1
|
Yoo SS, Kim Y, Lee DW, Ham HJ, Park JH, Yeo IJ, Chang JY, Yun J, Son DJ, Han SB, Hong JT. Stress Accelerates Depressive-Like Behavior through Increase of SPNS2 Expression in Tg2576 Mice. Biomol Ther (Seoul) 2025; 33:417-428. [PMID: 40195074 PMCID: PMC12059362 DOI: 10.4062/biomolther.2024.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/12/2025] [Accepted: 01/28/2025] [Indexed: 04/09/2025] Open
Abstract
To investigate the relationship between depression and AD, water avoidance stress (WAS) was induced for 10 days in both Tg2576 mice and wild-type (WT) mice. After WAS, memory function and depressive-like behavior were investigated in Tg2576 mice. Tg2576 WAS mice exhibited more depressive-like behaviors than WT WAS and Tg2576 control (CON) mice. Strikingly, Tg2576 CON mice showed more depressive-like behaviors than WT mice. Moreover, corticosterone and phospho-glucocorticoid receptor (p-GR) levels were also higher in Tg2576 WAS mice in comparison to Tg2576 CON mice. Spinster homologue 2 (SPNS2) is a member of non-ATP-dependent transporter. The role of SPNS2 was widely known as a sphingosine-1-phosphate (S1P) transporter, which export intracellular S1P from cells. Using GEO database to analyze SPNS2 gene expression changes in patients with AD and depression, we show that SPNS2 gene expression correlates with AD and depression. Interestingly, Tg2576 WAS mice displayed significantly increased levels of SPNS2 w1hen compared to Tg2576 CON counterparts. SPNS2 levels were also higher in Tg2576 CON mice in comparison with WT CON mice. Remarkably, we found a decrease in S1P brain levels and an increase in S1P serum levels of Tg2576 WAS mice in comparison with Tg2576 CON mice. Accordingly, WAS induced group further decreased S1P levels in the brains. However, the level in the serum further increased in comparison with non-induced group. Therefore, these results suggest that AD and depression could be associated, and that Tg2576 transgenic mice are more susceptible to stress-induced depression through the release of S1P by SPNS2 up-regulation.
Collapse
Affiliation(s)
- Seung Sik Yoo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Yuri Kim
- KHIDI (Korea Health Industry Development Institute), Cheongju 28159, Republic of Korea
| | - Dong Won Lee
- Ministry of Food and Drug Safety (MFDS), Cheongju 28159, Republic of Korea
| | - Hyeon Joo Ham
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jung Ho Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - In Jun Yeo
- Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju Young Chang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
2
|
Sona C, Yeh YT, Li Y, Liu X, Ghosh A, Hinte LC, Ku MC, Rathjen T, Niendorf T, Yu G, Jia S, Kononenko NL, Hermann A, Luo J, Lin J, von Meyenn F, Yan X, Poy MN. Glutamatergic argonaute2 promotes the formation of the neurovascular unit in mice. Sci Signal 2025; 18:eadl6745. [PMID: 39999211 DOI: 10.1126/scisignal.adl6745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Proper formation of the complex neurovascular unit (NVU) along with the blood-brain barrier is critical for building and sustaining a healthy, functioning central nervous system. The RNA binding protein argonaute2 (Ago2) mediates microRNA (miRNA)-mediated gene silencing, which is critical for many facets of brain development, including NVU development. Here, we found that Ago2 in glutamatergic neurons was critical for NVU formation in the developing cortices of mice. Glutamatergic neuron-specific loss of Ago2 diminished synaptic formation, neuronal-to-endothelial cell contacts, and morphogenesis of the brain vasculature, ultimately compromising the integrity of the blood-brain barrier. Ago2 facilitated miRNA targeting of phosphatase and tensin homolog (Pten) mRNA, which encodes a phosphatase that modulates reelin-dependent phosphatidylinositol 3-kinase (PI3K)-Akt signaling within the glutamatergic subpopulation. Conditionally deleting Pten in Ago2-deficient neurons restored Akt2 phosphorylation as well as postnatal development and survival. Several mutations in AGO2 impair small RNA silencing and are associated with Lessel-Kreienkamp syndrome, a neurodevelopmental disorder. When expressed in a neuronal cell line, these human AGO2 loss-of-function variants failed to suppress PTEN, resulting in attenuated PI3K-Akt signaling, further indicating that dysregulation of Ago2 function may contribute to both impaired development and neurological disorders. Together, these results identify Ago2 as central to the engagement of neurons with blood vessels in the developing brain.
Collapse
Affiliation(s)
- Chandan Sona
- All Children's Hospital, Johns Hopkins University, St. Petersburg, FL 33701, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yu-Te Yeh
- All Children's Hospital, Johns Hopkins University, St. Petersburg, FL 33701, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yunxiao Li
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Xiaoxuan Liu
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Min-Chi Ku
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Thomas Rathjen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Thoralf Niendorf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Guoxing Yu
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shiqi Jia
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Natalia L Kononenko
- CECAD Excellence Center & Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock 17489, Germany
| | - Jiankai Luo
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Department of Health Sciences and Technology, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Xin Yan
- Translational Neurodegeneration Section, "Albrecht Kossel," University Medical Center Rostock, University of Rostock, Rostock 18147, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| | - Matthew N Poy
- All Children's Hospital, Johns Hopkins University, St. Petersburg, FL 33701, USA
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21287, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert Rössle Strasse 10, Berlin 13125, Germany
| |
Collapse
|
3
|
Qiao L, Han X, Ding R, Shang X, Xiao L, Gao G, Zhang C, Kang J, Su X, Liu Y, Luo J, Yan X, Lin J. Npc1 deficiency impairs microglia function via TREM2-mTOR signaling in Niemann-Pick disease type C. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167478. [PMID: 39173891 DOI: 10.1016/j.bbadis.2024.167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Niemann-Pick disease Type C (NPC) is a neurodegenerative disease mainly caused by the mutation in NPC1 gene, leading to massive accumulation of unesterified cholesterol in the late endosome/lysosome of cells. Impaired phenotype of microglia is a hallmark in Npc1 mutant mice (Npc1-/- mice). However, the mechanism of Npc1 in regulating microglial function is still unclear. Here, we showed that the reactive microglia in the neonatal Npc1-/- mice indicated by the increased lysosome protein CD68 and phagocytic activity were associated with disrupted TREM2-mTOR signaling in microglia. Furthermore, in Npc1-deficient BV2 cells, genetic deletion of Trem2 partially restored microglial function, probably via restored mTOR signaling. Taken together, our findings indicated that loss of Npc1 in microglia caused changes of their morphologies and the impairment of lysosomal function, which were linked to the TREM2-mTOR signaling pathway.
Collapse
Affiliation(s)
- Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaojing Han
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Ru Ding
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xiaodi Shang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lulu Xiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Ge Gao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Chu Zhang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jing Kang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Xi Su
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Jiankai Luo
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Xin Yan
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany.
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China; Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
4
|
Tacke C, Landgraf P, Dieterich DC, Kröger A. The fate of neuronal synapse homeostasis in aging, infection, and inflammation. Am J Physiol Cell Physiol 2024; 327:C1546-C1563. [PMID: 39495249 DOI: 10.1152/ajpcell.00466.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
Collapse
Affiliation(s)
- Charlotte Tacke
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Andrea Kröger
- Institute of Medical Microbiology and Hospital Hygiene, Molecular Microbiology Group, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Center for Infection Research, Innate Immunity and Infection Group, Braunschweig, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Kerschbaum HH, Gerner C, Oberascher K, Steiner P, Schürz M, Bresgen N. Lipid-nanoparticle-induced vacuolization in microglia. Commun Biol 2024; 7:1558. [PMID: 39580571 PMCID: PMC11585578 DOI: 10.1038/s42003-024-07271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Lipid-containing vacuoles in microglia were discovered more than one hundred years ago in the brain of patients showing neurodegenerative processes. Recently, molecular-biological studies demonstrated specific changes in lipid-metabolism related to neurodegeneration. Despite that already Alzheimer described a distinct glia phenotype having large, lipid-containing vacuoles (Gitterzellen), little is known about how microglia convert lipid metabolites into a vacuolated phenotype. We studied the impact of liver-derived, insoluble, lipid-enriched nanoparticles (Lef-NP) ( ~ 20 nm) and of ceramide-coated Percoll-nanoparticles (Cer-NP) ( ~ 20 nm) on vacuolization in microglia. Lipidomic analysis of Lef-NP revealed numerous distinct lipids, including pro-inflammatory ceramides, which are enriched in the brain of Alzheimer patients. Video microscopy revealed that hepatocyte-derived Lef-NP and Cer-NP enhanced macropinocytosis, followed by macropinosome swelling and formation of the Gitterzellen phenotype. Neither ceramide nor Percoll-nanoparticles induced Gitterzellen-formation. Electron-tomography visualized membrane contact-sites between nanoparticle-loaded endosomes, endoplasmic reticulum cisternae and mitochondria. Suppression of lipid-nanoparticle-induced Gitterzellen-formation by amiloride, which supresses macropinocytosis, and bafilomycin A, an endosomal acidification inhibitor, further confirmed a pinocytotic pathway in Gitterzellen-formation. Bafilomycin A also reversed Gitterzellen to a ramified microglia phenotype. Our experimental findings suggest that lipid-nanoparticles but not emulsified lipids provoke vacuolization in microglia, and provide a simple in-vitro model for a pathogenic process taking years in the human brain.
Collapse
Affiliation(s)
- Hubert H Kerschbaum
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Karin Oberascher
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Philip Steiner
- Institute of Pharmacology, Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Melanie Schürz
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Nikolaus Bresgen
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
6
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
7
|
George N, Xiao J. Inhibiting sphingosine 1-phosphate lyase: From efficacy to mechanism. Neurobiol Dis 2024; 199:106585. [PMID: 38955289 DOI: 10.1016/j.nbd.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Sphingosine-1 phosphate (S1P) is a lipid metabolite regulating diverse biological processes, including proliferation, differentiation, migration, and apoptosis, highlighting its physiological and therapeutic significance. Current S1P-based therapeutic approaches primarily focus on modulating the downstream signalling via targeting S1P receptors, however, this is challenged by incomplete receptor internalisation. Sphingosine-1-phosphate lyase (SPL) is a highly conserved enzyme that "gatekeeps" the final step of S1P degradation. Cognisant of the complex ligand and receptor interaction and dynamic metabolic networks, the selective modulation of SPL activity presents a new opportunity to regulate S1P biosynthesis and reveal its role in various systems. Over the past decade, an evolving effort has been made to identify new molecules that could block SPL activity in vitro or in vivo. This review focuses on summarising the current understanding of the reported SPL inhibitors identified through various screening approaches, discussing their efficacy in diverse model systems and the possible mechanism of action. Whilst effective modulation of S1P levels via inhibiting SPL is feasible, the specificity of those inhibitors remains inconclusive, presenting a clear challenge for future implications. Yet, none of the currently available SPL inhibitors is proven effective in elevating S1P levels within the central nervous system. This review article embraces future research focusing on investigating selective SPL inhibitors with high potency and possibly blood-brain-barrier permeability, which would aid the development of new S1P-based therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Nelson George
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
8
|
Dong D, Yu X, Tao X, Wang Q, Zhao L. S1P/S1PR1 signaling is involved in the development of nociceptive pain. Front Pharmacol 2024; 15:1407347. [PMID: 39045057 PMCID: PMC11263082 DOI: 10.3389/fphar.2024.1407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 μL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1β. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Xue Yu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Ministry of Education, Shenyang, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Chen Y, Chen J, Xing Z, Peng C, Li D. Autophagy in Neuroinflammation: A Focus on Epigenetic Regulation. Aging Dis 2024; 15:739-754. [PMID: 37548945 PMCID: PMC10917535 DOI: 10.14336/ad.2023.0718-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Neuroinflammation, characterized by the secretion of abundant inflammatory mediators, pro-inflammatory polarization of microglia, and the recruitment of infiltrating myeloid cells to foci of inflammation, drives or exacerbates the pathological processes of central nervous system disorders, especially in neurodegenerative diseases. Autophagy plays an essential role in neuroinflammatory processes, and the underlaying physiological mechanisms are closely correlated with neuroinflammation-related signals. Inhibition of mTOR and activation of AMPK and FOXO1 enhance autophagy and thereby suppress NLRP3 inflammasome activity and apoptosis, leading to the relief of neuroinflammatory response. And autophagy mitigates neuroinflammation mainly manifested by promoting the polarization of microglia from a pro-inflammatory to an anti-inflammatory state, reducing the production of pro-inflammatory mediators, and up-regulating the levels of anti-inflammatory factors. Notably, epigenetic modifications are intimately associated with autophagy and the onset and progression of various brain diseases. Non-coding RNAs, including microRNAs, circular RNAs and long noncoding RNAs, and histone acetylation have been reported to adjust autophagy-related gene and protein expression to alleviate inflammation in neurological diseases. The present review primarily focuses on the role and mechanisms of autophagy in neuroinflammatory responses, as well as epigenetic modifications of autophagy in neuroinflammation to reveal potential therapeutic targets in central nervous system diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Sood A, Fernandes V, Preeti K, Rajan S, Khatri DK, Singh SB. S1PR2 inhibition mitigates cognitive deficit in diabetic mice by modulating microglial activation via Akt-p53-TIGAR pathway. Int Immunopharmacol 2024; 126:111278. [PMID: 38011768 DOI: 10.1016/j.intimp.2023.111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cognitive deficit is one of the challenging complications of type 2 diabetes. Sphingosine 1- phosphate receptors (S1PRs) have been implicated in various neurodegenerative and metabolic disorders. The association of S1PRs and cognition in type 2 diabetes remains elusive. Microglia-mediated neuronal damage could be the thread propagating cognitive deficit. The effects of S1PR2 inhibition on cognition in high-fat diet and streptozotocin-induced diabetic mice were examined in this work. We further assessed microglial activation and putative microglial polarisation routes. Cognitive function loss was observed after four months of diabetes induction in Type 2 diabetes animal model. JTE013, an S1PR2 inhibitor, was used to assess neuroprotection against cognitive decline and neuroinflammation in vitro and in vivo diabetes model. JTE013 (10 mg/kg) improved synaptic plasticity by upregulating psd95 and synaptophysin while reducing cognitive decline and neuroinflammation. It further enhanced anti-inflammatory microglia in the hippocampus and prefrontal cortex (PFC), as evidenced by increased Arg-1, CD206, and YM-1 levels and decreased iNOS, CD16, and MHCII levels. TIGAR, TP53-induced glycolysis and apoptosis regulator, might facilitate the anti-inflammatory microglial phenotype by promoting oxidative phosphorylation and decreasing apoptosis. However, since p53 is a TIGAR suppressor, inhibiting p53 could be beneficial. S1PR2 inhibition increased p-Akt and TIGAR levels and reduced the levels of p53 in the PFC and hippocampus of type 2 diabetic mice, thereby decreasing apoptosis. In vitro, palmitate was used to imitate sphingolipid dysregulation in BV2 cells, followed by conditioned media exposure to Neuro2A cells. JTE013 rescued the palmitate-induced neuronal apoptosis by promoting the anti-inflammatory microglia. In the present study, we demonstrate that the inhibition of S1PR2 improves cognitive function and skews microglia toward anti-inflammatory phenotype in type 2 diabetic mice, thereby promising to be a potential therapy for neuroinflammation.
Collapse
Affiliation(s)
- Anika Sood
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, NIPER Hyderabad, Hyderabad, Telangana 500037, India.
| |
Collapse
|
11
|
Hansen JN. Morphometric Analyses of Macrophages. Methods Mol Biol 2024; 2713:519-541. [PMID: 37639145 DOI: 10.1007/978-1-0716-3437-0_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Cell morphology and motility drive the cellular capabilities to interact with the environment. For example, microglia, the longest known tissue-resident macrophages, show a highly branched process tree with which they continuously scan their environment. Computational image analysis allows to quantify morphology and/or motility from images of tissue-resident macrophages. Here, I describe a step-by-step protocol for analyzing the morphology (and motility) of macrophages with our recently described, freely available software MotiQ, which provides a broad band of parameters and thereby serves as a versatile tool for studies of morphology and motility.
Collapse
Affiliation(s)
- Jan N Hansen
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
12
|
Wang W, Zhao Y, Zhu G. The role of sphingosine-1-phosphate in the development and progression of Parkinson's disease. Front Cell Neurosci 2023; 17:1288437. [PMID: 38179204 PMCID: PMC10764561 DOI: 10.3389/fncel.2023.1288437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Parkinson's disease (PD) could be viewed as a proteinopathy caused by changes in lipids, whereby modifications in lipid metabolism may lead to protein alterations, such as the accumulation of alpha-synuclein (α-syn), ultimately resulting in neurodegeneration. Although the loss of dopaminergic neurons in the substantia nigra is the major clinical manifestation of PD, the etiology of it is largely unknown. Increasing evidence has highlighted the important role of lipids in the pathophysiology of PD. Sphingosine-1-phosphate (S1P), a signaling lipid, has been suggested to have a potential association with the advancement and worsening of PD. Therefore, better understanding the mechanisms and regulatory proteins is of high interest. Most interestingly, S1P appears to be an important target to offers a new strategy for the diagnosis and treatment of PD. In this review, we first introduce the basic situation of S1P structure, function and regulation, with a special focus on the several pathways. We then briefly describe the regulation of S1P signaling pathway on cells and make a special focused on the cell growth, proliferation and apoptosis, etc. Finally, we discuss the function of S1P as potential therapeutic target to improve the clinical symptoms of PD, and even prevent the progression of the PD. In the context of PD, the functions of S1P modulators have been extensively elucidated. In conclusion, S1P modulators represent a novel and promising therapeutic principle and therapeutic method for PD. However, more research is required before these drugs can be considered as a standard treatment option for PD.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
13
|
Xiao J. Sphingosine 1-Phosphate Lyase in the Developing and Injured Nervous System: a Dichotomy? Mol Neurobiol 2023; 60:6869-6882. [PMID: 37507574 PMCID: PMC10657793 DOI: 10.1007/s12035-023-03524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Sphingosine 1-phosphate lyase (SPL) is the terminal enzyme that controls the degradation of the bioactive lipid sphingosine 1-phosphate (S1P) within an interconnected sphingolipid metabolic network. The unique metabolic position of SPL in maintaining S1P levels implies SPL could be an emerging new therapeutic target. Over the past decade, an evolving effort has been made to unravel the role of SPL in the nervous system; however, to what extent SPL influences the developing and mature nervous system through altering S1P biosynthesis remains opaque. While congenital SPL deletion is associated with deficits in the developing nervous system, the loss of SPL activity in adults appears to be neuroprotective in acquired neurological disorders. The controversial findings concerning SPL's role in the nervous system are further constrained by the current genetic and pharmacological tools. This review attempts to focus on the multi-faceted nature of SPL function in the mammalian nervous systems, implying its dichotomy in the developing and adult central nervous system (CNS). This article also highlights SPL is emerging as a therapeutic molecule that can be selectively targeted to modulate S1P for the treatment of acquired neurodegenerative diseases, raising new questions for future investigation. The development of cell-specific inducible conditional SPL mutants and selective pharmacological tools will allow the precise understanding of SPL's function in the adult CNS, which will aid the development of a new strategy focusing on S1P-based therapies for neuroprotection.
Collapse
Affiliation(s)
- Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, John Street, Hawthorn, VIC, 3022, Australia.
| |
Collapse
|
14
|
Wang D, Han S, Lv G, Hu Y, Zhuo W, Zeng Z, Tang J, Huang Y, Wang F, Wang J, Zhao Y, Zhao G. Pancreatic Acinar Cells-Derived Sphingosine-1-Phosphate Contributes to Fibrosis of Chronic Pancreatitis via Inducing Autophagy and Activation of Pancreatic Stellate Cells. Gastroenterology 2023; 165:1488-1504.e20. [PMID: 37634735 DOI: 10.1053/j.gastro.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND & AIMS Studies have demonstrated that activated pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis (CP); however, the precise mechanism for PSCs activation has not been fully elucidated. We analyzed the role of injured pancreatic acinar cells (iPACs) in the activation of PSCs of CP. METHODS Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling was evaluated in experimental CP induced by cerulein injection or pancreatic duct ligation, as well as in PACs injured by cholecystokinin. The activation of PSCs and pancreatic fibrosis in CP samples was evaluated by immunohistochemical and immunofluorescence analyses. In vitro coculture assay of iPACs and PSCs was created to evaluate the effect of the SPHK1/S1P pathway and S1P receptor 2 (SIPR2) on autophagy and activation of PSCs. The pathogenesis of CP was assessed in SPHK1-/- mice or PACs-specific SPHK1-knockdown mice with recombinant adeno-associated virus serotypes 9-SPHK1-knockdown, as well as in mice treated with inhibitor of SPHK1 and S1P receptor 2 (S1PR2). RESULTS SPHK1/S1P was remarkably increased in iPACs and acinar cells in pancreatic tissues of CP mice. Meanwhile, the pathogenesis, fibrosis, and PSCs activation of CP was significantly prevented in SPHK1-/- mice and recombinant adeno-associated virus serotypes 9-SPHK1-knockdown mice. Meanwhile, iPACs obviously activated PSCs, which was prevented by SPHK1 knockdown in iPACs. Moreover, iPACs-derived S1P specifically combined to S1PR2 of PSCs, by which modulated 5' adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway and consequently induced autophagy and activation of PSCs. Furthermore, hypoxia-inducible factor 1-α and -2α promoted SPHK1 transcription of PACs under hypoxia conditions, which is a distinct characteristic of the CP microenvironment. Coincidently, inhibition of SPHK1 and S1PR2 activity with inhibitor PF-543 and JTE-013 obviously impeded pancreatic fibrogenesis of CP mice. CONCLUSIONS The activated SPHK1/S1P pathway in iPACs induces autophagy and activation of PSCs by regulating the S1PR2/5' adenosine monophosphate-activated protein kinase/mammalian target of rapamycin pathway, which promotes fibrogenesis of CP. The hypoxia microenvironment might contribute to the cross talk between PACs and PSCs in pathogenesis of CP.
Collapse
Affiliation(s)
- Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Shengbo Han
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Guozheng Lv
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Wenfeng Zhuo
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yan Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Jie Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China.
| |
Collapse
|
15
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
16
|
Mesén-Porras S, Rojas-Céspedes A, Molina-Mora JA, Vega-Baudrit J, Siles F, Quiros S, Mora-Rodríguez R. Sphingolipid-Based Synergistic Interactions to Enhance Chemosensitivity in Lung Cancer Cells. Cells 2023; 12:2588. [PMID: 37998323 PMCID: PMC10670127 DOI: 10.3390/cells12222588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Tumor heterogeneity leads to drug resistance in cancer treatment with the crucial role of sphingolipids in cell fate and stress signaling. We analyzed sphingolipid metabolism and autophagic flux to study chemotherapeutic interactions on the A549 lung cancer model. Loaded cells with fluorescent sphingomyelin analog (BODIPY) and mCherry-EGFP-LC3B were used to track autophagic flux and assess cytotoxicity when cells are exposed to chemotherapy (epirubicin, cisplatin, and paclitaxel) together with sphingolipid pathway inhibitors and autophagy modulators. Our cell model approach employed fluorescent sphingolipid biosensors and a Gaussian Mixture Model of cell heterogeneity profiles to map the influence of chemotherapy on the sphingolipid pathway and infer potential synergistic interactions. Results showed significant synergy, especially when combining epirubicin with autophagy inducers (rapamycin and Torin), reducing cell viability. Cisplatin also synergized with a ceramidase inhibitor. However, paclitaxel often led to antagonistic effects. Our mapping model suggests that combining chemotherapies with autophagy inducers increases vesicle formation, possibly linked to ceramide accumulation, triggering cell death. However, the in silico model proposed ceramide accumulation in autophagosomes, and kinetic analysis provided evidence of sphingolipid colocalization in autophagosomes. Further research is needed to identify specific sphingolipids accumulating in autophagosomes. These findings offer insights into potential strategies for overcoming chemotherapy resistance by targeting the sphingolipid pathway.
Collapse
Affiliation(s)
- Susana Mesén-Porras
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Andrea Rojas-Céspedes
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Arturo Molina-Mora
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center of High Technology (CeNAT), Pavas, San José 1174-1200, Costa Rica;
| | - Francisco Siles
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Pattern Recognition and Intelligent Systems Laboratory (PRIS-Lab), Department and Postgraduate Studies in Electrical Engineering, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Steve Quiros
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
| | - Rodrigo Mora-Rodríguez
- Research Center on Tropical Diseases (CIET), Faculty of Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica; (S.M.-P.); (A.R.-C.); (J.A.M.-M.); (S.Q.)
- Research Center on Surgery and Cancer (CICICA), Campus Rodrigo Facio, University of Costa Rica, San José 11501-2060, Costa Rica;
- Master Program in Microbiology, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
17
|
Xiao S, Peng K, Li C, Long Y, Yu Q. The role of sphingosine-1-phosphate in autophagy and related disorders. Cell Death Discov 2023; 9:380. [PMID: 37852968 PMCID: PMC10584985 DOI: 10.1038/s41420-023-01681-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
S1P, also referred to as sphingosine-1-phosphate, is a lipid molecule with bioactive properties involved in numerous cellular processes such as cell growth, movement, programmed cell death, self-degradation, cell specialization, aging, and immune system reactions. Autophagy is a meticulously controlled mechanism in which cells repurpose their elements to maintain cellular balance. There are five stages in autophagy: initiation, nucleation, elongation and maturation, fusion, and degradation. New research has provided insight into the complex connection between S1P and autophagy, uncovering their interaction in both normal and abnormal circumstances. Gaining knowledge about the regulatory mechanism of S1P signaling on autophagy can offer a valuable understanding of its function in well-being and illness, potentially leading to innovative therapeutic concepts for diverse ailments. Hence, this review analyzes the essential stages in mammalian autophagy, with a specific emphasis on recent research exploring the control of each stage by S1P. Additionally, it sheds light on the roles of S1P-induced autophagy in various disorders.
Collapse
Affiliation(s)
- Siqi Xiao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Kaixin Peng
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Congxin Li
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Yuanyuan Long
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China
| | - Qin Yu
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, P.R. China.
| |
Collapse
|
18
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
19
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
20
|
Prichard A, Garza KM, Shridhar A, He C, Bitarafan S, Pybus A, Wang Y, Snyder E, Goodson MC, Franklin TC, Jaeger D, Wood LB, Singer AC. Brain rhythms control microglial response and cytokine expression via NF-κB signaling. SCIENCE ADVANCES 2023; 9:eadf5672. [PMID: 37556553 PMCID: PMC10411883 DOI: 10.1126/sciadv.adf5672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Microglia transform in response to changes in sensory or neural activity, such as sensory deprivation. However, little is known about how specific frequencies of neural activity, or brain rhythms, affect microglia and cytokine signaling. Using visual noninvasive flickering sensory stimulation (flicker) to induce electrical neural activity at 40 hertz, within the gamma band, and 20 hertz, within the beta band, we found that these brain rhythms differentially affect microglial morphology and cytokine expression in healthy animals. Flicker induced expression of certain cytokines independently of microglia, including interleukin-10 and macrophage colony-stimulating factor. We hypothesized that nuclear factor κB (NF-κB) plays a causal role in frequency-specific cytokine and microglial responses because this pathway is activated by synaptic activity and regulates cytokines. After flicker, phospho-NF-κB colabeled with neurons more than microglia. Inhibition of NF-κB signaling down-regulated flicker-induced cytokine expression and attenuated flicker-induced changes in microglial morphology. These results reveal a mechanism through which brain rhythms affect brain function by altering microglial morphology and cytokines via NF-κB.
Collapse
Affiliation(s)
- Ashley Prichard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kristie M. Garza
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Avni Shridhar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Christopher He
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alyssa Pybus
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunmiao Wang
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Emma Snyder
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Matthew C. Goodson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tina C. Franklin
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Dieter Jaeger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Annabelle C. Singer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Alam S, Afsar SY, Wolter MA, Volk LM, Mitroi DN, Meyer Zu Heringdorf D, van Echten-Deckert G. S1P Lyase Deficiency in the Brain Promotes Astrogliosis and NLRP3 Inflammasome Activation via Purinergic Signaling. Cells 2023; 12:1844. [PMID: 37508508 PMCID: PMC10378183 DOI: 10.3390/cells12141844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Astrocytes are critical players in brain health and disease. Brain pathologies and lesions are usually accompanied by astroglial alterations known as reactive astrogliosis. Sphingosine 1-phosphate lyase (SGPL1) catalysis, the final step in sphingolipid catabolism, irreversibly cleaves its substrate sphingosine 1-phosphate (S1P). We have shown that neural ablation of SGPL1 causes accumulation of S1P and hence neuronal damage, cognitive deficits, as well as microglial activation. Moreover, the S1P/S1P-receptor signaling axis enhances ATP production in SGPL1-deficient astrocytes. Using immunohistochemical methods as well as RNA Seq and CUT&Tag we show how S1P signaling causes activation of the astrocytic purinoreceptor P2Y1 (P2Y1R). With specific pharmacological agonists and antagonists, we uncover the P2Y1R as the key player in S1P-induced astrogliosis, and DDX3X mediated the activation of the NLRP3 inflammasome, including caspase-1 and henceforward generation of interleukin-1ß (IL-1ß) and of other proinflammatory cytokines. Our results provide a novel route connecting S1P metabolism and signaling with astrogliosis and the activation of the NLRP3 inflammasome, a central player in neuroinflammation, known to be crucial for the pathogenesis of numerous brain illnesses. Thus, our study opens the door for new therapeutic strategies surrounding S1P metabolism and signaling in the brain.
Collapse
Affiliation(s)
- Shah Alam
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Maya Anik Wolter
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Luisa Michelle Volk
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Daniel Nicolae Mitroi
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute for General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Gerhild van Echten-Deckert
- LIMES Institute for Membrane Biology and Lipid Biochemistry, Kekulé-Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
22
|
Standoli S, Rapino C, Di Meo C, Rudowski A, Kämpfer-Kolb N, Volk LM, Thomas D, Trautmann S, Schreiber Y, Meyer zu Heringdorf D, Maccarrone M. Sphingosine Kinases at the Intersection of Pro-Inflammatory LPS and Anti-Inflammatory Endocannabinoid Signaling in BV2 Mouse Microglia Cells. Int J Mol Sci 2023; 24:8508. [PMID: 37239854 PMCID: PMC10217805 DOI: 10.3390/ijms24108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1β production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sara Standoli
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Cinzia Rapino
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Camilla Di Meo
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Agnes Rudowski
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Nicole Kämpfer-Kolb
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Luisa Michelle Volk
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Healthcare, 00143 Rome, Italy
| |
Collapse
|
23
|
Xiong W, Wang H, Zhang H, Xing Y, Gao W, Chen L, Chen L, Dai Z. Resolvin D1 attenuates depressive-like behavior in LPS-challenged mice by promoting microglial autophagy. Inflammopharmacology 2023:10.1007/s10787-023-01234-9. [PMID: 37103692 DOI: 10.1007/s10787-023-01234-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
It has been proven that neuroinflammation triggered by microglial activation is the pathogenesis of depression associated with sepsis. An endogenous lipid mediator known as resolvin D1 (RvD1) is known to have anti-inflammatory effects in a sepsis model. However, it remains unknown if the effects of RvD1 on inflammatory responses are regulated by microglial autophagy. The current study investigated the role of RvD1-induced microglial autophagy in neuroinflammation. The findings showed that RvD1 reverses LPS-induced autophagy inhibition in microglia. RvD1 treatment significantly inhibits inflammatory responses by preventing NF-κB nuclear translocation and microglial M1 phenotypic transition. RvD1 exhibits an attenuation of neurotoxicity in both in vivo and in vitro models of sepsis. Following RvD1 injection, depressive-like behaviors in SAE mice were significantly improved. Notably, the aforesaid effects of RvD1 were eliminated by 3-MA, demonstrating that microglial autophagy was modulated. In conclusion, our findings shed new light on the involvement of microglial autophagy in SAE and emphasize the potential benefits of RvD1 as a promising therapeutic agent in the treatment of depression.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Hongyan Zhang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Yanmei Xing
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Wenli Gao
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lengfeng Chen
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lixin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), No. 1017, Dongmen North Road, Shenzhen, 518020, China.
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
24
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
25
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
26
|
van Echten-Deckert G. The role of sphingosine 1-phosphate metabolism in brain health and disease. Pharmacol Ther 2023; 244:108381. [PMID: 36907249 DOI: 10.1016/j.pharmthera.2023.108381] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Lipids are essential structural and functional components of the central nervous system (CNS). Sphingolipids are ubiquitous membrane components which were discovered in the brain in the late 19th century. In mammals, the brain contains the highest concentration of sphingolipids in the body. Sphingosine 1-phosphate (S1P) derived from membrane sphingolipids evokes multiple cellular responses which, depending on its concentration and localization, make S1P a double-edged sword in the brain. In the present review we highlight the role of S1P in brain development and focus on the often contrasting findings regarding its contributions to the initiation, progression and potential recovery of different brain pathologies, including neurodegeneration, multiple sclerosis (MS), brain cancers, and psychiatric illnesses. A detailed understanding of the critical implications of S1P in brain health and disease may open the door for new therapeutic options. Thus, targeting S1P-metabolizing enzymes and/or signaling pathways might help overcome, or at least ameliorate, several brain illnesses.
Collapse
|
27
|
Xu H, Xu F, Lu H, Chen J, Huang X, Chen Y, Lin L. S1PR2 is Important for Cigarette Smoke-induced Pyroptosis in Human Bronchial Epithelial Cells. Arch Med Res 2023:S0188-4409(23)00040-1. [PMID: 36990889 DOI: 10.1016/j.arcmed.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease and other respiratory inflammatory diseases are often associated with cigarette smoke exposure. However, the underlying molecular mechanism remains unclear. AIM OF THE STUDY This study aimed to investigate the role of sphingosine-1-phosphate receptor 2 (S1PR2) in cigarette smoke extract (CSE)-induced inflammation and pyroptosis in human bronchial epithelial (HBE) cells. METHODS CSE was administered to HBE cells and inflammation and pyroptosis were assessed. The mRNA levels of S1PR2, NLRP3, IL-1β, and IL-18 in HBE cells were detected by quantitative RT-PCR. Secreted protein levels of IL-1β and IL-18 in the culture supernatants were detected using enzyme-linked immunosorbent assay. Western blotting was used to measure the levels of S1PR2 and pyroptosis-related proteins (NLRP3, ASC, caspase-1, GSDMD, IL-1β, and IL-18). RESULTS Our study revealed an upregulated expression of S1PR2, NLRP3, ASC, caspase-1, GSDMD, IL-1β, and regulated IL-18 in HBE cells after CSE exposure. Genetic blockage of S1PR2 could reverse the increased expression of these proteins related to CSE-induced pyroptosis. Conversely, S1PR2 overexpression increased CSE-induced pyroptosis by upregulating the expression of NLRP3, ASC, caspase-1, GSDMD, IL-1β, and IL-18 in HBE cells. CONCLUSIONS Our results revealed that a novel S1PR2 signaling pathway may be involved in the pathogenesis of CSE-induced inflammation and pyroptosis in HBE cells. Thus, S1PR2 inhibitors could be an effective treatment for cigarette smoke-induced airway inflammation and injury.
Collapse
|
28
|
Alam S, Afsar SY, Van Echten-Deckert G. S1P Released by SGPL1-Deficient Astrocytes Enhances Astrocytic ATP Production via S1PR 2,4, Thus Keeping Autophagy in Check: Potential Consequences for Brain Health. Int J Mol Sci 2023; 24:ijms24054581. [PMID: 36902011 PMCID: PMC10003137 DOI: 10.3390/ijms24054581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Astrocytes are critical players in brain health and disease. Sphingosine-1-phosphate (S1P), a bioactive signaling lipid, is involved in several vital processes, including cellular proliferation, survival, and migration. It was shown to be crucial for brain development. Its absence is embryonically lethal, affecting, inter alia, the anterior neural tube closure. However, an excess of S1P due to mutations in S1P-lyase (SGPL1), the enzyme responsible for its constitutive removal, is also harmful. Of note, the gene SGPL1 maps to a region prone to mutations in several human cancers and also in S1P-lyase insufficiency syndrome (SPLIS) characterized by several symptoms, including peripheral and central neurological defects. Here, we investigated the impact of S1P on astrocytes in a mouse model with the neural-targeted ablation of SGPL1. We found that SGPL1 deficiency, and hence the accumulation of its substrate, S1P, causes the elevated expression of glycolytic enzymes and preferentially directs pyruvate into the tricarboxylic acid (TCA) cycle through its receptors (S1PR2,4). In addition, the activity of TCA regulatory enzymes was increased, and consequently, so was the cellular ATP content. The high energy load activates the mammalian target of rapamycin (mTOR), thus keeping astrocytic autophagy in check. Possible consequences for the viability of neurons are discussed.
Collapse
|
29
|
Yang G, Shi J. miRNA-130a-3p targets sphingosine-1-phosphate receptor 1 to activate the microglial and astrocytes and to promote neural injury under the high glucose condition. Open Med (Wars) 2022; 17:2117-2129. [PMID: 36582210 PMCID: PMC9768207 DOI: 10.1515/med-2022-0565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
As a common complication of diabetes, diabetic pain neuropathy (DPN) is caused by neuron intrinsic and extrinsic factors. Neuron intrinsic factors include neuronal apoptosis and oxidative stress, while extrinsic factors are associated with glial activation. The present study was performed to reveal the functions of miR-130a-3p in apoptosis and oxidative stress of the high glucose (HG)-stimulated primary neurons as well as in the activation of microglial and astrocytes. Primary neurons, microglial, and astrocytes were isolated from newborn mice. Apoptosis was assessed by flow cytometry analysis and western blotting. Reactive oxygen species and glutathione levels were assessed to determine the oxidative stress. Markers of glial cells were detected by immunofluorescence staining. The results revealed that miR-130a-3p deficiency alleviated apoptosis and oxidative stress of HG-stimulated neurons as well as suppressed microglial and astrocyte activation. Moreover, sphingosine-1-phosphate receptor 1 (S1PR1) was found as a target downstream of miR-130a-3p. S1PR1 knockdown partially rescued the inhibitory effects of silenced miR-130a-3p on neuronal injury and glial activation. In conclusion, miR-130a-3p targets S1PR1 to activate the microglial and astrocytes and to promote apoptosis and oxidative stress of the HG-stimulated primary neurons. These findings may provide a novel insight into DPN treatment.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pain, Funing County People’s Hospital, Funing County, Yancheng City, Jiangsu Province, 224400, China
| | - Jinxin Shi
- Department of Pain, Funing County People’s Hospital, No 111 Fucheng Street, Funing County, Yancheng City, Jiangsu Province, 224400, China
| |
Collapse
|
30
|
Yang D, Wang X, Zhang L, Fang Y, Zheng Q, Liu X, Yu W, Chen S, Ying J, Hua F. Lipid metabolism and storage in neuroglia: role in brain development and neurodegenerative diseases. Cell Biosci 2022; 12:106. [PMID: 35831869 PMCID: PMC9277953 DOI: 10.1186/s13578-022-00828-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/05/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of neuroglia in maintaining normal brain function under physiological and pathological conditions has been supported by growing evidence in recent years. The most important issues regarding glial metabolism and function include the cooperation between glial populations and neurons, morphological and functional changes in pathological states, and the role in the onset and progression of neurodegenerative diseases. Although lipid accumulation and further lipid droplet production in neurodegenerative disease brain models have been observed for a long time, the dynamic development of brain lipid droplet research in recent years suggests its role in the development and progression of neurodegenerative diseases was previously underestimated. First recognized as organelles of lipid storage, lipid droplets (LDs) have emerged as an important organelle in metabolic diseases, inflammation, and host defense. Dynamic changes in lipid metabolism within neurons and glial cells resulting in lipid accumulation and lipid droplet formation are present in brain models of various neurodegenerative diseases, yet their role in the brain remains largely unexplored. This paper first reviews the metabolism and accumulation of several major lipids in the brain and discusses the regulation of lipid accumulation in different types of brain cells. We explore the potential role of intracellular lipid accumulation in the pathogenesis of neurodegeneration, starting from lipid metabolism and LDs biogenesis in glial cells, and discuss several pathological factors that promote lipid droplet formation, mainly focusing on oxidative stress, energy metabolism and glial cell-neuron coupling, which are closely related to the etiology and progression of neurodegenerative diseases. Finally, the directions and challenges of intracellular lipid metabolism in glial cells in neurodegeneration are discussed.
Collapse
|
31
|
Peng L, Hu G, Yao Q, Wu J, He Z, Law BYK, Hu G, Zhou X, Du J, Wu A, Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol 2022; 13:1013311. [PMID: 36466850 PMCID: PMC9708732 DOI: 10.3389/fimmu.2022.1013311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2023] Open
Abstract
Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyang He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junrong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Khotimchenko YS, Silachev DN, Katanaev VL. Marine Natural Products from the Russian Pacific as Sources of Drugs for Neurodegenerative Diseases. Mar Drugs 2022; 20:708. [PMID: 36421986 PMCID: PMC9697637 DOI: 10.3390/md20110708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 09/05/2023] Open
Abstract
Neurodegenerative diseases are growing to become one of humanity's biggest health problems, given the number of individuals affected by them. They cause enough mortalities and severe economic impact to rival cancers and infections. With the current diversity of pathophysiological mechanisms involved in neurodegenerative diseases, on the one hand, and scarcity of efficient prevention and treatment strategies, on the other, all possible sources for novel drug discovery must be employed. Marine pharmacology represents a relatively uncharted territory to seek promising compounds, despite the enormous chemodiversity it offers. The current work discusses one vast marine region-the Northwestern or Russian Pacific-as the treasure chest for marine-based drug discovery targeting neurodegenerative diseases. We overview the natural products of neurological properties already discovered from its waters and survey the existing molecular and cellular targets for pharmacological modulation of the disease. We further provide a general assessment of the drug discovery potential of the Russian Pacific in case of its systematic development to tackle neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuri S. Khotimchenko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- A.V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
| | - Denis N. Silachev
- Department of Functional Biochemistry of Biopolymers, A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Vladimir L. Katanaev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, 690950 Vladivostok, Russia
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
33
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
34
|
Zeng Y, Zhang W, Xue T, Zhang D, Lv M, Jiang Y. Sphk1-induced autophagy in microglia promotes neuronal injury following cerebral ischaemia-reperfusion. Eur J Neurosci 2022; 56:4287-4303. [PMID: 35766986 DOI: 10.1111/ejn.15749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022]
Abstract
Microglial hyperactivation mediated by sphingosine kinase 1/sphingosine-1-phosphate (SphK1/S1P) signalling and the consequent inflammatory mediator production serve as the key drivers of cerebral ischaemia-reperfusion injury (CIRI). Although SphK1 reportedly controls autophagy and microglial activation, it remains uncertain as to whether SphK1 is similarly capable of regulating damage mediated by CIRI-activated microglia. In the current study, we adopted both in vitro oxygen-glucose deprivation reperfusion (OGDR) models and in vivo rat models of focal CIRI to ascertain this possibility. It was found that CIRI upregulated SphK1 and induced autophagy in microglia, while inhibiting these changes significantly impaired to prevented neuronal apoptosis. Results of mechanistic investigation revealed that SphK1 promoted autophagy via the tumour necrosis factor receptor associated factor 2 (TRAF2) pathway. Altogether, our findings unfolded to reveal a novel mechanism, whereby SphK1-induced autophagy in microglia contributed to the pathogenesis of CIRI, potentially highlighting novel avenues for future therapeutic intervention in ischaemic stroke patients.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tengteng Xue
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dayong Zhang
- Department of New Media and Arts, Harbin Institute of Technology, Harbin, China
| | - Manhua Lv
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongjia Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Custodia A, Romaus-Sanjurjo D, Aramburu-Núñez M, Álvarez-Rafael D, Vázquez-Vázquez L, Camino-Castiñeiras J, Leira Y, Pías-Peleteiro JM, Aldrey JM, Sobrino T, Ouro A. Ceramide/Sphingosine 1-Phosphate Axis as a Key Target for Diagnosis and Treatment in Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2022; 23:8082. [PMID: 35897658 PMCID: PMC9331765 DOI: 10.3390/ijms23158082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Alzheimer's disease (AD) is considered the most prevalent neurodegenerative disease and the leading cause of dementia worldwide. Sphingolipids, such as ceramide or sphingosine 1-phosphate, are bioactive molecules implicated in structural and signaling functions. Metabolic dysfunction in the highly conserved pathways to produce sphingolipids may lead to or be a consequence of an underlying disease. Recent studies on transcriptomics and sphingolipidomics have observed alterations in sphingolipid metabolism of both enzymes and metabolites involved in their synthesis in several neurodegenerative diseases, including AD. In this review, we highlight the most relevant findings related to ceramide and neurodegeneration, with a special focus on AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomás Sobrino
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| | - Alberto Ouro
- Neuro Aging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.); (D.R.-S.); (M.A.-N.); (D.Á.-R.); (L.V.-V.); (J.C.-C.); (Y.L.); (J.M.P.-P.); (J.M.A.)
| |
Collapse
|
36
|
Xin JY, Huang X, Sun Y, Jiang HS, Fan J, Yu NW, Guo FQ, Ye F, Xiao J, Le WD, Yang SJ, Xiang Y. Association Between Plasma Apolipoprotein M With Alzheimer’s Disease: A Cross-Sectional Pilot Study From China. Front Aging Neurosci 2022; 14:838223. [PMID: 35370599 PMCID: PMC8973919 DOI: 10.3389/fnagi.2022.838223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
BackgroundRecent evidence of genetics and metabonomics indicated a potential role of apolipoprotein M (ApoM) in the pathogenesis of Alzheimer’s disease (AD). Here, we aimed to investigate the association between plasma ApoM with AD.MethodsA multicenter, cross-sectional study recruited patients with AD (n = 67), age- and sex-matched cognitively normal (CN) controls (n = 73). After the data collection of demographic characteristics, lifestyle risk factors, and medical history, we examined and compared the plasma levels of ApoM, tau phosphorylated at threonine 217 (p-tau217) and neurofilament light (NfL). Multivariate logistic regression analysis was applied to determine the association of plasma ApoM with the presence of AD. The correlation analysis was used to explore the correlations between plasma ApoM with cognitive function [Mini–Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)], activities of daily living (ADL), and the representative blood-based biomarkers (plasma p-tau217 and NfL). Receiver operating characteristic (ROC) analysis and Delong’s test were used to determine the diagnostic power of plasma ApoM.ResultsPlasma ApoM and its derived indicators (ratios of ApoM/TC, ApoM/TG, ApoM/HDL-C, and ApoM/LDL-C) were significantly higher in AD group than those in CN group (each p < 0.0001). After adjusted for the risk factors of AD, the plasma ApoM and its derived indicators were significantly associated with the presence of AD, respectively. ApoM (OR = 1.058, 95% CI: 1.027–1.090, p < 0.0001), ApoM/TC ratio (OR = 1.239, 95% CI: 1.120–1.372, p < 0.0001), ApoM/TG ratio (OR = 1.064, 95% CI: 1.035–1.095, p < 0.0001), ApoM/HDL-C ratio (OR = 1.069, 95% CI: 1.037–1.102, p < 0.0001), and ApoM/LDL-C ratio (OR = 1.064, 95% CI:1.023–1.106, p = 0.002). In total participants, plasma ApoM was significantly positively correlated with plasma p-tau217, plasma NfL, and ADL (each p < 0.0001) and significantly negatively correlated with MMSE and MoCA (each p < 0.0001), respectively. In further subgroup analyses, these associations remained in different APOEϵ 4 status participants and sex subgroups. ApoM/TC ratio (ΔAUC = 0.056, p = 0.044) and ApoM/TG ratio (ΔAUC = 0.097, p = 0.011) had a statistically remarkably larger AUC than ApoM, respectively. The independent addition of ApoM and its derived indicators to the basic model [combining age, sex, APOEϵ 4, and body mass index (BMI)] led to the significant improvement in diagnostic power, respectively (each p < 0.05).ConclusionAll the findings preliminarily uncovered the association between plasma ApoM and AD and provided more evidence of the potential of ApoM as a candidate biomarker of AD.
Collapse
Affiliation(s)
- Jia-Yan Xin
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Xiao Huang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Ying Sun
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hai-Song Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jin Fan
- Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Neng-wei Yu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fu-Qiang Guo
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Ye
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Xiao
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-dong Le
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shao-Jie Yang
- Department of Neurology, Chengdu Eighth People’s Hospital, Chengdu, China
- *Correspondence: Shao-Jie Yang,
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Yang Xiang,
| |
Collapse
|
37
|
Liu S, Ma W, Feng Y, Zhang Y, Jia X, Tang C, Tang F, Wu X, Huang Y. AAV9-coGLB1 Improves Lysosomal Storage and Rescues Central Nervous System Inflammation in a Mutant Mouse Model of GM1 Gangliosidosis. Curr Gene Ther 2022; 22:352-365. [PMID: 35249485 DOI: 10.2174/1566523222666220304092732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GM1 gangliosidosis (GM1) is an autosomal recessive disorder characterized by deficiency of beta-galactosidase (β-gal), a ubiquitous lysosomal enzyme that catalyzes the hydrolysis of GM1 ganglioside. OBJECTIVE To explore the application of the AAV9-coGLB1 for effective treatment in a GM1 gangliosidosis mutant mouse model. METHODS We designed a novel adeno-associated virus 9 (AAV9) vector expressing β-gal (AAV9-coGLB1) to treat GM1 gangliosidosis. The vector, injected via the caudal vein at 4 weeks of age, drove the widespread and sustained expression of β-gal for up to 32 weeks in the Glb1G455R/G455R mutant mice (GM1 mice). RESULTS The increased levels of β-gal reduced the pathological damage occurring in GM1 mice. Histological analyses showed that myelin deficits and neuron-specific pathology were reduced in cerebral cortex region of AAV9-coGLB1-treated mice. Immunohistochemical staining showed that the accumulation of GM1 ganglioside was also reduced after gene therapy. The reduction of the storage in these regions was accompanied by a decrease in activated microglia. In addition, AAV9 treatment reversed the blockade of autophagic flux in GM1 mice. CONCLUSION These results show that AAV9-coGLB1 reduces the pathological signs of GM1 gangliosidosis in a mouse model.
Collapse
Affiliation(s)
- Sichi Liu
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Wenhao Ma
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Yuyu Feng
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Yan Zhang
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Xuefang Jia
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Chengfang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Fang Tang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| | - Xiaobing Wu
- Beijing Ruicy Gene Therapy Institute For Rare Diseases
| | - Yonglan Huang
- Department of Guangzhou Newborn Screening Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Guangdong, China
| |
Collapse
|
38
|
Pan Q, Wang Y, Tian R, Wen Q, Qin G, Zhang D, Chen L, Zhang Y, Zhou J. Sphingosine-1 phosphate receptor 1 contributes to central sensitization in recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 2022; 23:25. [PMID: 35144528 PMCID: PMC8903593 DOI: 10.1186/s10194-022-01397-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Central sensitization is an important pathophysiological mechanism of chronic migraine (CM), and microglia activation in trigeminocervical complex (TCC) contributes to the development of central sensitization. Emerging evidence implicates that blocking sphingosine-1-phosphate receptor 1 (S1PR1) can relieve the development of chronic pain and inhibit the activation of microglia. However, it is unclear whether S1PR1 is involved in the central sensitization of CM. Therefore, the purpose of this study is to explore the role of S1PR1 and its downstream signal transducers and activators of transcription 3 (STAT3) signaling pathway in the CM, mainly in inflammation. METHODS Chronic intermittent intraperitoneal injection of nitroglycerin (NTG) established a mouse model of CM. First, we observed the changes and subcellular localization of S1PR1 in the trigeminocervical complex (TCC). Then, W146, a S1PR1 antagonist; SEW2871, a S1PR1 agonist; AG490, a STAT3 inhibitor were applied by intraperitoneal injection to investigate the related molecular mechanism. The changes in the number of microglia and the expression of calcitonin gene-related peptide (CGRP) and c-fos in the TCC site were explored by immunofluorescence. In addition, we studied the effect of S1PR1 inhibitors on STAT3 in lipopolysaccharide-treated BV-2 microglia. RESULTS Our results showed that the expression of S1PR1 was increased after NTG injection and S1PR1 was colocalized with in neurons and glial cells in the TCC. The S1PR1 antagonist W146 alleviated NTG-induced hyperalgesia and suppressed the upregulation of CGRP, c-fos and pSTAT3 in the TCC. Importantly, blocking S1PR1 reduced activation of microglia. In addition, we found that inhibiting STAT3 signal also attenuated NTG-induced basal mechanical and thermal hyperalgesia. CONCLUSIONS Our results indicate that inhibiting S1PR1 signal could alleviate central sensitization and inhibit microglia activity caused by chronic NTG administration via STAT3 signal pathway, which provide a new clue for the clinical treatment of CM.
Collapse
Affiliation(s)
- Qi Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Yunfeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, China
| | - Ruimin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China
| | - Qianwen Wen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st You Yi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
39
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
40
|
Rayasam A, Fukuzaki Y, Vexler ZS. Microglia-leucocyte axis in cerebral ischaemia and inflammation in the developing brain. Acta Physiol (Oxf) 2021; 233:e13674. [PMID: 33991400 DOI: 10.1111/apha.13674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
Development of the Central Nervous System (CNS) is reliant on the proper function of numerous intricately orchestrated mechanisms that mature independently, including constant communication between the CNS and the peripheral immune system. This review summarizes experimental knowledge of how cerebral ischaemia in infants and children alters physiological communication between leucocytes, brain immune cells, microglia and the neurovascular unit (NVU)-the "microglia-leucocyte axis"-and contributes to acute and long-term brain injury. We outline physiological development of CNS barriers in relation to microglial and leucocyte maturation and the plethora of mechanisms by which microglia and peripheral leucocytes communicate during postnatal period, including receptor-mediated and intracellular inflammatory signalling, lipids, soluble factors and extracellular vesicles. We focus on the "microglia-leucocyte axis" in rodent models of most common ischaemic brain diseases in the at-term infants, hypoxic-ischaemic encephalopathy (HIE) and focal arterial stroke and discuss commonalities and distinctions of immune-neurovascular mechanisms in neonatal and childhood stroke compared to stroke in adults. Given that hypoxic and ischaemic brain damage involve Toll-like receptor (TLR) activation, we discuss the modulatory role of viral and bacterial TLR2/3/4-mediated infection in HIE, perinatal and childhood stroke. Furthermore, we provide perspective of the dynamics and contribution of the axis in cerebral ischaemia depending on the CNS maturational stage at the time of insult, and modulation independently and in consort by individual axis components and in a sex dependent ways. Improved understanding on how to modify crosstalk between microglia and leucocytes will aid in developing age-appropriate therapies for infants and children who suffered cerebral ischaemia.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Yumi Fukuzaki
- Department of Neurology University of California San Francisco San Francisco CA USA
| | - Zinaida S. Vexler
- Department of Neurology University of California San Francisco San Francisco CA USA
| |
Collapse
|
41
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
42
|
Peruzzotti-Jametti L, Willis CM, Hamel R, Krzak G, Pluchino S. Metabolic Control of Smoldering Neuroinflammation. Front Immunol 2021; 12:705920. [PMID: 34249016 PMCID: PMC8262770 DOI: 10.3389/fimmu.2021.705920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence exists that patients with chronic neurological conditions, which includes progressive multiple sclerosis, display pathological changes in neural metabolism and mitochondrial function. However, it is unknown if a similar degree of metabolic dysfunction occurs also in non-neural cells in the central nervous system. Specifically, it remains to be clarified (i) the full extent of metabolic changes in tissue-resident microglia and infiltrating macrophages after prolonged neuroinflammation (e.g., at the level of chronic active lesions), and (ii) whether these alterations underlie a unique pathogenic phenotype that is amenable for therapeutic targeting. Herein, we discuss how cell metabolism and mitochondrial function govern the function of chronic active microglia and macrophages brain infiltrates and identify new metabolic targets for therapeutic approaches aimed at reducing smoldering neuroinflammation.
Collapse
Affiliation(s)
- Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Grzegorz Krzak
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Pan Y, Gao F, Zhao S, Han J, Chen F. Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection. Clin Exp Pharmacol Physiol 2021; 48:637-650. [PMID: 33565127 PMCID: PMC8014301 DOI: 10.1111/1440-1681.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023]
Abstract
Global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing. Before an effective vaccine is available, the development of potential treatments for resultant coronavirus disease 2019 (COVID-19) is crucial. One of the disease hallmarks is hyper-inflammatory responses, which usually leads to a severe lung disease. Patients with COVID-19 also frequently suffer from neurological symptoms such as acute diffuse encephalomyelitis, brain injury and psychiatric complications. The metabolic pathway of sphingosine-1-phosphate (S1P) is a dynamic regulator of various cell types and disease processes, including the nervous system. It has been demonstrated that S1P and its metabolic enzymes, regulating neuroinflammation and neurogenesis, exhibit important functions during viral infection. S1P receptor 1 (S1PR1) analogues including AAL-R and RP-002 inhibit pathophysiological responses at the early stage of H1N1 virus infection and then play a protective role. Fingolimod (FTY720) is an S1P receptor modulator and is being tested for treating COVID-19. Our review provides an overview of SARS-CoV-2 infection and critical role of the SphK-S1P-SIPR pathway in invasion of SARS-CoV-2 infection, particularly in the central nervous system (CNS). This may help design therapeutic strategies based on the S1P-mediated signal transduction, and the adjuvant therapeutic effects of S1P analogues to limit or prevent the interaction between the host and SARS-CoV-2, block the spread of the SARS-CoV-2, and consequently treat related complications in the CNS.
Collapse
Affiliation(s)
- Yuehai Pan
- Department of Hand and Foot SurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| | - Fei Gao
- Department of Hand and Foot SurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| | - Shuai Zhao
- Department of AnesthesiologyBonn UniversityBonnGermany
| | - Jinming Han
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Fan Chen
- Department of NeurosurgeryThe Affiliated Hospital of Qingdao UniversityShangdongChina
| |
Collapse
|
44
|
Chen L, Huang Y, Yu X, Lu J, Jia W, Song J, Liu L, Wang Y, Huang Y, Xie J, Li M. Corynoxine Protects Dopaminergic Neurons Through Inducing Autophagy and Diminishing Neuroinflammation in Rotenone-Induced Animal Models of Parkinson's Disease. Front Pharmacol 2021; 12:642900. [PMID: 33927622 PMCID: PMC8078868 DOI: 10.3389/fphar.2021.642900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that impairment of autophagy is related to the pathogenesis of Parkinson's disease (PD), and small molecular autophagy enhancers are suggested to be potential drug candidates against PD. Previous studies identified corynoxine (Cory), an oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla (Miq.) Jacks, as a new autophagy enhancer that promoted the degradation of α-synuclein in a PD cell model. In this study, two different rotenone-induced animal models of PD, one involving the systemic administration of rotenone at a low dosage in mice and the other involving the infusion of rotenone stereotaxically into the substantia nigra pars compacta (SNpc) of rats, were employed to evaluate the neuroprotective effects of Cory. Cory was shown to exhibit neuroprotective effects in the two rotenone-induced models of PD by improving motor dysfunction, preventing tyrosine hydroxylase (TH)-positive neuronal loss, decreasing α-synuclein aggregates through the mechanistic target of the rapamycin (mTOR) pathway, and diminishing neuroinflammation. These results provide preclinical experimental evidence supporting the development of Cory into a potential delivery system for the treatment of PD.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yujv Huang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xing Yu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenting Jia
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juxian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Macau, China
| | - Liangfeng Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Youcui Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yingyu Huang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
45
|
Liu H, Li L, Chen Z, Song Y, Liu W, Gao G, Li L, Jiang J, Xu C, Yan G, Cui H. S1PR2 Inhibition Attenuates Allergic Asthma Possibly by Regulating Autophagy. Front Pharmacol 2021; 11:598007. [PMID: 33643037 PMCID: PMC7902893 DOI: 10.3389/fphar.2020.598007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022] Open
Abstract
This study is to investigate the role of Sphingosine-1-phosphate (S1P) in the asthma progression, and the involvement of autophagy. Airway remodeling mice were subjected to the HE, PAS, and Masson staining. Protein expression levels in the tissues, samples and model cells were detected with ELISA, Western blot analysis, and immunohistochemical/immunofluorescent analysis. The S1P2 receptor antagonist JTE-013 decreased the inflammatory cell infiltration and goblet cell production in asthmatic mice tissues. The IL-1, IL-4, IL-5 and serum IgE contents were decreased in bronchoalveolar lavage fluid, while the Beclin1 expression in lung tissues was decreased. The LC3B1 to LC-3B2 conversion was decreased, with increased P62 accumulation and decreased p-P62 expression. In airway remodeling mice, JTE-013 significantly decreased collagen deposition in lung tissues and decreased smooth muscle cell smooth muscle activating protein expression. In lung tissue, the expression levels of Beclin1 were decreased, with decreased LC3B1 to LC-3B2 conversion, as well as the increased P62 accumulation and decreased p-P62 expression. However, these effects were reversed by the RAC1 inhibitor EHT 1864. Similar results were observed for the silencing of S1P2 receptor in the cells, as shown by the decreased Beclin1 expression, decreased LC3B1 to LC-3B2 conversion, increased P62 accumulation, and decreased p-P62 expression. The smooth muscle activators were significantly decreased in the JTE-013 and EHT1864 groups, and the EHT 1864 + S1P2-SiRNA expression level was increased. S1P is involved in the progression of asthma and airway remodeling, which may be related to the activation of S1PR2 receptor and inhibition of autophagy through RAC1.
Collapse
Affiliation(s)
- Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Zhengai Chen
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Pharmacology, Yanbian University College of Medicine, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Weidong Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Ge Gao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Department of Anatomy, Histology and Embryology, Yanbian University College of Medicine, Yanji, China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China.,Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| |
Collapse
|
46
|
Ma C, Wang Y, Zhang G, Dai X. Agar oligosaccharides ameliorate the intestinal inflammation of male Drosophila melanogaster via modulating the microbiota, and immune and cell autophagy. Food Sci Nutr 2021; 9:1202-1212. [PMID: 33598204 PMCID: PMC7866562 DOI: 10.1002/fsn3.2108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Agar oligosaccharide (AOS) is a marine prebiotic with apparent improving health and longevity effects. In this study, the protective effect of AOS on the intestine was evaluated in the sodium dodecyl sulfate (SDS)-induced inflammatory model of male Drosophila. The results showed that AOS used as a nutritional additive in basal food could lengthen the life of SDS-stimulated male Drosophila. Additionally, AOS could alleviate the injuries of SDS to microvilli and mitochondria in male Drosophila midgut epithelial cells. AOS could regulate the relative gene expressions in the antibacterial peptides (AMPs), mTOR pathway and autophagy process, and significantly improved the α-diversity of midgut microbiota and decreased the abundance of Klebsiella aerogenes, a kind of bacteria easily causing infections. Collectively, AOS could ameliorate the intestinal inflammation by modulating the microbiota, and the gene expression of immune and cell autophagy.
Collapse
Affiliation(s)
- Chao Ma
- College of Life SciencesChina Jiliang UniversityHangzhou, ZhejiangChina
| | - Yifan Wang
- College of Life SciencesChina Jiliang UniversityHangzhou, ZhejiangChina
| | - Guocai Zhang
- College of Life SciencesChina Jiliang UniversityHangzhou, ZhejiangChina
| | - Xianjun Dai
- College of Life SciencesChina Jiliang UniversityHangzhou, ZhejiangChina
| |
Collapse
|
47
|
de Wit NM, Mol K, Rodríguez-Lorenzo S, de Vries HE, Kooij G. The Role of Sphingolipids and Specialized Pro-Resolving Mediators in Alzheimer's Disease. Front Immunol 2021; 11:620348. [PMID: 33633739 PMCID: PMC7902029 DOI: 10.3389/fimmu.2020.620348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia worldwide giving rise to devastating forms of cognitive decline, which impacts patients’ lives and that of their proxies. Pathologically, AD is characterized by extracellular amyloid deposition, neurofibrillary tangles and chronic neuroinflammation. To date, there is no cure that prevents progression of AD. In this review, we elaborate on how bioactive lipids, including sphingolipids (SL) and specialized pro-resolving lipid mediators (SPM), affect ongoing neuroinflammatory processes during AD and how we may exploit them for the development of new biomarker panels and/or therapies. In particular, we here describe how SPM and SL metabolism, ranging from ω-3/6 polyunsaturated fatty acids and their metabolites to ceramides and sphingosine-1-phosphate, initiates pro- and anti-inflammatory signaling cascades in the central nervous system (CNS) and what changes occur therein during AD pathology. Finally, we discuss novel therapeutic approaches to resolve chronic neuroinflammation in AD by modulating the SPM and SL pathways.
Collapse
Affiliation(s)
- Nienke M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Kevin Mol
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Zahiri D, Burow P, Großmann C, Müller CE, Klapperstück M, Markwardt F. Sphingosine-1-phosphate induces migration of microglial cells via activation of volume-sensitive anion channels, ATP secretion and activation of purinergic receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118915. [PMID: 33271273 DOI: 10.1016/j.bbamcr.2020.118915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Microglia cells are versatile players coordinating inflammatory and regenerative processes in the central nervous system in which sphingosine-1-phosphate (S1P)-mediated migration is essential. We investigated the involved signaling cascade by means of voltage clamp, measurement of ATP secretion, and wound healing assay in murine microglial BV-2 cells. S1P and extracellular hypoosmolar solution evoked an anion conductance of the cell membrane. The corresponding ion currents were inhibited by intracellular hypoosmolar solution and by the anion channel antagonists NPPB, tamoxifen, and carbenoxolone, pointing to the activation of volume-regulated anion channels (VRAC). The knockdown by siRNA indicates the involvement of LRRC8A subunits. The S1PR1-antagonist W123 and pertussis-toxin prevented the S1P-induced currents, showing the involvement of the Gi-protein-coupled S1P receptor 1 (S1PR1). Furthermore, S1P and hypoosmolar extracellular solution induced an increase of ATP levels in the supernatants of BV-2 cells, which was inhibited by NPPB, tamoxifen, and W123. S1P, ATP, and ADP stimulated cell migration into the scratch area. The inhibition of S1PR1 and the downstream Gi proteins hampered cell migration. Antagonists of VRAC were also able to diminish the migration of BV-2 cells. Furthermore, direct inhibition of ATP-gated P2X4 or P2X7 receptors or ADP-stimulated P2Y12 receptors blocked the stimulating effects of S1P on BV-2 cell migration. We conclude that there is an interaction between S1P receptors and purinergic receptors mediated by an S1P-induced ATP release via VRAC and that the amount of released ATP is capable of stimulating cell migration of BV-2 microglia cells via activation of P2X4, P2X7, and P2Y12 receptors.
Collapse
Affiliation(s)
- Danyal Zahiri
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Philipp Burow
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Claudia Großmann
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany
| | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University Halle, Magdeburger Straße 6, D-06097 Halle/Saale, Germany.
| |
Collapse
|
49
|
Gong LJ, Wang XY, Gu WY, Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. J Neuroinflammation 2020; 17:337. [PMID: 33176803 PMCID: PMC7656728 DOI: 10.1186/s12974-020-02014-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intermittent hypoxia (IH) caused by obstructive sleep apnea (OSA) leads to neuroinflammation. Pinocembrin has been shown to have neuroprotective effects, while the therapeutic functions under IH condition are still unknown. METHODS An OSA model was established by CIH exposure inside custom-made chambers. C57BL/6 mice were intraperitoneally injected with pinocembrin (40 mg/kg, i.p.) or vehicle (PBS containing 5% povidone; i.p.), and the changes of behavior on mice were detected by the Morris water maze test. Immunohistochemical staining, western blotting, immunofluorescence assays, and immunoprecipitation were used to investigate the association between NLRP3 inflammasome and BNIP3-dependent mitophagy. The mitochondrial morphology and mitophagosomes were detected under a transmission electron microscope. The detrimental effects of IH were tested by annexin V-FITC/PI staining, Mito SOX Red staining, and JC-1 mitochondrial membrane potential assay. RESULTS In this study, our observations in vivo indicated that the administration of pinocembrin can restore spatial learning and memory ability and reduce neuronal apoptosis and hippocampal inflammation. Pinocembrin treatment significantly inhibited the formation of NLRP3 inflammasome and infiltration of microglia and enhanced BNIP3-mediated mitophagy in the hippocampus of IH mice. Additionally, our in vitro results show that pinocembrin protects microglial cells against IH-induced cytotoxicity by activating BNIP3-dependent mitophagy through the JNK-ERK signaling pathway. CONCLUSIONS In summary, our findings demonstrated that pinocembrin can act as a potential therapeutic strategy for IH-induced neuroinflammation.
Collapse
Affiliation(s)
- Lin-Jing Gong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Xin-Yuan Wang
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China
| | - Wen-Yu Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301, Yanchang Rd, Shanghai, 200072, China.
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Rd, Shanghai, 200032, China.
| |
Collapse
|
50
|
Neurodegeneration Caused by S1P-Lyase Deficiency Involves Calcium-Dependent Tau Pathology and Abnormal Histone Acetylation. Cells 2020; 9:cells9102189. [PMID: 32998447 PMCID: PMC7599816 DOI: 10.3390/cells9102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
We have shown that sphingosine 1-phosphate (S1P) generated by sphingosine kinase 2 (SK2) is toxic in neurons lacking S1P-lyase (SGPL1), the enzyme that catalyzes its irreversible cleavage. Interestingly, patients harboring mutations in the gene encoding this enzyme (SGPL1) often present with neurological pathologies. Studies in a mouse model with a developmental neural-specific ablation of SGPL1 (SGPL1fl/fl/Nes) confirmed the importance of S1P metabolism for the presynaptic architecture and neuronal autophagy, known to be essential for brain health. We now investigated in SGPL1-deficient murine brains two other factors involved in neurodegenerative processes, namely tau phosphorylation and histone acetylation. In hippocampal and cortical slices SGPL1 deficiency and hence S1P accumulation are accompanied by hyperphosphorylation of tau and an elevated acetylation of histone3 (H3) and histone4 (H4). Calcium chelation with BAPTA-AM rescued both tau hyperphosphorylation and histone acetylation, designating calcium as an essential mediator of these (patho)physiological functions of S1P in the brain. Studies in primary cultured neurons and astrocytes derived from SGPL1fl/fl/Nes mice revealed hyperphosphorylated tau only in SGPL1-deficient neurons and increased histone acetylation only in SGPL1-deficient astrocytes. Both could be reversed to control values with BAPTA-AM, indicating the close interdependence of S1P metabolism, calcium homeostasis, and brain health.
Collapse
|