an important role in the process of nerve regeneration and remodeling. However, compared with the central nervous system, the peripheral nervous system shows stronger recovery after injury, which is related to the complex microenvironment and epigenetic changes occurring at the site of injury. Therefore, what common epigenetic changes between the central and peripheral nervous systems remain to be elucidated. We first screened differential methylation genes after spinal cord injury and sciatic nerve injury using whole-genome bisulfite sequencing and methylated DNA immunoprecipitation sequencing, respectively. Subsequently, a total of 16 genes had the same epigenetic changes after spinal cord injury and sciatic nerve injury. The Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to identify the critical biological processes and pathways. Furthermore, a protein-protein interaction network analysis indicated that Dnm3, Ntrk3, Smurf1, Dpysl2, Kalrn, Shank1, Dlg2, Arsb, Reln, Bmp5, Numbl, Prickle2, Map6, and Htr7 were the core genes. These outcomes may provide novel insights into the molecular mechanism of the subacute phase of nerve injury. These verified genes can offer potential diagnostic and therapeutic targets for nerve injury.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China.,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
31
|
Chen G, Luo X, Wang W, Wang Y, Zhu F, Wang W. Interleukin-1β Promotes Schwann Cells De-Differentiation in Wallerian Degeneration via the c-JUN/AP-1 Pathway. Front Cell Neurosci 2019; 13:304. [PMID: 31338026 PMCID: PMC6629865 DOI: 10.3389/fncel.2019.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/21/2019] [Indexed: 12/20/2022] Open
Abstract
Schwann cells (SCs) de-differentiate in Wallerian degeneration (WD) following nerve injury and, by doing so, can actively promote nerve repair and functional recovery. An innate-immune response is an important component of the complex of events referred to as WD. Damaged peripheral nervous system SCs produce IL-1β and other inflammatory cytokines. We hypothesized that, in addition to a role in immune responses, IL-1β participates in de-differentiation and proliferation of SCs. qPCR and ELISA demonstrated that expression of IL-1β mRNAs and protein increased after nerve injury. Immunofluorescent staining and western blotting demonstrated that expression of the p75 neurotrophin receptor (p75NTR) was significantly increased and levels of myelin protein zero (MPZ) were significantly decreased after IL-1β exposure compared with control groups in vitro WD. Additionally, qPCR demonstrated that IL-1β elevated expression of the de-differentiation gene p75NTR and decreased expression of myelination locus MPZ and promoted SCs de-differentiation. Furthermore, immunofluorescent staining, western blotting, qPCR and ELISA revealed that IL-1β promoted c-JUN expression and activation of AP-1 activity of SCs in an in vitro WD model. Finally, Immunofluorescent staining illustrated that IL-1β elevated expression of Ki67 in SCs nuclei, the apoptosis of SCs were detected by TUNEL. SCs of WD produce IL-1β which promotes SCs de-differentiation and proliferation.
Collapse
Affiliation(s)
- Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohe Luo
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimei Wang
- Department of Plastic Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Zhu
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Gao J, Zhang L, Wei Y, Chen T, Ji X, Ye K, Yu J, Tang B, Sun X, Hu J. Human hair keratins promote the regeneration of peripheral nerves in a rat sciatic nerve crush model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:82. [PMID: 31273463 PMCID: PMC6609591 DOI: 10.1007/s10856-019-6283-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 05/09/2023]
Abstract
Axon regeneration and functional recovery after peripheral nerve injury remains a clinical challenge. Injury leads to axonal disintegration after which Schwann cells (SCs) and macrophages re-engage in the process of regeneration. At present, biomaterials are regarded as the most promising way to repair peripheral nerve damage. As a natural material, keratin has a wide range of sources and has good biocompatibility and biodegradability. Here, a keratin was extracted from human hair by reducing method and a keratin sponge with porous structure was obtained by further processing. The results suggested that keratin can promote cell adhesion, proliferation, migration as well as the secretion of neurotrophic factors by SCs and the regulation of the expression of macrophage inflammatory cytokines in vitro. We report for the first time that human hair keratin can promote the extension of axon in DRG neurons. The motor deficits caused by a sciatic nerve crush injury were alleviated by keratin sponge dressing in vivo. Thus, keratin has been identified as a valuable biomaterial that can enhance peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jianyi Gao
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Lei Zhang
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yusheng Wei
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Tianyan Chen
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xianyan Ji
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Kai Ye
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jiahong Yu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Bin Tang
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Xiaochun Sun
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jiabo Hu
- Jinagsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
33
|
Kim YH, Kim YH, Shin YK, Jo YR, Park DK, Song M, Yoon B, Nam SH, Kim JH, Choi B, Shin HY, Kim SW, Kim SH, Hong YB, Kim JK, Park HT. p75 and neural cell adhesion molecule 1 can identify pathologic Schwann cells in peripheral neuropathies. Ann Clin Transl Neurol 2019; 6:1292-1301. [PMID: 31353867 PMCID: PMC6649441 DOI: 10.1002/acn3.50828] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Myelinated Schwann cells (SCs) in adult peripheral nerves dedifferentiate into immature cells in demyelinating neuropathies and Wallerian degeneration. This plastic SC change is actively involved in the myelin destruction and clearance as demyelinating SCs (DSCs). In inherited demyelinating neuropathy, pathologically differentiated and dysmyelinated SCs constitute the main nerve pathology. METHODS We investigated whether this SC plastic status in human neuropathic nerves could be determined by patient sera to develop disease-relevant serum biomarkers. Based on proteomics analysis of the secreted exosomes from immature SCs, we traced p75 neurotrophin receptor (p75) and neural cell adhesion molecule 1 (NCAM) in the sera of patients with peripheral neuropathy. RESULTS Enzyme-linked immunosorbent assay (ELISA) revealed that p75 and NCAM were subtype-specifically expressed in the sera of patients with peripheral neuropathy. In conjunction with these ELISA data, pathological analyses of animal models and human specimens suggested that the presence of DSCs in inflammatory neuropathy and of supernumerary nonmyelinating or dysmyelinating SCs in inherited neuropathy could potentially be distinguished by comparing the expression profiles of p75 and NCAM. INTERPRETATION This study indicates that the identification of disease-specific pathological SC stages might be a valuable tool for differential diagnosis of peripheral neuropathies.
Collapse
Affiliation(s)
- Young Hee Kim
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
| | - Young Hye Kim
- Biomedical Omics GroupKorea Basic Science InstituteCheongjuChungbuk28119Republic of Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
| | - Young Rae Jo
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
| | - Da Kyeong Park
- Biomedical Omics GroupKorea Basic Science InstituteCheongjuChungbuk28119Republic of Korea
| | - Min‐Young Song
- Biomedical Omics GroupKorea Basic Science InstituteCheongjuChungbuk28119Republic of Korea
| | - Byeol‐A. Yoon
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
- Department of NeurologyDong‐A University College of MedicineBusan49201Republic of Korea
| | - Soo Hyun Nam
- Department of NeurologySungkyunkwan University School of MedicineSeoul06351Republic of Korea
| | - Jong Hyun Kim
- Laboratory of Stem Cell Differentiation, Department of Biological ScienceHyupsung UniversityHwasung‐si18330Republic of Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoul06351Republic of Korea
- Stem Cell & Regenerative Medicine InstituteSamsung Medical Center81 Irwon‐roGangnam‐guSeoul06351Republic of Korea
| | - Ha Young Shin
- Department of NeurologyYonsei University College of Medicine50‐1 Yonsei‐roSeodaemun‐guSeoul03772Republic of Korea
| | - Seung Woo Kim
- Department of NeurologyYonsei University College of Medicine50‐1 Yonsei‐roSeodaemun‐guSeoul03772Republic of Korea
| | - Se Hoon Kim
- Department of PathologyYonsei University College of Medicine50‐1 Yonsei‐roSeodaemun‐guSeoul03772Republic of Korea
| | - Young Bin Hong
- Department of BiochemistryDong‐A University College of MedicineBusan49201Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
- Department of NeurologyDong‐A University College of MedicineBusan49201Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center (PNRC)Dong‐A University College of MedicineBusan49201Republic of Korea
- Department of Molecular NeuroscienceDong‐A University College of MedicineBusan49201Republic of Korea
| |
Collapse
|
34
|
Liu Z, Chen S, Qiu C, Sun Y, Li W, Jiang J, Zhang JM. Fractalkine/CX3CR1 Contributes to Endometriosis-Induced Neuropathic Pain and Mechanical Hypersensitivity in Rats. Front Cell Neurosci 2018; 12:495. [PMID: 30622457 PMCID: PMC6309014 DOI: 10.3389/fncel.2018.00495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Pain is the most severe and common symptom of endometriosis. Its underlying pathogenetic mechanism is poorly understood. Nerve sensitization is a particular research challenge, due to the limitations of general endometriosis models and sampling nerve tissue from patients. The chemokine fractalkine (FKN) has been demonstrated to play a key role in various forms of neuropathic pain, while its role in endometriotic pain is unknown. Our study was designed to explore the function of FKN in the development and maintenance of peripheral hyperalgesia and central sensitization in endometriosis using a novel endometriosis animal model developed in our laboratory. After modeling, behavioral tests were carried out and the optimal time for molecular changes was obtained. We extracted ectopic tissues and L4-6 spinal cords to detect peripheral and central roles for FKN, respectively. To assess morphologic characteristics of endometriosis-like lesions-as well as expression and location of FKN/CX3CR1-we performed H&E staining, immunostaining, and western blotting analyses. Furthermore, inhibition of FKN expression in the spinal cord was achieved by intrathecal administration of an FKN-neutralizing antibody to demonstrate its function. Our results showed that implanted autologous uterine tissue around the sciatic nerve induced endometriosis-like lesions and produced mechanical hyperalgesia and allodynia. FKN was highly expressed on macrophages, whereas its receptor CX3CR1 was overexpressed in the myelin sheath of sciatic nerve fibers. Overexpressed FKN was also observed in neurons. CX3CR1/pp38-MAPK was upregulated in activated microglia in the spinal dorsal horn. Intrathecal administration of FKN-neutralizing antibody not only reversed the established mechanical hyperalgesia and allodynia, but also inhibited the expression of CX3CR1/pp38-MAPK in activated microglia, which was essential for the persistence of central sensitization. We concluded that the FKN/CX3CR1 signaling pathway might be one of the mechanisms of peripheral hyperalgesia in endometriosis, which requires further studies. Spinal FKN is important for the development and maintenance of central sensitization in endometriosis, and it may further serve as a novel therapeutic target to relieve persistent pain associated with endometriosis.
Collapse
Affiliation(s)
- Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Sisi Chen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Yaqiong Sun
- Department of Obstetrics and Gynecology, Shandong Obstetrics and Gynecology Hospital, Jinan, China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
35
|
Hyung S, Im SK, Lee BY, Shin J, Park JC, Lee C, Suh JKF, Hur EM. Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia 2018; 67:360-375. [PMID: 30444070 DOI: 10.1002/glia.23547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.
Collapse
Affiliation(s)
- Sujin Hyung
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sun-Kyoung Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea
| | - Bo Yoon Lee
- Center for Glia-Neuron Interaction, KIST, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Jihye Shin
- Center for Theragnosis, KIST, Seoul, South Korea
| | - Jong-Chul Park
- Department of Medical Engineering and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheolju Lee
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Center for Theragnosis, KIST, Seoul, South Korea
| | - Jun-Kyo Francis Suh
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eun-Mi Hur
- Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
36
|
Park HT, Kim JK, Tricaud N. The conceptual introduction of the “demyelinating Schwann cell” in peripheral demyelinating neuropathies. Glia 2018; 67:571-581. [DOI: 10.1002/glia.23509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Hwan Tae Park
- Department of Molecular Neuroscience; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Jong Kuk Kim
- Department of Neurology; Peripheral Neuropathy Research Center, College of Medicine, Dong-A University; Busan South Korea
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM); Université de Montpellier; Montpellier France
| |
Collapse
|
37
|
Hu B, Mccollum M, Ravi V, Arpag S, Moiseev D, Castoro R, Mobley BC, Burnette BW, Siskind C, Day JW, Yawn R, Feely S, Li Y, Yan Q, Shy ME, Li J. Myelin abnormality in Charcot-Marie-Tooth type 4J recapitulates features of acquired demyelination. Ann Neurol 2018; 83:756-770. [PMID: 29518270 PMCID: PMC5912982 DOI: 10.1002/ana.25198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth type 4J (CMT4J) is a rare autosomal recessive neuropathy caused by mutations in FIG4 that result in loss of FIG4 protein. This study investigates the natural history and mechanisms of segmental demyelination in CMT4J. METHODS Over the past 9 years, we have enrolled and studied a cohort of 12 CMT4J patients, including 6 novel FIG4 mutations. We evaluated these patients and related mouse models using morphological, electrophysiological, and biochemical approaches. RESULTS We found sensory motor demyelinating polyneuropathy consistently in all patients. This underlying myelin pathology was associated with nonuniform slowing of conduction velocities, conduction block, and temporal dispersion on nerve conduction studies, which resemble those features in acquired demyelinating peripheral nerve diseases. Segmental demyelination was also confirmed in mice without Fig4 (Fig4-/- ). The demyelination was associated with an increase of Schwann cell dedifferentiation and macrophages in spinal roots where nerve-blood barriers are weak. Schwann cell dedifferentiation was induced by the increasing intracellular Ca2+ . Suppression of Ca2+ level by a chelator reduced dedifferentiation and demyelination of Schwann cells in vitro and in vivo. Interestingly, cell-specific knockout of Fig4 in mouse Schwann cells or neurons failed to cause segmental demyelination. INTERPRETATION Myelin change in CMT4J recapitulates the features of acquired demyelinating neuropathies. This pathology is not Schwann cell autonomous. Instead, it relates to systemic processes involving interactions of multiple cell types and abnormally elevated intracellular Ca2+ . Injection of a Ca2+ chelator into Fig4-/- mice improved segmental demyelination, thereby providing a therapeutic strategy against demyelination. Ann Neurol 2018;83:756-770.
Collapse
Affiliation(s)
- Bo Hu
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Megan Mccollum
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vignesh Ravi
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sezgi Arpag
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel Moiseev
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ryan Castoro
- Department of PMR, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bryan W. Burnette
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carly Siskind
- Department of Neurology, Stanford University, Palo Alto, California
| | - John W. Day
- Department of Neurology, Stanford University, Palo Alto, California
| | - Robin Yawn
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Yuebing Li
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Qing Yan
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Laboratory Medicine, the Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Michael E. Shy
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Jun Li
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Tennessee Valley Healthcare System – Nashville VA, Nashville, Tennessee
| |
Collapse
|
38
|
Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Ann Biomed Eng 2018; 46:1013-1025. [PMID: 29603044 DOI: 10.1007/s10439-018-2011-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
Abstract
Tissue engineered nerve grafts (TENGs) are considered a promising alternative to autologous nerve grafting, which is considered the "gold standard" clinical strategy for peripheral nerve repair. Here, we immobilized tumor necrosis factor-α (TNF-α) inhibitors onto a nerve conduit, which was introduced into a chitosan (CS) matrix scaffold utilizing genipin (GP) as the crosslinking agent, to fabricate CS-GP-TNF-α inhibitor nerve conduits. The in vitro release kinetics of TNF-α inhibitors from the CS-GP-TNF-α inhibitor nerve conduits were investigated using high-performance liquid chromatography. The in vivo continuous release profile of the TNF-α inhibitors released from the CS-GP-TNF-α inhibitor nerve conduits was measured using an enzyme-linked immunosorbent assay over 14 days. We found that the amount of TNF-α inhibitors released decreased with time after the bridging of the sciatic nerve defects in rats. Moreover, 4 and 12 weeks after surgery, histological analyses and functional evaluations were carried out to assess the influence of the TENG on regeneration. Immunochemistry performed 4 weeks after grafting to assess early regeneration outcomes revealed that the TENG strikingly promoted axonal outgrowth. Twelve weeks after grafting, the TENG accelerated myelin sheath formation, as well as functional restoration. In general, the regenerative outcomes following TENG more closely paralleled findings observed with autologous grafting than the use of the CS matrix scaffold. Collectively, our data indicate that the CS-GP-TNF-α inhibitor nerve conduits comprised an elaborate system for sustained release of TNF-α inhibitors in vitro, while studies in vivo demonstrated that the TENG could accelerate regenerating axonal outgrowth and functional restoration. The introduction of CS-GP-TNF-α-inhibitor nerve conduits into a scaffold may contribute to an efficient and adaptive immune microenvironment that can be used to facilitate peripheral nerve repair.
Collapse
|