1
|
Rezaie P, Hanisch UK. History of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:15-37. [PMID: 39207684 DOI: 10.1007/978-3-031-55529-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The term 'microglia' was first introduced into the scientific literature a century ago. The various eras of microglial research have been defined not only by the number of reports subsequently generated but, more critically, also by the concepts that have shaped our present-day views and understanding of microglia. Key methods, technologies, and models, as well as seminal discoveries made possible through their deployment have enabled breakthroughs, and now pave the way for lines of investigation that could not have been anticipated even a decade ago. Advances in our understanding of the microglial origin, forms, and functions have relied fundamentally on parallel developments in immunology. As the 'neuro-immune' cells of the brain, microglia are now under the spotlight in various disciplines. This chapter surveys the gradual processes and precipitous events that helped form ideas concerning the developmental origin of microglia and their roles in health and disease. It first covers the dawning phase during which the early pioneers of microglial research discovered cellular entities and already assigned functions to them. Following a recess period, the 1960s brought about a renaissance of active interest, with the development of tools and models-and fundamental notions on microglial contributions to central nervous system (CNS) pathologies. These seminal efforts laid the foundation for the awakening of a sweeping research era beginning in the 1980s and spurred on by a blast of immunological discoveries. Finally, this chapter stresses the advancements in molecular, genetic, and imaging approaches to the study of microglia with the turn of the millennium, enabling insights into virtually all facets of microglial physiology. Moving forward, it is clear that the future holds substantial promise for further discoveries. The next epoch in the history of microglial research has just begun.
Collapse
Affiliation(s)
- Payam Rezaie
- School of Life, Health & Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | | |
Collapse
|
2
|
Advances in Visualizing Microglial Cells in Human Central Nervous System Tissue. Biomolecules 2022; 12:biom12050603. [PMID: 35625531 PMCID: PMC9138569 DOI: 10.3390/biom12050603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation has recently been identified as a fundamentally important pathological process in most, if not all, CNS diseases. The main contributor to neuroinflammation is the microglia, which constitute the innate immune response system. Accurate identification of microglia and their reactivity state is therefore essential to further our understanding of CNS pathophysiology. Many staining techniques have been used to visualise microglia in rodent and human tissue, and immunostaining is currently the most frequently used. Historically, identification of microglia was predominantly based on morphological structure, however, recently there has been a reliance on selective antigen expression, and microglia-specific markers have been identified providing increased certainty that the cells observed are in fact microglia, rather than the similar yet distinct macrophages. To date, the most microglia-specific markers are P2Y12 and TMEM119. However, other microglia-related markers can also be useful for demonstrating activation state, phagocytic state, and for neuroimaging purposes in longitudinal studies. Overall, it is important to be aware of the microglia-selectivity issues of the various stains and immunomarkers used by researchers to distinguish microglia in CNS tissue to avoid misinterpretation.
Collapse
|
3
|
Fakhoury KR, Ney DE, Ormond DR, Rusthoven CG. Immunotherapy and radiation for high-grade glioma: a narrative review. Transl Cancer Res 2021; 10:2537-2570. [PMID: 35116570 PMCID: PMC8797698 DOI: 10.21037/tcr-20-1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/21/2020] [Indexed: 01/04/2023]
Abstract
Glioblastoma and other high-grade gliomas (HGGs) are the most common and deadly primary brain tumors. Due to recent advances in immunotherapy and improved clinical outcomes in other disease sites, the study of immunotherapy in HGG has increased significantly. Herein, we summarize and evaluate existing evidence and ongoing clinical trials investigating the use of immunotherapy in the treatment of HGG, including therapeutic vaccination, immune checkpoint inhibition, adoptive lymphocyte transfer, and combinatorial approaches utilizing radiation and multiple modalities of immunotherapy. Special attention is given to the mechanisms by which radiation may improve immunogenicity in HGG, why this motivates the study of radiation in combination with immunotherapy, and how to determine optimal dosing and scheduling of radiation. Though larger randomized controlled trials have not consistently shown improvements in clinical outcomes, this area of research is still in its early stages and a number of important lessons can be taken away from the studies that have been completed to date. Many studies found a subset of patients who experienced durable responses, and analysis of their immune cells and tumor cells can be used to identify biomarkers that predict therapeutic response, as well as additional glioma-specific targets that can enhance therapeutic efficacy in a challenging tumor type.
Collapse
Affiliation(s)
- Kareem R. Fakhoury
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Douglas E. Ney
- Department of Neurology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - D. Ryan Ormond
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| | - Chad G. Rusthoven
- Department of Radiation Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
| |
Collapse
|
4
|
Krivit W, Sung JH, Shapiro EG, Lockman LA. Microglia: The Effector Cell for Reconstitution of the Central Nervous System following Bone Marrow Transplantation for Lysosomal and Peroxisomal Storage Diseases. Cell Transplant 2017; 4:385-92. [PMID: 7582569 DOI: 10.1177/096368979500400409] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Treatment and potential cure of lysosomal and peroxisomal diseases, heretofore considered fatal, has become a reality during the past decade. Bone marrow transplantation, (BMT), has provided a method for replacement of the disease-causing enzyme deficiency. Cells derived from the donor marrow continue to provide enzyme indefinitely. Several scores of patients with diseases as diverse as metachromatic leukodystrophy, adrenoleukodystrophy, globoid cell leukodystrophy, Hurler syndrome (MPS I-H), Maroteaux-Lamy (MPS VI) Gaucher disease, and fucosidosis have been successfully treated following long-term engraftment. Central nervous system (CNS) manifestations are also prevented or ameliorated in animal models of these diseases following engraftment from normal donors. The microglial cell system has been considered to be the most likely vehicle for enzyme activity following bone marrow engraftment. Microglia in the mature animal or human are derived from the newly engrafted bone marrow. Graft-v-host disease activation of the microglia is also of importance. This article will summarize some of the pertinent literature relative to the role of microglia in such transplant processes.
Collapse
Affiliation(s)
- W Krivit
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
5
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
6
|
Dennie D, Louboutin JP, Strayer DS. Migration of bone marrow progenitor cells in the adult brain of rats and rabbits. World J Stem Cells 2016; 8:136-157. [PMID: 27114746 PMCID: PMC4835673 DOI: 10.4252/wjsc.v8.i4.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Neurogenesis takes place in the adult mammalian brain in three areas: Subgranular zone of the dentate gyrus (DG); subventricular zone of the lateral ventricle; olfactory bulb. Different molecular markers can be used to characterize the cells involved in adult neurogenesis. It has been recently suggested that a population of bone marrow (BM) progenitor cells may migrate to the brain and differentiate into neuronal lineage. To explore this hypothesis, we injected recombinant SV40-derived vectors into the BM and followed the potential migration of the transduced cells. Long-term BM-directed gene transfer using recombinant SV40-derived vectors leads to expression of the genes delivered to the BM firstly in circulating cells, then after several months in mature neurons and microglial cells, and thus without central nervous system (CNS) lesion. Most of transgene-expressing cells expressed NeuN, a marker of mature neurons. Thus, BM-derived cells may function as progenitors of CNS cells in adult animals. The mechanism by which the cells from the BM come to be neurons remains to be determined. Although the observed gradual increase in transgene-expressing neurons over 16 mo suggests that the pathway involved differentiation of BM-resident cells into neurons, cell fusion as the principal route cannot be totally ruled out. Additional studies using similar viral vectors showed that BM-derived progenitor cells migrating in the CNS express markers of neuronal precursors or immature neurons. Transgene-positive cells were found in the subgranular zone of the DG of the hippocampus 16 mo after intramarrow injection of the vector. In addition to cells expressing markers of mature neurons, transgene-positive cells were also positive for nestin and doublecortin, molecules expressed by developing neuronal cells. These cells were actively proliferating, as shown by short term BrdU incorporation studies. Inducing seizures by using kainic acid increased the number of BM progenitor cells transduced by SV40 vectors migrating to the hippocampus, and these cells were seen at earlier time points in the DG. We show that the cell membrane chemokine receptor, CCR5, and its ligands, enhance CNS inflammation and seizure activity in a model of neuronal excitotoxicity. SV40-based gene delivery of RNAi targeting CCR5 to the BM results in downregulating CCR5 in circulating cells, suggesting that CCR5 plays an important role in regulating traffic of BM-derived cells into the CNS, both in the basal state and in response to injury. Furthermore, reduction in CCR5 expression in circulating cells provides profound neuroprotection from excitotoxic neuronal injury, reduces neuroinflammation, and increases neuronal regeneration following this type of insult. These results suggest that BM-derived, transgene-expressing, cells can migrate to the brain and that they become neurons, at least in part, by differentiating into neuron precursors and subsequently developing into mature neurons.
Collapse
|
7
|
García-Cáceres C, Fuente-Martín E, Argente J, Chowen JA. Emerging role of glial cells in the control of body weight. Mol Metab 2012; 1:37-46. [PMID: 24024117 DOI: 10.1016/j.molmet.2012.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/18/2022] Open
Abstract
Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field.
Collapse
Affiliation(s)
- Cristina García-Cáceres
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany ; CIBER de Fisiopatología de Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | |
Collapse
|
8
|
NOVAK JP, FEDOROFF S. MODEL OF THE DYNAMICS OF A BRANCHING SYSTEM OF THE GLIAL CELL LINEAGESIN VITRO. J BIOL SYST 2011. [DOI: 10.1142/s0218339099000231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A genealogical model describing the dynamics of a binary branching system of astrocytes and microglia which takes into account a developmental hierarchy, is proposed. The model consists of a scheme of developmental pathways interconnecting the elements at various stages of development from a common progenitor to a nonproliferating end stage. To the elements at each stage are attributed probabilities of division, differentiation and quiescence. The pathway of any particular element at the end of each cycle is determined by a random-number generator according to the predetermined probabilities. The model is applied to colony formation in vitro. The development of each colony is followed for several cycles of division and theoretical results are compared to experimental values. Comparison of values obtained from several variants of the theoretical model with experimental data is then used to derive the most plausible scheme of branching pathways under given experimental conditions. The model is defined as follows: a common unlabeled progenitor with a high self-renewal potential differentiates into unlabeled monopotential precursors which further develop into astrocytes and microglia, identified experimentally as GFAP-positive cells and CR3-positive cells, respectively. Both the monopotential unlabeled cells and the identifiable progeny also have the capability of self-renewal.
Collapse
Affiliation(s)
- J. P. NOVAK
- IREQ, 1800 Montée Ste-Julie, Varennes, Quebec, Canada
- Dept. of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S. FEDOROFF
- Dept. of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
Differences in origin of reactive microglia in bone marrow chimeric mouse and rat after transient global ischemia. J Neuropathol Exp Neurol 2011; 70:481-94. [PMID: 21572335 DOI: 10.1097/nen.0b013e31821db3aa] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Current understanding of microglial involvement in disease is influenced by the observation that recruited bone marrow (BM)-derived cells contribute to reactive microgliosis in BM-chimeric mice. In contrast, a similar phenomenon has not been reported for BM-chimeric rats. We investigated the recruitment and microglial transformation of BM-derived cells in radiation BM-chimeric mice and rats after transient global cerebral ischemia, which elicits a characteristic microglial reaction. Both species displayed microglial hyperplasia and rod cell transformation in the hippocampal CA1 region. In mice, a subpopulation of lesion-reactive microglia originated from transformed BM-derived cells. By contrast, no recruitment or microglial transformation of BM-derived cells was observed in BM-chimeric rats. These results suggest that reactive microglia in rats originate from resident microglia, whereas they have a mixed BM-derived and resident origin in mice, depending on the severity of ischemic tissue damage.
Collapse
|
10
|
Microglia: Proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 2010; 42:1753-6. [DOI: 10.1016/j.biocel.2010.06.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/13/2010] [Accepted: 06/28/2010] [Indexed: 12/30/2022]
|
11
|
Louboutin JP, Chekmasova A, Marusich E, Agrawal L, Strayer DS. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J 2010; 25:737-53. [PMID: 20940264 DOI: 10.1096/fj.10-161851] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5(+) cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Jefferson Medical College, 1020 Locust St., Rm. 251, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
12
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
13
|
Streit WJ. Microglial activation and neuroinflammation in Alzheimer's disease: a critical examination of recent history. Front Aging Neurosci 2010; 2:22. [PMID: 20577641 PMCID: PMC2890154 DOI: 10.3389/fnagi.2010.00022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/04/2010] [Indexed: 11/20/2022] Open
Abstract
The neurofibrillary degeneration that occurs in Alzheimer's disease (AD) is thought to be the result of a chronic and damaging neuroinflammatory response mediated by neurotoxic substances produced by activated microglial cells. This neuroinflammation hypothesis of AD pathogenesis has led to numerous clinical trials with anti-inflammatory drugs, none of which have shown clear benefits for slowing or preventing disease onset and progression. In this paper, I make the point that AD is not an inflammatory condition, and reconstruct the sequence of events during the 1980s and 1990s that I believe led to the development of this faulty theory.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine Gainesville, FL, USA
| |
Collapse
|
14
|
Abstract
The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against insults (infectious agents, lesions, etc.). Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed by the brain. The functional consequences of brain cytokine action (also called neuroinflammation) are alterations in cognition, mood and behaviour, a hallmark of altered well-being. In addition, proinflammatory cytokines play a key role in depression and neurodegenerative diseases linked to aging. Polyunsaturated fatty acids (PUFA) are essential nutrients and essential components of neuronal and glial cell membranes. PUFA from the diet regulate both prostaglandin and proinflammatory cytokine production. n-3 fatty acids are anti-inflammatory while n-6 fatty acids are precursors of prostaglandins. Inappropriate amounts of dietary n-6 and n-3 fatty acids could lead to neuroinflammation because of their abundance in the brain and reduced well-being. Depending on which PUFA are present in the diet, neuroinflammation will, therefore, be kept at a minimum or exacerbated. This could explain the protective role of n-3 fatty acids in neurodegenerative diseases linked to aging.
Collapse
Affiliation(s)
- Sophie Layé
- Psychoneuroimmunology, Nutrition and Genetic (PsyNuGen), UMR INRA 1286, CNRS 5226, University Bordeaux 2, Bordeaux, France.
| |
Collapse
|
15
|
Streit WJ, Xue QS. Life and death of microglia. J Neuroimmune Pharmacol 2009; 4:371-9. [PMID: 19680817 DOI: 10.1007/s11481-009-9163-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 06/30/2009] [Indexed: 01/05/2023]
Abstract
The importance of microglial cells in the maintenance of a well-functioning central nervous system (CNS) cannot be overstated. As descendants of the myelomonocytic lineage they are industrious housekeepers and watchful sentries that safeguard a homeostatic environment through a number of mechanisms designed to provide protection of fastidious neurons at all times. Microglia become particularly active after homeostasis has been perturbed by physical injury or other insults and they enter into a state of activation which is determined largely by the nature and severity of the lesion. Microglial activation is the main cellular event in acute neuroinflammation and essential for wound healing in the CNS. Recent studies from this laboratory have been focused on microglia in the aging brain and identified structural abnormalities, termed microglial dystrophy, that are consistent with cell senescence and progress to a form of accidental cell death that is marked by cytoplasmic degeneration and has been termed cytorrhexis. Cytorrhexis of microglia is infrequent in the normally aged human brain and non-detectable in aged rodents, but its occurrence increases dramatically during neurodegenerative conditions, including Alzheimer's disease (AD) in humans and motoneuron disease in transgenic rats. The identification of degenerating microglia has given rise to a novel theory of AD pathogenesis, the microglial dysfunction hypothesis, which views the loss of microglial neuroprotection as a central event in neurodegenerative disease development.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | |
Collapse
|
16
|
Louboutin JP, Agrawal L, Liu B, Strayer DS. In vivogene transfer to the CNS using recombinant SV40-derived vectors. Expert Opin Biol Ther 2008; 8:1319-35. [DOI: 10.1517/14712598.8.9.1319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Huang QY, Yu L, Ferrante RJ, Chen JF. Mutant SOD1G93A in bone marrow-derived cells exacerbates 3-nitropropionic acid induced striatal damage in mice. Neurosci Lett 2007; 418:175-80. [PMID: 17418947 DOI: 10.1016/j.neulet.2007.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 02/28/2007] [Accepted: 03/10/2007] [Indexed: 11/20/2022]
Abstract
3-Nitropropionic acid (3-NP), an irreversible inhibitor of succinate dehydrogenase, produces selective lesions in striatal neurons that resemble those observed in Huntington's disease neuropathology. In this study, we evaluated the role of peripheral bone marrow-derived cells (BMDCs) in the 3-NP-induced striatal damage by transplanting bone marrow cells with human SOD1 G93A mutation (mSOD1(G93A)) which induces amyotrophic lateral sclerosis through an unknown gain of toxicity and mitochondrial dysfunction. We assessed striatal damage after 3-NP treatment in the recipient C57BL/6 wild-type (WT) mice that received bone marrow cells from WT or mSOD1(G93A) transgenic donor mice (WT-->WT or mSOD(G93A)-->WT). After intraperitoneal injection of 3-NP, six of the eight mSOD1(G93A)-->WT mice had bilateral striatal lesions while only one out of eight WT-->WT mice had a striatal lesion. The lesion volume was significantly higher in the mSOD1(G93A)-->WT mice than in the WT-->WT mice. However, following an intrastriatal injection of 3-NP, there was no significant difference in the lesion volumes between the WT-->WT mice and mSOD1(G93A)-->WT mice. Thus, the exacerbation of 3-NP-induced striatal damage in mSOD(G93A)-->WT mice was only seen after systemic administration of 3-NP, but not after intrastriatal injection. These results demonstrate that altered SOD1 activity (mSOD(G93A)) in BMDCs affects striatal damage probably through a mechanism involving a systemic factor.
Collapse
Affiliation(s)
- Qing-Yuan Huang
- Department of Neurology, Boston University School of Medicine, 715 Albany Street, E301 Boston, MA, USA
| | | | | | | |
Collapse
|
18
|
Louboutin JP, Liu B, Reyes BAS, Van Bockstaele EJ, Strayer DS. Rat bone marrow progenitor cells transduced in situ by rSV40 vectors differentiate into multiple central nervous system cell lineages. Stem Cells 2006; 24:2801-9. [PMID: 16960137 DOI: 10.1634/stemcells.2006-0124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using bone marrow-directed gene transfer, we tested whether bone marrow-derived cells may function as progenitors of central nervous system (CNS) cells in adult animals. SV40-derived gene delivery vectors were injected directly into femoral bone marrow, and we examined transgene expression in blood and brain for 0-16 months thereafter by immunostaining for FLAG epitope marker. An average of 5% of peripheral blood cells and 25% of femoral marrow cells were FLAG(+) throughout the study. CNS FLAG-expressing cells were mainly detected in the dentate gyrus (DG) and periventricular subependymal zone (PSZ). Although absent before 1 month and rare at 4 months, DG and PSZ FLAG(+) cells were abundant 16 months after bone marrow injection. Approximately 5% of DG cells expressed FLAG, including neurons (48.6%) and microglia (49.7%), and occasional astrocytes (1.6%), as determined by double immunostaining for FLAG and lineage markers. These data suggest that one or more populations of cells resident within adult bone marrow can migrate to the brain and differentiate into CNS-specific cells.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Anatomy, and Cell Biology, Jefferson Medical College, 1020 Locust Street, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
19
|
Walker DG, Chuah T, Rist MJ, Pender MP. T-cell apoptosis in human glioblastoma multiforme: Implications for immunotherapy. J Neuroimmunol 2006; 175:59-68. [PMID: 16631933 DOI: 10.1016/j.jneuroim.2006.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 12/28/2022]
Abstract
We used immunohistochemistry and flow cytometry to assess apoptosis in human glioblastoma multiforme (GBM). Our immunohistochemical study revealed apoptosis of glioma cells expressing glial fibrillary acidic protein and of CD3(+) T cells infiltrating GBM. To quantify and phenotype the apoptotic T cells, we performed flow cytometry on lymphocytes separated from GBM. The cells were stained with annexin-V-FLUOS/propidium iodide to identify apoptosis. We found that high proportions of both the CD4(+) and CD8(+) T cells were apoptotic. In particular, we found that T cells expressing Fas ligand (Fas-L, CD95L) were eight times more vulnerable to apoptosis than those not expressing Fas-L, which suggests that the T-cell apoptosis is induced by overactivation of the T-cell receptor, possibly in the absence of appropriate costimulation. Our results have implications for the design of immunotherapies for GBM.
Collapse
Affiliation(s)
- David G Walker
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, c/- Post Office RBH, Herston, Q4029 Australia.
| | | | | | | |
Collapse
|
20
|
Cho YH, Kim HS, Lee KH, Lee YE, Chang JW. The behavioral effect of human mesenchymal stem cell transplantation in cold brain injured rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 99:125-32. [PMID: 17370778 DOI: 10.1007/978-3-211-35205-2_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We investigated the effect of stereotaxically transplanted human mesenchymal stem cells (hMSCs) on behavioral change after traumatic cold brain injury in adult rats. Cortical lesions (n= 20) were induced by touching a metal stamp, cooled with liquid nitrogen, to the dura over the forelimb motor cortex of adult rats. The procedure produced a localized lesion, and the animals showed significant motor deficits. hMSCs were freshly isolated from human iliac bone and cultured in tissue culture flasks with 10 ml Dulbecco's modified Eagle's medium. The animals received hMSC grafts (3 x 10(5) hMSCs) 6 days after cold lesion (n = 10). All rats were sacrificed 3 or 7 weeks after cold injury, and immunohistochemical staining was performed on brain sections to identify donor hMSCs. Neurological evaluations were performed with the forepaw adjusting step test and modified neurological scoring. Treatment with 3 x 10(5) hMSCs improved the rat's neurological functions. We also found that the transplanted cells successfully migrated into the injured brain, preferentially localized around the injury site, and expressed the neuronal and astrocyte marker. These data suggest that hMSCs may be a potential therapeutic tool for brain injuries.
Collapse
Affiliation(s)
- Y H Cho
- Brain Korea 21 Project for Medical Science & Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Guillemin GJ, Brew BJ. Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 2003; 75:388-97. [PMID: 14612429 DOI: 10.1189/jlb.0303114] [Citation(s) in RCA: 385] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The phenotypic differentiation of systemic macrophages that have infiltrated the central nervous system, pericytes, perivascular macrophages, and the "real" resident microglial cells is a major immunocytochemical and immunohistochemical concern for all users of cultures of brain cells and brain sections. It is not only important in assessing the purity of cell cultures; it is also of fundamental importance in the assessment of the pathogenetic significance of perivascular inflammatory phenomena within the brain. The lack of a single membranous and/or biochemical marker allowing conclusive identification of these cells is still a major problem in neurobiology. This review briefly discusses the functions of these cells and catalogs a large number of membranous and biochemical markers, which can assist in the identification of these cells.
Collapse
Affiliation(s)
- Gilles J Guillemin
- Centre for Immunology, Neuroimmunology Department, St. Vincent's Hospital, Sydney, NSW, Australia.
| | | |
Collapse
|
22
|
Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF, Kassell NF, Lee KS. Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 2003; 53:123-33; discussion 133-5. [PMID: 12823881 DOI: 10.1227/01.neu.0000068863.37133.9e] [Citation(s) in RCA: 335] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Accepted: 03/11/2003] [Indexed: 12/25/2022] Open
Abstract
Cerebral vasospasm is a common, formidable, and potentially devastating complication in patients who have sustained subarachnoid hemorrhage (SAH). Despite intensive research efforts, cerebral vasospasm remains incompletely understood from both the pathogenic and therapeutic perspectives. At present, no consistently efficacious and ubiquitously applied preventive and therapeutic measures are available in clinical practice. Recently, convincing data have implicated a role of inflammation in the development and maintenance of cerebral vasospasm. A burgeoning (although incomplete) body of evidence suggests that various constituents of the inflammatory response, including adhesion molecules, cytokines, leukocytes, immunoglobulins, and complement, may be critical in the pathogenesis of cerebral vasospasm. Recent studies attempting to dissect the cellular and molecular basis of the inflammatory response accompanying SAH and cerebral vasospasm have provided a promising groundwork for future studies. It is plausible that the inflammatory response may indeed represent a critical common pathway in the pathogenesis of cerebral vasospasm pursuant to SAH. Investigations into the nature of the inflammatory response accompanying SAH are needed to elucidate the precise role(s) of inflammatory events in SAH-induced pathologies.
Collapse
Affiliation(s)
- Aaron S Dumont
- Department of Neurological Surgery, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wieczorek G, Steinhoff C, Schulz R, Scheller M, Vingron M, Ropers HH, Nuber UA. Gene expression profile of mouse bone marrow stromal cells determined by cDNA microarray analysis. Cell Tissue Res 2003; 311:227-37. [PMID: 12596042 DOI: 10.1007/s00441-002-0671-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2002] [Accepted: 11/04/2002] [Indexed: 01/24/2023]
Abstract
Bone marrow stromal cells (BMSC) have gained increased attention because of their multipotency and adult stem cell character. They have been shown to differentiate into other cell types of the mesenchymal lineage and also into non-mesenchymal cells. The exact identity of the original cells, which are isolated from bone marrow by their selective adherence to plastic, remains unknown to date. We have established and characterized mouse BMSC cultures and analyzed three independent samples by cDNA microarrays. The expression profile was compared with two previous expression studies of human BMSC and revealed a high degree of concordance between different techniques and species. To gain clues about the positional context and biology of the isolated cells within the bone marrow stroma, we searched our data for genes that encode proteins of the extracellular matrix, cell adhesion proteins, cytoskeletal proteins and cytokines/cytokine receptors. This analysis revealed a close association of BMSC with vascular cells and indicated that BMSC resemble pericytes.
Collapse
Affiliation(s)
- Georg Wieczorek
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Rochefort N, Quenech'du N, Watroba L, Mallat M, Giaume C, Milleret C. Microglia and astrocytes may participate in the shaping of visual callosal projections during postnatal development. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:183-92. [PMID: 12445895 DOI: 10.1016/s0928-4257(02)00005-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the adult cat, axons running through the corpus callosum interconnect the border between the visual cortical areas 17 and 18 (A17 and A18) of both hemispheres. This specific pattern emerges during postnatal development, under normal viewing conditions (NR), from the elimination of initially exuberant callosal projections. In contrast, if the postnatal visual experience is monocular from birth (MD), juvenile callosal projections are stabilised throughout A17 and A18. The present study aimed at using such a model in vivo to find indications of a contribution of glial cells in the shaping of projections in the developing CNS through interactions with neurones, both in normal and pathological conditions. As a first stage, the distribution and the morphology of microglial cells and astrocytes were investigated from 2 weeks to adulthood. Microglial cells, stained with isolectin-B4, were clustered in the white matter below A17 and A18. Until one month, these clustered cells displayed an ameboid morphology in NR group, while they were more ramified in MD animals. Their phenotype thus depends on the postnatal visual experience, which indicates that microglial cells may interact with axons of visual neurones. It also suggests that they may differentially contribute to the elimination and the stabilisation of juvenile exuberant callosal fibres in NR and MD animals respectively. Beyond one month, microglial cells were very ramified in both experimental groups. Astrocytes were labelled with a GFAP-antibody. The distributions of connexins 43 (Cx43) and 30 (Cx30), the main proteic components of gap junction channels in astrocytes, were also investigated using specific antibodies. Both in NR and MD groups, until 1 month, GFAP-positive astrocytes and Cx43 were mainly localised within the subcortical white matter. Then GFAP, Cx43 and Cx30 stainings progressively appeared within the cortex, throughout A17 and A18 but with a differential laminar expression according to the age. Thus, the distributions of both astrocytes and connexins changed with age; however, the monocular occlusion had no visible effect. This suggests that astrocytes may contribute to the postnatal development of neuronal projections to the primary visual cortex, including visual callosal projections.
Collapse
Affiliation(s)
- N Rochefort
- Laboratoire de Physiologie de la Perception et de l'Action, UMR 7124, Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Microglia (MG) are enigmatic cells of the central nervous system (CNS). MG are morphologically, antigenically and functionally flexible, and have the potential for mobility and proliferation. MG are professional antigen-presenting cells and constitute part of the local CNS innate immune system, communicating with other immune cells via chemokines, cytokines and growth factors. MG contain several antigenic and functional markers similar to macrophages and dendritic cells (DCs), but also present several differences from DCs. The exact role(s) played by MG in the normal human CNS is the topic of lively debate. MG participate in many reactive processes in the CNS and are therefore an integral part of lesions in a variety of pathologic conditions. It is thought that MG may exacerbate diverse neurological conditions, including viral encephalitis, AIDS, Multiple Sclerosis (MS) and Alzheimer's disease. A recurrent theme is the perpetuation by MG of pathological cycles of monocyte recruitment, activation and cytopathic secretions, and/or auto antigen presentation.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Pennsylvania, School of Medicine, 613 Stellar-Chance Laboratories, 422 Curie Blvd, Philadelphia, PA 19104-6100, USA
| | | | | |
Collapse
|
26
|
Abstract
An understanding of microglial functions during normal CNS development is prerequisite for understanding developmental neurotoxicology. This review provides a brief summary of previous work regarding the origin of microglia and addresses differences and similarities between microglia and brain macrophages. Current concepts and ideas which implicate microglia in diverse developmental processes, such as apoptosis, axon growth, and vasculogenesis are discussed. The study of reactive microgliosis may prove useful in the histopathological analysis of neurotoxicant-induced brain damage during development.
Collapse
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville 32611, USA.
| |
Collapse
|
27
|
Yamamoto M, Wakatsuki T, Hada A, Ryo A. Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 2001; 250:45-66. [PMID: 11251221 DOI: 10.1016/s0022-1759(01)00305-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Serial analysis of gene expression, or SAGE, is an experimental technique designed to gain a direct and quantitative measure of gene expression. The SAGE method is based on the isolation of unique sequence tags (9-10 bp in length) from individual mRNAs and concatenation of tags serially into long DNA molecules for a lump-sum sequencing. The SAGE method can be applied to the studies exploring virtually any kinds of biological phenomena in which the changes in cellular transcription are responsible. SAGE is a highly competent technology that can not only give a global gene expression profile of a particular type of cell or tissue, but also help us identify a set of specific genes to the cellular conditions by comparing the profiles constructed for a pair of cells that are kept at different conditions. In this review, we present an outline of the original method, several studies achieved by using the method as a major strategic tool, technological difficulties and intrinsic problems that emerged, and improvements and modifications of the method to cope with these drawbacks. We then present our modified SAGE procedure that generates longer sequence tags (14 bp) rather in detail, and the profile (80K profile) derived from HeLa cells that is composed of 80000 tags obtained from a single library. In addition, a series of smaller profiles (2, 4, 10, 20 and 40K) was made by dividing the 80K profile. When we compared these smaller profiles with respect to tag counts for a number of genes, it became apparent that counts of most gene tags increase stably and constantly as the size of profiles increase, while several genes do not. This may be another problem we have to keep in mind, when the profiles are compared for the identification of 'specific genes'.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Biochemistry, National Defense Medical College, 3-2 Namiki, Tokorozawa, 359-8513, Saitama, Japan.
| | | | | | | |
Collapse
|
28
|
Braun N, Sévigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 2000. [DOI: 10.1111/j.1460-9568.2000.01342.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290:1779-82. [PMID: 11099419 DOI: 10.1126/science.290.5497.1779] [Citation(s) in RCA: 1243] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone marrow stem cells give rise to a variety of hematopoietic lineages and repopulate the blood throughout adult life. We show that, in a strain of mice incapable of developing cells of the myeloid and lymphoid lineages, transplanted adult bone marrow cells migrated into the brain and differentiated into cells that expressed neuron-specific antigens. These findings raise the possibility that bone marrow-derived cells may provide an alternative source of neurons in patients with neurodegenerative diseases or central nervous system injury.
Collapse
Affiliation(s)
- E Mezey
- Basic Neuroscience Program, Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
30
|
Braun N, Sevigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01342.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Mezey E, Chandross KJ. Bone marrow: a possible alternative source of cells in the adult nervous system. Eur J Pharmacol 2000; 405:297-302. [PMID: 11033336 DOI: 10.1016/s0014-2999(00)00561-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that stem cell populations can undergo a transition between mesodermal and neural ectodermal cell fates. Bone marrow-derived cells have been shown to be extremely versatile: they can become brain and liver cells and muscle, while other mesodermal derived cells have been shown to migrate into the brain and differentiate into neurons. Moreover, under the appropriate conditions, neural stem cells can differentiate into hematopoietic and muscle cell fates. It is now well established that newly differentiated cell types are continuously generated from immature stem cells throughout development and in adult mammals, including humans. This review addresses the contribution that bone marrow-derived stem cells may play during neurogenesis. We transplanted male bone marrow into female recipients to track and characterize the Y chromosome containing cells in the CNS (central nervous system) of mice.
Collapse
Affiliation(s)
- E Mezey
- NIH, NINDS-BNP, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Wu YP, Matsuda J, Kubota A, Suzuki K, Suzuki K. Infiltration of hematogenous lineage cells into the demyelinating central nervous system of twitcher mice. J Neuropathol Exp Neurol 2000; 59:628-39. [PMID: 10901235 DOI: 10.1093/jnen/59.7.628] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infiltration of hematogenous lineage cells into the central nervous system (CNS) was investigated in the twitcher mouse, a murine model of globoid cell leukodystrophy in human. The hematogenous cells were selectively labeled following intraperitoneal injection of rhodamine isothiocyanate (RhIc). The frequency of detecting Rhlc-labeled cells (Rhlc+ cells) in the twitcher CNS varied with age. RhIc+ cells were hardly detected when injection was made prior to the postnatal day (PND) 30. The number of Rhlc' cells increased thereafter peaked at PND 35-38 and declined drastically at PND 40-45. The majority of RhIc+ cells were distributed in white matter of the CNS that correlated well with the areas of demyelination and of increased microglia/macrophage population described in our earlier studies. Almost all Rhlc+ cells were double-labeled with antibody for Mac-1 and also with MHC class II. Some small cells double-labeled with RhIc and antibodies for CD4, CD8, or IL-2R were also identified. By RT-PCR, the expression of monocyte chemoattractant protein- (MCP-1) mRNA increased drastically at PND 30, peaked at PND 35, and decreased gradually after PND 40. This pattern of mRNA changes correlated well with the dynamic pattern of the infiltration of hematogenous cells into the CNS, suggesting a role of chemokine(s) in the cellular infiltration in the twitcher brain. The expression of IL-10 mRNA also increased gradually. IL-10 is a cytokine inhibitory factor and a major regulator in suppressing the inflammatory response. Thus, our results indicated that hematogenous lineage cells infiltrated in the CNS of twitcher mice, and that MCP-1 and IL-10 may play an important role in regulating the cellular recruitment.
Collapse
Affiliation(s)
- Y P Wu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill 27599-7525, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
OBJECTIVE Despite advances in conventional therapy, the prognosis for most glioma patients remains dismal. This has prompted an intensive search for effective treatment alternatives. Immunotherapy, one such alternative, has long been recognized as a potentially potent cancer treatment but has been limited by an inadequate understanding of the immune system. Now, increased insight into immunology is suggesting more rational approaches to immunotherapy. In this article, we explore key aspects of modern immunology and discuss their implications for glioma therapy. METHODS A thorough literature review of glioma immunology and immunotherapy was undertaken to inquire into the basic immunology, central nervous system immunology, glioma immunobiology, standard glioma immunotherapy, and recent immunotherapeutic advances in glioma treatment. RESULTS Although gliomas express tumor-associated antigens and appear potentially sensitive to immune responses, many factors work together to inhibit antiglioma immunity. Not surprisingly, most clinical attempts at glioma immunotherapy have met with little success to date. However, novel immunostimulatory strategies, such as immunogene therapy, directed cytokine delivery, and dendritic cell manipulation, have recently yielded dramatic preclinical results in glioma models. This suggests that glioma-derived immunosuppression can be overcome. CONCLUSION Modern molecular biology and immunology techniques have yielded a wealth of new data about glioma immunobiology. Armed with this information, many investigators have proposed novel means to stimulate antiglioma immune responses. Although definitive clinical results remain to be seen, the current renaissance in glioma immunology and immunotherapy shows great promise for the future.
Collapse
Affiliation(s)
- I F Parney
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
35
|
Prechel MM, Ding C, Washington RL, Kolodziej MS, Young MR. In vivo indomethacin treatment causes microglial activation in adult mice. Neurochem Res 2000; 25:357-62. [PMID: 10761979 DOI: 10.1023/a:1007588903897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The current study was undertaken to study the role of prostaglandins in regulating microglial activation. Mice were treated with indomethacin (2 microg/ml) in their drinking water to selectively inhibit cyclooxygenase activity. After 4-8 days, the effect of inhibiting prostaglandin synthesis on microglial activity was evaluated. This was accomplished by analyzing microglial expression of Mac-1 (C3 complement receptor) as an indicator of activation. Mac-1 expression was assessed by immunohistochemistry of fixed brain cryosections, and by flow cytometric analysis of immunostained single cell suspensions. Both methods demonstrated that compared to age-matched, untreated controls, brains of indomethacin-treated mice had increased levels of Mac-1 expression, suggesting an increase in the state of microglial activation. These results demonstrate the importance of prostaglandins in down regulating microglial activity, and that inhibition of prostaglandin synthesis with indomethacin may act to increase the reactivity of the brain's immune system.
Collapse
Affiliation(s)
- M M Prechel
- Department of Pathology, Loyola University Stritch School of Medicine, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
36
|
Hahn J, Jung W, Kim N, Uhm DY, Chung S. Characterization and regulation of rat microglial Ca2+ release-activated Ca2+ (CRAC) channel by protein kinases. Glia 2000. [DOI: 10.1002/1098-1136(200008)31:2<118::aid-glia30>3.0.co;2-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Inoue H, Sawada M, Ryo A, Tanahashi H, Wakatsuki T, Hada A, Kondoh N, Nakagaki K, Takahashi K, Suzumura A, Yamamoto M, Tabira T. Serial analysis of gene expression in a microglial cell line. Glia 1999; 28:265-71. [PMID: 10559785 DOI: 10.1002/(sici)1098-1136(199912)28:3<265::aid-glia10>3.0.co;2-f] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We used the serial analysis of gene expression (SAGE) method to systematically analyze transcripts present in a microglial cell line. Over 10,000 SAGE tags were sequenced, and shown to represent 6,013 unique transcripts. Among the diverse transcripts that had not been previously detected in microglia were those for cytokines such as endothelial monocyte-activating polypeptide I (EMAP I), and for cell surface antigens, including adhesion molecules such as CD9, CD53, CD107a, CD147, CD162 and mast cell high affinity IgE receptor. In addition, we detected transcripts that were characteristic of hematopoietic cells or mesodermal structures, such as E3 protein, A1, EN-7, B94, and ufo. Furthermore, the profile contained a transcript, Hn1, that is important in hematopoietic cells and neurological development (Tang et al. Mamm Genome 8:695-696, 1997), suggesting the probable neural differentiation of microglia from the hematopoietic system in development. Messenger RNA expression of these genes was confirmed by RT-PCR in primary cultures of microglia. Significantly, this is the first systematic profiling of the genes expressed in a microglial cell line. The identification and further characterization of the genes described here should provide potential new targets for the study of microglial biology.
Collapse
Affiliation(s)
- H Inoue
- Division of Demyelinating Disease and Aging, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ziaja M, Janeczko K. Spatiotemporal patterns of microglial proliferation in rat brain injured at the postmitotic stage of postnatal development. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<379::aid-jnr3>3.0.co;2-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Mar�n-Teva JL, Cuadros MA, Calvente R, Almendros A, Navascu�s J. Naturally occurring cell death and migration of microglial precursors in the quail retina during normal development. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990920)412:2<255::aid-cne6>3.0.co;2-h] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Wagner S, Czub S, Greif M, Vince GH, Süss N, Kerkau S, Rieckmann P, Roggendorf W, Roosen K, Tonn JC. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 1999; 82:12-6. [PMID: 10360813 DOI: 10.1002/(sici)1097-0215(19990702)82:1<12::aid-ijc3>3.0.co;2-o] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interleukin 10 (IL-10) expression has been found to be correlated with the extent of malignancy in gliomas. In vitro, IL-10 increases proliferation and migratory capacity in human glioma cell lines. In this study, we localized the site of IL-10 synthesis in gliomas to cells of microglial origin. Biopsy specimens from 11 patients with malignant glioma were processed on native tissues and at early cell culture passages (0-4). IL-10 mRNA was analyzed by RT-PCR and in situ hybridization. Protein was quantitatively assessed by ELISA in cell culture supernatants, and cells expressing IL-10 were determined by a combination of immunohistochemistry for CD68 (specific for microglia/macrophage lineage) and IL-10 in situ hybridization. IL-10 mRNA decreased from passage 0 to 4 in all samples and was undetectable beyond passage 5. Such downregulation of mRNA leads to a steep decrease of IL-10 protein in culture supernatants (below detection level, 0.05 ng/ml, beyond passage 1). The combination of in situ hybridization for IL-10 and CD68 immunostaining revealed that only cells of the microglia/macrophage lineage produced IL-10 mRNA. Our results identify microglia/macrophage cells as the major source of IL-10 expression in gliomas which decreases markedly during early passages of primary cultures of human gliomas due to a progressive reduction of microglia/macrophages present.
Collapse
Affiliation(s)
- S Wagner
- Department of Neurosurgery, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Microglia are the immune effector cells of the nervous system. The prevailing view is that microglia are derived from circulating precursors in the blood, which originate from the bone-marrow. Colonisation of the central nervous system (CNS) by microglia is an orchestrated response during human fetal development related to the maturation of the nervous system. It coincides with vascularisation, formation of radial glia, neuronal migration and myelination primarily in the 4th-5th months and beyond. Microglial influx generally conforms to a route following white matter tracts to gray areas. We have observed that colonisation of the spinal cord begins around 9 weeks, with the major influx and distribution of microglia commencing around 16 weeks. In the cerebrum, colonisation is in progress during the second trimester, and ramified microglial forms are widely distributed within the intermediate zone by the first half of intra-uterine life (20-22 weeks). A distinct pattern of migration occurs along radial glia, white matter tracts and vasculature. The distribution of these cells is likely to be co-ordinated by spatially and temporally regulated, anatomical expression of chemokines including RANTES and MCP-1 in the cortex; by ICAM-2 and PECAM on radiating cerebral vessels and on capillaries within the germinal layer, and apoptotic cell death overlying this region. The phenotype and functional characteristics of fetal microglia are also outlined in this review. The need for specific cellular interactions and targeting is greater within the central nervous system than in other tissues. In this respect, microglia may additionally contribute towards CNS histogenesis.
Collapse
Affiliation(s)
- P Rezaie
- Department of Neuropathology, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, United Kingdom.
| | | |
Collapse
|
42
|
Rezaie P, Patel K, Male DK. Microglia in the human fetal spinal cord--patterns of distribution, morphology and phenotype. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 115:71-81. [PMID: 10366704 DOI: 10.1016/s0165-3806(99)00043-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microglia, the intrinsic macrophages of the nervous system, colonise the cerebrum around the second trimester in man. In order to determine the extent of microglial influx into the nervous system, we have examined their distribution within the human fetal spinal cord in relation to astrocytic and vascular development between 9 and 16 weeks of gestation, using conventional immunohistochemistry [CD11b; CD45; CD64; CD68; ICAM-1; ICAM-2; VCAM-1; PECAM; GFAP; vimentin] and lectin histochemistry [RCA-1]. Microglia are identifiable by 9 weeks, within the ventricular/sub-ventricular zones. Human fetal microglia display heterogeneity in phenotype and are more readily identified by CD68 in the spinal cord. There is a marked influx of cells dorsal and ventral to the neural cavity, from the marginal layer [meninges/connective tissue] with advancing gestational age, with greatest cell densities towards the end of the time period in this study. This inward migration is associated with progressive vascularisation, ICAM-2 expression and co-localises with GFAP and vimentin positive radial glia. The patterns of microglial migration in human fetal cord differ from that within the cerebrum, but generally conform to a route following white to gray matter.
Collapse
Affiliation(s)
- P Rezaie
- Department of Neuropathology, Institute of Psychiatry, De Crespigny Park, London SE5 8JN, UK.
| | | | | |
Collapse
|
43
|
Abstract
Microglia are the principal immune cells in the central nervous system (CNS) and have a critical role in host defense against invading microorganisms and neoplastic cells. However, as with immune cells in other organs, microglia may play a dual role, amplifying the effects of inflammation and mediating cellular degeneration as well as protecting the CNS. In entities like human immunodeficiency virus (HIV) infection of the nervous system, microglia are also critical to viral persistence. In this review we discuss the role of microglia in three diseases in which their activity is at least partially deleterious: HIV, multiple sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- F González-Scarano
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia 19104-6146, USA.
| | | |
Collapse
|
44
|
Portis JL, Lynch WP. Dissecting the determinants of neuropathogenesis of the murine oncornaviruses. Virology 1998; 247:127-36. [PMID: 9705905 DOI: 10.1006/viro.1998.9240] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J L Portis
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA.
| | | |
Collapse
|
45
|
Zhou W, Cayabyab FS, Pennefather PS, Schlichter LC, DeCoursey TE. HERG-like K+ channels in microglia. J Gen Physiol 1998; 111:781-94. [PMID: 9607936 PMCID: PMC2217149 DOI: 10.1085/jgp.111.6.781] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1997] [Accepted: 03/18/1998] [Indexed: 11/21/2022] Open
Abstract
A voltage-gated K+ conductance resembling that of the human ether-à-go-go-related gene product (HERG) was studied using whole-cell voltage-clamp recording, and found to be the predominant conductance at hyperpolarized potentials in a cell line (MLS-9) derived from primary cultures of rat microglia. Its behavior differed markedly from the classical inward rectifier K+ currents described previously in microglia, but closely resembled HERG currents in cardiac muscle and neuronal tissue. The HERG-like channels opened rapidly on hyperpolarization from 0 mV, and then decayed slowly into an absorbing closed state. The peak K+ conductance-voltage relation was half maximal at -59 mV with a slope factor of 18.6 mV. Availability, assessed by a hyperpolarizing test pulse from different holding potentials, was more steeply voltage dependent, and the midpoint was more positive (-14 vs. -39 mV) when determined by making the holding potential progressively more positive than more negative. The origin of this hysteresis is explored in a companion paper (Pennefather, P.S., W. Zhou, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:795-805). The pharmacological profile of the current differed from classical inward rectifier but closely resembled HERG. Block by Cs+ or Ba2+ occurred only at millimolar concentrations, La3+ blocked with Ki = approximately 40 microM, and the HERG-selective blocker, E-4031, blocked with Ki = 37 nM. Implications of the presence of HERG-like K+ channels for the ontogeny of microglia are discussed.
Collapse
Affiliation(s)
- W Zhou
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
46
|
Microglia in ontogeny and brain pathology. NEUROPHYSIOLOGY+ 1998. [DOI: 10.1007/bf02463060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Marín-Teva JL, Almendros A, Calvente R, Cuadros MA, Navascués J. Tangential migration of ameboid microglia in the developing quail retina: mechanism of migration and migratory behavior. Glia 1998; 22:31-52. [PMID: 9436786 DOI: 10.1002/(sici)1098-1136(199801)22:1<31::aid-glia4>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long distance migration of microglial precursors within the central nervous system is essential for microglial colonization of the nervous parenchyma. We studied morphological features of ameboid microglial cells migrating tangentially in the developing quail retina to shed light on the mechanism of migration and migratory behavior of microglial precursors. Many microglial precursors remained attached on retinal sheets containing the inner limiting membrane covered by a carpet of Müller cell endfeet. This demonstrates that most ameboid microglial cells migrate tangentially on Müller cell endfeet. Many of these cells showed a central-to-peripheral polarized morphology, with extensive lamellipodia spreading through grooves flanked by Müller cell radial processes, to which they were frequently anchored. Low protuberances from the vitreal face of microglial precursors were firmly attached to the subjacent basal lamina, which was accessible through gaps in the carpet of Müller cell endfeet. These results suggest a mechanism of migration involving polarized extension of lamellipodia at the leading edge of the cell, strong cell-to-substrate attachment, translocation of the cell body forward, and retraction of the rear of the cell. Other ameboid cells were multipolar, with lamellipodial projections radiating in all directions from the cell body, suggesting that microglial precursors explore the surrounding environment to orient their movement. Central-to-peripheral migration of microglial precursors in the retina does not follow a straight path; instead, these cells perform forward, backward, and sideways movements, as suggested by the occurrence of (a) V-shaped bipolar ameboid cells with their vertex pointing toward either the center or the periphery of the retina, and (b) threadlike processes projecting from either the periphery-facing edge or the center-facing edge of ameboid microglial cells.
Collapse
Affiliation(s)
- J L Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- L Lorusso
- Department of Pathology, Walton Hospital, Liverpool, United Kingdom
| | | |
Collapse
|
49
|
Bone Marrow Transplantation in Acid Sphingomyelinase-Deficient Mice: Engraftment and Cell Migration Into the Brain as a Function of Radiation, Age, and Phenotype. Blood 1997. [DOI: 10.1182/blood.v90.1.444.444_444_452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Types A and B Niemann-Pick disease (NPD) result from the deficient activity of the lysosomal hydrolase, acid sphingomyelinase (ASM). A long-term goal of our research is to evaluate the effects of bone marrow transplantation (BMT) and hematopoietic stem cell gene therapy (HSCGT) on the NPD phenotype. As an initial step toward this goal, we have undertaken a study aimed at optimizing hematopoietic cell engraftment in acid sphingomyelinase “knock-out” (ASMKO) mice. Several parameters were analyzed, including the effects of radiation and donor cell number on survival and engraftment of newborn and adult animals, the number of donor cells detected in the brain posttransplantation, and the levels of ASM activity achieved in the brain. A total of 202 ASMKO and normal animals were transplanted and studied, and the overall conclusions were: (1) newborn ASMKO animals were more susceptible to radiation-induced mortality than normal animals, (2) at low radiation doses, increasing the donor cell number improved engraftment, while this was less evident at the higher radiation doses, (3) engraftment was easier to achieve in normal as compared with ASMKO animals, (4) among newborn transplants, the number of donor cells detected in the brain was directly correlated with engraftment in the blood, (5) more donor cells were detected in the brains of newborn ASMKO animals as opposed to newborn normal animals, and (6) no donor cells were found in the brains of animals transplanted as adults, including those that were highly engrafted in the blood. These results provide important information regarding the design of future BMT and HSCGT studies in ASMKO mice and other mouse models and demonstrate the potential of altering the NPD phenotype by these therapeutic strategies.
Collapse
|
50
|
Bone Marrow Transplantation in Acid Sphingomyelinase-Deficient Mice: Engraftment and Cell Migration Into the Brain as a Function of Radiation, Age, and Phenotype. Blood 1997. [DOI: 10.1182/blood.v90.1.444] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Types A and B Niemann-Pick disease (NPD) result from the deficient activity of the lysosomal hydrolase, acid sphingomyelinase (ASM). A long-term goal of our research is to evaluate the effects of bone marrow transplantation (BMT) and hematopoietic stem cell gene therapy (HSCGT) on the NPD phenotype. As an initial step toward this goal, we have undertaken a study aimed at optimizing hematopoietic cell engraftment in acid sphingomyelinase “knock-out” (ASMKO) mice. Several parameters were analyzed, including the effects of radiation and donor cell number on survival and engraftment of newborn and adult animals, the number of donor cells detected in the brain posttransplantation, and the levels of ASM activity achieved in the brain. A total of 202 ASMKO and normal animals were transplanted and studied, and the overall conclusions were: (1) newborn ASMKO animals were more susceptible to radiation-induced mortality than normal animals, (2) at low radiation doses, increasing the donor cell number improved engraftment, while this was less evident at the higher radiation doses, (3) engraftment was easier to achieve in normal as compared with ASMKO animals, (4) among newborn transplants, the number of donor cells detected in the brain was directly correlated with engraftment in the blood, (5) more donor cells were detected in the brains of newborn ASMKO animals as opposed to newborn normal animals, and (6) no donor cells were found in the brains of animals transplanted as adults, including those that were highly engrafted in the blood. These results provide important information regarding the design of future BMT and HSCGT studies in ASMKO mice and other mouse models and demonstrate the potential of altering the NPD phenotype by these therapeutic strategies.
Collapse
|