1
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
2
|
Patel P, Kaushik N, Acharya TR, Choi EH, Kaushik NK. Surface air gas discharge plasma: An ecofriendly virus inactivation approach to enhance CPRRs mediated antiviral genes expression against airborne bio-contaminant (human Coronavirus-229E). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123700. [PMID: 38452839 DOI: 10.1016/j.envpol.2024.123700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Emerging bio-contaminants (airborne viruses) exploits and manipulate host (human) metabolism to produce new viral particles, evading the host's immune defences and leading to infections. Non-thermal plasma, operating at atmospheric pressure and ambient temperature, is explored for virus inactivation, generating RONS that interact and denatures viral proteins. However, various factors affecting virus survival influence the efficacy of non-thermal plasma. Glucose analogue 2-DG, a metabolic modifier used in this study, disrupts the glycolysis pathway viruses rely on, creating an unfavourable environment for replication. Here, airborne HCoV-229E bio-contaminant was treated with plasma for inactivation, and the presence of RONS was analysed. Metabolically altered lung cells were subsequently exposed to the treated airborne viruses. Cytopathic effect, spike protein, and cell death were evaluated via flow cytometry and confocal microscopy, and CPRRs mediated antiviral gene expression was evaluated using PCR. Gas plasma-treated viruses led to reduced virus proliferation in unaltered lung cells, although few virus particles survived the exposure, as confirmed by biological assessment (cytopathic effects and live/dead staining). A combination approach of gas plasma-treated viruses and altered lung cells displayed drastic virus reduction compared to the control group, established through confocal microscopy and flow cytometry. Furthermore, altered lung cell enhances gene transcription responsible for innate immunity when exposed to the gas plasma-treated virus, thereby impeding airborne virus propagation. This study demonstrates the significance of a surface air gas plasma and metabolic alteration approach in enhancing genes targeted towards antiviral innate immunity and tackling outbreaks of emerging bio-contaminants of concerns (airborne viruses).
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
3
|
Lee J, Ou JHJ. HCV-induced autophagy and innate immunity. Front Immunol 2024; 15:1305157. [PMID: 38370419 PMCID: PMC10874285 DOI: 10.3389/fimmu.2024.1305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
The interplay between autophagy and host innate immunity has been of great interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-recognition receptors (PRRs) that recognize pathogens-associated molecular patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged organelles and protein aggregates to lysosomes for degradation and recycling. Autophagy is also an innate immune response of cells to trap pathogens in membrane vesicles for removal. However, HCV controls the autophagic pathway and uses autophagic membranes to enhance its replication. Mitophagy, a selective autophagy targeting mitochondria, alters the dynamics and metabolism of mitochondria, which play important roles in host antiviral responses. HCV also alters mitochondrial dynamics and promotes mitophagy to prevent premature cell death and attenuate the interferon (IFN) response. In addition, the dysregulation of the inflammasomal response by HCV leads to IFN resistance and immune tolerance. These immune evasion properties of HCV allow HCV to successfully replicate and persist in its host cells. In this article, we discuss HCV-induced autophagy/mitophagy and its associated immunological responses and provide a review of our current understanding of how these processes are regulated in HCV-infected cells.
Collapse
Affiliation(s)
| | - J.-H. James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
4
|
Mondelli MU, Ottolini S, Oliviero B, Mantovani S, Cerino A, Mele D, Varchetta S. Hepatitis C Virus and the Host: A Mutual Endurance Leaving Indelible Scars in the Host's Immunity. Int J Mol Sci 2023; 25:268. [PMID: 38203436 PMCID: PMC10779088 DOI: 10.3390/ijms25010268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis C virus (HCV) has spread worldwide, and it is responsible for potentially severe chronic liver disease and primary liver cancer. Chronic infection remains for life if not spontaneously eliminated and viral persistence profoundly impairs the efficiency of the host's immunity. Attempts have been made to develop an effective vaccine, but efficacy trials have met with failure. The availability of highly efficacious direct-acting antivirals (DAA) has created hope for the progressive elimination of chronic HCV infections; however, this approach requires a monumental global effort. HCV elicits a prompt innate immune response in the host, characterized by a robust production of interferon-α (IFN-α), although interference in IFN-α signaling by HCV proteins may curb this effect. The late appearance of largely ineffective neutralizing antibodies and the progressive exhaustion of T cells, particularly CD8 T cells, result in the inability to eradicate the virus in most infected patients. Moreover, an HCV cure resulting from DAA treatment does not completely restore the normal immunologic homeostasis. Here, we discuss the main immunological features of immune responses to HCV and the epigenetic scars that chronic viral persistence leaves behind.
Collapse
Affiliation(s)
- Mario U. Mondelli
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Ottolini
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Barbara Oliviero
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Stefania Mantovani
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Antonella Cerino
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Dalila Mele
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| | - Stefania Varchetta
- Division of Clinical Immunology and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (B.O.); (S.M.); (A.C.); (D.M.); (S.V.)
| |
Collapse
|
5
|
Raheja H, George B, Tripathi SK, Saha S, Maiti TK, Das S. Hepatitis C virus non-structural proteins modulate cellular kinases for increased cytoplasmic abundance of host factor HuR and facilitate viral replication. PLoS Pathog 2023; 19:e1011552. [PMID: 37540723 PMCID: PMC10431626 DOI: 10.1371/journal.ppat.1011552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
Host protein HuR translocation from nucleus to cytoplasm following infection is crucial for the life cycle of several RNA viruses including hepatitis C virus (HCV), a major causative agent of hepatocellular carcinoma. HuR assists the assembly of replication-complex on the viral-3'UTR, and its depletion hampers viral replication. Although cytoplasmic HuR is crucial for HCV replication, little is known about how the virus orchestrates the mobilization of HuR into the cytoplasm from the nucleus. We show that two viral proteins, NS3 and NS5A, act co-ordinately to alter the equilibrium of the nucleo-cytoplasmic movement of HuR. NS3 activates protein kinase C (PKC)-δ, which in-turn phosphorylates HuR on S318 residue, triggering its export to the cytoplasm. NS5A inactivates AMP-activated kinase (AMPK) resulting in diminished nuclear import of HuR through blockade of AMPK-mediated phosphorylation and acetylation of importin-α1. Cytoplasmic retention or entry of HuR can be reversed by an AMPK activator or a PKC-δ inhibitor. Our findings suggest that efforts should be made to develop inhibitors of PKC-δ and activators of AMPK, either separately or in combination, to inhibit HCV infection.
Collapse
Affiliation(s)
- Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Abdullah MAF, McWhirter SM, Suo Z. Modulation of Kinase Activities In Vitro by Hepatitis C Virus Protease NS3/NS4A Mediated-Cleavage of Key Immune Modulator Kinases. Cells 2023; 12:406. [PMID: 36766748 PMCID: PMC9913602 DOI: 10.3390/cells12030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C Virus NS3/NS4A, a serine protease complex, has been found to interact with many host proteins and cause various adverse effects on cellular function and immune response. For example, the cleavage of important immune factors by NS3/NS4A has been suggested as a mechanism for the hepatitis C virus to evade innate immunity. The spectrum of susceptible substrates for NS3/NS4A cleavage certainly includes important immune modulator kinases such as IKKα, IKKβ, IKKε, and TBK1, as demonstrated in this paper. We show that the kinase activities of these four host kinases were transformed in unexpected ways by NS3/NS4A. Treatment with NS3/NS4A caused a significant reduction in the kinase activities of both IKKα and IKKβ, suggesting that HCV might use its NS3/NS4A protease activity to deactivate the NF-κB-associated innate immune responses. In contrast, the kinase activities of both IKKε and TBK1 were enhanced after NS3/NS4A treatment, and more strikingly, the enhancement was more than 10-fold within 20 min of treatment. Our mass spectroscopic results suggested that the cleavage after Cys89 in the kinase domain of IKKε by NS3/NS4A led to their higher kinase activities, and three potential mechanisms were discussed. The observed kinase activity enhancement might facilitate the activation of both IKKε- and TBK1-dependent cellular antiviral pathways, likely contributing to spontaneous clearance of the virus and observed acute HCV infection. After longer than 20 min cleavage, both IKKε- and TBK1 gradually lost their kinase activities and the relevant antiviral pathways were expected to be inactivated, facilitating the establishment of chronic HCV infection.
Collapse
Affiliation(s)
| | - Sarah M. McWhirter
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zucai Suo
- Department of Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
8
|
Abstract
The RIG-I-like receptor signaling pathway is crucial for producing type I interferon (IFN-I) against RNA viruses. The present study observed that viral infection increased annexin-A1 (ANXA1) expression, and ANXA1 then promoted RNA virus-induced IFN-I production. Compared to ANXA1 wild-type cells, ANXA1−/− knockout cells showed IFN-β production decreasing after viral stimulation. RNA virus stimulation induced ANXA1 to regulate IFN-β production through the TBK1-IRF3 axis but not through the NF-κB axis. ANXA1 also interacted with JAK1 and STAT1 to increase signal transduction induced by IFN-β or IFN-γ. We assessed the effect of ANXA1 on the replication of foot-and-mouth disease virus (FMDV) and found that ANXA1 inhibits FMDV replication dependent on IFN-I production. FMDV 3A plays critical roles in viral replication and host range. The results showed that FMDV 3A interacts with ANXA1 to inhibit its ability to promote IFN-β production. We also demonstrated that FMDV 3A inhibits the formation of ANXA1-TBK1 complex. These results indicate that ANXA1 positively regulates RNA virus-stimulated IFN-β production and FMDV 3A antagonizes ANXA1-promoted IFN-β production to modulate viral replication. IMPORTANCE FMDV is a pathogen that causes one of the world’s most destructive and highly contagious animal diseases. The FMDV 3A protein plays a critical role in viral replication and host range. Although 3A is one of the viral proteins that influences FMDV virulence, its underlying mechanisms remain unclear. ANXA1 is involved in immune activation against pathogens. The present study demonstrated that FMDV increases ANXA1 expression, while ANXA1 inhibits FMDV replication. The results also showed that ANXA1 promotes RNA virus-induced IFN-I production through the IRF3 axis at VISA and TBK1 levels. ANXA1 was also found to interact with JAK1 and STAT1 to strengthen signal transduction induced by IFN-β and IFN-γ. 3A interacted with ANXA1 to inhibit ANXA1-TBK1 complex formation, thereby antagonizing the inhibitory effect of ANXA1 on FMDV replication. This study helps to elucidate the mechanism underlying the effect of the 3A protein on FMDV replication.
Collapse
|
9
|
Lee J, Ou JHJ. Hepatitis C virus and intracellular antiviral response. Curr Opin Virol 2022; 52:244-249. [PMID: 34973476 PMCID: PMC8844188 DOI: 10.1016/j.coviro.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
To establish successful infection in cells, it is essential for hepatitis C virus (HCV) to overcome intracellular antiviral responses. The host cell mechanism that fights against the virus culminates in the production of interferons (IFNs), IFN-stimulated genes (ISGs) and pro-inflammatory cytokines as well as the induction of autophagy and apoptosis. HCV has developed multiple means to disrupt the host signaling pathways that lead to these antiviral responses. HCV impedes signaling pathways initiated by pattern-recognition receptors (PRRs), usurps and uses the antiviral autophagic response to enhance its replication, alters mitochondrial dynamics and metabolism to prevent cell death and attenuate IFN response, and dysregulates inflammasomal response to cause IFN resistance and immune tolerance. These effects of HCV allow HCV to successful replicate and persist in its host cells.
Collapse
|
10
|
Xu C, Chen J, Chen X. Host Innate Immunity Against Hepatitis Viruses and Viral Immune Evasion. Front Microbiol 2021; 12:740464. [PMID: 34803956 PMCID: PMC8598044 DOI: 10.3389/fmicb.2021.740464] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis viruses are primary causative agents of hepatitis and represent a major source of public health problems in the world. The host innate immune system forms the first line of defense against hepatitis viruses. Hepatitis viruses are sensed by specific pathogen recognition receptors (PRRs) that subsequently trigger the innate immune response and interferon (IFN) production. However, hepatitis viruses evade host immune surveillance via multiple strategies, which help compromise the innate immune response and create a favorable environment for viral replication. Therefore, this article reviews published findings regarding host innate immune sensing and response against hepatitis viruses. Furthermore, we also focus on how hepatitis viruses abrogate the antiviral effects of the host innate immune system.
Collapse
Affiliation(s)
- Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284:119941. [PMID: 34508761 DOI: 10.1016/j.lfs.2021.119941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Chronic liver diseases (CLD) are among the major cause of mortality and morbidity worldwide. Despite current achievements in the area of hepatitis virus, chronic alcohol abuse and high-fat diet are still fueling an epidemic of severe liver disease, for which, an effective therapy has yet not been discovered. In particular, the therapeutic regimens that could prevent the progression of fibrosis and, in turn, aid cirrhotic liver to develop a robust regenerative capability are intensively needed. To this context, a better understanding of the signaling pathways regulating hepatic disease development may be of critical value. In general, the liver responds to various insults with an orchestrated healing process involving variety of signaling pathways. One such pathway is the TLR2 signaling pathway, which essentially regulates adult liver pathogenesis and thus has emerged as an attractive target to treat liver disease. TLR2 is expressed by different liver cells, including Kupffer cells (KCs), hepatocytes, and hepatic stellate cells (HSCs). From a pathologic perspective, the crosstalk between antigens and TLR2 may preferentially trigger a distinctive set of signaling mechanisms in these liver cells and, thereby, induce the production of inflammatory and fibrogenic cytokines that can initiate and prolong liver inflammation, ultimately leading to fibrosis. In this review, we summarize the currently available evidence regarding the role of TLR2 signaling in hepatic disease progression. We first elaborate its pathological involvement in liver-disease states, such as inflammation, fibrosis, and cirrhosis. We then discuss how therapeutic targeting of this pathway may help to alleviate its disease-related functioning.
Collapse
Affiliation(s)
- Anteneh Getachew
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Muzammal Hussain
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinping Huang
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Institute of Public Health, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China.
| |
Collapse
|
12
|
Li S, Cao L, Zhang Z, Kuang M, Chen L, Zhao Y, Luo Y, Yin Z, You F. Cytosolic and nuclear recognition of virus and viral evasion. MOLECULAR BIOMEDICINE 2021; 2:30. [PMID: 35006471 PMCID: PMC8607372 DOI: 10.1186/s43556-021-00046-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
The innate immune system is the first line of host defense, which responds rapidly to viral infection. Innate recognition of viruses is mediated by a set of pattern recognition receptors (PRRs) that sense viral genomic nucleic acids and/or replication intermediates. PRRs are mainly localized either to the endosomes, the plasma membrane or the cytoplasm. Recent evidence suggested that several proteins located in the nucleus could also act as viral sensors. In turn, these important elements are becoming the target for most viruses to evade host immune surveillance. In this review, we focus on the recent progress in the study of viral recognition and evasion.
Collapse
Affiliation(s)
- Siji Li
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Kuang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luoying Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yingchi Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yujie Luo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
13
|
Guedes de Sá KS, Amoras EDSG, Conde SRSDS, Queiroz MAF, Cayres-Vallinoto IMV, Ishak R, Vallinoto ACR. Intrahepatic TLR3 and IFNL3 Expressions Are Associated with Stages of Fibrosis in Chronic Hepatitis C. Viruses 2021; 13:1103. [PMID: 34207750 PMCID: PMC8230343 DOI: 10.3390/v13061103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/21/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
An inefficient immune response against the hepatitis C virus (HCV), combined with viral evasion mechanisms, is responsible for the chronicity of infection. The need to evaluate the innate mechanisms of the immune response, such as TLR3 and IFN-λ3, and their relationship with the virus-host interaction is important for understanding the pathogenesis of chronic hepatitis C. The present study aimed to investigate the gene expressions of TRL3 and IFNL3 in liver tissue, seeking to evaluate whether these could be potential biomarkers of HCV infection. A total of 23 liver biopsy samples were collected from patients with chronic HCV, and 8 biopsies were collected from healthy control patients. RNA extraction, reverse transcription and qPCR were performed to quantify the relative gene expressions of TLR3 and IFNL3. Data on the viral load; AST, ALT, GGT and AFP levels; and the viral genotype were collected from the patients' medical records. The intrahepatic expression of TLR3 (p = 0.0326) was higher in chronic HCV carriers than in the control group, and the expression of IFNL3 (p = 0.0037) was lower in chronic HCV carriers than in the healthy control group. The expression levels of TLR3 (p = 0.0030) and IFNL3 (p = 0.0036) were higher in the early stages of fibrosis and of necroinflammatory activity in the liver; in contrast, TLR3 and IFNL3 expressions were lower in the more advanced stages of fibrosis and inflammation. There was no correlation between the gene expression and the serum viral load. Regarding the initial METAVIR scale scores, liver transaminase levels were lower in patients with advanced fibrosis when correlated with TLR3 and IFNL3 gene expressions. The results suggest that in the early stages of the development of hepatic fibrosis, TLR3 and IFN-λ3 play important roles in the antiviral response and in the modulation of the tolerogenic liver environment because there is a decrease in the intrahepatic expressions of TLR3 and IFNL3 in the advanced stages of fibrosis, probably due to viral evasion mechanisms.
Collapse
Affiliation(s)
- Keyla Santos Guedes de Sá
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil; (K.S.G.d.S.); (E.d.S.G.A.); (M.A.F.Q.); (I.M.V.C.-V.); (R.I.)
- Graduate Program in Biology of Infectious and Parasitic Agents—PPG-BAIP, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil
| | - Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil; (K.S.G.d.S.); (E.d.S.G.A.); (M.A.F.Q.); (I.M.V.C.-V.); (R.I.)
| | - Simone Regina Souza da Silva Conde
- João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, PA, Brazil;
- School of Medicine, Institute of Health Sciences, Federal University of Pará, Umarizal, Belém 66.075-110, PA, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil; (K.S.G.d.S.); (E.d.S.G.A.); (M.A.F.Q.); (I.M.V.C.-V.); (R.I.)
| | - Izaura Maria Vieira Cayres-Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil; (K.S.G.d.S.); (E.d.S.G.A.); (M.A.F.Q.); (I.M.V.C.-V.); (R.I.)
| | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil; (K.S.G.d.S.); (E.d.S.G.A.); (M.A.F.Q.); (I.M.V.C.-V.); (R.I.)
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66.075-110, PA, Brazil; (K.S.G.d.S.); (E.d.S.G.A.); (M.A.F.Q.); (I.M.V.C.-V.); (R.I.)
| |
Collapse
|
14
|
Abdelwahab SF, Hamdy S, Osman AM, Zakaria ZA, Galal I, Sobhy M, Hashem M, Allam WR, Abdel‐Samiee M, Rewisha E, Waked I. Association of the polymorphism of the Toll-like receptor (TLR)-3 and TLR-9 genes with hepatitis C virus-specific cell-mediated immunity outcomes among Egyptian health-care workers. Clin Exp Immunol 2021; 203:3-12. [PMID: 32939755 PMCID: PMC7744502 DOI: 10.1111/cei.13514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Variations in the immune response could explain resistance to hepatitis C virus (HCV) infection. Toll-like receptor gene (TLR)-3 is an innate detector of dsRNA viruses, and the TLR-9 gene recognizes bacterial and viral unmethylated cytosine-phosphate-guanosine (CpG) motifs. We previously reported that the TLR-3.rs3775290 CC genotype was associated with HCV chronicity and that the TLR-9 gene played no major role in this infection. This study identified the role of TLR-3.rs3775290 (c.1377C/T), TLR-9.rs5743836 (-1237T→C) and TLR-9.rs352140 (G2848A) gene polymorphisms in predicting the outcome of HCV-specific cell-mediated immunity (CMI) among Egyptian health-care workers (HCWs). We enrolled 265 HCWs in this study and divided them into four groups. Group 1: 140 seronegative-aviraemic HCWs; group 2: 20 seronegative-viraemic HCWs; group 3: 35 subjects with spontaneously resolved HCV infection; and group 4: 70 chronic HCV HCWs (patients). All subjects were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis for the TLR-3.rs3775290, TLR-9.rs5743836 and TLR-9.rs352140 single nucleotide polymorphisms (SNPs). We also quantified HCV-specific CMI in the four groups using an interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) assay in response to nine HCV genotype 4a, overlapping 15mer peptide pools covering the whole viral genome. No statistically significant difference was found between CMI-responding subjects with different HCV states and TLR-3.rs3775290 or TLR-9.rs352140 genotypes. However, there was a significant relationship between the outcome of the HCV-specific CMI and the TLR-9.rs5743836 genotype among the responding subjects (P = 0·005) and the chronic HCV patients (P = 0·044). In conclusion, TLR-9.rs5743836 SNP, but not TLR-3.rs3775290 or TLR-9.rs352140 genotypes, could predict the outcome of HCV-specific CMI responses among Egyptians infected with genotype-4.
Collapse
Affiliation(s)
- S. F. Abdelwahab
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Division of MicrobiologyDepartment of Pharmaceutics and Industrial PharmacyTaif College of PharmacyAl‐Haweiah, TaifSaudi Arabia
- Department of Microbiology and ImmunologyFaculty of MedicineMinia UniversityMiniaEgypt
| | - S. Hamdy
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Department of ZoologyFaculty of ScienceCairo UniversityGizaEgypt
| | - A. M. Osman
- Department of ZoologyFaculty of ScienceCairo UniversityGizaEgypt
| | - Z. A. Zakaria
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Biomedical Research LaboratoryFaculty of PharmacyHeliopolis University for Sustainable DevelopmentCairoEgypt
| | - I. Galal
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
| | - M. Sobhy
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
| | - M. Hashem
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Department of Epidemiology and Public HealthUniversity of Maryland School of MedicineBaltimoreMDUSA
| | - W. R. Allam
- The Egyptian Holding Company for Biological Products and Vaccines (VACSERA)GizaEgypt
- Centre for GenomicsUniversity of Science and TechnologyZewail City of Science and TechnologyGizaEgypt
| | - M. Abdel‐Samiee
- Department of Hepatology and GastroenterologyNational Liver InstituteMenoufia UniversityMenoufiaEgypt
| | - E. Rewisha
- Department of Hepatology and GastroenterologyNational Liver InstituteMenoufia UniversityMenoufiaEgypt
| | - I. Waked
- Department of Hepatology and GastroenterologyNational Liver InstituteMenoufia UniversityMenoufiaEgypt
| |
Collapse
|
15
|
Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020; 24:1065-1078. [PMID: 32962465 PMCID: PMC7644630 DOI: 10.1080/14728222.2020.1826929] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION TANK-binding kinase 1 (TBK1) is a Ser/Thr kinase with a central role in coordinating the cellular response to invading pathogens and regulating key inflammatory signaling cascades. While intact TBK1 signaling is required for successful anti-viral signaling, dysregulated TBK1 signaling has been linked to a variety of pathophysiologic conditions, including cancer. Several lines of evidence support a role for TBK1 in cancer pathogenesis, but the specific roles and regulation of TBK1 remain incompletely understood. A key challenge is the diversity of cellular processes that are regulated by TBK1, including inflammation, cell cycle, autophagy, energy homeostasis, and cell death. Nevertheless, evidence from pre-clinical cancer models suggests that targeting TBK1 may be an effective strategy for anti-cancer therapy in specific settings. AREAS COVERED This review provides an overview of the roles and regulation of TBK1 with a focus on cancer pathogenesis and drug targeting of TBK1 as an anti-cancer strategy. Relevant literature was derived from a PubMed search encompassing studies from 1999 to 2020. EXPERT OPINION TBK1 is emerging as a potential target for anti-cancer therapy. Inhibition of TBK1 alone may be insufficient to restrain the growth of most cancers; hence, combination strategies will likely be necessary. Improved understanding of tumor-intrinsic and tumor-extrinsic TBK1 signaling will inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Or-yam Revach
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Shuming Liu
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Russell W. Jenkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Lu LF, Li ZC, Zhang C, Zhou XY, Zhou Y, Jiang JY, Chen DD, Li S, Zhang YA. Grass Carp Reovirus (GCRV) Giving Its All to Suppress IFN Production by Countering MAVS Signaling Transduction. Front Immunol 2020; 11:545302. [PMID: 33193312 PMCID: PMC7649419 DOI: 10.3389/fimmu.2020.545302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Viruses typically target host RIG-I-like receptors (RLRs), a group of key factors involved in interferon (IFN) production, to enhance viral infection. To date, though immune evasion methods to contradict IFN production have been characterized for a series of terrestrial viruses, the strategies employed by fish viruses remain unclear. Here, we report that all grass carp reovirus (GCRV) proteins encoded by segments S1 to S11 suppress mitochondrial antiviral signaling protein (MAVS)-mediated IFN expression. First, the GCRV viral proteins blunted the MAVS-induced expression of IFN, and impair MAVS antiviral capacity significantly. Interestingly, subsequent co-immunoprecipitation experiments demonstrated that all GCRV viral proteins interacted with several RLR cascades, especially with TANK-binding kinase 1 (TBK1) which was the downstream factor of MAVS. To further illustrate the mechanisms of these interactions between GCRV viral proteins and host RLRs, two of the viral proteins, NS79 (S4) and VP3 (S3), were selected as representative proteins for two distinguished mechanisms. The obtained data demonstrated that NS79 was phosphorylated by gcTBK1, leading to the reduction of host substrate gcIRF3/7 phosphorylation. On the other hand, VP3 degraded gcMAVS and the degradation was significantly reversed by 3-MA. The biological effects of both NS79 and VP3 were consistently found to be related to the suppression of IFN expression and the promotion of viral evasion. Our findings shed light on the special evasion mechanism utilized by fish virus through IFN regulation, which might differ between fish and mammals.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Xia H, Cao Z, Xie X, Zhang X, Chen JYC, Wang H, Menachery VD, Rajsbaum R, Shi PY. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep 2020; 33:108234. [PMID: 32979938 PMCID: PMC7501843 DOI: 10.1016/j.celrep.2020.108234] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication and host immune response determine coronavirus disease 2019 (COVID-19), but studies evaluating viral evasion of immune response are lacking. Here, we use unbiased screening to identify SARS-CoV-2 proteins that antagonize type I interferon (IFN-I) response. We found three proteins that antagonize IFN-I production via distinct mechanisms: nonstructural protein 6 (nsp6) binds TANK binding kinase 1 (TBK1) to suppress interferon regulatory factor 3 (IRF3) phosphorylation, nsp13 binds and blocks TBK1 phosphorylation, and open reading frame 6 (ORF6) binds importin Karyopherin α 2 (KPNA2) to inhibit IRF3 nuclear translocation. We identify two sets of viral proteins that antagonize IFN-I signaling through blocking signal transducer and activator of transcription 1 (STAT1)/STAT2 phosphorylation or nuclear translocation. Remarkably, SARS-CoV-2 nsp1 and nsp6 suppress IFN-I signaling more efficiently than SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Thus, when treated with IFN-I, a SARS-CoV-2 replicon replicates to a higher level than chimeric replicons containing nsp1 or nsp6 from SARS-CoV or MERS-CoV. Altogether, the study provides insights on SARS-CoV-2 evasion of IFN-I response and its potential impact on viral transmission and pathogenesis.
Collapse
Affiliation(s)
- Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Zengguo Cao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John Yun-Chung Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
18
|
Ferreira AR, Ramos B, Nunes A, Ribeiro D. Hepatitis C Virus: Evading the Intracellular Innate Immunity. J Clin Med 2020; 9:jcm9030790. [PMID: 32183176 PMCID: PMC7141330 DOI: 10.3390/jcm9030790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Hepatitis C virus (HCV) infections constitute a major public health problem and are the main cause of chronic hepatitis and liver disease worldwide. The existing drugs, while effective, are expensive and associated with undesirable secondary effects. There is, hence, an urgent need to develop novel therapeutics, as well as an effective vaccine to prevent HCV infection. Understanding the interplay between HCV and the host cells will certainly contribute to better comprehend disease progression and may unravel possible new cellular targets for the development of novel antiviral therapeutics. Here, we review and discuss the interplay between HCV and the host cell innate immunity. We focus on the different cellular pathways that respond to, and counteract, HCV infection and highlight the evasion strategies developed by the virus to escape this intracellular response.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247-014; Fax: +351-234-372-587
| |
Collapse
|
19
|
Lv H, Dong W, Cao Z, Lin J, Ouyang Y, Guo K, Li C, Zhang Y. Classical swine fever virus non-structural protein 4B binds tank-binding kinase 1. J Biosci 2018. [DOI: 10.1007/s12038-018-9802-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Bussey KA, Brinkmann MM. Strategies for immune evasion by human tumor viruses. Curr Opin Virol 2018; 32:30-39. [PMID: 30241043 DOI: 10.1016/j.coviro.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Immune evasion is a hallmark of viral persistence. For the seven human tumor viruses to establish lifelong infection in their hosts, they must successfully control the host response to them. Viral inhibition of immune responses occurs at many levels. While some viruses directly target the pattern recognition receptors (PRR) of the innate immune system, they may also antagonize downstream effectors of PRR signaling cascades or activation of transcription, which would otherwise induce a type I interferon (IFN) and/or pro-inflammatory cytokine response. Secretion of IFN activates the type I interferon receptor (IFNAR) signaling pathway, which is also prone to viral inhibition. To evade the adaptive host response, viruses also target various mechanisms including antigen processing and presentation.
Collapse
Affiliation(s)
- Kendra A Bussey
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
21
|
Ma J, Ketkar H, Geng T, Lo E, Wang L, Xi J, Sun Q, Zhu Z, Cui Y, Yang L, Wang P. Zika Virus Non-structural Protein 4A Blocks the RLR-MAVS Signaling. Front Microbiol 2018; 9:1350. [PMID: 29988497 PMCID: PMC6026624 DOI: 10.3389/fmicb.2018.01350] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses have evolved complex mechanisms to evade the mammalian host immune systems including the RIG-I (retinoic acid-inducible gene I) like receptor (RLR) signaling. Zika virus (ZIKV) is a re-emerging flavivirus that is associated with severe neonatal microcephaly and adult Guillain-Barre syndrome. However, the molecular mechanisms underlying ZIKV pathogenesis remain poorly defined. Here we report that ZIKV non-structural protein 4A (NS4A) impairs the RLR-mitochondrial antiviral-signaling protein (MAVS) interaction and subsequent induction of antiviral immune responses. In human trophoblasts, both RIG-I and melanoma differentiation-associated protein 5 (MDA5) contribute to type I interferon (IFN) induction and control ZIKV replication. Type I IFN induction by ZIKV is almost completely abolished in MAVS-/- cells. NS4A represses RLR-, but not Toll-like receptor-mediated immune responses. NS4A specifically binds the N-terminal caspase activation and recruitment domain (CARD) of MAVS and thus blocks its accessibility by RLRs. Our study provides in-depth understanding of the molecular mechanisms of immune evasion by ZIKV and its pathogenesis.
Collapse
Affiliation(s)
- Jinzhu Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Harshada Ketkar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Tingting Geng
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Emily Lo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Leilei Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States.,Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Zhanbo Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long Yang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Penghua Wang
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
22
|
Schwartz N, Pellach M, Glick Y, Gil R, Levy G, Avrahami D, Barbiro-Michaely E, Nahmias Y, Gerber D. Neuregulin 1 discovered as a cleavage target for the HCV NS3/4A protease by a microfluidic membrane protein array. N Biotechnol 2018; 45:113-122. [PMID: 29438748 DOI: 10.1016/j.nbt.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/26/2022]
Abstract
The hepatitis C virus (HCV) non-structural protein 3 (NS3) is essential for HCV maturation. The NS3/4A protease is a target for several HCV treatments and is a well-known target for HCV drug discovery. The protein is membrane associated and thus probably interacts with other membrane proteins. However, the vast majority of known NS3 host partners are soluble proteins rather than membrane proteins, most likely due to lack of appropriate platforms for their discovery. Utilization of an integrated microfluidics platform enables analysis of membrane proteins in their native form. We screened over 2800 membrane proteins for interaction with NS3 and 90 previously unknown interactions were identified. Of these, several proteins were selected for validation by co-immunoprecipitation and for NS3 proteolytic activity. Bearing in mind the considerable number of interactions formed, together with the popularity of NS3/4A protease as a drug target, it was striking to note its lack of proteolytic activity. Only a single protein, Neuregulin1, was observed to be cleaved, adding to the 3 known NS3/4A cleavage targets. Neuregulin1 participates in neural proliferation. Recent studies have shown its involvement in HCV infection and hepatocellular carcinoma. We showed that NS3/4A triggers an increase in neuregulin1 mRNA levels in HCV infected cells. Despite this increase, its protein concentration is decreased due to proteolytic cleavage. Additionally, its EGF-like domain levels were increased, possibly explaining the ErbB2 and EGFR upregulation in HCV infected cells. The newly discovered protein interactions may provide insights into HCV infection mechanisms and potentially provide new therapeutic targets against HCV.
Collapse
Affiliation(s)
- Nika Schwartz
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Michal Pellach
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Yair Glick
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Reuven Gil
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dorit Avrahami
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Efrat Barbiro-Michaely
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Gerber
- Mina and Everard Goodman Faculty of Life Sciences and Bar Ilan Institute for Nanotechnology and Advanced Materials, Anna Web Nanotechnology bld. (206), Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
23
|
Marsili G, Perrotti E, Remoli AL, Acchioni C, Sgarbanti M, Battistini A. IFN Regulatory Factors and Antiviral Innate Immunity: How Viruses Can Get Better. J Interferon Cytokine Res 2018; 36:414-32. [PMID: 27379864 DOI: 10.1089/jir.2016.0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon regulatory factor (IRF) family consists of transcriptional regulators that exert multifaceted and versatile functions in multiple biological processes. Their crucial role as central mediators in the establishment and execution of host immunity in response to pathogen-derived signals downstream pattern recognition receptors (PRRs) makes IRFs a hallmark of the host antiviral response. They function as hub molecules at the crossroad of different signaling pathways for the induction of interferon (IFN) and inflammatory cytokines, as well as of antiviral and immunomodulatory genes even in an IFN-independent manner. By regulating the development and activity of immune cells, IRFs also function as a bridge between innate and adaptive responses. As such, IRFs represent attractive and compulsive targets in viral strategies to subvert antiviral signaling. In this study, we discuss current knowledge on the wide array of strategies put in place by pathogenic viruses to evade, subvert, and/or hijack these essential components of host antiviral immunity.
Collapse
Affiliation(s)
- Giulia Marsili
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Edvige Perrotti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Anna Lisa Remoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Chiara Acchioni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Marco Sgarbanti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| |
Collapse
|
24
|
Glab-Ampai K, Chulanetra M, Malik AA, Juntadech T, Thanongsaksrikul J, Srimanote P, Thueng-In K, Sookrung N, Tongtawe P, Chaicumpa W. Human single chain-transbodies that bound to domain-I of non-structural protein 5A (NS5A) of hepatitis C virus. Sci Rep 2017; 7:15042. [PMID: 29118372 PMCID: PMC5678119 DOI: 10.1038/s41598-017-14886-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
A safe and broadly effective direct acting anti-hepatitis C virus (HCV) agent that can withstand the viral mutation is needed. In this study, human single chain antibody variable fragments (HuscFvs) to conserved non-structural protein-5A (NS5A) of HCV were produced by phage display technology. Recombinant NS5A was used as bait for fishing-out the protein bound-phages from the HuscFv-phage display library. NS5A-bound HuscFvs produced by five phage transfected-E. coli clones were linked molecularly to nonaarginine (R9) for making them cell penetrable (become transbodies). The human monoclonal transbodies inhibited HCV replication in the HCVcc infected human hepatic cells and also rescued the cellular antiviral immune response from the viral suppression. Computerized simulation verified by immunoassays indicated that the transbodies used several residues in their multiple complementarity determining regions (CDRs) to form contact interface with many residues of the NS5A domain-I which is important for HCV replication complex formation and RNA binding as well as for interacting with several host proteins for viral immune evasion and regulation of cellular physiology. The human monoclonal transbodies have high potential for testing further as a new ramification of direct acting anti-HCV agent, either alone or in combination with their cognates that target other HCV proteins.
Collapse
Affiliation(s)
- Kittirat Glab-Ampai
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanate Juntadech
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Kanyarat Thueng-In
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon-ratchaseema province, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pongsri Tongtawe
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Rangsit Campus, Pathum-thani province, 12120, Thailand.
| |
Collapse
|
25
|
Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins. Viruses 2017; 9:v9100291. [PMID: 28991176 PMCID: PMC5691642 DOI: 10.3390/v9100291] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host’s innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host’s innate antiviral immunity.
Collapse
|
26
|
Extracellular Interactions between Hepatitis C Virus and Secreted Apolipoprotein E. J Virol 2017; 91:JVI.02227-16. [PMID: 28539442 DOI: 10.1128/jvi.02227-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions between hepatitis C virus (HCV) and lipoproteins in humans play an important role in the efficient establishment of chronic infection. Apolipoprotein E (ApoE) on the HCV envelope mediates virus attachment to host cells as well as immune evasion. This interaction is thought to occur in hepatocytes, as ApoE plays dual functions in HCV assembly and maturation as well as cell attachment. In the present study, we found that secreted ApoE (sApoE) can also bind to viral particles via its C-terminal domain after HCV is released from the cell. Furthermore, the binding affinity of interactions between the sApoE N terminus and cell surface receptors affected HCV infectivity in a dose-dependent manner. The extracellular binding of sApoE to HCV is dependent on HCV envelope proteins, and recombinant HCV envelope proteins are also able to bind to sApoE. These results suggest that extracellular interactions between HCV and sApoE may potentially complicate vaccine development and studies of viral pathogenesis.IMPORTANCE End-stage liver disease caused by chronic HCV infection remains a clinical challenge, and there is an urgent need for a prophylactic method of controlling HCV infection. Because host immunity against HCV is poorly understood, additional investigations of host-virus interactions in the context of HCV are important. HCV is primarily transmitted through blood, which is rich in lipoproteins. Therefore, it is of interest to further determine how HCV interacts with lipoproteins in human blood. In this study, we found that secreted ApoE (sApoE), an exchangeable component found in lipoproteins, participates in extracellular interactions with HCV virions. More significantly, different variants of sApoE differentially affect HCV infection efficiency in a dose-dependent manner. These findings provide greater insight into HCV infection and host immunity and could help propel the development of new strategies for preventing HCV infection.
Collapse
|
27
|
Molecular characterization, expression of chicken TBK1 gene and its effect on IRF3 signaling pathway. PLoS One 2017; 12:e0177608. [PMID: 28493975 PMCID: PMC5426785 DOI: 10.1371/journal.pone.0177608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022] Open
Abstract
TRAF family member-associated NF-κB activator (TANK)-binding kinase1 (TBK1) is a serine-threonine kinase at the crossroads of multiple interferon (IFN)-inducing signaling pathways in innate immunity. The importance of TBK1 in antiviral immunity is well established in mammal models, but in chicken, the molecular characterization and potential function of TBK1 remain unclear. In the present study, the open-reading frame (ORF) of chicken TBK1 (chTBK1) was cloned and characterized. The sequencing results revealed that the chTBK1 ORF consists of 2190 base pairs (bp) encoding a deduced protein of 729 amino acid residues. Multiple sequence alignment analysis demonstrated chTBK1 similarity to other birds and mammals, which indicates that it is evolutionarily conserved. Quantitative real-time PCR (qRT-PCR) results showed that chTBK1 was ubiquitously expressed in chicken tissues and expression was especially high in immune tissues. In addition, the expression of chTBK1 was significantly up-regulated by infection with avian leukosis virus subgroup J (ALV-J) both in vivo and in chicken embryo fibroblasts (CEFs) challenged with ALV-J or stimulated with poly I:C in vitro. Consistent with the activation of chTBK1, the interferon regulatory factor 3 (IRF3) and IFNβ gene in CEFs were also up-regulated after challenge with ALV-J or polyI:C. In contrast, the expression of IRF3 and IFNβ in CEFs was significantly reduced by siRNA targeting the chTBK1 gene compared with a negative control (NC) during ALV-J infection or polyI:C transfection. In conclusion, our results demonstrated that chTBK1 may be an important immunoregulator for IRF3 and IFNβ induction in response to viral stimulation in chicken.
Collapse
|
28
|
Alkheraif AA, Topliff CL, Reddy J, Massilamany C, Donis RO, Meyers G, Eskridge KM, Kelling CL. Type 2 BVDV N pro suppresses IFN-1 pathway signaling in bovine cells and augments BRSV replication. Virology 2017; 507:123-134. [PMID: 28432927 DOI: 10.1016/j.virol.2017.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/14/2017] [Indexed: 12/25/2022]
Abstract
Bovine viral diarrhea virus (BVDV) infection induces immunosuppression and in conjunction with bovine respiratory syncytial virus (BRSV) contributes to the bovine respiratory disease complex. Bovine turbinate cells were single or co-infected with type 2 BVDV wild-type (BVDV2-wt), its dysfunctional Npro mutant (BVDV2-E), and/or BRSV. BVDV2-E significantly up-regulated PKR, IRF-7, TBK-1, IRF-3, and IFN-β mRNAs based on real-time Q-RT-PCR. BRSV-infected cells expressed significantly up-regulated PKR, IRF-3, IRF-7, and IFN-β mRNAs, whereas BVDV2-wt, but not BVDV2-E, abolished this up-regulation in co-infection. No significant differences were observed in MAVS, NF-κB, and PIN-1 mRNAs. A dual-luciferase reporter assay showed that BVDV2-wt significantly increased NF-κB activity compared to BVDV2-E, while BVDV2-E significantly increased IFN-β activity compared to BVDV2-wt. The BRSV titer and RNA levels significantly increased in cells co-infected with BRSV/BVDV2-wt compared to cells co-infected with BRSV/BVDV2-E or infected with BRSV alone. This data supports the synergistic action of BVDV2-wt and BRSV inhibition of IFN-1.
Collapse
Affiliation(s)
- Abdulrahman A Alkheraif
- University of Nebraska, School of Veterinary Medicine and Biomedical Sciences, 1880 North 42nd Street, Lincoln, NE, 68583, United States
| | - Christina L Topliff
- University of Nebraska, School of Veterinary Medicine and Biomedical Sciences, 1880 North 42nd Street, Lincoln, NE, 68583, United States.
| | - Jay Reddy
- University of Nebraska, School of Veterinary Medicine and Biomedical Sciences, 1880 North 42nd Street, Lincoln, NE, 68583, United States
| | - Chandirasegaran Massilamany
- University of Nebraska, School of Veterinary Medicine and Biomedical Sciences, 1880 North 42nd Street, Lincoln, NE, 68583, United States
| | - Ruben O Donis
- Center for Disease Control and Prevention, National Center for Immunization & Respiratory Diseases, Influenza Division, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Kent M Eskridge
- University of Nebraska, Department of Statistics, 340 Hardin Hall, Lincoln, NE 68583, United States
| | - Clayton L Kelling
- University of Nebraska, School of Veterinary Medicine and Biomedical Sciences, 1880 North 42nd Street, Lincoln, NE, 68583, United States
| |
Collapse
|
29
|
Jittavisutthikul S, Seesuay W, Thanongsaksrikul J, Thueng-in K, Srimanote P, Werner RG, Chaicumpa W. Human Transbodies to HCV NS3/4A Protease Inhibit Viral Replication and Restore Host Innate Immunity. Front Immunol 2016; 7:318. [PMID: 27617013 PMCID: PMC4999588 DOI: 10.3389/fimmu.2016.00318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
A safe and effective direct acting anti-hepatitis C virus (HCV) agent is still needed. In this study, human single chain variable fragments of antibody (scFvs) that bound to HCV NS3/4A protein were produced by phage display technology. The engineered scFvs were linked to nonaarginines (R9) for making them cell penetrable. HCV-RNA-transfected Huh7 cells treated with the transbodies produced from four different transformed E. coli clones had reduced HCV-RNA inside the cells and in the cell spent media, as well as fewer HCV foci in the cell monolayer compared to the transfected cells in culture medium alone. The transbodies-treated transfected cells also had up-expression of the genes coding for the host innate immune response, including TRIF, TRAF3, IRF3, IL-28B, and IFN-β. Computerized homology modeling and intermolecular docking predicted that the effective transbodies interacted with several critical residues of the NS3/4A protease, including those that form catalytic triads, oxyanion loop, and S1 and S6 pockets, as well as a zinc-binding site. Although insight into molecular mechanisms of the transbodies need further laboratory investigation, it can be deduced from the current data that the transbodies blocked the HCV NS3/4A protease activities, leading to the HCV replication inhibition and restoration of the virally suppressed host innate immunity. The engineered antibodies should be tested further for treatment of HCV infection either alone, in combination with current therapeutics, or in a mixture with their cognates specific to other HCV proteins.
Collapse
Affiliation(s)
- Surasak Jittavisutthikul
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Watee Seesuay
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
| | - Jeeraphong Thanongsaksrikul
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| | - Kanyarat Thueng-in
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima Province, Thailand
| | - Potjanee Srimanote
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| | - Rolf G. Werner
- Industrial Technology, Faculty of Science, University of Tuebingen, Tuebingen, Germany
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Mahidol University, Bangkok, Thailand
- Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathum-thani, Thailand
| |
Collapse
|
30
|
Lee CM, Hu TH, Lu SN, Wang JH, Hung CH, Chen CH, Yen YH. Peripheral blood toll-like receptor 4 correlates with rapid virological response to pegylated-interferon and ribavirin therapy in hepatitis C genotype 1 patients. BMC Gastroenterol 2016; 16:73. [PMID: 27457659 PMCID: PMC4960680 DOI: 10.1186/s12876-016-0492-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/14/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are effectors of the innate immune system that are able to recognize hepatitis C virus (HCV) and give rise to an immune response. Failure of interferon (IFN)-α-based treatment is related to host immunity. Therefore, we sought to study the clinical importance of TLRs in HCV genotype 1 patients who received pegylated IFN (PEG-IFN) plus ribavirin (RBV) therapy. METHODS We enrolled 79 treatment-naïve patients with HCV genotype 1. Patients completed a 24- to 48-week course of response-guided therapy. Peripheral blood monocyte (PBMC) expression of mRNA for TLRs 2, 3, 4, 7, and 9 was quantified by real-time PCR before therapy. TLR mRNA expression is shown as a log ratio relative to GAPDH mRNA (log 2 (-(∆Ct))). RESULTS Forty-five patients (57.0 %) showed a rapid virological response (RVR). Univariate analysis revealed that TLR 2, 3, 4, 7, and 9 were significantly lower in the RVR group than in the non-RVR group (P = 0.001, 0.014, < 0.001, 0.008, and 0.001, respectively). Multivariate analysis revealed that TLR 4 < -2 log (OR: 7.17, 95 % CI: 1.70-30.34, P = 0.007) was an independent predictor for RVR. In addition, levels of TLR 2, 3, 4, 7, and 9 were positively correlated with HCV viral load (P = 0.009, 0.013, < 0.001, 0.007, and 0.001, respectively). CONCLUSIONS A low level of TLR 4 mRNA in PMBCs was correlated with RVR, which indicates that TLR4 may play a critical role in HCV recognition and activation of innate immunity. TLR expression levels were correlated with HCV viral load, indicating that TLR activation upon exposure to HCV may subsequently limit HCV replication.
Collapse
Affiliation(s)
- Chuan-Mo Lee
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Hui Hu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Nan Lu
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Houng Wang
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chao-Hung Hung
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Hung Chen
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hao Yen
- Division of Hepatogastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, 123 Ta Pei Road, Niao Sung Dist. 833, Kaohsiung City, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Park SB, Seronello S, Mayer W, Ojcius DM. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I. PLoS One 2016; 11:e0158419. [PMID: 27404108 PMCID: PMC4942120 DOI: 10.1371/journal.pone.0158419] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) actively evades host interferon (IFN) responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I)-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP) from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP) and poly(IC). The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain) were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.
Collapse
Affiliation(s)
- Seung Bum Park
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Scott Seronello
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Wasima Mayer
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - David M. Ojcius
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
- University of the Pacific, Arthur A. Dugoni School of Dentistry, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Innate immunity against hepatitis C virus. Curr Opin Immunol 2016; 42:98-104. [PMID: 27366996 DOI: 10.1016/j.coi.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) infection tends persistent and causes chronic liver diseases, including inflammation, cirrhosis and hepatocellular carcinoma. Innate immune responses triggered by HCV infection, particularly the production of interferons and pro-inflammatory cytokines, shape the early host antiviral defense, and orchestrate subsequent HCV-specific adaptive immunity. Host has evolved multifaceted means to sense HCV infection to induce innate immune responses, whereas HCV has also developed elaborate strategies to evade immune attack. Recent studies in the field have provided many new insights into the interplay of HCV and innate immunity. In this review, we summarized these recent advances, focusing on pathogen recognition by innate sensors, newly discovered anti-HCV innate effectors and new viral strategies to evade innate immunity.
Collapse
|
33
|
Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2015; 16:35-50. [DOI: 10.1038/nri.2015.8] [Citation(s) in RCA: 455] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|
35
|
Chen Y, He L, Peng Y, Shi X, Chen J, Zhong J, Chen X, Cheng G, Deng H. The hepatitis C virus protein NS3 suppresses TNF-α-stimulated activation of NF-κB by targeting LUBAC. Sci Signal 2015; 8:ra118. [PMID: 26577923 DOI: 10.1126/scisignal.aab2159] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB) is crucial for innate immune defense against viral infections, and its activation requires the ubiquitylation of upstream proteins, including the adaptor protein NEMO (NF-κB essential modulator). Many infectious pathogens, including hepatitis C virus (HCV), inhibit NF-κB signaling in host cells, which promotes pathogen survival. Frequently, HCV-infected individuals develop a chronic infection, which suggests that HCV can subvert host antiviral responses. We found that HCV infection and replication inhibited the activation of NF-κB by the inflammatory cytokine tumor necrosis factor-α (TNF-α), which was mediated by the viral protein NS3 and, to a lesser extent, NS5B. NS3 directly interacted with linear ubiquitin chain assembly complex (LUBAC), competed with NEMO for binding to LUBAC, and inhibited the LUBAC-mediated linear ubiquitylation of NEMO and the subsequent activation of NF-κB. Together, our results highlight an immune evasion strategy adopted by HCV to modulate host antiviral responses and enhance virus survival and persistence.
Collapse
Affiliation(s)
- Yongzhi Chen
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang He
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Peng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China. University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Shi
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jin Zhong
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Genhong Cheng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China. Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
36
|
Coccia EM, Battistini A. Early IFN type I response: Learning from microbial evasion strategies. Semin Immunol 2015; 27:85-101. [PMID: 25869307 PMCID: PMC7129383 DOI: 10.1016/j.smim.2015.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/10/2015] [Indexed: 12/12/2022]
Abstract
Type I interferon (IFN) comprises a class of cytokines first discovered more than 50 years ago and initially characterized for their ability to interfere with viral replication and restrict locally viral propagation. As such, their induction downstream of germ-line encoded pattern recognition receptors (PRRs) upon recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of the host antiviral response. The acknowledgment that several PAMPs, not just of viral origin, may induce IFN, pinpoints at these molecules as a first line of host defense against a number of invading pathogens. Acting in both autocrine and paracrine manner, IFN interferes with viral replication by inducing hundreds of different IFN-stimulated genes with both direct anti-pathogenic as well as immunomodulatory activities, therefore functioning as a bridge between innate and adaptive immunity. On the other hand an inverse interference to escape the IFN system is largely exploited by pathogens through a number of tactics and tricks aimed at evading, inhibiting or manipulating the IFN pathway, that result in progression of infection or establishment of chronic disease. In this review we discuss the interplay between the IFN system and some selected clinically important and challenging viruses and bacteria, highlighting the wide array of pathogen-triggered molecular mechanisms involved in evasion strategies.
Collapse
Affiliation(s)
- Eliana M Coccia
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | - Angela Battistini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|
37
|
Rosadini CV, Kagan JC. Microbial strategies for antagonizing Toll-like-receptor signal transduction. Curr Opin Immunol 2015; 32:61-70. [PMID: 25615700 PMCID: PMC4336813 DOI: 10.1016/j.coi.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/24/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022]
Abstract
Within a few years of the discovery of Toll-like receptors (TLRs) and their role in innate immunity, viral and bacterial proteins were recognized to antagonize TLR signal transduction. Since then, as TLR signaling networks were unraveled, microbial systems have been discovered that target nearly every component within these pathways. However, recent findings as well as some notable exceptions promote the idea that more of these systems have yet to be discovered. For example, we know very little about microbial systems for directly targeting non-cytoplasmic portions of TLR signaling pathways, that is, the ligand interacting portions of the receptor itself. In this review, we compare and contrast strategies by which bacteria and viruses antagonize TLR signaling networks to identify potential areas for future research.
Collapse
Affiliation(s)
- Charles V Rosadini
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Harvard Medical School and Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Abstract
Persistent viral infection, such as HCV infection, is the result of the inability of the host immune system to mount a successful antiviral response, as well as the escape strategies devised by the virus. Although each individual component of the host immune system plays important roles in antiviral immunity, the interactive network of immune cells as a whole acts against the virus. The innate immune system forms the first line of host defense against viral infection, and thus, virus elimination or chronic HCV infection is linked to the direct outcome of the interactions between the various innate immune cells and HCV. By understanding how the distinct components of the innate immune system function both individually and collectively during HCV infection, potential therapeutic targets can be identified to overcome immune dysfunction and control chronic viral infection.
Collapse
Affiliation(s)
- Banishree Saha
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J Virol 2014; 88:8936-45. [PMID: 24872591 DOI: 10.1128/jvi.00700-14] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Porcine epidemic diarrhea virus (PEDV), a porcine enteropathogenic coronavirus, causes lethal watery diarrhea in piglets and results in large economic losses in many Asian and European countries. A large-scale outbreak of porcine epidemic diarrhea occurred in China in 2010, and the virus emerged in the United States in 2013 and spread rapidly, posing significant economic and public health concerns. Previous studies have shown that PEDV infection inhibits the synthesis of type I interferon (IFN), and viral papain-like protease 2 has been identified as an IFN antagonist. In this study, we found that the PEDV-encoded nucleocapsid (N) protein also inhibits Sendai virus-induced IFN-β production, IFN-stimulated gene expression, and activation of the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB. We also found that N protein significantly impedes the activation of the IFN-β promoter stimulated by TBK1 or its upstream molecules (RIG-I, MDA5, IPS-1, and TRAF3) but does not counteract its activation by IRF3. A detailed analysis revealed that the PEDV N protein targets TBK1 by direct interaction and that this binding sequesters the association between TBK1 and IRF3, which in turn inhibits both IRF3 activation and type I IFN production. Together, our findings demonstrate a new mechanism evolved by PEDV to circumvent the host's antiviral immunity. IMPORTANCE PEDV has received increasing attention since the emergence of a PEDV variant in China and the United States. Here, we identify nucleocapsid (N) protein as a novel PEDV-encoded interferon (IFN) antagonist and demonstrate that N protein antagonizes IFN production by sequestering the interaction between IRF3 and TBK1, a critical step in type I IFN signaling. This adds another layer of complexity to the immune evasion strategies evolved by this economically important viral pathogen. An understanding of its immune evasion mechanism may direct us to novel therapeutic targets and more effective vaccines against PEDV infection.
Collapse
|
40
|
Nakamoto N, Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 2014; 5:221. [PMID: 24904576 PMCID: PMC4032908 DOI: 10.3389/fimmu.2014.00221] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022] Open
Abstract
Liver has a unique vascular system receiving the majority of the blood supply from the gastrointestinal tract through the portal vein and faces continuous exposure to foreign pathogens and commensal bacterial products. These gut-derived antigens stimulate liver cells and result in a distinctive immune response via a family of pattern recognition receptors, the Toll-like receptors (TLRs). TLRs are expressed on Kupffer cells, dendritic cells, hepatic stellate cells, endothelial cells, and hepatocytes in the liver. The crosstalk between gut-derived antigens and TLRs on immune cells trigger a distinctive set of mechanisms to induce immunity, contributing to various acute and chronic liver diseases including liver cirrhosis and hepatocellular carcinoma. Accumulating evidence has shown that TLRs stimulation by foreign antigens induces the production of immunoactivating and immunoregulatory cytokines. Furthermore, the immunoregulatory arm of TLR stimulation can also control excessive tissue damage. With this knowledge at hand, it is important to clarify the dual role of disease-specific TLRs as activators and regulators, especially in the liver. We will review the current understanding of TLR signaling and subsequent immune activation and tolerance by the innate immune system in the liver.
Collapse
Affiliation(s)
- Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine , Tokyo , Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine , Tokyo , Japan
| |
Collapse
|
41
|
Murine gammaherpesvirus 68 encoding open reading frame 11 targets TANK binding kinase 1 to negatively regulate the host type I interferon response. J Virol 2014; 88:6832-46. [PMID: 24696485 DOI: 10.1128/jvi.03460-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-β, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-β production. ORF11-deficient recombinant viruses induced more IFN-β production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-β promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-β production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-β induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-β production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replication, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated interferon production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail host surveillance.
Collapse
|
42
|
Nazmi A, Dutta K, Hazra B, Basu A. Role of pattern recognition receptors in flavivirus infections. Virus Res 2014; 185:32-40. [PMID: 24657789 DOI: 10.1016/j.virusres.2014.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 12/24/2022]
Abstract
The flaviviral encephalitis has now become a major health concern in global scale. The efficient detection of viral infection and induction of the innate antiviral response by host's innate immune system are crucial to determine the outcome of infection. The intracellular pattern recognition receptors TLRs, RLRs, NLRs and CLRs play a central role in detection and initiation of robust antiviral response against flaviviral infection. Both cytoplasmic RLRs, RIG-I and MDA5 have been shown to be implicated in sensing flaviviral genomic RNA. Similarly among TLRs mainly TLR3 and TLR7 are known to respond in flaviviral infections as they are known to sense dsRNA and ssRNA moiety as their natural cognate ligand. Several studies have also shown the roles of NLRs and CLRs in mounting an innate antiviral response against flavivirus but, it is yet to be completely understood. Until now only few reports have implicated NLRs and CLRs in induction of antiviral and proinflammatory state following flaviviral infection. The current review therefore aims to comprehensively analyze past as well as current understanding on the role of PRRs in flaviviral infections.
Collapse
Affiliation(s)
- Arshed Nazmi
- National Brain Research Centre, Manesar, Haryana 122051, India.
| | - Kallol Dutta
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|
43
|
Construction of a chimeric hepatitis C virus replicon based on a strain isolated from a chronic hepatitis C patient. Virol Sin 2014; 29:61-70. [PMID: 24452538 DOI: 10.1007/s12250-014-3408-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/10/2014] [Indexed: 01/21/2023] Open
Abstract
Subgenomic replicons of hepatitis C virus (HCV) have been widely used for studying HCV replication. Here, we report a new subgenomic replicon based on a strain isolated from a chronically infected patient. The coding sequence of HCV was recovered from a Chinese chronic hepatitis C patient displaying high serum HCV copy numbers. A consensus sequence designated as CCH strain was constructed based on the sequences of five clones and this was classified by sequence alignment as belonging to genotype 2a. The subgenomic replicon of CCH was replication-deficient in cell culture, due to dysfunctions in NS3 and NS5B. Various JFH1/CCH chimeric replicons were constructed, and specific mutations were introduced. The introduction of mutations could partially restore the replication of chimeric replicons. A replication-competent chimeric construct was finally obtained by the introduction of NS3 from JFH1 into the backbone of the CCH strain.
Collapse
|
44
|
Evasion of antiviral immunity through sequestering of TBK1/IKKε/IRF3 into viral inclusion bodies. J Virol 2013; 88:3067-76. [PMID: 24335286 DOI: 10.1128/jvi.03510-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells are equipped with pattern recognition receptors (PRRs) such as the Toll-like and RIG-I-like receptors that mount innate defenses against viruses. However, viruses have evolved multiple strategies to evade or thwart host antiviral responses. Viral inclusion bodies (IBs), which are accumulated aggregates of viral proteins, are commonly formed during the replication of some viruses in infected cells, but their role in viral immune evasion has rarely been explored. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging febrile illness caused by a novel phlebovirus in the Bunyaviridae. The SFTS viral nonstructural protein NSs can suppress host beta interferon (IFN-β) responses. NSs can form IBs in infected and transfected cells. Through interaction with tank-binding kinase 1 (TBK1), viral NSs was able to sequester the IKK complex, including IKKε and IRF3, into IBs, although NSs did not interact with IKKε or IRF3 directly. When cells were infected with influenza A virus, IRF3 was phosphorylated and active phosphorylated IRF3 (p-IRF3) was translocated into the nucleus. In the presence of NSs, IRF3 could still be phosphorylated, but p-IRF3 was trapped in cytoplasmic IBs, resulting in reduced IFN-β induction and enhanced viral replication. Sequestration of the IKK complex and active IRF3 into viral IBs through the interaction of NSs and TBK1 is a novel mechanism for viral evasion of innate immunity.
Collapse
|
45
|
Fouad H, Raziky MSE, Aziz RAA, Sabry D, Aziz GMA, Ewais M, Sayed AR. Dendritic cell co-stimulatory and co-inhibitory markers in chronic HCV: an Egyptian study. World J Gastroenterol 2013; 19:7711-8. [PMID: 24282359 PMCID: PMC3837270 DOI: 10.3748/wjg.v19.i43.7711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/30/2013] [Accepted: 08/04/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To assess co-stimulatory and co-inhibitory markers of dendritic cells (DCs) in hepatitis C virus (HCV) infected subjects with and without uremia. METHODS Three subject groups were included in the study: group 1 involved 50 control subjects, group 2 involved 50 patients with chronic HCV infection and group 3 involved 50 HCV uremic subjects undergoing hemodialysis. CD83, CD86 and CD40 as co-stimulatory markers and PD-L1 as a co-inhibitory marker were assessed in peripheral blood mononuclear cells by real-time polymerase chain reaction. Interleukin-10 (IL-10) and hyaluronic acid (HA) levels were also assessed. All findings were correlated with disease activity, viral load and fibrogenesis. RESULTS There was a significant decrease in co-stimulatory markers; CD83, CD86 and CD40 in groups 2 and 3 vs the control group. Co-stimulatory markers were significantly higher in group 3 vs group 2. There was a significant elevation in PD-L1 in both HCV groups vs the control group. PD-L1 was significantly lower in group 3 vs group 2. There was a significant elevation in IL-10 and HA levels in groups 2 and 3, where IL-10 was higher in group 3 and HA was lower in group 3 vs group 2. HA level was significantly correlated with disease activity and fibrosis grade in group 2. IL-10 was significantly correlated with fibrosis grade in group 2. There were significant negative correlations between co-stimulatory markers and viral load in groups 2 and 3, except CD83 in dialysis patients. There was a significant positive correlation between PD-L1 and viral load in both HCV groups. CONCLUSION A significant decrease in DC co-stimulatory markers and a significant increase in a DC co-inhibitory marker were observed in HCV subjects and to a lesser extent in dialysis patients.
Collapse
|
46
|
Howell J, Angus P, Gow P, Visvanathan K. Toll-like receptors in hepatitis C infection: implications for pathogenesis and treatment. J Gastroenterol Hepatol 2013; 28:766-76. [PMID: 23432473 DOI: 10.1111/jgh.12170] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a significant global health problem, affecting over 150 million people worldwide. While the critical role of the adaptive immune system in HCV infection is well-established, the importance of the innate immune system in HCV infection has only been recognized in more recent years. Toll-like receptors form the cornerstone of the innate immune response, and there is considerable evidence for their crucial role in hepatitis C infection. This review outlines recent advances made in our understanding of the role of Toll-like receptor function in HCV infection, exploring how HCV manipulates host immunity to evade immune clearance and establish persistent infection despite leading to inflammatory hepatic damage.
Collapse
Affiliation(s)
- Jessica Howell
- Liver Transplant Unit, Austin Hospital, Victoria, Australia.
| | | | | | | |
Collapse
|
47
|
Howell J, Sawhney R, Skinner N, Gow P, Angus P, Ratnam D, Visvanathan K. Toll-like receptor 3 and 7/8 function is impaired in hepatitis C rapid fibrosis progression post-liver transplantation. Am J Transplant 2013; 13:943-953. [PMID: 23425350 DOI: 10.1111/ajt.12165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 01/25/2023]
Abstract
Recurrence of hepatitis C (HCV) postliver transplant is universal, with a subgroup developing rapid hepatic fibrosis. Toll-like receptors (TLRs) are critical to innate antiviral responses and HCV alters TLR function to evade immune clearance. Whether TLRs play a role in rapid HCV recurrence posttransplant is unknown. We stimulated peripheral blood mononuclear cells (PBMCs) from 70 patients with HCV postliver transplant with TLR subclass-specific ligands and measured cytokine production, TLR expression and NK cell function. Rate of fibrosis progression was calculated using posttransplant liver biopsies graded by Metavir scoring (F0-4; R=fibrosis stage/year posttransplant; rapid fibrosis defined as >0.4 units/year). Thirty of 70 (43%) patients had rapid fibrosis progression. PBMCs from HCV rapid-fibrosers produced less IFNα with TLR7/8 stimulation (p=0.039), less IL-6 at baseline (p=0.027) and with TLR3 stimulation (p=0.008) and had lower TLR3-mediated monocyte IL-6 production (p=0.028) compared with HCV slow fibrosers. TLR7/8-mediated NKCD56 dim cell secretion of IFNγ was impaired in HCV rapid fibrosis (p=0.006) independently of IFNα secretion and TLR7/8 expression, while cytotoxicity remained preserved. Impaired TLR3 and TLR7/8-mediated cytokine responses may contribute to aggressive HCV recurrence postliver transplantation through impaired immune control of HCV and subsequent activation of fibrogenesis.
Collapse
Affiliation(s)
- J Howell
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - R Sawhney
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - N Skinner
- Innate Immune Laboratory, Monash University, Melbourne, Australia
| | - P Gow
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - P Angus
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - D Ratnam
- Innate Immune Laboratory, Monash University, Melbourne, Australia
| | - K Visvanathan
- Innate Immune Laboratory, Monash University, Melbourne, Australia
| |
Collapse
|
48
|
Zhao W. Negative regulation of TBK1-mediated antiviral immunity. FEBS Lett 2013; 587:542-8. [PMID: 23395611 PMCID: PMC7094513 DOI: 10.1016/j.febslet.2013.01.052] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 11/21/2022]
Abstract
TANK-binding kinase 1 (TBK1) plays pivotal roles in antiviral innate immunity. TBK1 mediates the activation of interferon regulatory factor (IRF) 3, leading to the induction of type I IFNs (IFN-α/β) following viral infections. TBK1 must be tightly regulated to effectively control viral infections and maintain immune homeostasis. TBK1 activity can be regulated in a variety of ways, such as phosphorylation, ubiquitination, kinase activity modulation and prevention of functional TBK1-containing complexes formation. Furthermore, multiple viruses have evolved elaborate strategies to circumvent IFN responses by targeting TBK1. Here we provide an overview of TBK1 in antiviral immunity and recent developments on the regulation of TBK1 activity.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China.
| |
Collapse
|
49
|
Kaukinen P, Sillanpää M, Nousiainen L, Melén K, Julkunen I. Hepatitis C virus NS2 protease inhibits host cell antiviral response by inhibiting IKKε and TBK1 functions. J Med Virol 2012; 85:71-82. [PMID: 23096996 DOI: 10.1002/jmv.23442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 11/10/2022]
Abstract
Hepatitis C virus (HCV) encodes for several proteins that can interfere with host cell signaling and antiviral response. Previously, serine protease NS3/4A was shown to block host cell interferon (IFN) production by proteolytic cleavage of MAVS and TRIF, the adaptor molecules of the RIG-I and TLR3 signaling pathways, respectively. This study shows that another HCV protease, NS2 can interfere efficiently with cytokine gene expression. NS2 and its proteolytically inactive mutant forms were able to inhibit type I and type III IFN, CCL5 and CXCL10 gene promoters activated by Sendai virus infection. However, the CXCL8 gene promoter was not inhibited by NS2. In addition, constitutively active RIG-I (ΔRIG-I), MAVS, TRIF, IKKε, and TBK1-induced activation of IFN-β promoter was inhibited by NS2. Cotransfection experiments with IKKε or TBK1 together with interferon regulatory factor 3 (IRF3) and HCV expression constructs revealed that NS2 in a dose-dependent manner inhibited IKKε and especially TBK1-induced IRF3 phosphorylation. GST pull-down experiments with GST-NS2 and in vitro-translated and cell-expressed IKKε and TBK1 demonstrated direct physical interactions of the kinases with NS2. Further evidence that the IKKε/TBK1 kinase complex is the target for NS2 was obtained from the observation that the constitutively active form of IRF3 (IRF3-5D) activated readily IFN-β promoter in the presence of NS2. The present study identified HCV NS2 as a potent interferon antagonist, and describes an explanation of how NS2 downregulates the major signaling pathways involved in the development of host innate antiviral responses.
Collapse
Affiliation(s)
- Pasi Kaukinen
- Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare (THL), Helsinki, Finland.
| | | | | | | | | |
Collapse
|
50
|
Wang L, Li S, Dorf ME. NEMO binds ubiquitinated TANK-binding kinase 1 (TBK1) to regulate innate immune responses to RNA viruses. PLoS One 2012; 7:e43756. [PMID: 23028469 PMCID: PMC3445589 DOI: 10.1371/journal.pone.0043756] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 07/25/2012] [Indexed: 12/12/2022] Open
Abstract
RIG-I-like receptors (RLR) are intracellular sensors utilized by nearly all cell types for recognition of viral RNA, initiation of antiviral defense, and induction of type I interferons (IFN). TBK1 is a critical kinase implicated in RLR-dependent IFN transcription. Posttranslational modification of TBK1 by K63-linked ubiquitin is required for RLR driven signaling. However, the TBK1 ubiquitin acceptor sites and the function of ubiquitinated TBK1 in the signaling cascade are unknown. We now show that TBK1 is ubiquitinated on residues K69, K154, and K372 in response to infection with RNA virus. The K69 and K154 residues are critical for innate antiviral responses and IFN production. Ubiquitinated TBK1 recruits the downstream adaptor NEMO through ubiquitin binding domains. The assembly of the NEMO/TBK1 complex on the mitochondrial protein MAVS leads to activation of TBK1 kinase activity and phosphorylation of the transcription factor, interferon response factor 3. The combined results refine current views of RLR signaling, define the role of TBK1 polyubiquitination, and detail the mechanisms involved in signalosome assembly.
Collapse
Affiliation(s)
- Lingyan Wang
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shitao Li
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SL); (MED)
| | - Martin E. Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (SL); (MED)
| |
Collapse
|