1
|
Keskin K, Catal Y, Wolman A, Cagdas Eker M, Saffet Gonul A, Northoff G. The brain's internal echo: Longer timescales, stronger recurrent connections and higher neural excitation in self regions. Neuroimage 2025; 312:121221. [PMID: 40246256 DOI: 10.1016/j.neuroimage.2025.121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Understanding the brain's intrinsic architecture has long been a central focus of neuroscience, with recent advances shedding light on its topographic organization along uni and transmodal regions. How the brain's global uni-transmodal topography relates to psychological features like our sense of self remains yet unclear, though. METHOD We here combine fMRI brain imaging with computational modeling (Wilson Cowan model) to better understand the temporal, spatial and physiological features underlying the distinction of self and non-self regions within the brain's global topography. RESULTS fMRI resting state shows lower myelin content, longer timescales (measured by the autocorrelation window/ACW), and lower global functional connectivity/synchronization (measured by global signal correlation/GSCORR) in self regions (based on the three-layer self topography; Qin et al. 2020) compared to non-self regions. Next, we fit the fMRI data with a neural mass model, the Wilson-Cowan model, which is enriched by structural and functional connectivity data from human MRI/fMRI. We first replicate the empirical data with longer ACW and lower GSCORR in self regions. Next, we demonstrate that self and non-self regions can, based on the same measures in the model, not only be distinguished within the brain's global topography but also within the unimodal and transmodal regions themselves, respectively. Finally, the neural mass model shows that such topographic differentiation relates to two physiological features: self regions exhibit higher intra-regional excitatory recurrent connection and higher levels in their basal neural excitation than non-self regions. CONCLUSION Our findings demonstrate the intrinsic nature of the distinction of self and non-self regions within the brain's global uni-transmodal topography as well as their underlying physiological differences with higher levels in both recurrent connections and neural excitation in self regions. The increased recurrent connections in self regions, together with their higher levels of neural excitation and the longer autocorrelation window, may be ideally suited to mediate their self-referential processing: this can thus be seen as a form of 'psychological recurrence' where one and the same input/stimulus is processed in a prolonged echo-chamber like way, that is, an internal echo within the self regions themselves.
Collapse
Affiliation(s)
- Kaan Keskin
- Department of Psychiatry, Ege University, Izmir, Turkey; SoCAT Lab, Ege University, Izmir, Turkey; Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| | - Yasir Catal
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| | - Mehmet Cagdas Eker
- Department of Psychiatry, Ege University, Izmir, Turkey; SoCAT Lab, Ege University, Izmir, Turkey.
| | - Ali Saffet Gonul
- Department of Psychiatry, Ege University, Izmir, Turkey; SoCAT Lab, Ege University, Izmir, Turkey.
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, Canada.
| |
Collapse
|
2
|
Chuipka N, Smy T, Northoff G. From neural activity to behavioral engagement: temporal dynamics as their "common currency" during music. Neuroimage 2025; 312:121209. [PMID: 40222497 DOI: 10.1016/j.neuroimage.2025.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025] Open
Abstract
The human cortex is highly dynamic as manifest in its vast ongoing temporal repertoire. Similarly, human behavior is also variable over time with, for instance, fluctuating response times. How the brain's ongoing dynamics relates to the fluctuating dynamics of behavior such as emotions remains yet unclear, though. We measure median frequency (MF) in a dynamic way (D-MF) to investigate the dynamics in both electroencephalography (EEG) neural activity and the subjects' continuous behavioral assessment of their perceived emotional engagement changes during five different music pieces. Our main findings are: (i) significant differences in the frequency dynamics, e.g., D-MF, of the subjects' behavioral engagement ratings between the five music pieces, (ii) significant differences in the, e.g., D-MF, of the music pieces' EEG-based neural activity, and (iii) there is a unidirectional relationship from neural to behavioral during the five music pieces as measured through correlation and Granger causality between their respective D-MF's. Together, we demonstrate that neural dynamics relates to behavioral dynamics through the shared fluctuations in their dynamics. This highlights the key role of dynamics in connecting neural and behavioral activity as their "common currency."
Collapse
Affiliation(s)
- Noah Chuipka
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada.
| | - Tom Smy
- Department of Electronics, Carleton University, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
3
|
Northoff G, Zilio F, Zhang J. From pre-stimulus activity to the contents of consciousness - A spatiotemporal view: Reply to comments on "Beyond task response-Pre-stimulus activity modulates contents of consciousness". Phys Life Rev 2025; 53:76-90. [PMID: 40037218 DOI: 10.1016/j.plrev.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
What are the exact neuronal mechanisms of pre-post-stimulus interaction and how can that account for the intrinsically subjective nature of the contents of consciousness? This is the key question lurking behind the various excellent and very thoughtful commentaries to our target article which we group along four main topics and questions. (i) What is the role of neural features like alpha power, phase dynamics, trial-to-trial variability and fractal scale-free dynamics in yielding pre-post-stimulus interaction and its conscious contents. (ii) What do we mean by 'content' of consciousness? This concerns its meaning, its characterization as internal or external, and its relation to the basic subjectivity of consciousness. (iii) How does our approach stand to other theories of consciousness like the Dendritic Integration Theory (DIT), GNWT and IIT? This concerns the convergence among the different theories that highlight distinct aspects. (iv) How can we detail the spatiotemporal shaping of the contents of consciousness including their intrinsically subjective nature through pre-post-stimulus interaction? This concerns the details of how the non-additive pre-post-stimulus interaction shapes the subjective nature of our experience of conscious contents, that is, how the neuronal activity connects to the phenomenal features of consciousness. Together, we conclude that the contents of consciousness are shaped primarily in a temporal-dynamic and spatial-topographic way through the non-additive pre-post-stimulus interaction. Such spatiotemporal shaping of the contents in our consciousness constitutes their intrinsically subjective nature which must be distinguished from their (more objective) modulation by cognitive, sensory, affective, and motor functions.
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa, Institute of Mental Health Research at the Royal Ottawa Hospital, Ottawa, Canada.
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padua, Padua, Italy
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, PR China.
| |
Collapse
|
4
|
Gao T, Zhou Y, Pan X, Li W, Han S. Cognitive and neural underpinnings of friend-prioritization in a perceptual matching task. Soc Cogn Affect Neurosci 2025; 20:nsaf009. [PMID: 39831532 PMCID: PMC11792655 DOI: 10.1093/scan/nsaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 01/22/2025] Open
Abstract
Previous findings of better behavioral responses to self- over other-related stimuli suggest prioritized cognitive processes of self-related information. However, it is unclear whether the processing of information related to important others (e.g.friends) may be prioritized over that related to the self in certain subpopulations and, if yes, whether friend-prioritization and self-prioritization engage distinct cognitive and neural mechanisms. We collected behavioral and electroencephalography (EEG) data from a large sample (N = 1006) during learning associations between shapes and person labels (self or a friend). Analyses of response times and sensitivities revealed two subpopulations who performed better to friend-shape or self-shape associations, respectively (N = 216 for each group). Drift diffusion model (DDM) analyses unraveled faster information acquisition for friend-shape (vs. self-shape) associations in the friend-prioritization group but an opposite pattern in the self-prioritization group. Trial-by-trial regression analyses of EEG data showed that the greater amplitudes of a frontal/central activity at 180-240 ms poststimulus were correlated with faster information acquisition from friend-shape associations in the friend-prioritization group but from self-shape associations in the self-prioritization group. However, the frontal/central neural oscillations at 8-18 Hz during perceptual learning were specifically associated with speed of information acquisition from friend-shape associations in the friend-prioritization-group. Our findings provide evidence for friend-prioritization in perceptual learning in a subpopulation of adults and clarify the underlying cognitive and neural mechanisms.
Collapse
Affiliation(s)
- Tianyu Gao
- Department of Psychology, Faculty of Arts and Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Zhuhai 519087, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education, Faculty of Psychology, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Yuqing Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, China
| | - Xinyue Pan
- School of Management, Economics and Shenzhen Finance Institute, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China
| | - Wenxin Li
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, 52 Haidian Road, Beijing 100080, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, 52 Haidian Road, Beijing 100080, China
| |
Collapse
|
5
|
Liu Z, Hu M, Zheng Y, Sui J, Chuan-Peng H. A multiverse assessment of the reliability of the self-matching task as a measurement of the self-prioritization effect. Behav Res Methods 2025; 57:37. [PMID: 39747721 DOI: 10.3758/s13428-024-02538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 01/04/2025]
Abstract
The self-matching task (SMT) is widely used to investigate the cognitive mechanisms underlying the self-prioritization effect (SPE), wherein performance is enhanced for self-associated stimuli compared to other-associated ones. Although the SMT robustly elicits the SPE, there is a lack of data quantifying the reliability of this paradigm. This is problematic, given the prevalence of the reliability paradox in cognitive tasks: many well-established cognitive tasks demonstrate relatively low reliability when used to evaluate individual differences, despite exhibiting replicable effects at the group level. To fill this gap, this preregistered study investigated the reliability of SPE derived from the SMT using a multiverse approach, combining all possible indicators and baselines reported in the literature. We first examined the robustness of 24 SPE measures across 42 datasets (N = 2250) using a meta-analytical approach. We then calculated the split-half reliability (r) and intraclass correlation coefficient (ICC2) for each SPE measure. Our findings revealed a robust group-level SPE across datasets. However, when evaluating individual differences, SPE indices derived from reaction time (RT) and efficiency exhibited relatively higher, compared to other SPE indices, but still unsatisfied split-half reliability (approximately 0.5). The reliability across multiple time points, as assessed by ICC2, RT, and efficiency, demonstrated moderate levels of test-retest reliability (close to 0.5). These findings revealed the presence of a reliability paradox in the context of SMT-based SPE assessment. We discussed the implications of how to enhance individual-level reliability using this paradigm for future study design.
Collapse
Affiliation(s)
- Zheng Liu
- School of Psychology, Nanjing Normal University, Nanjing, China
- School of Humanities and Social Science, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China
| | - Mengzhen Hu
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Yuanrui Zheng
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Jie Sui
- School of Psychology, University of Aberdeen, Old Aberdeen, Scotland
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
6
|
Çatal Y, Keskin K, Wolman A, Klar P, Smith D, Northoff G. Flexibility of intrinsic neural timescales during distinct behavioral states. Commun Biol 2024; 7:1667. [PMID: 39702547 DOI: 10.1038/s42003-024-07349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Recent neuroimaging studies demonstrate a heterogeneity of timescales prevalent in the brain's ongoing spontaneous activity, labeled intrinsic neural timescales (INT). At the same time, neural timescales also reflect stimulus- or task-related activity. The relationship of the INT during the brain's spontaneous activity with their involvement in task states including behavior remains unclear. To address this question, we combined calcium imaging data of spontaneously behaving mice and human electroencephalography (EEG) during rest and task states with computational modeling. We obtained four primary findings: (i) the distinct behavioral states can be accurately predicted from INT, (ii) INT become longer during behavioral states compared to rest, (iii) INT change from rest to task is correlated negatively with the variability of INT during rest, (iv) neural mass modeling shows a key role of recurrent connections in mediating the rest-task change of INT. Extending current findings, our results show the dynamic nature of the brain's INT in reflecting continuous behavior through their flexible rest-task modulation possibly mediated by recurrent connections.
Collapse
Affiliation(s)
- Yasir Çatal
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada.
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Kaan Keskin
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychiatry, Ege University, Izmir, Turkey
- SoCAT Lab, Ege University, Izmir, Turkey
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Philipp Klar
- Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - David Smith
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ontario, ON, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
7
|
Scalabrini A. Through the cracks of consciousness - The relevance of temporal dynamics for the psychological baseline of the self and its dissociative counterpart: A commentary on "Beyond task response-Pre-stimulus activity modulates contents of consciousness" by Northoff, Zilio, and Zhang. Phys Life Rev 2024; 50:100-102. [PMID: 39018893 DOI: 10.1016/j.plrev.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Andrea Scalabrini
- University of Bergamo, Department of Human and Social Sciences, Bergamo, Italy.
| |
Collapse
|
8
|
Ventura B, Çatal Y, Wolman A, Buccellato A, Cooper AC, Northoff G. Intrinsic neural timescales exhibit different lengths in distinct meditation techniques. Neuroimage 2024; 297:120745. [PMID: 39069224 DOI: 10.1016/j.neuroimage.2024.120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Meditation encompasses a range of practices employing diverse induction techniques, each characterized by a distinct attentional focus. In Mantra meditation, for instance, practitioners direct their attention narrowly to a given sentence that is recursively repeated, while other forms of meditation such as Shoonya meditation are induced by a wider attentional focus. Here we aimed to identify the neural underpinnings and correlates associated with this spectrum of distinct attentional foci. To accomplish this, we used EEG data to estimate the brain's intrinsic neural timescales (INTs), that is, its temporal windows of activity, by calculating the Autocorrelation Window (ACW) of the EEG signal. The autocorrelation function measures the similarity of a timeseries with a time-lagged version of itself by correlating the signal with itself on different time lags, consequently providing an estimation of INTs length. Therefore, through using the ACW metric, our objective was to explore whether there is a correspondence between the length of the brain's temporal windows of activity and the width of the attentional scope during various meditation techniques. This was performed on three groups of highly proficient practitioners belonging to different meditation traditions, as well as a meditation-naïve control group. Our results indicated that practices with a wider attentional focus, like Shoonya meditation, exhibit longer ACW durations compared to practices requiring a narrower attentional focus, such as Mantra meditation or body-scanning Vipassana meditation. Together, we demonstrated that distinct meditation techniques with varying widths of attentional foci exhibit unique durations in their brain's INTs. This may suggest that the width of the attentional scope during meditation relates and corresponds to the width of the brain's temporal windows in its neural activity. SIGNIFICANCE STATEMENT: Our research uncovered the neural mechanisms that underpin the attentional foci in various meditation techniques. We revealed that distinct meditation induction techniques, featured by their range of attentional widths, are characterized by varying lengths of intrinsic neural timescales (INTs) within the brain, as measured by the Autocorrelation Window function. This finding may bridge the gap between the width of attentional windows (subjective) and the width of the temporal windows in the brain's neural activity (objective) during different meditation techniques, offering a new understanding of how cognitive and neural processes are related to each other. This work holds significant implications, especially in the context of the increasing use of meditation in mental health and well-being interventions. By elucidating the distinct neural foundations of different meditation techniques, our research aims to pave the way for developing more tailored and effective meditation-based treatments.
Collapse
Affiliation(s)
- Bianca Ventura
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa K1N 6N5, ON, Canada.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa K1Z 7K4, ON, Canada.
| | - Angelika Wolman
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa K1N 6N5, ON, Canada.
| | - Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, Padova 35129, Italy; Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy.
| | - Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada.
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa K1Z 7K4, ON, Canada.
| |
Collapse
|
9
|
Sui J, Rotshtein P, Lu Z, Chechlacz M. Causal Roles of Ventral and Dorsal Neural Systems for Automatic and Control Self-Reference Processing: A Function Lesion Mapping Study. J Clin Med 2024; 13:4170. [PMID: 39064210 PMCID: PMC11278450 DOI: 10.3390/jcm13144170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Humans perceive and interpret the world through the lens of self-reference processes, typically facilitating enhanced performance for the task at hand. However, this research has predominantly emphasized the automatic facet of self-reference processing, overlooking how it interacts with control processes affecting everyday situations. Methods: We investigated this relationship between automatic and control self-reference processing in neuropsychological patients performing self-face perception tasks and the Birmingham frontal task measuring executive functions. Results: Principal component analysis across tasks revealed two components: one loaded on familiarity/orientation judgments reflecting automatic self-reference processing, and the other linked to the cross task and executive function indicating control processing requirements. Voxel-based morphometry and track-wise lesion-mapping analyses showed that impairments in automatic self-reference were associated with reduced grey matter in the ventromedial prefrontal cortex and right inferior temporal gyrus, and white matter damage in the right inferior fronto-occipital fasciculus. Deficits in executive control were linked to reduced grey matter in the bilateral inferior parietal lobule and left anterior insula, and white matter disconnections in the left superior longitudinal fasciculus and arcuate fasciculus. Conclusions: The causal evidence suggests that automatic and control facets of self-reference processes are subserved by distinct yet integrated ventral prefrontal-temporal and dorsal frontal-parietal networks, respectively.
Collapse
Affiliation(s)
- Jie Sui
- School of Psychology, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Pia Rotshtein
- Neuroimaging Research Unit, University of Haifa, Haifa 3498838, Israel
| | - Zhuoen Lu
- School of Psychology, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Magdalena Chechlacz
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
10
|
Yang J, Shen L, Long Q, Li W, Zhang W, Chen Q, Han B. Electrical stimulation induced self-related auditory hallucinations correlate with oscillatory power change in the default mode network. Cereb Cortex 2024; 34:bhad473. [PMID: 38061695 DOI: 10.1093/cercor/bhad473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Self-related information is crucial in our daily lives, which has led to the proposal that there is a specific brain mechanism for processing it. Neuroimaging studies have consistently demonstrated that the default mode network (DMN) is strongly associated with the representation and processing of self-related information. However, the precise relationship between DMN activity and self-related information, particularly in terms of neural oscillations, remains largely unknown. We electrically stimulated the superior temporal and fusiform areas, using stereo-electroencephalography to investigate neural oscillations associated with elicited self-related auditory hallucinations. Twenty-two instances of auditory hallucinations were recorded and categorized into self-related and other-related conditions. Comparing oscillatory power changes within the DMN between self-related and other-related auditory hallucinations, we discovered that self-related hallucinations are associated with significantly stronger positive power changes in both alpha and gamma bands compared to other-related hallucinations. To ensure the validity of our findings, we conducted controlled analyses for factors of familiarity and clarity, which revealed that the observed effects within the DMN remain independent of these factors. These results underscore the significance of the functional role of the DMN during the processing of self-related auditory hallucinations and shed light on the relationship between self-related perception and neural oscillatory activity.
Collapse
Affiliation(s)
- Jing Yang
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Lu Shen
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Qiting Long
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Wenjie Li
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Wei Zhang
- Department of Neurology, Beijing Tsinghua Changgung Hospital, Litang Road No. 168, Changping District, 102218, Beijing, China
- Epilepsy Center, Shanghai Neuromedical Center, Gulang Road No. 378, Putuo District, 200331, Shanghai, China
| | - Qi Chen
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| | - Biao Han
- Center for Studies of Psychological Application, South China Normal University, No.55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
- School of Psychology, South China Normal University, No. 55, West of Zhongshan Avenue, Tianhe District, 510631, Guangzhou, China
| |
Collapse
|
11
|
Hirjak D, Foucher JR, Ams M, Jeanjean LC, Kubera KM, Wolf RC, Northoff G. The origins of catatonia - Systematic review of historical texts between 1800 and 1900. Schizophr Res 2024; 263:6-17. [PMID: 35710511 DOI: 10.1016/j.schres.2022.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Since January 1st 2022, catatonia is (again) recognized as an independent diagnostic entity in the 11th revision of the International Classification of Diseases (ICD-11). This is a relevant time to systematically review how the concept of catatonia has evolved within the 19th century and how this concept changed under the influence of a wide variety of events in the history of psychiatry. Here, we systematically reviewed historical and modern German and English texts focusing on catatonic phenomena, published from 1800 to 1900. We searched five different electronical databases (https://archive.org, www.hathitrust.org, www.books.google.de, https://link.springer.com and PubMed) and closely reviewed 60 historical texts on catatonic symptoms. Three main findings emerged: First, catatonic phenomena and their underlying mechanisms were studied decades before Karl Ludwig Kahlbaum's catatonia concept of 1874. Second, Kahlbaum not only introduced catatonia, but, more generally, also called for a new classification of psychiatric disorders based on a comprehensive analysis of the entire clinical picture, including the dynamic course and cross-sectional symptomatology. Third, the literature review shows that between 1800 and 1900 catatonic phenomena were viewed to be 'located' right at the interface of motor and psychological symptoms with the respective pathophysiological mechanisms being discussed. In conclusion, catatonia can truly be considered one of the most exciting and controversial entity in both past and present psychiatry and neurology, as it occupies a unique position in the border territory between organic, psychotic and psychogenic illnesses.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Jack R Foucher
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France
| | - Miriam Ams
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ludovic C Jeanjean
- ICube - CNRS UMR 7357, Neurophysiology, FMTS, University of Strasbourg, CEMNIS (UF 4768) Non-invasive Neuromodulation Center, University Hospital Strasbourg, BP 426, 67 091 Strasbourg, France
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Xu J, Wainio-Theberge S, Wolff A, Qin P, Zhang Y, She X, Wang Y, Wolman A, Smith D, Ignaszewski J, Choueiry J, Knott V, Scalabrini A, Northoff G. Culture shapes spontaneous brain dynamics - Shared versus idiosyncratic neural features among Chinese versus Canadian subjects. Soc Neurosci 2023; 18:312-330. [PMID: 37909114 DOI: 10.1080/17470919.2023.2278199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Environmental factors, such as culture, are known to shape individual variation in brain activity including spontaneous activity, but less is known about their population-level effects. Eastern and Western cultures differ strongly in their cultural norms about relationships between individuals. For example, the collectivism, interdependence and tightness of Eastern cultures relative to the individualism, independence and looseness of Western cultures, promote interpersonal connectedness and coordination. Do such cultural contexts therefore influence the group-level variability of their cultural members' spontaneous brain activity? Using novel methods adapted from studies of inter-subject neural synchrony, we compare the group-level variability of resting state EEG dynamics in Chinese and Canadian samples. We observe that Chinese subjects show significantly higher inter-subject correlation and lower inter-subject distance in their EEG power spectra than Canadian subjects, as well as lower variability in theta power and alpha peak frequency. We demonstrate, for the first time, different relationships among subjects' resting state brain dynamics in Chinese and Canadian samples. These results point to more idiosyncratic neural dynamics among Canadian participants, compared with more shared neural features in Chinese participants.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Philosophy, Xiamen University, Xiamen, Fujian, China
| | - Soren Wainio-Theberge
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Annemarie Wolff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Pengmin Qin
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Yihui Zhang
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Xuan She
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Yingying Wang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - David Smith
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia Ignaszewski
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Joelle Choueiry
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Scalabrini A, De Amicis M, Brugnera A, Cavicchioli M, Çatal Y, Keskin K, Pilar JG, Zhang J, Osipova B, Compare A, Greco A, Benedetti F, Mucci C, Northoff G. The self and our perception of its synchrony - Beyond internal and external cognition. Conscious Cogn 2023; 116:103600. [PMID: 37976779 DOI: 10.1016/j.concog.2023.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
The self is the core of our mental life which connects one's inner mental life with the external perception. Since synchrony is a key feature of the biological world and its various species, what role does it play for humans? We conducted a large-scale psychological study (n = 1072) combining newly developed visual analogue scales (VAS) for the perception of synchrony and internal and external cognition complemented by several psychological questionnaires. Overall, our findings showed close connection of the perception of synchrony of the self with both internal (i.e., body and cognition) and external (i.e., others, environment/nature) synchrony being associated positively with adaptive and negatively with maladaptive traits of self. Moreover, we have demonstrated how external (i.e., life events like the COVID-19 pandemic) variables modulate the perception of the self's internal-external synchrony. These findings suggest how synchrony with self plays a central role during times of uncertainty.
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | | | - Agostino Brugnera
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | | | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada; Department of Cellular and Molecular Medicine University of Ottawa, Ottawa, Canada
| | - Kaan Keskin
- Ege University Faculty of Medicine, Department of Psychiatry, 35100 Bornova-İzmir, Turkey
| | - Javier Gomez Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER‑BBN), Valladolid, Spain
| | - Jianfeng Zhang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Bella Osipova
- Moscow State University of Psychology and Education (MSUPE)
| | - Angelo Compare
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Andrea Greco
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Francesco Benedetti
- University Vita- Salute San Raffaele, Milan, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clara Mucci
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Georg Northoff
- University Vita- Salute San Raffaele, Milan, Italy; The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada; Mental Health Centre, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang Province 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, Zhejiang Province 310013, China.
| |
Collapse
|
14
|
Buccellato A, Çatal Y, Bisiacchi P, Zang D, Zilio F, Wang Z, Qi Z, Zheng R, Xu Z, Wu X, Del Felice A, Mao Y, Northoff G. Probing Intrinsic Neural Timescales in EEG with an Information-Theory Inspired Approach: Permutation Entropy Time Delay Estimation (PE-TD). ENTROPY (BASEL, SWITZERLAND) 2023; 25:1086. [PMID: 37510033 PMCID: PMC10378026 DOI: 10.3390/e25071086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Time delays are a signature of many physical systems, including the brain, and considerably shape their dynamics; moreover, they play a key role in consciousness, as postulated by the temporo-spatial theory of consciousness (TTC). However, they are often not known a priori and need to be estimated from time series. In this study, we propose the use of permutation entropy (PE) to estimate time delays from neural time series as a more robust alternative to the widely used autocorrelation window (ACW). In the first part, we demonstrate the validity of this approach on synthetic neural data, and we show its resistance to regimes of nonstationarity in time series. Mirroring yet another example of comparable behavior between different nonlinear systems, permutation entropy-time delay estimation (PE-TD) is also able to measure intrinsic neural timescales (INTs) (temporal windows of neural activity at rest) from hd-EEG human data; additionally, this replication extends to the abnormal prolongation of INT values in disorders of consciousness (DoCs). Surprisingly, the correlation between ACW-0 and PE-TD decreases in a state-dependent manner when consciousness is lost, hinting at potential different regimes of nonstationarity and nonlinearity in conscious/unconscious states, consistent with many current theoretical frameworks on consciousness. In summary, we demonstrate the validity of PE-TD as a tool to extract relevant time scales from neural data; furthermore, given the divergence between ACW and PE-TD specific to DoC subjects, we hint at its potential use for the characterization of conscious states.
Collapse
Affiliation(s)
- Andrea Buccellato
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
| | - Patrizia Bisiacchi
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of General Psychology, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Piazza Capitaniato, 3, 35139 Padova, Italy
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Ruizhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Zeyu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Alessandra Del Felice
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of Neuroscience, Section of Neurology, University of Padova, Via Belzoni, 160, 35121 Padova, Italy
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa, Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, China
| |
Collapse
|
15
|
Northoff G, Klar P, Bein M, Safron A. As without, so within: how the brain's temporo-spatial alignment to the environment shapes consciousness. Interface Focus 2023; 13:20220076. [PMID: 37065263 PMCID: PMC10102730 DOI: 10.1098/rsfs.2022.0076] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Consciousness is constituted by a structure that includes contents as foreground and the environment as background. This structural relation between the experiential foreground and background presupposes a relationship between the brain and the environment, often neglected in theories of consciousness. The temporo-spatial theory of consciousness addresses the brain-environment relation by a concept labelled 'temporo-spatial alignment'. Briefly, temporo-spatial alignment refers to the brain's neuronal activity's interaction with and adaption to interoceptive bodily and exteroceptive environmental stimuli, including their symmetry as key for consciousness. Combining theory and empirical data, this article attempts to demonstrate the yet unclear neuro-phenomenal mechanisms of temporo-spatial alignment. First, we suggest three neuronal layers of the brain's temporo-spatial alignment to the environment. These neuronal layers span across a continuum from longer to shorter timescales. (i) The background layer comprises longer and more powerful timescales mediating topographic-dynamic similarities between different subjects' brains. (ii) The intermediate layer includes a mixture of medium-scaled timescales allowing for stochastic matching between environmental inputs and neuronal activity through the brain's intrinsic neuronal timescales and temporal receptive windows. (iii) The foreground layer comprises shorter and less powerful timescales for neuronal entrainment of stimuli temporal onset through neuronal phase shifting and resetting. Second, we elaborate on how the three neuronal layers of temporo-spatial alignment correspond to their respective phenomenal layers of consciousness. (i) The inter-subjectively shared contextual background of consciousness. (ii) An intermediate layer that mediates the relationship between different contents of consciousness. (iii) A foreground layer that includes specific fast-changing contents of consciousness. Overall, temporo-spatial alignment may provide a mechanism whose different neuronal layers modulate corresponding phenomenal layers of consciousness. Temporo-spatial alignment can provide a bridging principle for linking physical-energetic (free energy), dynamic (symmetry), neuronal (three layers of distinct time-space scales) and phenomenal (form featured by background-intermediate-foreground) mechanisms of consciousness.
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, TheRoyal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada K1Z 7K4
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310053, People's Republic of China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310053, People's Republic of China
| | - Philipp Klar
- Medical Faculty, C. & O. Vogt-Institute for Brain Research, Heinrich Heine University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Magnus Bein
- Department of Biology and Department of Psychiatry, McGill University, Quebec, Canada H3A 0G4
| | - Adam Safron
- Center for Psychedelic and Consciousness Research, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
- Institute for Advanced Consciousness Studies, Santa Monica, CA 90403, USA
| |
Collapse
|
16
|
Raoul L, Grosbras MH. Relating different Dimensions of Bodily Experiences: Review and proposition of an integrative model relying on phenomenology, predictive brain and neuroscience of the self. Neurosci Biobehav Rev 2023; 148:105141. [PMID: 36965863 DOI: 10.1016/j.neubiorev.2023.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
How we mentally experience our body has been studied in a variety research domains. Each of these domains focuses in its own ways on different aspects of the body, namely the neurophysiological, perceptual, affective or social components, and proposes different conceptual taxonomies. It is therefore difficult to find one's way through this vast literature and to grasp the relationships between the different dimensions of bodily experiences. In this narrative review, we summarize the existing research directions and present their limits. We propose an integrative framework, grounded in studies on phenomenal consciousness, self-consciousness and bodily self-consciousness, that can provide a common basis for evaluating findings on different dimensions of bodily experiences. We review the putative mechanisms, relying on predictive processes, and neural substrates that support this model. We discuss how this model enables a conceptual assessment of the interrelationships between multiple dimensions of bodily experiences and potentiate interdisciplinary approaches.
Collapse
Affiliation(s)
- Lisa Raoul
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France.
| | - Marie-Hélène Grosbras
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France.
| |
Collapse
|
17
|
Northoff G, Scalabrini A, Fogel S. Topographic-dynamic reorganisation model of dreams (TRoD) - A spatiotemporal approach. Neurosci Biobehav Rev 2023; 148:105117. [PMID: 36870584 DOI: 10.1016/j.neubiorev.2023.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Dreams are one of the most bizarre and least understood states of consciousness. Bridging the gap between brain and phenomenology of (un)conscious experience, we propose the Topographic-dynamic Re-organization model of Dreams (TRoD). Topographically, dreams are characterized by a shift towards increased activity and connectivity in the default-mode network (DMN) while they are reduced in the central executive network, including the dorsolateral prefrontal cortex (except in lucid dreaming). This topographic re-organization is accompanied by dynamic changes; a shift towards slower frequencies and longer timescales. This puts dreams dynamically in an intermediate position between awake state and NREM 2/SWS sleep. TRoD proposes that the shift towards DMN and slower frequencies leads to an abnormal spatiotemporal framing of input processing including both internally- and externally-generated inputs (from body and environment). In dreams, a shift away from temporal segregation to temporal integration of inputs results in the often bizarre and highly self-centric mental contents as well as hallucinatory-like states. We conclude that topography and temporal dynamics are core features of the TroD, which may provide the connection of neural and mental activity, e.g., brain and experience during dreams as their "common currency".
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Stuart Fogel
- Sleep and Neuroscience, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute and Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Intrinsic neural timescales mediate the cognitive bias of self - temporal integration as key mechanism. Neuroimage 2023; 268:119896. [PMID: 36693598 DOI: 10.1016/j.neuroimage.2023.119896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Our perceptions and decisions are not always objectively correct as they are featured by a bias related to our self. What are the behavioral, neural, and computational mechanisms of such cognitive bias? Addressing this yet unresolved question, we here investigate whether the cognitive bias is related to temporal integration and segregation as mediated by the brain's Intrinsic neural timescales (INT). Using Signal Detection Theory (SDT), we operationalize the cognitive bias by the Criterion C as distinguished from the sensitivity index d'. This was probed in a self-task based on morphed self- and other faces. Behavioral data demonstrate clear cognitive bias, i.e., Criterion C. That was related to the EEG-based INT as measured by the autocorrelation window (ACW) in especially the transmodal regions dorsolateral prefrontal cortex (dlPFC) and default-mode network (DMN) as distinct from unimodal visual cortex. Finally, simulation of the same paradigm in a large-scale network model shows high degrees of temporal integration of temporally distinct inputs in CMS/DMN and dlPFC while temporal segregation predominates in visual cortex. Together, we demonstrate a key role of INT-based temporal integration in CMS/DMN and dlPFC including its relation to the brain's uni-transmodal topographical organization in mediating the cognitive bias of our self.
Collapse
|
19
|
Pei L, Zhou X, Leung FKS, Ouyang G. Differential associations between scale-free neural dynamics and different levels of cognitive ability. Psychophysiology 2023; 60:e14259. [PMID: 36700291 DOI: 10.1111/psyp.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 12/14/2022] [Accepted: 01/08/2023] [Indexed: 01/27/2023]
Abstract
As indicators of cognitive function, scale-free neural dynamics are gaining increasing attention in cognitive neuroscience. Although the functional relevance of scale-free dynamics has been extensively reported, one fundamental question about its association with cognitive ability remains unanswered: is the association universal across a wide spectrum of cognitive abilities or confined to specific domains? Based on dual-process theory, we designed two categories of tasks to analyze two types of cognitive processes-automatic and controlled-and examined their associations with scale-free neural dynamics characterized from resting-state electroencephalography (EEG) recordings obtained from a large sample of human adults (N = 102). Our results showed that resting-state scale-free neural dynamics did not predict individuals' behavioral performance in tasks that primarily engaged the automatic process but did so in tasks that primarily engaged the controlled process. In addition, by fitting the scale-free parameters separately in different frequency bands, we found that the cognitive association of scale-free dynamics was more strongly manifested in higher-band EEG spectrum. Our findings indicate that resting-state scale-free dynamics are not universal neural indicators for all cognitive abilities but are mainly associated with high-level cognition that entails controlled processes. This finding is compatible with the widely claimed role of scale-free dynamics in reflecting properties of complex dynamic systems.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Xinlin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Klar P, Çatal Y, Langner R, Huang Z, Northoff G. Scale-free dynamics of core-periphery topography. Hum Brain Mapp 2022; 44:1997-2017. [PMID: 36579661 PMCID: PMC9980897 DOI: 10.1002/hbm.26187] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/30/2022] Open
Abstract
The human brain's cerebral cortex exhibits a topographic division into higher-order transmodal core and lower-order unimodal periphery regions. While timescales between the core and periphery region diverge, features of their power spectra, especially scale-free dynamics during resting-state and their mdulation in task states, remain unclear. To answer this question, we investigated the ~1/f-like pink noise manifestation of scale-free dynamics in the core-periphery topography during rest and task states applying infra-slow inter-trial intervals up to 1 min falling inside the BOLD's infra-slow frequency band. The results demonstrate (1) higher resting-state power-law exponent (PLE) in the core compared to the periphery region; (2) significant PLE increases in task across the core and periphery regions; and (3) task-related PLE increases likely followed the task's atypically low event rates, namely the task's periodicity (inter-trial interval = 52-60 s; 0.016-0.019 Hz). A computational model and a replication dataset that used similar infra-slow inter-trial intervals provide further support for our main findings. Altogether, the results show that scale-free dynamics differentiate core and periphery regions in the resting-state and mediate task-related effects.
Collapse
Affiliation(s)
- Philipp Klar
- Medical Faculty, C. & O. Vogt‐Institute for Brain ResearchHeinrich Heine University of DüsseldorfDüsseldorfGermany
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Robert Langner
- Institute of Systems NeuroscienceHeinrich Heine University DusseldorfDusseldorfGermany,Institute of Neuroscience and MedicineBrain & Behaviour (INM‐7), Research Centre JülichJülichGermany
| | - Zirui Huang
- Department of AnesthesiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA,Center for Consciousness ScienceUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada,Centre for Cognition and Brain DisordersHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
21
|
Northoff G. Spatiotemporal Psychopathology - A Novel Approach to Brain and Symptoms. Noro Psikiyatr Ars 2022; 59:S3-S9. [PMID: 36578984 PMCID: PMC9767129 DOI: 10.29399/npa.28146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 12/31/2022] Open
Abstract
How can we characterize psychopathological symptoms and connect them to the brain? Current psychopathological symptoms only focus on either the symptoms themselves or predominantly on the brain. This leaves open their intimate connection. A novel approach, Spatiotemporal Psychopathology, proposes that the brain inner spatiotemporal organisation of its neural activity provides the spatiotemporal organization of the psychopathological symptoms. Specifically, the brains' neuronal topography and dynamic is manifest in a more or less analogous spatiotemporal organisation on the mental level, i.e., mental topography and dynamic. This is strongly supported by various examples including major depressive disorder, bipolar disorder, schizophrenia, and autism. We therefore conclude that Spatiotemporal Psychopathology provides a promising approach to intimately connect brain and symptoms.
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa, Institute of Mental Health Research, Ontario, Canada,Correspondence Address: Georg Northoff, 1145 Carling Avenue, Ottawa, K1L 8K9 Ontario, Canada • E-mail:
| |
Collapse
|
22
|
Déli É, Peters JF, Kisvárday Z. How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions? ENTROPY (BASEL, SWITZERLAND) 2022; 24:1498. [PMID: 37420518 PMCID: PMC9601684 DOI: 10.3390/e24101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2023]
Abstract
The neural systems' electric activities are fundamental for the phenomenology of consciousness. Sensory perception triggers an information/energy exchange with the environment, but the brain's recurrent activations maintain a resting state with constant parameters. Therefore, perception forms a closed thermodynamic cycle. In physics, the Carnot engine is an ideal thermodynamic cycle that converts heat from a hot reservoir into work, or inversely, requires work to transfer heat from a low- to a high-temperature reservoir (the reversed Carnot cycle). We analyze the high entropy brain by the endothermic reversed Carnot cycle. Its irreversible activations provide temporal directionality for future orientation. A flexible transfer between neural states inspires openness and creativity. In contrast, the low entropy resting state parallels reversible activations, which impose past focus via repetitive thinking, remorse, and regret. The exothermic Carnot cycle degrades mental energy. Therefore, the brain's energy/information balance formulates motivation, sensed as position or negative emotions. Our work provides an analytical perspective of positive and negative emotions and spontaneous behavior from the free energy principle. Furthermore, electrical activities, thoughts, and beliefs lend themselves to a temporal organization, an orthogonal condition to physical systems. Here, we suggest that an experimental validation of the thermodynamic origin of emotions might inspire better treatment options for mental diseases.
Collapse
Affiliation(s)
- Éva Déli
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
| | - James F. Peters
- Department of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Mathematics, Adiyaman University, Adiyaman 02040, Turkey
| | - Zoltán Kisvárday
- Department of Anatomy, Histology, and Embryology, University of Debrecen, 4032 Debrecen, Hungary
- ELKH Neuroscience Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
23
|
Cooper AC, Ventura B, Northoff G. Beyond the veil of duality-topographic reorganization model of meditation. Neurosci Conscious 2022; 2022:niac013. [PMID: 36237370 PMCID: PMC9552929 DOI: 10.1093/nc/niac013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
Meditation can exert a profound impact on our mental life, with proficient practitioners often reporting an experience free of boundaries between a separate self and the environment, suggesting an explicit experience of "nondual awareness." What are the neural correlates of such experiences and how do they relate to the idea of nondual awareness itself? In order to unravel the effects that meditation has on the brain's spatial topography, we review functional magnetic resonance imaging brain findings from studies specific to an array of meditation types and meditator experience levels. We also review findings from studies that directly probe the interaction between meditation and the experience of the self. The main results are (i) decreased posterior default mode network (DMN) activity, (ii) increased central executive network (CEN) activity, (iii) decreased connectivity within posterior DMN as well as between posterior and anterior DMN, (iv) increased connectivity within the anterior DMN and CEN, and (v) significantly impacted connectivity between the DMN and CEN (likely a nonlinear phenomenon). Together, these suggest a profound organizational shift of the brain's spatial topography in advanced meditators-we therefore propose a topographic reorganization model of meditation (TRoM). One core component of the TRoM is that the topographic reorganization of DMN and CEN is related to a decrease in the mental-self-processing along with a synchronization with the more nondual layers of self-processing, notably interoceptive and exteroceptive-self-processing. This reorganization of the functionality of both brain and self-processing can result in the explicit experience of nondual awareness. In conclusion, this review provides insight into the profound neural effects of advanced meditation and proposes a result-driven unifying model (TRoM) aimed at identifying the inextricably tied objective (neural) and subjective (experiential) effects of meditation.
Collapse
Affiliation(s)
- Austin Clinton Cooper
- Integrated Program of Neuroscience, Room 302, Irving Ludmer Building, 1033 Pine Avenue W., McGill University, Montreal, QC H3A 1A1, Canada
| | - Bianca Ventura
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
- Mental Health Center, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
24
|
Northoff G, Vatansever D, Scalabrini A, Stamatakis EA. Ongoing Brain Activity and Its Role in Cognition: Dual versus Baseline Models. Neuroscientist 2022:10738584221081752. [PMID: 35611670 DOI: 10.1177/10738584221081752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
What is the role of the brain's ongoing activity for cognition? The predominant perspectives associate ongoing brain activity with resting state, the default-mode network (DMN), and internally oriented mentation. This triad is often contrasted with task states, non-DMN brain networks, and externally oriented mentation, together comprising a "dual model" of brain and cognition. In opposition to this duality, however, we propose that ongoing brain activity serves as a neuronal baseline; this builds upon Raichle's original search for the default mode of brain function that extended beyond the canonical default-mode brain regions. That entails what we refer to as the "baseline model." Akin to an internal biological clock for the rest of the organism, the ongoing brain activity may serve as an internal point of reference or standard by providing a shared neural code for the brain's rest as well as task states, including their associated cognition. Such shared neural code is manifest in the spatiotemporal organization of the brain's ongoing activity, including its global signal topography and dynamics like intrinsic neural timescales. We conclude that recent empirical evidence supports a baseline model over the dual model; the ongoing activity provides a global shared neural code that allows integrating the brain's rest and task states, its DMN and non-DMN, and internally and externally oriented cognition.
Collapse
|
25
|
Smith D, Wolff A, Wolman A, Ignaszewski J, Northoff G. Temporal continuity of self: Long autocorrelation windows mediate self-specificity. Neuroimage 2022; 257:119305. [PMID: 35568347 DOI: 10.1016/j.neuroimage.2022.119305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/27/2022] Open
Abstract
The self is characterized by an intrinsic temporal component consisting in continuity across time. On the neural level, this temporal continuity manifests in the brain's intrinsic neural timescales (INT) that can be measured by the autocorrelation window (ACW). Recent EEG studies reveal a relationship between resting state ACW and self-consciousness. However, it remains unclear whether ACW exhibits different degrees of task-related changes during self-specific compared to non-self-specific activities. To this end, participants in our study initially recorded an eight-minute autobiographical narrative. Following a resting-state session, participants were presented with their own narrative and the narrative of a stranger while undergoing concurrent EEG recording. Behaviorally, subjects evaluated both of the narratives and indicated their perceptions of positivity or negativity on a moment-to-moment basis by positioning a cursor relative to the center of the computer screen. Our results indicate: (a) greater spatial extension and velocity in the behavioral cursor movement during the self narrative assessment compared to the non-self narrative assessment; and (b) longer neural ACWs in response to the self- compared to the non-self narrative and rest. These findings demonstrate the importance of longer temporal windows in neural activity measured by ACWs for self-specificity. More broadly, the results highlight the relevance of temporal continuity for the self on the neural level. Such temporal continuity may, correspondingly, also manifest on the psychological level as a "common currency" between brain and self.
Collapse
Affiliation(s)
- David Smith
- Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada.
| | - Annemarie Wolff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Julia Ignaszewski
- Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada; Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada; Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Mental Health Centre, Zhejiang University School of Medicine, 866 Yuhangtang Rd, Hangzhou 310058, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou 310013, China.
| |
Collapse
|
26
|
Wainio-Theberge S, Wolff A, Gomez-Pilar J, Zhang J, Northoff G. Variability and task-responsiveness of electrophysiological dynamics: scale-free stability and oscillatory flexibility. Neuroimage 2022; 256:119245. [PMID: 35477021 DOI: 10.1016/j.neuroimage.2022.119245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Cortical oscillations and scale-free neural activity are thought to influence a variety of cognitive functions, but their differential relationships to neural stability and flexibility has never been investigated. Based on the existing literature, we hypothesize that scale-free and oscillatory processes in the brain exhibit different trade-offs between stability and flexibility; specifically, cortical oscillations may reflect variable, task-responsive aspects of brain activity, while scale-free activity is proposed to reflect a more stable and task-unresponsive aspect. We test this hypothesis using data from two large-scale MEG studies (HCP: n = 89; CamCAN: n = 195), operationalizing stability and flexibility by task-responsiveness and spontaneous intra-subject variability in resting state. We demonstrate that the power-law exponent of scale-free activity is a highly stable parameter, which responds little to external cognitive demands and shows minimal spontaneous fluctuations over time. In contrast, oscillatory power, particularly in the alpha range (8-13 Hz), responds strongly to tasks and exhibits comparatively large spontaneous fluctuations over time. In sum, our data support differential roles for oscillatory and scale-free activity in the brain with respect to neural stability and flexibility. This result carries implications for criticality-based theories of scale-free activity, state-trait models of variability, and homeostatic views of the brain with regulated variables vs. effectors.
Collapse
Affiliation(s)
- Soren Wainio-Theberge
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.
| | - Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, Valladolid 47011, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Valladolid, Spain
| | - Jianfeng Zhang
- Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang 310013, China; College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, 1145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada; Mental Health Centre/7th Hospital, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
27
|
Hsu TY, Zhou JF, Yeh SL, Northoff G, Lane TJ. Intrinsic neural activity predisposes susceptibility to a body illusion. Cereb Cortex Commun 2022; 3:tgac012. [PMID: 35382092 PMCID: PMC8976633 DOI: 10.1093/texcom/tgac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to the rubber hand illusion (RHI) varies. To date, however, there is no consensus explanation of this variability. Previous studies, focused on the role of multisensory integration, have searched for neural correlates of the illusion. But those studies have failed to identify a sufficient set of functionally specific neural correlates. Because some evidence suggests that frontal α power is one means of tracking neural instantiations of self, we hypothesized that the higher the frontal α power during the eyes-closed resting state, the more stable the self. As a corollary, we infer that the more stable the self, the less susceptible are participants to a blurring of boundaries—to feeling that the rubber hand belongs to them. Indeed, we found that frontal α amplitude oscillations negatively correlate with susceptibility. Moreover, since lower frequencies often modulate higher frequencies, we explored the possibility that this might be the case for the RHI. Indeed, some evidence suggests that high frontal α power observed in low-RHI participants is modulated by δ frequency oscillations. We conclude that while neural correlates of multisensory integration might be necessary for the RHI, sufficient explanation involves variable intrinsic neural activity that modulates how the brain responds to incompatible sensory stimuli.
Collapse
Affiliation(s)
- Tzu-Yu Hsu
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre, TMU Shuang Ho Hospital, New Taipei City, Taiwan
| | - Ji-Fan Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hang Zhou, China
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Neuroscience Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| | - Timothy Joseph Lane
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre, TMU Shuang Ho Hospital, New Taipei City, Taiwan
- Institute of European and American Studies, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
28
|
Northoff G, Smith D. The subjectivity of self and its ontology: From the world–brain relation to the point of view in the world. THEORY & PSYCHOLOGY 2022. [DOI: 10.1177/09593543221080120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The search for the subjective nature of our self is intensely debated in philosophy and neuroscience. However, despite all progress, the subjectivity of self and how it fits into the seemingly objective world remains elusive. Drawing on recent empirical data, we show how the self is shaped by the brain’s scale-free activity, that is, long-range temporal correlation (LRTC) and the world’s ecological context. We assume that the scale-free LRTC of the world–brain relation provides the ontological basis for the point of view as the foundation of subjectivity within the world. We conclude that the temporal, that is, scale-free based point of view through the world–brain relation provides the ontologically necessary a posteriori condition for the subjectivity of self on a deeper neuro-ecological level. This extends phenomenological concepts like subjectivity and world beyond both Heidegger’s fundamental ontology and Sartre’s phenomenological ontology: it complements their subjectivity-based ontologies with a truly world-based ontology.
Collapse
Affiliation(s)
- Georg Northoff
- University of Ottawa
- Royal Ottawa Mental Health Centre and University of Ottawa
- Zhejiang University School of Medicine
- Hangzhou Normal University
| | | |
Collapse
|
29
|
Hua J, Wolff A, Zhang J, Yao L, Zang Y, Luo J, Ge X, Liu C, Northoff G. Alpha and theta peak frequency track on- and off-thoughts. Commun Biol 2022; 5:209. [PMID: 35256748 PMCID: PMC8901672 DOI: 10.1038/s42003-022-03146-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Our thoughts are highly dynamic in their contents. At some points, our thoughts are related to external stimuli or tasks focusing on single content (on-single thoughts), While in other moments, they are drifting away with multiple simultaneous items as contents (off-multiple thoughts). Can such thought dynamics be tracked by corresponding neurodynamics? To address this question, here we track thought dynamics during post-stimulus periods by electroencephalogram (EEG) neurodynamics of alpha and theta peak frequency which, as based on the phase angle, must be distinguished from non-phase-based alpha and theta power. We show how, on the psychological level, on-off thoughts are highly predictive of single-multiple thought contents, respectively. Using EEG, on-single and off-multiple thoughts are mediated by opposite changes in the time courses of alpha (high in on-single but low in off-multiple thoughts) and theta (low in on-single but high in off-multiple thoughts) peak frequencies. In contrast, they cannot be distinguished by frequency power. Overall, these findings provide insight into how alpha and theta peak frequency with their phase-related processes track on- and off-thoughts dynamically. In short, neurodynamics track thought dynamics.
Collapse
Affiliation(s)
- Jingyu Hua
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.,Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Annemarie Wolff
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Jianfeng Zhang
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, Guangdong, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Yao
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.,TMS center, Deqing Hospital of Hangzhou Normal university, Deqing 313200, China
| | - Jing Luo
- School of Psychology, Capital Normal University, Beijing, China
| | - Xianliang Ge
- Center for Psychological Sciences at Zhejiang University, Zhejiang University, Hangzhou, China
| | - Chang Liu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Georg Northoff
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China. .,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China. .,Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada. .,Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada. .,Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Racz FS, Czoch A, Kaposzta Z, Stylianou O, Mukli P, Eke A. Multiple-Resampling Cross-Spectral Analysis: An Unbiased Tool for Estimating Fractal Connectivity With an Application to Neurophysiological Signals. Front Physiol 2022; 13:817239. [PMID: 35321422 PMCID: PMC8936508 DOI: 10.3389/fphys.2022.817239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Investigating scale-free (i.e., fractal) functional connectivity in the brain has recently attracted increasing attention. Although numerous methods have been developed to assess the fractal nature of functional coupling, these typically ignore that neurophysiological signals are assemblies of broadband, arrhythmic activities as well as oscillatory activities at characteristic frequencies such as the alpha waves. While contribution of such rhythmic components may bias estimates of fractal connectivity, they are also likely to represent neural activity and coupling emerging from distinct mechanisms. Irregular-resampling auto-spectral analysis (IRASA) was recently introduced as a tool to separate fractal and oscillatory components in the power spectrum of neurophysiological signals by statistically summarizing the power spectra obtained when resampling the original signal by several non-integer factors. Here we introduce multiple-resampling cross-spectral analysis (MRCSA) as an extension of IRASA from the univariate to the bivariate case, namely, to separate the fractal component of the cross-spectrum between two simultaneously recorded neural signals by applying the same principle. MRCSA does not only provide a theoretically unbiased estimate of the fractal cross-spectrum (and thus its spectral exponent) but also allows for computing the proportion of scale-free coupling between brain regions. As a demonstration, we apply MRCSA to human electroencephalographic recordings obtained in a word generation paradigm. We show that the cross-spectral exponent as well as the proportion of fractal coupling increases almost uniformly over the cortex during the rest-task transition, likely reflecting neural desynchronization. Our results indicate that MRCSA can be a valuable tool for scale-free connectivity studies in characterizing various cognitive states, while it also can be generalized to other applications outside the field of neuroscience.
Collapse
Affiliation(s)
- Frigyes Samuel Racz
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- *Correspondence: Frigyes Samuel Racz,
| | - Akos Czoch
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zalan Kaposzta
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Orestis Stylianou
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andras Eke
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Radiology & Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
31
|
Lu X, Zhang JF, Gu F, Zhang HX, Zhang M, Zhang HS, Song RZ, Shi YC, Li K, Wang B, Zhang ZJ, Northoff G. Altered task modulation of global signal topography in the default-mode network of unmedicated major depressive disorder. J Affect Disord 2022; 297:53-61. [PMID: 34610369 DOI: 10.1016/j.jad.2021.09.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Altered global signal (GS) topography features in the resting-state fMRI of major depressive disorder (MDD), showing abnormally strong global signal representation in the default-mode network (DMN). Whether the abnormal local to global change also shapes activity during task states, and how it relates to psychopathological symptoms, e.g., abnormally slow time speed of motor, cognitive, and affective symptoms, remains unknown. METHODS We investigated fMRI-based GS with its topographical representation during task states in unmedicated 51 MDD subjects and 28 healthy subjects. Task-related global signal correlation (GSCORR) was probed by a novel paradigm testing the processing of negative/neutral emotions during different time speeds, i.e., slow and fast. RESULTS We observed a significant interaction between time speed and emotion of GSCORR in various DMN regions in healthy subjects. Next, we showed that MDD exhibits reduced task-related GSCORR in various DMN regions during specifically the fast processing of negative emotions. Finally, we demonstrated that GSCORR in DMN and other brain regions (motor-related regions, inferior frontal cortex) correlated with the degree of psychomotor retardation especially during the fast emotional stimuli. LIMITATIONS The measurement of interoceptive variables like respiration rate or heart rate were not included in our fMRI acquisition. CONCLUSION Together, we demonstrated the functional relevance of GS topography by showing reduced GSCORR in DMN during specifically the fast processing of negative emotions in MDD, suggesting the abnormal slowness, i.e., reduced time speed, to be a key feature of both brain and symptoms in MDD.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry and Medical School of Southeast University, Nanjing 210009, Jiangsu Province, China; Royal Ottawa Mental Health Centre, University of Ottawa(,) Institute of Mental Health Research(,) Ottawa(,) Ontario K1Z 7K4, Canada; Department of Neurology, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University(,) Yangzhou 225001, Jiangsu Province, China
| | - Jian-Feng Zhang
- Center for Brain Disorders and Cognitive Sciences(,) Shenzhen University, Shenzhen 518055, Guangdong Province, China
| | - Feng Gu
- Royal Ottawa Mental Health Centre, University of Ottawa(,) Institute of Mental Health Research(,) Ottawa(,) Ontario K1Z 7K4, Canada
| | - Hong-Xing Zhang
- Department of Psychology of Xinxiang Medical University, Xinxiang 453003, Henan Province, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Xinxiang 453002, Henan Province, China
| | - Meng Zhang
- Department of Psychology of Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hai-San Zhang
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Xinxiang 453002, Henan Province, China
| | - Rui-Ze Song
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry and Medical School of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ya-Chen Shi
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry and Medical School of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Kun Li
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Xinxiang 453002, Henan Province, China
| | - Bi Wang
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Xinxiang 453002, Henan Province, China
| | - Zhi-Jun Zhang
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry and Medical School of Southeast University, Nanjing 210009, Jiangsu Province, China; Department of Psychology of Xinxiang Medical University, Xinxiang 453003, Henan Province, China; Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China; Shenzhen institute of advanced technology, Chinese academy of sciences, Shenzhen 518055, Guangdong Province, China.
| | - Georg Northoff
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry and Medical School of Southeast University, Nanjing 210009, Jiangsu Province, China; Royal Ottawa Mental Health Centre, University of Ottawa(,) Institute of Mental Health Research(,) Ottawa(,) Ontario K1Z 7K4, Canada; Mental Health Center, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang Province, China; Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa(,) Ottawa, Ontario K1Z 7K4(,) Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310013, Zhejiang Province, China.
| |
Collapse
|
32
|
Wolff A, Berberian N, Golesorkhi M, Gomez-Pilar J, Zilio F, Northoff G. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn Sci 2022; 26:159-173. [PMID: 34991988 DOI: 10.1016/j.tics.2021.11.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We are continuously bombarded by external inputs of various timescales from the environment. How does the brain process this multitude of timescales? Recent resting state studies show a hierarchy of intrinsic neural timescales (INT) with a shorter duration in unimodal regions (e.g., visual cortex and auditory cortex) and a longer duration in transmodal regions (e.g., default mode network). This unimodal-transmodal hierarchy is present across acquisition modalities [electroencephalogram (EEG)/magnetoencephalogram (MEG) and fMRI] and can be found in different species and during a variety of different task states. Together, this suggests that the hierarchy of INT is central to the temporal integration (combining successive stimuli) and segregation (separating successive stimuli) of external inputs from the environment, leading to temporal segmentation and prediction in perception and cognition.
Collapse
Affiliation(s)
- Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Nareg Berberian
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mehrshad Golesorkhi
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicia, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padua, Italy
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Scalabrini A, Schimmenti A, De Amicis M, Porcelli P, Benedetti F, Mucci C, Northoff G. The self and its internal thought: In search for a psychological baseline. Conscious Cogn 2021; 97:103244. [PMID: 34847513 DOI: 10.1016/j.concog.2021.103244] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
Self-consciousness is neuronally associated with the brain's default mode network as its "neuronal baseline" while, psychologically the self is characterized by different thought modes and dynamics. We here raise the question whether they reflect the "psychological baseline" of the self. We investigate the psychological relationship of the self with thought modes (rumination, reflection) and mind-wandering dynamics (spontaneous, deliberate), as well as with depressive symptomatology. Our findings show a relationship between self-consciousness and i) mind-wandering dynamics, and ii) thought functional modes, in their respective forms. At the same time, self-consciousness is more related to spontaneous mind-wandering than deliberate and to rumination than reflection. Furthermore, iii) rumination acts as a mediator between self-consciousness and spontaneous mind-wandering dynamics; and iv) the relationship between high levels of self-consciousness and depressive symptoms is mediated by ruminative modes and spontaneous mind-wandering dynamics. Together, these findings support the view of the self as "psychological baseline".
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, 66100 Chieti, CH, Italy.
| | - Adriano Schimmenti
- Faculty of Human and Social Sciences, UKE - Kore University of Enna, Cittadella Universitaria 94100, Enna, EN, Italy
| | - Michelangelo De Amicis
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, 66100 Chieti, CH, Italy
| | - Piero Porcelli
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 33, 66100 Chieti, CH, Italy
| | - Francesco Benedetti
- Psychiatry &Clinical Psychobiology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Clara Mucci
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino, 2, 24129 Bergamo, BG, Italy
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, Ontario K1Z 7K4, Canada; Mental Health Centre, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou, Zhejiang Province 310013, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, Zhejiang Province 310013, China; TMU Research Centre for Brain and Consciousness, Shuang Hospital, Taipei Medical University, No. 250 Wu-Xing Street, 11031 Taipei, Taiwan; Graduate Institute of Humanities in Medicine, Taipei Medical University, No. 250 Wu-Xing Street, 11031 Taipei, Taiwan.
| |
Collapse
|
34
|
Liang Q, Zhang B, Fu S, Sui J, Wang F. The roles of the LpSTS and DLPFC in self-prioritization: A transcranial magnetic stimulation study. Hum Brain Mapp 2021; 43:1381-1393. [PMID: 34826160 PMCID: PMC8837583 DOI: 10.1002/hbm.25730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022] Open
Abstract
The Self‐Attention Network (SAN) has been proposed to describe the underlying neural mechanism of the self‐prioritization effect, yet the roles of the key nodes in the SAN—the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex (DLPFC)—still need to be clarified. One hundred and nine participants were randomly assigned into the LpSTS group, the DLPFC group, or the sham group. We used the transcranial magnetic stimulation (TMS) technique to selectively disrupt the functions of the corresponding targeted region, and observed its impacts on self‐prioritization effect based on the difference between the performance of the self‐matching task before and after the targeted stimulation. We analyzed both model‐free performance measures and HDDM‐based performance measures for the self‐matching task. The results showed that the inhibition of LpSTS could lead to reduced performance in processing self‐related stimuli, which establishes a causal role for the LpSTS in self‐related processing and provide direct evidence to support the SAN framework. However, the results of the DLPFC group from HDDM analysis were distinct from the results based on response efficiency. Our investigation further the understanding of the differentiated roles of key nodes in the SAN in supporting the self‐salience in information processing.
Collapse
Affiliation(s)
- Qiongdan Liang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Sinan Fu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China
| | - Jie Sui
- School of Psychology, University of Aberdeen, Aberdeen, UK
| | - Fei Wang
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, China.,Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Northoff G, Scalabrini A. "Project for a Spatiotemporal Neuroscience" - Brain and Psyche Share Their Topography and Dynamic. Front Psychol 2021; 12:717402. [PMID: 34721166 PMCID: PMC8552334 DOI: 10.3389/fpsyg.2021.717402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
What kind of neuroscience does psychoanalysis require? At his time, Freud in his "Project for a Scientific Psychology" searched for a model of the brain that could relate to incorporate the psyche's topography and dynamic. Current neuropsychoanalysis builds on specific functions as investigated in Affective and Cognitive (and Social) Neuroscience including embodied approaches. The brain's various functions are often converged with prediction as operationalized in predictive coding (PC) and free energy principle (FEP) which, recently, have been conceived as core for a "New Project for Scientific Psychology." We propose to search for a yet more comprehensive and holistic neuroscience that focuses primarily on its topography and dynamic analogous to Freud's model of the psyche. This leads us to what we describe as "Spatiotemporal Neuroscience" that focuses on the spatial topography and temporal dynamic of the brain's neural activity including how they shape affective, cognitive, and social functions including PC and FEP (first part). That is illustrated by the temporally and spatially nested neural hierarchy of the self in the brain's neural activity (second and third part). This sets the ground for developing our proposed "Project for a Spatiotemporal Neuroscience," which complements and extends both Freud's and Solms' projects (fourth part) and also carries major practical implications as it lays the ground for a novel form of neuroscientifically informed psychotherapy, namely, "Spatiotemporal Psychotherapy." In conclusion, "Spatiotemporal Neuroscience" provides an intimate link of brain and psyche by showing topography and dynamic as their shared features, that is, "common currency."
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal’s Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
| | - Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), D’Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
36
|
Liu DY, Ju X, Gao Y, Han JF, Li Z, Hu XW, Tan ZL, Northoff G, Song XM. From Molecular to Behavior: Higher Order Occipital Cortex in Major Depressive Disorder. Cereb Cortex 2021; 32:2129-2139. [PMID: 34613359 DOI: 10.1093/cercor/bhab343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion. Using high-field 7 T magnetic resonance imaging (MRI), including resting state functional MRI and proton magnetic resonance spectroscopy, the amplitude of low-frequency fluctuations (ALFF) of the blood oxygen level-dependent signal in MT, MT-seeded functional connectivity (FC), and gamma-aminobutyric acid (GABA) in MT were investigated. Applying the vision motion psychophysical task, the motion suppression index of subjects was also examined. We demonstrate significantly elevated neural variability (as measured by ALFF) in MT together with decreases in both MT GABA and motion suppression in our MDD sample. Unlike in healthy subjects, MT neural variability no longer modulates the relationship of MT GABA and motion suppression in MDD. MT also exhibits reduction in global inter-regional FC to MPFC in MDD. Finally, elevated MT ALFF relates to specifically retardation in behavior as measured by the Hamilton subscore. Together, MT provides a strong candidate for biomarker in MDD.
Collapse
Affiliation(s)
- Dong-Yu Liu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yuan Gao
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jin-Fang Han
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhe Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xi-Wen Hu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Zhong-Lin Tan
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Georg Northoff
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,University of Ottawa Institute of Mental Health Research, University of Ottawa; Ottawa, ON, K1Z 7K4, Canada
| | - Xue Mei Song
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310013, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
37
|
Scalabrini A, Wolman A, Northoff G. The Self and Its Right Insula-Differential Topography and Dynamic of Right vs. Left Insula. Brain Sci 2021; 11:brainsci11101312. [PMID: 34679377 PMCID: PMC8533814 DOI: 10.3390/brainsci11101312] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/03/2022] Open
Abstract
Various studies demonstrate a special role of the right compared to the left anterior insula in mediating our self. However, the neural features of the right insula that allow for its special role remain unclear. Presupposing a spatiotemporal model of self—“Basis model of self-specificity” (BMSS)—we here address the following question: what spatial-topographic and temporal-dynamic features render neural activity in the right insula to be more suitable in mediating self-specificity than the left insula? First, applying fMRI, we demonstrate that the right insula (i) exhibits higher degrees of centrality in rest, and (ii) higher context-dependent functional connectivity in a self-specific task among regions of distinct layers of self (intero-, extero-proprioceptive, and mental). Second, using EEG in rest and task, we show that the right insula shows longer autocorrelation window (ACW) in its neural activity than both left insula and other regions of the different layers of self. Together, we demonstrate special topographic, i.e., high functional connectivity, and dynamic, i.e., long ACW, neural features of the right insula compared to both left insula and other regions of the distinct layers of self. This suits neural activity in the right insula ideally for high functional integration and temporal continuity as key features of the self including its intero-, extero-proprioceptive, and mental layers.
Collapse
Affiliation(s)
- Andrea Scalabrini
- Department of Psychological, Health and Territorial Sciences (DiSPuTer), G. d’Annunzio University of Chieti-Pescara, Via dei Vestini 33, 66100 Chieti, Italy
- Correspondence: (A.S.); (A.W.)
| | - Angelika Wolman
- The Royal’s Institute of Mental Health Research, Brain and Mind Research Institute, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada;
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
- Correspondence: (A.S.); (A.W.)
| | - Georg Northoff
- The Royal’s Institute of Mental Health Research, Brain and Mind Research Institute, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON K1Z 7K4, Canada;
- Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Roger Guindon Hall 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Mental Health Centre, Zhejiang University School of Medicine, Tianmu Road 305, Hangzhou 310013, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou 310013, China
| |
Collapse
|
38
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
39
|
Northoff G. Nature or nurture in ideas of reference? Interplay between intrinsic cognition and extrinsic environment in times of crisis. Schizophr Res 2021; 233:1-2. [PMID: 34052585 DOI: 10.1016/j.schres.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Georg Northoff
- University of Ottawa Institute of Mental Health Research, Ottawa, Canada
| |
Collapse
|
40
|
Racz FS, Farkas K, Stylianou O, Kaposzta Z, Czoch A, Mukli P, Csukly G, Eke A. Separating scale-free and oscillatory components of neural activity in schizophrenia. Brain Behav 2021; 11:e02047. [PMID: 33538105 PMCID: PMC8119820 DOI: 10.1002/brb3.2047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Alterations in narrow-band spectral power of electroencephalography (EEG) recordings are commonly reported in patients with schizophrenia (SZ). It is well established however that electrophysiological signals comprise a broadband scale-free (or fractal) component generated by mechanisms different from those producing oscillatory neural activity. Despite this known feature, it has not yet been investigated if spectral abnormalities found in SZ could be attributed to scale-free or oscillatory brain function. METHODS In this study, we analyzed resting-state EEG recordings of 14 SZ patients and 14 healthy controls. Scale-free and oscillatory components of the power spectral density (PSD) were separated, and band-limited power (BLP) of the original (mixed) PSD, as well as its fractal and oscillatory components, was estimated in five frequency bands. The scaling property of the fractal component was characterized by its spectral exponent in two distinct frequency ranges (1-13 and 13-30 Hz). RESULTS Analysis of the mixed PSD revealed a decrease of BLP in the delta band in SZ over the central regions; however, this difference could be attributed almost exclusively to a shift of power toward higher frequencies in the fractal component. Broadband neural activity expressed a true bimodal nature in all except frontal regions. Furthermore, both low- and high-range spectral exponents exhibited a characteristic topology over the cortex in both groups. CONCLUSION Our results imply strong functional significance of scale-free neural activity in SZ and suggest that abnormalities in PSD may emerge from alterations of the fractal and not only the oscillatory components of neural activity.
Collapse
Affiliation(s)
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | | | - Zalan Kaposzta
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Akos Czoch
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gabor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Andras Eke
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Lian F, Northoff G. The Lost Neural Hierarchy of the Autistic Self-Locked-Out of the Mental Self and Its Default-Mode Network. Brain Sci 2021; 11:574. [PMID: 33946964 PMCID: PMC8145974 DOI: 10.3390/brainsci11050574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a fundamental change in self-awareness including seemingly paradoxical features like increased ego-centeredness and weakened self-referentiality. What is the neural basis of this so-called "self-paradox"? Conducting a meta-analytic review of fMRI rest and task studies, we show that ASD exhibits consistent hypofunction in anterior and posterior midline regions of the default-mode network (DMN) in both rest and task with decreased self-non-self differentiation. Relying on a multilayered nested hierarchical model of self, as recently established (Qin et al. 2020), we propose that ASD subjects cannot access the most upper layer of their self, the DMN-based mental self-they are locked-out of their own DMN and its mental self. This, in turn, results in strong weakening of their self-referentiality with decreases in both self-awareness and self-other distinction. Moreover, this blocks the extension of non-DMN cortical and subcortical regions at the lower layers of the physical self to the DMN-based upper layer of the mental self, including self-other distinction. The ASD subjects remain stuck and restricted to their intero- and exteroceptive selves as manifested in a relative increase in ego-centeredness (as compared to self-referentiality). This amounts to what we describe as "Hierarchical Model of Autistic Self" (HAS), which, characterizing the autistic self in hierarchical and spatiotemporal terms, aligns well with and extends current theories of ASD including predictive coding and weak central coherence.
Collapse
Affiliation(s)
- Fuxin Lian
- Institute of Psychological Sciences, School of Education, Hangzhou Normal University, Hangzhou 311121, China;
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
42
|
Hamilton A, Northoff G. Abnormal ERPs and Brain Dynamics Mediate Basic Self Disturbance in Schizophrenia: A Review of EEG and MEG Studies. Front Psychiatry 2021; 12:642469. [PMID: 33912085 PMCID: PMC8072007 DOI: 10.3389/fpsyt.2021.642469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Interest in disordered sense of self in schizophrenia has recently re-emerged in the literature. It has been proposed that there is a basic self disturbance, underlying the diagnostic symptoms of schizophrenia, in which the person's sense of being a bounded individual continuous through time loses stability. This disturbance has been documented phenomenologically and at the level of cognitive tasks. However, the neural correlates of basic self disorder in schizophrenia are poorly understood. Methods: A search of PubMed was used to identify studies on self and schizophrenia that reported EEG or MEG data. Results: Thirty-three studies were identified, 32 using EEG and one using MEG. Their operationalizations of the self were divided into six paradigms: self-monitoring for errors, proprioception, self-other integration, self-referential processing, aberrant salience, and source monitoring. Participants with schizophrenia were less accurate on self-referential processing tasks and had slower response times across most studies. Event-related potential amplitudes differed across many early and late components, with reduced N100 suppression in source monitoring paradigms being the most replicated finding. Several studies found differences in one or more frequency band, but no coherent overall finding emerged in this area. Various other measures of brain dynamics also showed differences in single studies. Only some of the study designs were adequate to establish a causal relationship between the self and EEG or MEG measures. Conclusion: The broad range of changes suggests a global self disturbance at the neuronal level, possibly carried over from the resting state. Further studies that successfully isolate self-related effects are warranted to better understand the temporal-dynamic and spatial-topographic basis of self disorder and its relationship to basic self disturbance on the phenomenological level.
Collapse
Affiliation(s)
- Arthur Hamilton
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
43
|
Kim H, Florack A. Immediate self-information is prioritized over expanded self-information across temporal, social, spatial, and probability domains. Q J Exp Psychol (Hove) 2021; 74:1615-1630. [PMID: 33719761 PMCID: PMC8358571 DOI: 10.1177/17470218211004208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
People construct self-representation beyond the experiential self and the self-concept can expand to interpersonal as well as intrapersonal dimensions. The cognitive ability to project oneself onto expanded selves in different time points and places plays a crucial role in planning and decision-making situations. However, no research to date has shown evidence explaining the early mechanism of how processing the experiential self-information differs from processing the expanded self-information across temporal, social, spatial, and probability domains. We report novel effects showing a systematic information prioritization toward the experiential selves (i.e., the self that is now, here, and with highest certainty) compared to the expanded selves (i.e., the self that is in the future, at a distant location, and with lower certainty; Experiments 1a, 2, and 3). Implicit prioritization biases lasted over time (Experiment 1b; i.e., 4 months) indicating a trait-like more than a state-like measure of individual differences. Different biases, however, did not consistently correlate with each other (Experiments 1a to 3) suggesting separate underlying mechanisms. We discuss potential links to the basic structure of self-representation and individual differences for implications.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Applied Social Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Arnd Florack
- Department of Applied Social Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
44
|
Golesorkhi M, Gomez-Pilar J, Tumati S, Fraser M, Northoff G. Temporal hierarchy of intrinsic neural timescales converges with spatial core-periphery organization. Commun Biol 2021; 4:277. [PMID: 33664456 PMCID: PMC7933253 DOI: 10.1038/s42003-021-01785-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/03/2021] [Indexed: 01/04/2023] Open
Abstract
The human cortex exhibits intrinsic neural timescales that shape a temporal hierarchy. Whether this temporal hierarchy follows the spatial hierarchy of its topography, namely the core-periphery organization, remains an open issue. Using magnetoencephalography data, we investigate intrinsic neural timescales during rest and task states; we measure the autocorrelation window in short (ACW-50) and, introducing a novel variant, long (ACW-0) windows. We demonstrate longer ACW-50 and ACW-0 in networks located at the core compared to those at the periphery with rest and task states showing a high ACW correlation. Calculating rest-task differences, i.e., subtracting the shared core-periphery organization, reveals task-specific ACW changes in distinct networks. Finally, employing kernel density estimation, machine learning, and simulation, we demonstrate that ACW-0 exhibits better prediction in classifying a region's time window as core or periphery. Overall, our findings provide fundamental insight into how the human cortex's temporal hierarchy converges with its spatial core-periphery hierarchy.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Shankar Tumati
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
- Neuropsychopharmacology research group, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maia Fraser
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada.
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Northoff G, Lamme V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci Biobehav Rev 2020; 118:568-587. [PMID: 32783969 DOI: 10.1016/j.neubiorev.2020.07.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/03/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Various theories for the neural basis of consciousness have been proposed, suggesting a diversity of neural signs and mechanisms. We ask to what extent this diversity is real, or whether many theories share the same basic ideas with a potential for convergence towards a more unified theory of the neural basis of consciousness. For that purpose, we review and compare the various neural signs, measures, and mechanisms proposed in the different theories. We demonstrate that different theories focus on neural signs and measures of distinct aspects of neural activity including stimulus-related, prestimulus, and resting state activity as well as on distinct features of consciousness. Therefore, the various mechanisms proposed in the different theories may, in part, complement each other. Together, we provide insight into the shared basis and convergences (and, in part, discrepancies) of the different theories of consciousness. We conclude that the different theories concern distinct aspects of both neural activity and consciousness which, as we suppose, may be integrated and nested within the brain's overall temporo-spatial dynamics.
Collapse
Affiliation(s)
- Georg Northoff
- Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, Ottawa, Canada; Centre for Research Ethics & Bioethics, University of Uppsala, Uppsala, Sweden.
| | - Victor Lamme
- Amsterdam Brain and Cognition (ABC), Department of Psychology, University of Amsterdam, the Netherlands
| |
Collapse
|
46
|
Ansado J, Chasen C, Bouchard S, Northoff G. How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training. Neurosci Biobehav Rev 2020; 120:583-594. [PMID: 32533997 DOI: 10.1016/j.neubiorev.2020.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 01/17/2023]
Abstract
As Virtual reality (VR) is increasingly used in neurological disorders such as stroke, traumatic brain injury, or attention deficit disorder, the question of how it impacts the brain's neuronal activity and function becomes essential. VR can be combined with neuroimaging to offer invaluable insight into how the targeted brain areas respond to stimulation during neurorehabilitation training. That, in turn, could eventually serve as a predictive marker for therapeutic success. Functional magnetic resonance imaging (fMRI) identified neuronal activity related to blood flow to reveal with a high spatial resolution how activation patterns change, and restructuring occurs after VR training. Portable and quiet, electroencephalography (EEG) conveniently allows the clinician to track spontaneous electrical brain activity in high temporal resolution. Then, functional near-infrared spectroscopy (fNIRS) combines the spatial precision level of fMRIs with the portability and high temporal resolution of EEG to constitute an ideal measuring tool in virtual environments (VEs). This narrative review explores the role of VR and concurrent neuroimaging in cognitive rehabilitation.
Collapse
Affiliation(s)
- Jennyfer Ansado
- Department of Psychology, University of Cote d'Azur, Campus Saint Jean d'Angély, 24 av des Diables Bleus, 06357 Nice, France.
| | - Clelia Chasen
- Institut du Savoir Montfort, 713 Montreal Road, Ottawa, ON, K1K 0T2, Canada; Université du Québec en Outaouais, Canada Research Chair in Clinical Cyberpsychology, 283 Alexandre-Taché Boulevard, Gatineau, QC, J8X 3X7 Canada
| | - Stéphane Bouchard
- Université du Québec en Outaouais, Canada Research Chair in Clinical Cyberpsychology, 283 Alexandre-Taché Boulevard, Gatineau, QC, J8X 3X7 Canada; Centre Intégré de Santé et de Services Sociaux de l'Outaouais, Canada
| | - Georg Northoff
- Canada Research Chair in Mind, Brain Imaging and Neuroethics, The Royal's Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| |
Collapse
|