1
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
2
|
Alwadei N, Rashid M, Chandrashekar DV, Rahighi S, Totonchy J, Sharma A, Mehvar R. Generation and Characterization of CYP2E1-Overexpressing HepG2 Cells to Study the Role of CYP2E1 in Hepatic Hypoxia-Reoxygenation Injury. Int J Mol Sci 2023; 24:ijms24098121. [PMID: 37175827 PMCID: PMC10179595 DOI: 10.3390/ijms24098121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The mechanisms of hepatic ischemia/reperfusion (I/R) injury, which occurs during liver transplantation or surgery, are poorly understood. The purpose of the current study was to generate and characterize a HepG2 cell line with a stable overexpression of CYP2E1 to investigate the role of the enzyme in hypoxia/reperfusion (H/R) injury in an ex vivo setting. GFP-tagged CYP2E1 and control clones were developed, and their gene expression and protein levels of GFP and CYP2E1 were determined using RT-PCR and ELISA/Western blot analysis, respectively. Additionally, the CYP2E1 catalytic activity was determined by UPLC-MS/MS analysis of 6-hydroxychlorzoxazone formed from the chlorzoxazone substrate. The CYP2E1 and control clones were subjected to hypoxia (10 h) and reoxygenation (0.5 h), and cell death and reactive oxygen species (ROS) generation were quantitated using LDH and flow cytometry, respectively. Compared with the control clone, the selected CYP2E1 clone showed a 720-fold increase in CYP2E1 expression and a prominent band in the western blot analysis, which was associated with a 150-fold increase in CYP2E1 catalytic activity. The CYP2E1 clone produced 2.3-fold more ROS and 1.9-fold more cell death in the H/R model. It is concluded that the constitutive CYP2E1 in the liver may play a detrimental role in hepatic I/R injury.
Collapse
Affiliation(s)
- Nouf Alwadei
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Mamunur Rashid
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | | | - Simin Rahighi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Ajay Sharma
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Zhang YP, Liu XR, Yang MW, Yang SL, Hong FF. New progress in understanding roles of nitric oxide during hepatic ischemia-reperfusion injury. World J Hepatol 2022; 14:504-515. [PMID: 35582289 PMCID: PMC9055193 DOI: 10.4254/wjh.v14.i3.504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major clinical cause of morbidity and mortality in liver surgery and transplantation. Many studies have found that nitric oxide (NO) plays an important role in the HIRI and its increase or decrease can affect the progression and outcome of HIRI. However, the role of NO in HIRI is controversial and complicated. NO derived by endothelial NO synthase (eNOS) shows a protective role in HIRI, while excessive NO derived by inducible NO synthase (iNOS) accelerates inflammation and increases oxidative stress, further aggravating HIRI. Nevertheless, the overexpression of eNOS may exacerbate HIRI and iNOS-derived NO in some cases reduces HIRI. Here we review the new progress in the understanding of the roles of NO during HIRI: (1) NO possesses different roles in HIRI by increasing NO bioavailability, down-regulating leukotriene C4 synthase, inhibiting the activation of the nuclear factorκB (NFκB) pathway, enhancing cell autophagy, and reducing inflammatory cytokines and reactive oxygen species (ROS). And NO has both protective and deleterious effects by regulating apoptotic factors; (2) eNOS promotes NO production and suppresses its own overexpression, exerting a hepatoprotective effect reversely. Its activation is regulated by the PI3K/Akt and KLF2/AMPK pathways; and (3) iNOS derived NO mainly has deteriorating effects on HIRI, while it may have a protective function under some conditions. Their expression should reach a balance to reduce the adverse side and make NO protective in the treatment of HIRI. Thus, it can be inferred that NO modulating drugs may be a new direction in the treatment of HIRI or may be used as an adjunct to mitigate HIRI for the purpose of protecting the liver.
Collapse
Affiliation(s)
- Yi-Ping Zhang
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xin-Ran Liu
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Surgery, Fuzhou Medical College, Nanchang University, Fuzhou 344000, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
4
|
Khan H, Kashyap A, Kaur A, Singh TG. Pharmacological postconditioning: a molecular aspect in ischemic injury. J Pharm Pharmacol 2020; 72:1513-1527. [PMID: 33460133 DOI: 10.1111/jphp.13336] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Ischaemia/reperfusion (I/R) injury is defined as the damage to the tissue which is caused when blood supply returns to tissue after ischaemia. To protect the ischaemic tissue from irreversible injury, various protective agents have been studied but the benefits have not been clinically applicable due to monotargeting, low potency, late delivery or poor tolerability. KEY FINDINGS Strategies involving preconditioning or postconditioning can address the issues related to the failure of protective therapies. In principle, postconditioning (PoCo) is clinically more applicable in the conditions in which there is unannounced ischaemic event. Moreover, PoCo is an attractive beneficial strategy as it can be induced rapidly at the onset of reperfusion via series of brief I/R cycles following a major ischaemic event or it can be induced in a delayed manner. Various pharmacological postconditioning (pPoCo) mechanisms have been investigated systematically. Using different animal models, most of the studies on pPoCo have been carried out preclinically. SUMMARY However, there is a need for the optimization of the clinical protocols to quicken pPoCo clinical translation for future studies. This review summarizes the involvement of various receptors and signalling pathways in the protective mechanisms of pPoCo.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ankita Kashyap
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
5
|
Jiao C, Gu Z. iTRAQ-based proteomic analysis reveals changes in response to sodium nitroprusside treatment in soybean sprouts. Food Chem 2019; 292:372-376. [PMID: 31054689 DOI: 10.1016/j.foodchem.2018.02.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 01/28/2023]
Abstract
In recent years, nitric oxide (NO) has been considered a plant signaling compound involved in antioxidant systems and flavonoid production enhancement. Nevertheless, its mechanism of action, from the perspective of protein expression, remains largely unknown. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) was employed to investigate NO donor sodium nitroprusside treatment-induced proteomic changes in soybean sprouts. Among the 3033 proteins identified, compared with the control, sodium nitroprusside treatment up- and down-regulated 256 proteins. These proteins were involved in antioxidant system pathways, such as the thioredoxin, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), glutathione S-transferase (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and lipoxygenase (LOX) pathways, including allene oxide synthase and lipoxygenase. In addition, heat shock proteins (HSPs) and flavonoid biosynthetic proteins, such as cinnamate 4-hydroxylase, chalcone isomerase, chalcone synthase, isoflavone synthase and isoflavone reductase, were also modulated in response to sodium nitroprusside treatment.
Collapse
Affiliation(s)
- Caifeng Jiao
- College of Food Technology, Xuzhou University of Technology, Xuzhou, Jiangsu 221000, People's Republic of China.
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
6
|
Marunouchi T, Sasaki K, Yano E, Tanonaka K. Transplantation of cardiac Sca-1-positive cells rather than c-Kit-positive cells preserves mitochondrial oxygen consumption of the viable myocardium following myocardial infarction in rats. J Pharmacol Sci 2019; 140:236-241. [PMID: 31375326 DOI: 10.1016/j.jphs.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 01/12/2023] Open
Abstract
The cardiosphere-derived cell (CDC) is one of the candidate cells used for cardiac regenerative therapy. Cardiospheres are mixture of cells including c-Kit+ cells, stem cell antigen (Sca)-1+ cells, and other types of cardiac progenitor cells. In this study, we compared the effect of transplantation of isolated Sca-1+ cells and c-Kit+ cells with that of the crude CDCs (CrCDCs). Focusing on the differences in the ability for secretion of paracrine factors among 3 types of cells, we determined the effects of transplantation of these cells on cardiac intracellular signaling and mitochondrial function in rats with permanently ligated coronary arteries. We showed that the transplantation of these cells resulted in a preservation of the cardiac pump function and mitochondrial respiration at the 8th week after myocardial infarction. However, mitochondrial function in the c-Kit+ cell-transplanted group was lower than that in the other 2 groups. Furthermore, we found that activation levels of intracellular signaling proteins after cell transplantation may have been due to the ability of secretion of growth factors by these transplanted cell types. Our findings indicate the possibility that CrCDC and Sca-1+ cells rather than c-Kit+ cells may be used therapeutically to preserve cardiac function and energy metabolism after myocardial infarction.
Collapse
Affiliation(s)
- Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kyohei Sasaki
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Emi Yano
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
7
|
Effects of cardiosphere-derived cell transplantation on cardiac mitochondrial oxygen consumption after myocardial infarction in rats. Biomed Pharmacother 2018; 108:883-892. [DOI: 10.1016/j.biopha.2018.09.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
|
8
|
Dai D, Yang J, Zhao C, Wu H, Ding J, Sun X, Hu S. Effect of Geranylgeranyl Pyrophosphate Synthase on Hypoxia/Reoxygenation-Induced Injury in Heart-Derived H9c2 Cells. Int Heart J 2018; 59:821-828. [DOI: 10.1536/ihj.17-218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Dongpu Dai
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Jian Yang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Chenze Zhao
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Huandong Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Jie Ding
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Xiaotong Sun
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| | - Shenjiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University
| |
Collapse
|
9
|
Şimşek T, Ersoy ÖF, Özsoy Z, Yenidoğan E, Kayaoğlu HA, Özkan N, Şahin M. Effect of sildenafil citrate on the liver structure and function in obstructive jaundice: An experimental study. Turk J Surg 2018; 34:111-116. [PMID: 30023974 DOI: 10.5152/turkjsurg.2018.3771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/18/2017] [Indexed: 01/21/2023]
Abstract
Objective We aimed to investigate the effect of 10 mg/kg sildenafil on the structure and function of the liver in a rat model of obstructive jaundice. Material and Methods Sixty-two male Wistar albino rats were distributed into six different groups. Obstructive jaundice was performed by legating the common bile duct. 10 mg/kg sildenafil citrate in drinking water was delivered orally after the operation before sacrificing them. Rats were sacrificed either after 10 or 28 days according to the study design. The blood and tissue samples from the liver were obtained to perform a biochemical and histopathological analysis to study functional and structural changes in the liver. Results At the 10th day, there was no difference between the sildenafil-treated and control groups with regard to the aspartate aminotransferase and alanine aminotransferase levels (p=0.423, p=0.661). The alkaline phosphatase total bilirubin levels among the groups were statistically different (p<0.001). At the 28th day, liver function tests except alanine aminotransferase showed significant differences among the groups (p<0.001). Liver function tests did not changed significantly between the 10th and 28th day in sildenafil-treated rats (p>0.05). Significant differences were observed among the groups with regard to cholestasis, fibrosis, inflammation, and necrosis (p<0.001). However, edema increased in the sildenafil-treated group (p<0.001). On the 28th day, the severity of structural changes in the liver after obstructive jaundice, except edema, reduced significantly (p<0.001). The sildenafil-treated groups at different time points didn't show any statistical difference in histopathological changes (p>0.05). Conclusion Oral administration of 10 mg/kg sildenafil citrate dramatically reverses the biochemical and histopathological liver changes induced by obstructive jaundice in rats.
Collapse
Affiliation(s)
- Tamer Şimşek
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Ömer Faik Ersoy
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Zeki Özsoy
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Erdinç Yenidoğan
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Hüseyin Ayhan Kayaoğlu
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Namık Özkan
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Mustafa Şahin
- Department of General Surgery, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| |
Collapse
|
10
|
Hu C, Li L. Pre-conditions for eliminating mitochondrial dysfunction and maintaining liver function after hepatic ischaemia reperfusion. J Cell Mol Med 2017; 21:1719-1731. [PMID: 28301072 PMCID: PMC5571537 DOI: 10.1111/jcmm.13129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The liver, the largest organ with multiple synthesis and secretion functions in mammals, consists of hepatocytes and Kupffer, stem, endothelial, stellate and other parenchymal cells. Because of early and extensive contact with the external environment, hepatic ischaemia reperfusion (IR) may result in mitochondrial dysfunction, autophagy and apoptosis of cells and tissues under various pathological conditions. Because the liver requires a high oxygen supply to maintain normal detoxification and synthesis functions, it is extremely susceptible to ischaemia and subsequent reperfusion with blood. Consequently, hepatic IR leads to acute or chronic liver failure and significantly increases the total rate of morbidity and mortality through multiple regulatory mechanisms. An increasing number of studies indicate that mitochondrial structure and function are impaired after hepatic IR, but that the health of liver tissues or liver grafts can be effectively rescued by attenuation of mitochondrial dysfunction. In this review, we mainly focus on the subsequent therapeutic interventions related to the conservation of mitochondrial function involved in mitigating hepatic IR injury and the potential mechanisms of protection. Because mitochondria are abundant in liver tissue, clarification of the regulatory mechanisms between mitochondrial dysfunction and hepatic IR should shed light on clinical therapies for alleviating hepatic IR‐induced injury.
Collapse
Affiliation(s)
- Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Qian Y, Matson JB. Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases. Adv Drug Deliv Rev 2017; 110-111:137-156. [PMID: 27374785 DOI: 10.1016/j.addr.2016.06.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are powerful signaling molecules that play a variety of roles in mammalian biology. Collectively called gasotransmitters, these gases have wide-ranging therapeutic potential, but their clinical use is limited by their gaseous nature, extensive reactivity, short half-life, and systemic toxicity. Strategies for gasotransmitter delivery with control over the duration and location of release are therefore vital for developing effective therapies. An attractive strategy for gasotransmitter delivery is though injectable or implantable gels, which can ideally deliver their payload over a controllable duration and then degrade into benign metabolites. Self-assembling peptide-based gels are well-suited to this purpose due to their tunable mechanical properties, easy chemical modification, and inherent biodegradability. In this review we illustrate the biological roles of NO, CO, and H2S, discuss their therapeutic potential, and highlight recent efforts toward their controlled delivery with a focus on peptide-based delivery systems.
Collapse
Affiliation(s)
- Yun Qian
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
12
|
Mignani S, Bryszewska M, Zablocka M, Klajnert-Maculewicz B, Cladera J, Shcharbin D, Majoral JP. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Sun Q, Loughran P, Shapiro R, Shrivastava IH, Antoine DJ, Li T, Yan Z, Fan J, Billiar TR, Scott MJ. Redox-dependent regulation of hepatocyte absent in melanoma 2 inflammasome activation in sterile liver injury in mice. Hepatology 2017; 65:253-268. [PMID: 27774630 PMCID: PMC5191963 DOI: 10.1002/hep.28893] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Sterile liver inflammation, such as liver ischemia-reperfusion, hemorrhagic shock after trauma, and drug-induced liver injury, is initiated and regulated by endogenous mediators including DNA and reactive oxygen species. Here, we identify a mechanism for redox-mediated regulation of absent in melanoma 2 (AIM2) inflammasome activation in hepatocytes after redox stress in mice, which occurs through interaction with cytosolic high mobility group box 1 (HMGB1). We show that in liver during hemorrhagic shock in mice and in hepatocytes after hypoxia with reoxygenation, cytosolic HMGB1 associates with AIM2 and is required for activation of caspase-1 in response to cytosolic DNA. Activation of caspase-1 through AIM2 leads to subsequent hepatoprotective responses such as autophagy. HMGB1 binds to AIM2 at a non-DNA-binding site on the hematopoietic interferon-inducible nuclear antigen domain of AIM2 to facilitate inflammasome and caspase-1 activation in hepatocytes. Furthermore, binding of HMGB1 to AIM2 is stronger with fully reduced all-thiol HMGB1 than with partially oxidized disulfide-HMGB1, and binding strength corresponds to caspase-1 activation. These data suggest that HMGB1 redox status regulates AIM2 inflammasome activation. CONCLUSION These findings suggest a novel and important mechanism for regulation of AIM2 inflammasome activation in hepatocytes during redox stress and may suggest broader implications for how this and other inflammasomes are activated and how their activation is regulated during cell stress, as well as the mechanisms of inflammasome regulation in nonimmune cell types. (Hepatology 2017;65:253-268).
Collapse
Affiliation(s)
- Qian Sun
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA
| | - Richard Shapiro
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Tunliang Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Department of Anesthesiology, Third Xiangya Hospital of Central South University, Hunan, China
| | - Zhengzheng Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Jie Fan
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA.,Surgical Research, Veterans Affairs Pittsburgh Healthcare Systems, Pittsburgh, PA
| | | | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
14
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
15
|
Beyond Preconditioning: Postconditioning as an Alternative Technique in the Prevention of Liver Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8235921. [PMID: 27340509 PMCID: PMC4909928 DOI: 10.1155/2016/8235921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/04/2023]
Abstract
Liver ischemia/reperfusion injury may significantly compromise hepatic postoperative function. Various hepatoprotective methods have been improvised, aiming at attenuating IR injury. With ischemic preconditioning (IPC), the liver is conditioned with a brief ischemic period followed by reperfusion, prior to sustained ischemia. Ischemic postconditioning (IPostC), consisting of intermittent sequential interruptions of blood flow in the early phase of reperfusion, seems to be a more feasible alternative than IPC, since the onset of reperfusion is more predictable. Regarding the potential mechanisms involved, it has been postulated that the slow intermittent oxygenation through controlled reperfusion decreases the burst production of oxygen free radicals, increases antioxidant activity, suppresses neutrophil accumulation, and modulates the apoptotic cascade. Additionally, favorable effects on mitochondrial ultrastructure and function, and upregulation of the cytoprotective properties of nitric oxide, leading to preservation of sinusoidal structure and maintenance of blood flow through the hepatic circulation could also underlie the protection afforded by postconditioning. Clinical studies are required to show whether biochemical and histological improvements afforded by the reperfusion/reocclusion cycles of postconditioning during early reperfusion can be translated to a substantial clinical benefit in liver resection and transplantation settings or to highlight more aspects of its molecular mechanisms.
Collapse
|
16
|
Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:183469. [PMID: 26770970 PMCID: PMC4684839 DOI: 10.1155/2015/183469] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/26/2022]
Abstract
Ischemia/reperfusion (I/R) injury remains a major complication of liver resection, transplantation, and hemorrhagic shock. Although the mechanisms that contribute to hepatic I/R are complex and diverse involving the interaction of cell injury in hepatocytes, immune cells, and endothelium, mitochondrial dysfunction is a cardinal event culminating in hepatic reperfusion injury. Mitochondrial autophagy, so-called mitophagy, is a key cellular process that regulates mitochondrial homeostasis and eliminates damaged mitochondria in a timely manner. Growing evidence accumulates that I/R injury is attributed to defective mitophagy. This review aims to summarize the current understanding of autophagy and its role in hepatic I/R injury and highlight the various therapeutic approaches that have been studied to ameliorate injury.
Collapse
|
17
|
Bejaoui M, Pantazi E, Folch-Puy E, Panisello A, Calvo M, Pasut G, Rimola A, Navasa M, Adam R, Roselló-Catafau J. Protective Effect of Intravenous High Molecular Weight Polyethylene Glycol on Fatty Liver Preservation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:794287. [PMID: 26543868 PMCID: PMC4620277 DOI: 10.1155/2015/794287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 12/17/2022]
Abstract
Ischemia reperfusion injury (IRI) leads to significant tissue damage in liver surgery. Polyethylene glycols (PEGs) are water soluble nontoxic polymers that have proved their effectiveness against IRI. The objective of our study was to investigate the potential protective effects of intravenous administration of a high molecular weight PEG of 35 kDa (PEG 35) in steatotic livers subjected to cold ischemia reperfusion. In this study, we used isolated perfused rat liver model to assess the effects of PEG 35 intravenous administration after prolonged cold ischemia (24 h, 4°C) and after reperfusion (2 h, 37°C). Liver injury was measured by transaminases levels and mitochondrial damage was determined by confocal microscopy assessing mitochondrial polarization (after cold storage) and by measuring glutamate dehydrogenase activity (after reperfusion). Also, cell signaling pathways involved in the physiopathology of IRI were assessed by western blot technique. Our results show that intravenous administration of PEG 35 at 10 mg/kg ameliorated liver injury and protected the mitochondria. Moreover, PEG 35 administration induced a significant phosphorylation of prosurvival protein kinase B (Akt) and activation of cytoprotective factors e-NOS and AMPK. In conclusion, intravenous PEG 35 efficiently protects steatotic livers exposed to cold IRI.
Collapse
Affiliation(s)
- Mohamed Bejaoui
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Eirini Pantazi
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Emma Folch-Puy
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - Arnau Panisello
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
| | - María Calvo
- Serveis Cientifico-Tècnics, Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, 35122 Padova, Italy
| | - Antoni Rimola
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - Miquel Navasa
- Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| | - René Adam
- Centre Hepato-Biliaire, AP-P-HP Hôpital Paul Brousse, Inserm U776, Université Paris Sud, Villejuif, 75008 Paris, France
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB-CSIC), 08036 Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Catalonia, Spain
| |
Collapse
|
18
|
Liu Q, Rehman H, Krishnasamy Y, Schnellmann RG, Lemasters JJ, Zhong Z. Improvement of liver injury and survival by JNK2 and iNOS deficiency in liver transplants from cardiac death mice. J Hepatol 2015; 63:68-74. [PMID: 25703084 PMCID: PMC4475508 DOI: 10.1016/j.jhep.2015.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Inclusion of liver grafts from cardiac death donors (CDD) would increase the availability of donor livers but is hampered by a higher risk of primary non-function. Here, we seek to determine mechanisms that contribute to primary non-function of liver grafts from CDD with the goal to develop strategies for improved function and outcome, focusing on c-Jun-N-terminal kinase (JNK) activation and mitochondrial depolarization, two known mediators of graft failure. METHODS Livers explanted from wild-type, inducible nitric oxide synthase knockout (iNOS(-/-)), JNK1(-/-) or JNK2(-/-) mice after 45-min aorta clamping were implanted into wild-type recipients. Mitochondrial depolarization was detected by intravital confocal microscopy in living recipients. RESULTS After transplantation of wild-type CDD livers, graft iNOS expression and 3-nitrotyrosine adducts increased, but hepatic endothelial NOS expression was unchanged. Graft injury and dysfunction were substantially higher in CDD grafts than in non-CDD grafts. iNOS deficiency and inhibition attenuated injury and improved function and survival of CDD grafts. JNK1/2 and apoptosis signal-regulating kinase-1 activation increased markedly in wild-type CDD grafts, which was blunted by iNOS deficiency. JNK inhibition and JNK2 deficiency, but not JNK1 deficiency, decreased injury and improved function and survival of CDD grafts. Mitochondrial depolarization and binding of phospho-JNK2 to Sab, a mitochondrial protein linked to the mitochondrial permeability transition, were higher in CDD than in non-CDD grafts. iNOS deficiency, JNK inhibition and JNK2 deficiency all decreased mitochondrial depolarization and blunted ATP depletion in CDD grafts. JNK inhibition and deficiency did not decrease 3-nitrotyrosine adducts in CDD grafts. CONCLUSION The iNOS-JNK2-Sab pathway promotes CDD graft failure via increased mitochondrial depolarization, and is an attractive target to improve liver function and survival in CDD liver transplantation recipients.
Collapse
Affiliation(s)
- Qinlong Liu
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Hasibur Rehman
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Yasodha Krishnasamy
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
19
|
Grossini E, Bellofatto K, Farruggio S, Sigaudo L, Marotta P, Raina G, De Giuli V, Mary D, Pollesello P, Minisini R, Pirisi M, Vacca G. Levosimendan inhibits peroxidation in hepatocytes by modulating apoptosis/autophagy interplay. PLoS One 2015; 10:e0124742. [PMID: 25880552 PMCID: PMC4400069 DOI: 10.1371/journal.pone.0124742] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Levosimendan protects rat liver against peroxidative injuries through mechanisms related to nitric oxide (NO) production and mitochondrial ATP-dependent K (mitoKATP) channels opening. However, whether levosimendan could modulate the cross-talk between apoptosis and autophagy in the liver is still a matter of debate. Thus, the aim of this study was to examine the role of levosimendan as a modulator of the apoptosis/autophagy interplay in liver cells subjected to peroxidation and the related involvement of NO and mitoKATP. Methods and Findings In primary rat hepatocytes that have been subjected to oxidative stress, Western blot was performed to examine endothelial and inducible NO synthase isoforms (eNOS, iNOS) activation, apoptosis/autophagy and survival signalling detection in response to levosimendan. In addition, NO release, cell viability, mitochondrial membrane potential and mitochondrial permeability transition pore opening (MPTP) were examined through specific dyes. Some of those evaluations were also performed in human hepatic stellate cells (HSC). Pre-treatment of hepatocytes with levosimendan dose-dependently counteracted the injuries caused by oxidative stress and reduced NO release by modulating eNOS/iNOS activation. In hepatocytes, while the autophagic inhibition reduced the effects of levosimendan, after the pan-caspases inhibition, cell survival and autophagy in response to levosimendan were increased. Finally, all protective effects were prevented by both mitoKATP channels inhibition and NOS blocking. In HSC, levosimendan was able to modulate the oxidative balance and inhibit autophagy without improving cell viability and apoptosis. Conclusions Levosimendan protects hepatocytes against oxidative injuries by autophagic-dependent inhibition of apoptosis and the activation of survival signalling. Such effects would involve mitoKATP channels opening and the modulation of NO release by the different NOS isoforms. In HSC, levosimendan would also play a role in cell activation and possible evolution toward fibrosis. These findings highlight the potential of levosimendan as a therapeutic agent for the treatment or prevention of liver ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
- * E-mail:
| | - Kevin Bellofatto
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Serena Farruggio
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Lorenzo Sigaudo
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Patrizia Marotta
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Giulia Raina
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Veronica De Giuli
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - David Mary
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Piero Pollesello
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Rosalba Minisini
- Internal Medicine, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Mario Pirisi
- Internal Medicine, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| | - Giovanni Vacca
- Laboratory of Physiology and Experimental Surgery, Department of Translational Medicine, University Eastern Piedmont “Amedeo Avogadro”, Via Solaroli 17, Azienda Ospedaliera Universitaria Maggiore della Carità, corso Mazzini 36, Novara, Italy
| |
Collapse
|
20
|
Barreto-Torres G, Hernandez JS, Jang S, Rodríguez-Muñoz AR, Torres-Ramos CA, Basnakian AG, Javadov S. The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARα-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 308:H749-58. [PMID: 25617357 DOI: 10.1152/ajpheart.00414.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
AMP kinase (AMPK) plays an important role in the regulation of energy metabolism in cardiac cells. Furthermore, activation of AMPK protects the heart from myocardial infarction and heart failure. The present study examines whether or not AMPK affects the peroxisome proliferator-activated receptor-α (PPARα)/mitochondria pathway in response to acute oxidative stress in cultured cardiomyocytes. Cultured H9c2 rat embryonic cardioblasts were exposed to H2O2-induced acute oxidative stress in the presence or absence of metformin, compound C (AMPK inhibitor), GW6471 (PPARα inhibitor), or A-769662 (AMPK activator). Results showed that AMPK activation by metformin reverted oxidative stress-induced inactivation of AMPK and prevented oxidative stress-induced cell death. In addition, metformin attenuated reactive oxygen species generation and depolarization of the inner mitochondrial membrane. The antioxidative effects of metformin were associated with the prevention of mitochondrial DNA damage in cardiomyocytes. Coimmunoprecipitation studies revealed that metformin abolished oxidative stress-induced physical interactions between PPARα and cyclophilin D (CypD), and the abolishment of these interactions was associated with inhibition of permeability transition pore formation. The beneficial effects of metformin were not due to acetylation or phosphorylation of PPARα in response to oxidative stress. In conclusion, this study demonstrates that the protective effects of metformin-induced AMPK activation against oxidative stress converge on mitochondria and are mediated, at least in part, through the dissociation of PPARα-CypD interactions, independent of phosphorylation and acetylation of PPARα and CypD.
Collapse
Affiliation(s)
- Giselle Barreto-Torres
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Jessica Soto Hernandez
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Adlín R Rodríguez-Muñoz
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Carlos A Torres-Ramos
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico; and
| |
Collapse
|
21
|
|
22
|
Milrinone-induced postconditioning reduces hepatic ischemia-reperfusion injury in rats: the roles of phosphatidylinositol 3-kinase and nitric oxide. J Surg Res 2014; 186:446-51. [DOI: 10.1016/j.jss.2013.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 01/09/2023]
|
23
|
Sun Q, Gao W, Loughran P, Shapiro R, Fan J, Billiar TR, Scott MJ. Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress. J Biol Chem 2013; 288:15947-58. [PMID: 23589298 PMCID: PMC3668750 DOI: 10.1074/jbc.m112.426791] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/05/2013] [Indexed: 01/01/2023] Open
Abstract
Caspase 1 activation can be induced by oxidative stress, which leads to the release of the proinflammatory cytokines IL1β and IL18 in myeloid cells and a potentially damaging inflammatory response. However, little is known about the role of caspase 1 in non-immune cells, such as hepatocytes, that express and activate the inflammasome but do not produce a significant amount of IL1β/IL18. Here we demonstrate that caspase 1 activation protects against cell death after redox stress induced by hypoxia/reoxygenation in hepatocytes. Mechanistically, we show that caspase 1 reduces mitochondrial respiration and reactive oxygen species by increasing mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after hypoxia/reoxygenation. Caspase 1 increases autophagic flux through up-regulating autophagy initiator beclin 1 during redox stress and is an important cell survival factor in hepatocytes. We find that during hemorrhagic shock with resuscitation, an in vivo mouse model associated with severe hepatic redox stress, caspase 1 activation is also protective against liver injury and excessive oxidative stress through the up-regulation of beclin 1. Our findings suggest an alternative role for caspase 1 activation in promoting adaptive responses to oxidative stress and, more specifically, in limiting reactive oxygen species production and damage in cells and tissues where IL1β/IL18 are not highly expressed.
Collapse
Affiliation(s)
- Qian Sun
- From the Department of Surgery
- Department of Pathology
| | | | - Patricia Loughran
- From the Department of Surgery
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania and
| | | | - Jie Fan
- From the Department of Surgery
- Surgical Research, Veterans Affairs Pittsburgh Healthcare Systems, Pittsburgh, Pennsylvania 15213
| | | | | |
Collapse
|
24
|
Ursolic-Acid-Enriched Herba Cynomorii Extract Protects against Oxidant Injury in H9c2 Cells and Rat Myocardium by Increasing Mitochondrial ATP Generation Capacity and Enhancing Cellular Glutathione Redox Cycling, Possibly through Mitochondrial Uncoupling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:924128. [PMID: 23690863 PMCID: PMC3638637 DOI: 10.1155/2013/924128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
Mitochondrial decay is considered to be a major contributor to aging-related diseases, including neurodegenerative diseases, cardiovascular disorders, and certain metabolic diseases. Therefore, the maintenance of mitochondrial functional capacity and antioxidant status should play an essential role in preventive health. Herba Cynomorii, which is one of the most potent "Yang-invigorating" Chinese tonic herbs, was found to increase mitochondrial ATP generation capacity (ATP-GC) in rat hearts ex vivo. In the present study, we demonstrated that HCY2, an active fraction of Herba Cynomorii, and its major ingredient ursolic acid (UA) could protect against hypoxia/reoxygenation-induced cell apoptosis in H9c2 cells in vitro and also against ischemia/reperfusion-induced injury in rat hearts ex vivo. The cardioprotection was associated with an increase in ATP-GC and an enhancement of glutathione redox cycling. The results suggest that UA may be one of the active ingredients responsible for the cardioprotection afforded by Herba Cynomorii, and this effect may be mediated, at least in part, by enhancement of mitochondrial functional capacity and antioxidant status, possibly through the induction of mitochondrial uncoupling.
Collapse
|
25
|
Choi KK, Cho JA, Kim SH, Lee SW, Min SO, Kim KS. Immediately transcripted genes in various hepatic ischemia models. JOURNAL OF THE KOREAN SURGICAL SOCIETY 2012; 83:298-306. [PMID: 23166889 PMCID: PMC3491232 DOI: 10.4174/jkss.2012.83.5.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/15/2012] [Accepted: 10/04/2012] [Indexed: 11/30/2022]
Abstract
PURPOSE To elucidate the characteristic gene transcription profiles among various hepatic ischemia conditions, immediately transcribed genes and the degree of ischemic injury were compared among total ischemia (TI), intermittent clamping (IC), and ischemic preconditioning (IPC). METHODS Sprague-Dawley rats were equally divided into control (C, sham-operated), TI (ischemia for 90 minutes), IC (ischemia for 15 minutes and reperfusion for 5 minutes, repeated six times), and IPC (ischemia for 15 minutes, reperfusion for 5 minutes, and ischemia again for 90 minutes) groups. A cDNA microarray analysis was performed using hepatic tissues obtained by partial hepatectomy after occluding hepatic inflow. RESULTS THE CDNA MICROARRAY REVEALED THE FOLLOWING: interleukin (IL)-1β expression was 2-fold greater in the TI group than in the C group. In the IC group, IL-1α/β expression increased by 2.5-fold, and Na+/K+ ATPase β1 expression decreased by 2.4-fold. In the IPC group, interferon regulatory factor-1, osteoprotegerin, and retinoblastoma-1 expression increased by approximately 2-fold compared to that in the C group, but the expression of Na+/K+ ATPase β1 decreased 3-fold. CONCLUSION The current findings revealed characteristic gene expression profiles under various ischemic conditions. However, additional studies are needed to clarify the mechanism of protection against IPC.
Collapse
Affiliation(s)
- Kang Kook Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Pillai VC, Snyder RO, Gumaste U, Thekkumkara TJ, Mehvar R. Effects of transient overexpression or knockdown of cytochrome P450 reductase on reactive oxygen species generation and hypoxia reoxygenation injury in liver cells. Clin Exp Pharmacol Physiol 2012; 38:846-53. [PMID: 21973081 DOI: 10.1111/j.1440-1681.2011.05622.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
1. Literature data suggest that the electron-donating enzyme, cytochrome P450 reductase (CPR), might act as a source of reactive oxygen species (ROS). However, the role of CPR in pathophysiological conditions associated with oxidative stress is unknown. The aim of the present study was to study the role of CPR in the generation of ROS and cellular injury under basal conditions, and after simulated in vitro ischaemia-reperfusion (IR). 2. Plasmid DNA or siRNA approaches were used to transiently overexpress or knockdown the human CPR gene in rat liver epithelial (WB-F344) or human hepatoblastoma (HepG2) cells, respectively. The generation of ROS and/or cellular injury was then studied under the basal conditions and after simulated IR (4 h of ischaemia plus 30 min of reoxygenation). 3. Under the basal conditions, transient overexpression of CPR protein in WB-F344 cells caused a 90% increase in the CPR activity, which was associated with a 100% increase in the ROS production. In contrast, after simulated IR, a 2.5-fold higher CPR activity did not significantly affect the magnitude of ROS generation or cell death. Similarly, although the knockdown of CPR protein resulted in a significant reduction (∼30%) in the CPR activity, the ROS production was not substantially altered after simulated IR in HepG2 cells. 4. Our data suggest that CPR plays a major role in the ROS generation by liver cells under the basal conditions. However, the role of CPR in the ROS generation during simulated in vitro IR injury in these cells is minimal, if any.
Collapse
Affiliation(s)
- Venkateswaran C Pillai
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | | | | | | | |
Collapse
|
27
|
Morsy MA. Protective effect of lisinopril on hepatic ischemia/reperfusion injury in rats. Indian J Pharmacol 2012; 43:652-5. [PMID: 22144768 PMCID: PMC3229779 DOI: 10.4103/0253-7613.89820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 05/11/2011] [Accepted: 08/31/2011] [Indexed: 01/24/2023] Open
Abstract
Objective: Ischemia/reperfusion (I/R) injury plays a key role in the pathogenesis of hepatic failure in several clinical settings such as liver resection or transplantation. Lisinopril, a widely prescribed drug for various cardiovascular conditions, has been reported to have diverse pharmacological properties. The aim of this study, therefore, was to evaluate a potential protective effect of lisinopril on hepatic I/R injury in rats. Materials and Methods: In anesthetized rats, partial hepatic ischemia was applied for one hour followed by two hours reperfusion. Biochemical analysis of serum and hepatic tissue was done. Hepatic tissue was also subjected to electron microscopy. Results: Pre-ischemic treatment with lisinopril (10 mg/kg) exerted protection against I/R-induced hepatocellular injury as evident by significant decrease in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin levels, along with hepatic lipid peroxidation, expressed as malondialdehyde content, with a concurrent increase in hepatic nitric oxide content as compared to I/R group. The electron microscopic examination indicated that lisinopril can effectively protect against hepatic I/R injury. Conclusion: Lisinopril provides a protection against hepatic I/R injury in rats. The protective effect is associated with reduction of oxidative stress-induced lipid peroxidation level and enhancement of nitric oxide availability.
Collapse
Affiliation(s)
- M A Morsy
- Department of Pharmacology, Faculty of Medicine, El-Minia University, El-Minia, Egypt
| |
Collapse
|
28
|
Chen N, Chiu PY, Leung HY, Ko KM. Cytochrome P-450-catalyzed reactive oxygen species production mediates the (-)schisandrin B-induced glutathione and heat shock responses in H9c2 cardiomyocytes. Indian J Pharmacol 2012; 44:204-9. [PMID: 22529476 PMCID: PMC3326913 DOI: 10.4103/0253-7613.93849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 10/17/2011] [Accepted: 12/14/2011] [Indexed: 12/03/2022] Open
Abstract
Objective: Schisandrin B (Sch B) is the most abundant, active dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis (Turcz) Baillon (Schisandraceae). (–)Sch B was found to be the most potent stereoisomer of Sch B in producing cytoprotective action in H9c2 cardiomyocytes. The elucidation of biochemical mechanism underlying the cytoprotection of (–)Sch B has attracted much interest in the area of preventive medicine. Here, we examined whether the (–)Sch B-induced enhancement of glutathione antioxidant and heat shock responses and the associated cytoprotection against hypoxia/reoxygenation-induced apoptosis are mediated by reactive oxygen species (ROS) arising from cytochrome P-450 (CYP)-catalyzed metabolism of (–)Sch B in H9c2 cardiomyocytes. Materials and Methods: The effects of CYP inhibitor (1-aminobenzotriazole, ABT) and antioxidant (dimethylthiouracil, DMTU) on (–)Sch B-induced ROS production and associated increases in cellular-reduced glutathione (GSH) level as well as heat shock protein (Hsp) 25/70 production were investigated in H9c2 cardiomyocytes. The (–)Sch B-induced ROS generation was monitored with or without ABT/DMTU for 6 h in situ, while (–)Sch B-induced cellular GSH level and Hsp 25/70 production, as well as cytoprotection were measured at 16 h post-(–)Sch B exposure. Results: The results indicated that (–)Sch B caused a dose-dependent increase in ROS production in H9c2 cardiomyocytes, which was completely suppressed by pre- and co-treatment with ABT or DTMU. The incubation with (–)Sch B for 6 h caused dose-dependent increases in cellular GSH level and Hsp 25/70 production, as well as protection against hypoxia/reoxygenation-induced apoptosis at 16-h post-drug exposure in H9c2 cardiomyocytes. All these cellular responses were abrogated by treatment with ABT or DMTU. Conclusion: The results suggest that ROS arising from the CYP-catalyzed metabolism of (–)Sch B elicit glutathione antioxidant and heat shock responses, thereby protecting against oxidant-induced apoptosis in H9c2 cardiomyocytes.
Collapse
Affiliation(s)
- Na Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | |
Collapse
|
29
|
The hepatic soluble guanylyl cyclase-cyclic guanosine monophosphate pathway mediates the protection of remote ischemic preconditioning on the microcirculation in liver ischemia-reperfusion injury. Transplantation 2012; 93:880-6. [PMID: 22456530 DOI: 10.1097/tp.0b013e31824cd59d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Remote ischemic preconditioning (RIPC) protects against liver ischemia reperfusion (IR) injury. An essential circulating mediator of this protection is nitric oxide (NO) induced by lower limb RIPC. One of the mechanisms through which NO generally acts is the soluble guanylyl cyclase-cyclic GMP (sGC-cGMP) pathway. The present study aimed to assess the role of hepatic sGC-cGMP in lower limb RIPC-induced protection against liver IR injury. METHODS Mice were allocated to 4 groups: 1.Sham; 2.IR: 40 min of lobar hepatic ischemia and 2 hr reperfusion; 3.RIPC+IR: 6 cycles of 4x4 min IR of the lower limb followed by IR group procedure; (4) 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ)+RIPC+IR: ODQ (sGC inhibitor) was administered followed by RIPC+IR group procedure. Hepatic microcirculatory blood flow (MBF) was measured throughout the experiment. Plasma transaminases, hepatic histopathological and transmission electron microscopy studies were performed at the end of the experiment. Hepatic cGMP levels were measured in groups 1-3 in addition to an RIPC alone group. RESULTS Compared to liver IR alone, RIPC+IR increased hepatic MBF during liver reperfusion (P<0.05), and reduced plasma transaminases (P<0.05) and ultrastructural markers of injury. In contrast compared to RIPC+IR, ODQ+RIPC+IR decreased hepatic MBF (P<0.05) and ultrastructural markers of injury. However, plasma transaminases were not significantly different in the ODQ+RIPC+IR compared to the RIPC+IR group. Hepatic cGMP levels were significantly elevated in the RIPC compared to sham group. CONCLUSIONS The hepatic sGC-cGMP pathway is required for mediating the protective effects of lower limb RIPC on hepatic MBF in liver IR injury.
Collapse
|
30
|
Liu Q, Rehman H, Krishnasamy Y, Ramshesh VK, Theruvath TP, Chavin KD, Schnellmann RG, Lemasters JJ, Zhong Z. Role of inducible nitric oxide synthase in mitochondrial depolarization and graft injury after transplantation of fatty livers. Free Radic Biol Med 2012; 53:250-9. [PMID: 22609250 PMCID: PMC3392495 DOI: 10.1016/j.freeradbiomed.2012.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/12/2012] [Accepted: 05/07/2012] [Indexed: 12/23/2022]
Abstract
This study investigated the role of inducible nitric oxide synthase (iNOS) in failure of ethanol-induced fatty liver grafts. Rat livers were explanted 20 h after gavaging with ethanol (5 g/kg) and storing in UW solution for 24h before implantation. Hepatic oil red O staining-positive areas increased from ∼2 to ∼33% after ethanol treatment, indicating steatosis. iNOS expression increased ∼8-fold after transplantation of lean grafts (LG) and 25-fold in fatty grafts (FG). Alanine aminotransferase release, total bilirubin, hepatic necrosis, TUNEL-positive cells, and cleaved caspase-3 were higher in FG than LG. A specific iNOS inhibitor 1400W (5 μM in the cold-storage solution) blunted these alterations by >42% and increased survival of fatty grafts from 25 to 88%. Serum nitrite/nitrate and hepatic nitrotyrosine adducts increased to a greater extent after transplantation of FG than LG, indicating reactive nitrogen species (RNS) overproduction. Phospho-c-Jun and phospho-c-Jun N-terminal kinase-1/2 (JNK1/2) were higher in FG than in LG, indicating more JNK activation in fatty grafts. RNS formation and JNK activation were blunted by 1400W. Mitochondrial polarization and cell death were visualized by intravital multiphoton microscopy of rhodamine 123 and propidium iodide, respectively. After implantation, viable cells with depolarized mitochondria were 3-fold higher in FG than in LG and 1400W decreased mitochondrial depolarization in FG to the levels of LG. Taken together, iNOS is upregulated after transplantation of FG, leading to excessive RNS formation, JNK activation, mitochondrial dysfunction, and severe graft injury. The iNOS inhibitor 1400W could be an effective therapy for primary nonfunction of fatty liver grafts.
Collapse
Affiliation(s)
- Qinlong Liu
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of General Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hasibur Rehman
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yasodha Krishnasamy
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Venkat K. Ramshesh
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tom P. Theruvath
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenneth D. Chavin
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rick G. Schnellmann
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29403, USA
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Department of Pharmaceutical & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Piantadosi CA. Regulation of mitochondrial processes by protein S-nitrosylation. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:712-21. [PMID: 21397666 PMCID: PMC3162082 DOI: 10.1016/j.bbagen.2011.03.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/21/2011] [Accepted: 03/04/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nitric oxide (NO) exerts powerful physiological effects through guanylate cyclase (GC), a non-mitochondrial enzyme, and through the generation of protein cysteinyl-NO (SNO) adducts-a post-translational modification relevant to mitochondrial biology. A small number of SNO proteins, generated by various mechanisms, are characteristically found in mammalian mitochondria and influence the regulation of oxidative phosphorylation and other aspects of mitochondrial function. SCOPE OF REVIEW The principles by which mitochondrial SNO proteins are formed and their actions, independently or collectively with NO binding to heme, iron-sulfur centers, or to glutathione (GSH) are reviewed on a molecular background of SNO-based signal transduction. MAJOR CONCLUSIONS Mitochondrial SNO-proteins have been demonstrated to inhibit Complex I of the electron transport chain, to modulate mitochondrial reactive oxygen species (ROS) production, influence calcium-dependent opening of the mitochondrial permeability transition pore (MPTP), promote selective importation of mitochondrial protein, and stimulate mitochondrial fission. The ease of reversibility and the affirmation of regulated S-nitros(yl)ating and denitros(yl)ating enzymatic reactions support hypotheses that SNO regulates the mitochondrion through redox mechanisms. SNO modification of mitochondrial proteins, whether homeostatic or adaptive (physiological), or pathogenic, is an area of active investigation. GENERAL SIGNIFICANCE Mitochondrial SNO proteins are associated with mainly protective, bur some pathological effects; the former mainly in inflammatory and ischemia/reperfusion syndromes and the latter in neurodegenerative diseases. Experimentally, mitochondrial SNO delivery is also emerging as a potential new area of therapeutics. This article is part of a Special Issue entitled: Regulation of cellular processes by S-nitrosylation.
Collapse
Affiliation(s)
- Claude A Piantadosi
- Departments of Medicine and Pathology, Box 3315, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway--evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int 2012; 32:531-43. [PMID: 22316165 DOI: 10.1111/j.1478-3231.2012.02755.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/29/2011] [Indexed: 02/13/2023]
Abstract
Ischaemia reperfusion (IR) injury is a clinical entity with a major contribution to the morbidity and mortality of liver surgery and transplantation. A central pathway of protection against IR injury utilizes nitric oxide (NO). Nitric oxide synthase (NOS) enzymes manufacture NO from L-arginine. NO generated by the endothelial NOS (eNOS) isoform protects against liver IR injury, whereas inducible NOS (iNOS)-derived NO may have either a protective or a deleterious effect during the early phase of IR injury, depending on the length of ischaemia, length of reperfusion and experimental model. In late phase hepatic IR injury, iNOS-derived NO plays a protective role. In addition to NOS consumption of L-arginine during NO synthesis, this amino acid may also be metabolized by arginase, an enzyme whose release is increased during prolonged ischaemia, and therefore diverts L-arginine away from NOS metabolism leading to a drop in the rate of NO synthesis. NO most commonly acts through the soluble guanylyl cyclase-cyclic GMP- protein kinase G pathway to ameliorate hepatic IR injury. Both endogenously generated and exogenously administered NO donors protect against liver IR injury. The beneficial effects of NO on liver IR are not, however, universal, and certain conditions, such as steatosis, may influence the protective effects of NO. In this review, the evidence for, and mechanisms of these protective actions of NO are discussed, and areas in need of further research are highlighted.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, UK
| | | | | | | | | |
Collapse
|
33
|
Kim JS, Wang JH, Lemasters JJ. Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca2+-dependent mitochondrial formation of reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 2012; 302:G723-31. [PMID: 22241863 PMCID: PMC3330780 DOI: 10.1152/ajpgi.00082.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Onset of the mitochondrial permeability transition (MPT) is the penultimate event leading to lethal cellular ischemia-reperfusion injury, but the mechanisms precipitating the MPT after reperfusion remain unclear. Here, we investigated the role of mitochondrial free Ca(2+) and reactive oxygen species (ROS) in pH- and MPT-dependent reperfusion injury to hepatocytes. Cultured rat hepatocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 4 h and then reoxygenated at pH 7.4 to simulate ischemia-reperfusion. Some cells were loaded with the Ca(2+) chelators, BAPTA/AM and 2-[(2-bis-[carboxymethyl]aono-5-methoxyphenyl)-methyl-6-methoxy-8-bis[carboxymethyl]aminoquinoline, either by a cold loading protocol for intramitochondrial loading or by warm incubation for cytosolic loading. Cell death was assessed by propidium iodide fluorometry and immunoblotting. Mitochondrial Ca(2+), inner membrane permeability, membrane potential, and ROS formation were monitored with Rhod-2, calcein, tetramethylrhodamine methylester, and dihydrodichlorofluorescein, respectively. Necrotic cell death increased after reoxygenation. Necrosis was blocked by 1 μM cyclosporin A, an MPT inhibitor, and by reoxygenation at pH 6.2. Confocal imaging of Rhod-2, calcein, and dichlorofluorescein revealed that an increase of mitochondrial Ca(2+) and ROS preceded onset of the MPT after reoxygenation. Intramitochondrial Ca(2+) chelation, but not cytosolic Ca(2+) chelation, prevented ROS formation and subsequent necrotic and apoptotic cell death. Reoxygenation with the antioxidants, desferal or diphenylphenylenediamine, also suppressed MPT-mediated cell death. However, inhibition of cytosolic ROS by apocynin or diphenyleneiodonium chloride failed to prevent reoxygenation-induced cell death. In conclusion, Ca(2+)-dependent mitochondrial ROS formation is the molecular signal culminating in onset of the MPT after reoxygenation of anoxic hepatocytes, leading to cell death.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Univ. of Florida, Dept. of Surgery,Gainesville, FL 32610, USA.
| | - Jin-Hee Wang
- 1Department of Surgery, University of Florida, Gainesville, Florida, and
| | - John J. Lemasters
- 2Departments of Pharmaceutical and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
34
|
Wang JH, Ahn IS, Fischer TD, Byeon JI, Dunn WA, Behrns KE, Leeuwenburgh C, Kim JS. Autophagy suppresses age-dependent ischemia and reperfusion injury in livers of mice. Gastroenterology 2011; 141:2188-2199.e6. [PMID: 21854730 PMCID: PMC3221865 DOI: 10.1053/j.gastro.2011.08.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/31/2011] [Accepted: 08/08/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS As life expectancy increases, there are greater numbers of patients with liver diseases who require surgery or transplantation. Livers of older patients have significantly less reparative capacity following ischemia and reperfusion (I/R) injury, which occurs during these operations. There are no strategies to reduce the age-dependent I/R injury. We investigated the role of autophagy in the age dependence of sensitivity to I/R injury. METHODS Hepatocytes and livers from 3- and 26-month-old mice were subjected to in vitro and in vivo I/R, respectively. We analyzed changes in autophagy-related proteins (Atg). Mitochondrial dysfunction was visualized using confocal and intravital multi-photon microscopy of isolated hepatocytes and livers from anesthetized mice, respectively. RESULTS Immunoblot, autophagic flux, genetic, and imaging analyses all associated the increase in sensitivity to I/R injury with age with decreased autophagy and subsequent mitochondrial dysfunction due to calpain-mediated loss of Atg4B. Overexpression of either Atg4B or Beclin-1 recovered Atg4B, increased autophagy, blocked the onset of the mitochondrial permeability transition, and suppressed cell death after I/R in old hepatocytes. Coimmunoprecipitation analysis of hepatocytes and Atg3-knockout cells showed an interaction between Beclin-1 and Atg3, a protein required for autophagosome formation. Intravital multi-photon imaging revealed that overexpression of Beclin-1 or Atg4B attenuated autophagic defects and mitochondrial dysfunction in livers of older mice after I/R. CONCLUSIONS Loss of Atg4B in livers of old mice increases their sensitivity to I/R injury. Increasing autophagy might ameliorate liver damage and restore mitochondrial function after I/R.
Collapse
Affiliation(s)
- Jin-Hee Wang
- Department of Surgery, Division of Biology of Aging, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee WY, Koh EJ, Lee SM. A combination of ischemic preconditioning and allopurinol protects against ischemic injury through a nitric oxide-dependent mechanism. Nitric Oxide 2011; 26:1-8. [PMID: 22119149 DOI: 10.1016/j.niox.2011.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 01/25/2023]
Abstract
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50mg/kg) was intraperitoneally administered 18 and 1h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.
Collapse
Affiliation(s)
- Woo-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Republic of Korea
| | | | | |
Collapse
|
36
|
Fouad AA, Jresat I. Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats. Eur J Pharmacol 2011; 670:216-23. [DOI: 10.1016/j.ejphar.2011.08.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 08/16/2011] [Accepted: 08/27/2011] [Indexed: 12/17/2022]
|
37
|
Sgarbi G, Giannone F, Casalena GA, Baracca A, Baldassare M, Longobardi P, Caraceni P, Derenzini M, Lenaz G, Trerè D, Solaini G. Hyperoxia fully protects mitochondria of explanted livers. J Bioenerg Biomembr 2011; 43:673-82. [PMID: 22015484 DOI: 10.1007/s10863-011-9390-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022]
Abstract
Liver ischemia-reperfusion injury is still an open problem in many clinical circumstances, including surgery and transplantation. This study investigates how mitochondrial structure, mass and oxidative phosphorylation change and may be preserved during a brief period of ischemia followed by a long period of reperfusion, an experimental model that mimics the condition to which a liver is exposed during transplantation. Livers were explanted from rats and exposed for 24 h to three different oxygen availability conditions at 4 °C. Mitochondrial mass, respiration, oxidative phosphorylation (OXPHOS), and levels of OXPHOS complexes were all significantly altered in livers stored under the currently used preservation condition of normoxia. Remarkably, liver perfusion with hyperoxic solutions fully preserved mitochondrial morphology and function, suggesting that perfusion of the graft with hyperoxic solution should be considered in human transplantation.
Collapse
Affiliation(s)
- G Sgarbi
- Department of Biochemistry, University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nitric oxide is an essential mediator of the protective effects of remote ischaemic preconditioning in a mouse model of liver ischaemia/reperfusion injury. Clin Sci (Lond) 2011; 121:257-66. [PMID: 21463257 DOI: 10.1042/cs20100598] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NO (nitric oxide) may protect the liver from IR (ischaemia/reperfusion) injury. RIPC (remote ischaemic preconditioning) also protects against liver IR injury; however, the molecular mediator(s) of RIPC are currently unknown. The aim of the present study was to assess the role of NO in hindlimb RIPC-induced protection against liver IR injury. Mice were allocated to the following groups: sham group; RIPC group (six cycles of 4×4 min IR of hindlimb); IR group [40 min lobar (70%) hepatic ischaemia and 2-h reperfusion]; RIPC+IR group (RIPC followed by IR group procedures); and C-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt]+RIPC+IR group [C-PTIO (a direct NO scavenger) was administered, followed by the RIPC+IR group procedure]. Hepatic MBF (microcirculatory blood flow) was measured throughout the experiment. Circulating NOx (nitrite and nitrate) levels, plasma liver transaminases, hepatic histopathological and TEM (transmission electron microscopy) studies were performed at the end of the experiment. NOx concentrations were significantly elevated (P<0.05) in the RIPC and RIPC+IR groups. Compared with liver IR alone, RIPC+IR preserved hepatic MBF during liver reperfusion (P<0.05). In contrast, C-PTIO+RIPC+IR reduced MBF compared with RIPC+IR (P<0.05). RIPC+IR reduced plasma transaminases (P<0.05), and histopathological and ultrastructural features of injury compared with IR alone. The protective effects of RIPC+IR in reducing liver IR injury were abrogated in the group that received antecedent C-PTIO (C-PTIO+RIPC+IR). In conclusion, NO is an essential mediator of the protection afforded by hindlimb RIPC against liver IR injury. The mechanisms underlying this protection involve preservation of the sinusoidal structure and maintenance of blood flow through the hepatic microcirculation.
Collapse
|
39
|
Kim RD, Kim JS, Watanabe G, Mohuczy D, Behrns KE. Liver regeneration and the atrophy-hypertrophy complex. Semin Intervent Radiol 2011; 25:92-103. [PMID: 21326550 DOI: 10.1055/s-2008-1076679] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The atrophy-hypertrophy complex (AHC) refers to the controlled restoration of liver parenchyma following hepatocyte loss. Different types of injury (e.g., toxins, ischemia/reperfusion, biliary obstruction, and resection) elicit the same hypertrophic response in the remnant liver. The AHC involves complex anatomical, histological, cellular, and molecular processes. The signals responsible for these processes are both intrinsic and extrinsic to the liver and involve both physical and molecular events. In patients in whom resection of large liver malignancies would result in an inadequate functional liver remnant, preoperative portal vein embolization may increase the remnant liver sufficiently to permit aggressive resections. Through continued basic science research, the cellular mechanisms of the AHC may be maximized to permit curative resections in patients with potentially prohibitive liver function.
Collapse
Affiliation(s)
- Robin D Kim
- Department of Surgery, Division of General and GI Surgery, University of Florida, Gainesville, Florida
| | | | | | | | | |
Collapse
|
40
|
Kastrati I, Edirisinghe PD, Wijewickrama GT, Thatcher GRJ. Estrogen-induced apoptosis of breast epithelial cells is blocked by NO/cGMP and mediated by extranuclear estrogen receptors. Endocrinology 2010; 151:5602-16. [PMID: 20943808 PMCID: PMC2999489 DOI: 10.1210/en.2010-0378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Estrogen action, via both nuclear and extranuclear estrogen receptors (ERs), induces a variety of cellular signals that are prosurvival or proliferative, whereas nitric oxide (NO) can inhibit apoptosis via caspase S-nitrosylation and via activation of soluble guanylyl cyclase to produce cGMP. The action of 17β-estradiol (E(2)) at ER is known to elicit NO signaling via activation of NO synthase (NOS) in many tissues. The MCF-10A nontumorigenic, mammary epithelial cell line is genetically stable and insensitive to estrogenic proliferation. In this cell line, estrogens or NOS inhibitors alone had no significant effect, whereas in combination, apoptosis was induced rapidly in the absence of serum; the presence of inducible NOS was confirmed by proteomic analysis. The application of pharmacological agents determined that apoptosis was dependent upon NO/cGMP signaling via cyclic GMP (cGMP)-dependent protein kinase and could be replicated by inhibition of the phosphatidylinositol 3 kinase/serine-threonine kinase pathway prior to addition of E(2). Apoptosis was confirmed by nuclear staining and increased caspase-3 activity in E(2) + NOS inhibitor-treated cells. Apoptosis was partially inhibited by a pure ER antagonist and replicated by agonists selective for extranuclear ER. Cells were rescued from E(2)-induced apoptosis after NOS blockade, by NO-donors and cGMP pathway agonists; preincubation with NO donors was required. The NOS and ER status of breast cancer tissues is significant in etiology, prognosis, and therapy. In this study, apoptosis of preneoplastic mammary epithelial cells was triggered by estrogens via a rapid, extranuclear ER-mediated response, after removal of an antiapoptotic NO/cGMP/cGMP-dependent protein kinase signal.
Collapse
Affiliation(s)
- Irida Kastrati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
41
|
Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochem J 2010; 431:411-21. [PMID: 20738255 DOI: 10.1042/bj20091741] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NO and cGMP administered at reperfusion after ischaemia prevent injury to hepatocytes mediated by the MPT (mitochondrial permeability transition). To characterize further the mechanism of protection, the ability of hepatic cytosol in combination with cyclic nucleotides to delay onset of the calcium-induced MPT was evaluated in isolated rat liver mitochondria. Liver cytosol plus cGMP or cAMP dose-dependently inhibited the MPT, required ATP hydrolysis for inhibition and did not inhibit mitochondrial calcium uptake. Specific peptide inhibitors for PKA (protein kinase A), but not PKG (protein kinase G), abolished cytosol-induced inhibition of MPT onset. Activity assays showed a cGMP- and cAMP-stimulated protein kinase activity in liver cytosol that was completely inhibited by PKI, a PKA peptide inhibitor. Size-exclusion chromatography of liver cytosol produced a single peak of cGMP/cAMP-stimulated kinase activity with an estimated protein size of 180-220 kDa. This fraction was PKI-sensitive and delayed onset of the MPT. Incubation of active catalytic PKA subunit directly with mitochondria in the absence of cytosol and cyclic nucleotide also delayed MPT onset, and incubation with purified outer membranes led to phosphorylation of a major 31 kDa band. After ischaemia, administration at reperfusion of membrane-permeant cAMPs and cAMP-mobilizing glucagon prevented reperfusion injury to hepatocytes. In conclusion, PKA in liver cytosol activated by cGMP or cAMP acts directly on mitochondria to delay onset of the MPT and protect hepatocytes from cell death after ischaemia/reperfusion.
Collapse
|
42
|
Tong G, Sun Z, Wei X, Gu C, Kaye AD, Wang Y, Li J, Zhang Q, Guo H, Yu S, Yi D, Pei J. U50,488H postconditioning reduces apoptosis after myocardial ischemia and reperfusion. Life Sci 2010; 88:31-8. [PMID: 21034750 DOI: 10.1016/j.lfs.2010.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 10/01/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
AIMS Evidence has indicated U50,488H, a selective κ-opioid receptor (κ-OR) agonist, administered before ischemia attenuates apoptosis and infarction during ischemia and reperfusion (I/R). However, it remains unclear whether U50,488H postconditioning reduces apoptosis during I/R. This study was designed, therefore, to test the hypothesis that U50,488H administered at the onset of reperfusion inhibits cardiomyocyte apoptosis and to investigate the underlying mechanisms. MAIN METHODS Male Sprague-Dawley rats were subjected to myocardial ischemia and reperfusion(MI/R) and were randomized to receive either vehicle, U50,488H, U50,488H plus Nor-BNI, a selective κ-OR antagonist, U50,488H plus wortmannin, a specific inhibitor of phosphoinositide 3'-kinase (PI3K), or U50,488H plus L-NAME, a nitric oxide synthase inhibitor (NOS inhibitor), immediately prior to reperfusion. In vitro study was performed on cultured neonatal cardiomyocytes subjected to simulated ischemia/reperfusion. KEY FINDINGS Treatment with U50,488H resulted in increases in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation with secondary NO production both in vivo and in vitro and these effect were completely blocked by wortmannin and specific Akt inhibitor(AI). L-NAME treatment had no effect on Akt and eNOS phosphorylation; but, significantly reduced NO production. Moreover, treatment with U50,488H markedly reduced myocardial apoptotic death. Treatment with wortmannin and specific Akt inhibitor abolished the anti-apoptotic effect of U50,488H. L-NAME also significantly attenuated the anti-apoptotic effect of U50,488H. SIGNIFICANCE These results demonstrate that U50,488H administered immediately prior to reperfusion increases Akt phosphorylation through a PI3-kinase-dependent mechanism and reduces postischemic myocardial apoptosis. Phosphorylation of eNOS with secondary NO production contribute significantly to the anti-apoptotic effect of U50,488H postconditioning.
Collapse
Affiliation(s)
- Guang Tong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kon K, Ikejima K, Okumura K, Arai K, Aoyama T, Watanabe S. Diabetic KK-A(y) mice are highly susceptible to oxidative hepatocellular damage induced by acetaminophen. Am J Physiol Gastrointest Liver Physiol 2010; 299:G329-G337. [PMID: 20539006 DOI: 10.1152/ajpgi.00361.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite pathophysiological similarities to alcoholic liver disease, susceptibility to acetaminophen hepatotoxicity in metabolic syndrome-related nonalcoholic steatohepatitis (NASH) has not been well elucidated. In this study, therefore, we investigated acetaminophen-induced liver injury in KK-A(y) mice, an animal model of metabolic syndrome. Twelve-week-old male KK-A(y) and C57Bl/6 mice were injected intraperitoneally with 300 or 600 mg/kg acetaminophen, and euthanized 6 h later. Liver histology was assessed, and hepatic expression of 4-hydroxy-2-nonenal was detected by immunohistochemistry. Levels of reduced glutathione were determined spectrophotometrically. Phosphorylation of c-Jun NH(2)-terminal kinase (JNK) was analyzed by Western blotting. Hepatocytes were isolated from both strains by collagenase perfusion, and cell death and oxidative stress were measured fluorometrically by use of propidium iodide and 5-(and-6)-chloromethyl-2'7'-dichloro-dihydrofluorescein diacetate acetyl ester, respectively. Acetaminophen induced more severe necrosis and apoptosis of hepatocytes in KK-A(y) mice than in C57Bl/6 mice and significantly increased serum alanine aminotransferase levels in KK-A(y) mice. Acetaminophen-induction of 4-hydroxy-2-nonenal in the liver was potentiated, whereas the levels of reduced glutathione in liver were lower in KK-A(y) mice. Acetaminophen-induced phosphorylation of JNK in the liver was also enhanced in KK-A(y) mice. Exposure to 20 microM tert-butyl hydroperoxide did not kill hepatocytes isolated from C57Bl/6 mice but induced cell death and higher oxidative stress in hepatocytes from KK-A(y) mice. These results demonstrated that acetaminophen toxicity is increased in diabetic KK-A(y) mice mainly due to enhanced oxidative stress in hepatocytes, suggesting that metabolic syndrome-related steatohepatitis is an exacerbating factor for acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Kazuyoshi Kon
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Hu M, Wang Z, Rao J, Cao Y, Jiang W, Zhang F, Li X, Wang X. Inhibition of inducible nitric oxide synthase worsens liver damage regardless of lipopolysaccharide treatment in small-for-size liver transplantation. Transpl Immunol 2010; 23:6-11. [PMID: 20206261 DOI: 10.1016/j.trim.2010.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/20/2009] [Accepted: 02/22/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE In small-for-size liver transplantation, portal hypertension aggravates endotoxin from the gut which accelerates the activation of inducible nitric oxide synthase (iNOS). However, there is little knowledge as to the effects of iNOS inhibitors on small-for-size graft damage. Our study was designed to investigate the role of an iNOS inhibitor both with and without lipopolysaccharide (LPS) treatment in ischemia-reperfusion injury of small-for-size liver transplantation. METHODS Subjecting Sprague-Dawley rats to small-for-size grafts liver transplantation, we investigated the time course of changes in hepatic expression of iNOS and endothelial nitric oxide synthase (eNOS). Meantime, we also investigated the effects of iNOS inhibitor, both with and without LPS treatment, at 6h after reperfusion. RESULTS While iNOS mRNA expression reached a peak at 3h, the highest protein level occurred at 6h after reperfusion. Aminoguanidine (AG) significantly inhibited mRNA and protein expressions of iNOS, but not that of eNOS. However, LPS accelerated activation of iNOS, but suppressed the expression of eNOS. Meanwhile, compared with the untreated group, those treated with AG or LPS experienced worsened liver function and tissue damage, promoting neutrophil infiltration in the liver tissue. The difference between the LPS group and the LPS+AG group was found to be significant. In addition, AG and LPS treatments up-regulated the protein expression of ICAM-1 and NF-kappaB p65. CONCLUSION In a small-for-size model of rat liver transplantation, regardless of LPS treatment, the inhibitor of iNOS, AG, attenuated iNOS expression, but worsened liver function and tissue damage. The subsequent increased neutrophil infiltration in liver tissue may be associated with up-regulation of ICAM-1 and NF-kappaB expressions.
Collapse
Affiliation(s)
- MingZheng Hu
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lin S, Liu K, Wu W, Chen C, Wang Z, Zhang X. Study on pretreatment of FPS-1 in rats with hepatic ischemia-reperfusion injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 37:323-37. [PMID: 19507275 DOI: 10.1142/s0192415x09006874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to determine whether FPS-1, the water-soluble polysaccharide isolated from fuzi, protected against hepatic damage in hepatic ischemia-reperfusion injury in rats, and its mechanism. SD rats were subjected to 60 min of hepatic ischemia, followed by 120 min reperfusion. FPS-1 (160 mg/kg/day) was administered orally for 5 days before ischemia-reperfusion injury in treatment group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin (ALB) were assayed to evaluate liver functions. Liver samples were taken for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), that catalase (CAT) in liver. Na(+)-K(+)-ATPase and Ca(2+)-ATPase in mitochondria were measured with colorimetry method. Morphological changes were also investigated by using both light microscopy and electron microscopy (EM). In addition, apoptosis and oncosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis. Serum AST and ALT levels were elevated in groups exposed to ischemia-reperfusion (p < 0.05). Ischemia-reperfusion caused a marked increase in MDA level, and significant decreases in hepatic SOD and CAT (p < 0.05). Na(+)-K(+)-ATPase and Ca(2+)-ATPase were reduced in ischemia-reperfusion groups compared to the sham group (p < 0.05). Oncosis and apoptosis were also observed in ischemia-reperfusion groups. Pretreatment with FPS-1 reversed all these biochemical parameters as well as histological alterations, evidently by increased SOD, CAT, reduced MDA and histological scores compared to the model group (p < 0.05). FPS-1 could attenuate the necrotic states by the detection of immunofluorescent flow cytometry analysis. Pretreatment with FPS-1 reduced hepatic ischemia-reperfusion injury through its potent antioxidative effects and attenuation of necrotic states.
Collapse
Affiliation(s)
- Shiqing Lin
- Department of Anesthesiology, The First Affiliated Hospital of Zhongshan University, Guangzhou 510800, China
| | | | | | | | | | | |
Collapse
|
46
|
He S, Rehman H, Wright GL, Zhong Z. Inhibition of inducible nitric oxide synthase prevents mitochondrial damage and improves survival of steatotic partial liver grafts. Transplantation 2010; 89:291-8. [PMID: 20145519 PMCID: PMC2825166 DOI: 10.1097/tp.0b013e3181c99185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Steatotic liver grafts are excluded for partial liver transplantation because of increased risk of primary nonfunction. Mechanisms underlying the failure of fatty partial liver grafts (FPG) remain unknown. This study investigated whether inducible nitric oxide synthase (iNOS) plays a role in failure of FPG. METHODS Fatty livers were induced by feeding rats a high-fat high-fructose diet for 2 weeks. Hepatic triglyceride was approximately 9-fold higher in rats fed the high-fat high-fructose diet than those fed a low-fat low-fructose diet. Lean and fatty liver explants were reduced in size ex vivo to approximately one third, stored in the University of Wisconsin cold storage solution for 2 hr, and implanted. RESULTS Posttransplantational hepatic iNOS expression and reactive nitrogen species (RNS) formation (nitrite and nitrate levels and 3-nitrotyrosine adducts) increased more profoundly in FPG than in lean partial grafts (LPG). Serum alanine aminotransferase and bilirubin were 2- and 5.5-fold higher after transplantation of FPG than LPG. 5-Bromo-2'-deoxyuridine incorporation was 25% in LPG but only 5% in FPG, and graft weight increased by 64% in LPG while remaining unchanged in FPG. All rats that received FPG died, whereas all those receiving LPG survived. N-(1-naphtyl)ethylendiamine dihydrochloride (5 microM), a specific iNOS inhibitor, largely blunted the production of RNS, prevented the increase of alanine aminotransferase and bilirubin, restored liver regeneration, and improved survival of FPG. Mitochondrial cytochrome c oxidase-IV, ATP synthase-beta, and NADH dehydrogenase-3 decreased markedly in FPG, and these effects were blocked by N-(1-naphtyl)ethylendiamine dihydrochloride. CONCLUSION Thus, hepatic steatosis causes failure of partial liver grafts, most likely by increasing RNS that leads to mitochondrial damage and dysfunction.
Collapse
Affiliation(s)
- Songqing He
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Hasibur Rehman
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Gary L. Wright
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| | - Zhi Zhong
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
47
|
Chiu PY, Luk KF, Leung HY, Ng KM, Ko KM. Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and associated changes in the Ca(2+)-induced mitochondrial permeability transition and mitochondrial membrane potential in AML12 hepatocytes. Phytother Res 2010; 23:1592-602. [PMID: 19370538 DOI: 10.1002/ptr.2826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of the schisandrin B stereoisomers, (+/-)gamma-schisandrin [(+/-)gamma-Sch] and (-)schisandrin B [(-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in AML12 hepatocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transitions (MPTs) and mitochondrial membrane potentials (Deltapsi(m) values) were also examined in (+/-)gamma-Sch- and (-)Sch B-treated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch/(-)Sch B pretreatments (2.5-5.0 microm) protected against hypoxia/reoxygenation-induced apoptosis in AML12 cells in a concentration-dependent manner, with the (-)Sch B effect being more potent. Drug antiapoptotic effects were further evidenced by suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase by (-)Sch B pretreatment. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening, and Deltapsi(m), in AML12 hepatocytes, cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B pretreatment against hypoxia/reoxygenation-induced apoptosis was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, compared with the drug-free control. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in AML12 hepatocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
48
|
Reduced ischemia/reperfusion injury via glutathione-initiated nitric oxide-releasing dendrimers. Nitric Oxide 2009; 22:30-6. [PMID: 19914388 DOI: 10.1016/j.niox.2009.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 10/30/2009] [Accepted: 11/07/2009] [Indexed: 11/29/2022]
Abstract
We report the therapeutic potential of S-nitroso-N-acetylpenicillamine-derivatized generation-4 polyamidoamine dendrimers (G4-SNAP) for reducing ischemia/reperfusion (I/R) injury in an isolated, perfused rat heart. The use of this dendrimer scaffold to deliver the nitrosothiol therapeutic did not inhibit NO donor activity as the required dose of G4-SNAP to minimize I/R injury (31nM corresponding to 2microM SNAP) was consistent with the optimum concentration of small molecule SNAP alone. An exploration of G4-SNAP NO release kinetics in the presence of physiologically relevant concentrations of glutathione (GSH) indicated enhanced NO release (t[NO]=1.28microM NO/mg) at 500microM GSH. Reperfusion experiments conducted with 500microM GSH further lowered the optimal therapeutic G4-SNAP dose to 230pM (i.e., 15nM SNAP). The unique combination of G4-SNAP dendrimer and glutathione trigger represents a novel strategy with possible clinical relevance toward salvaging ischemic tissue.
Collapse
|
49
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Pharmacological Preconditioning Using Intraportal Infusion of L-Arginine Protects Against Hepatic Ischemia Reperfusion Injury. J Surg Res 2009; 155:244-53. [DOI: 10.1016/j.jss.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/06/2008] [Accepted: 07/02/2008] [Indexed: 02/08/2023]
|
50
|
Garlid KD, Costa ADT, Quinlan CL, Pierre SV, Dos Santos P. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 2009; 46:858-66. [PMID: 19118560 PMCID: PMC2683183 DOI: 10.1016/j.yjmcc.2008.11.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/07/2008] [Accepted: 11/26/2008] [Indexed: 01/05/2023]
Abstract
Mitochondria are central players in the pathophysiology of ischemia-reperfusion. Activation of plasma membrane G-coupled receptors or the Na,K-ATPase triggers cytosolic signaling pathways that result in cardioprotection. Our working hypothesis is that the occupied receptors migrate to caveolae, where signaling enzymes are scaffolded into signalosomes that bud off the plasma membrane and migrate to mitochondria. The signalosome-mitochondria interaction then initiates intramitochondrial signaling by opening the mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)). MitoK(ATP) opening causes an increase in ROS production, which activates mitochondrial protein kinase C epsilon (PKCvarepsilon), which inhibits the mitochondrial permeability transition (MPT), thus decreasing cell death. We review the experimental findings that bear on these hypotheses and other modes of protection involving mitochondria.
Collapse
Affiliation(s)
- Keith D Garlid
- Department of Biology, Portland State University, Portland, OR 97201-0751, USA.
| | | | | | | | | |
Collapse
|