1
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Gu Y, Gu L, Chen L, Li J, Liao C, Bi Y, Huang Z, Cai W, Wei J, Huang Y. Immunotherapy Using HBV Vaccine Pulsed DCs and Induced T-Cells Combined Antiviral Drugs in Treatment Naive CHB Patients-A Multi-Centre Phase II Study. J Viral Hepat 2025; 32:e14045. [PMID: 39815989 DOI: 10.1111/jvh.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/20/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025]
Abstract
Dendritic cells are the most potent antigen-presenting cells in immune therapeutic approaches for chronic hepatitis B (CHB) infection. Here, we developed a clinical trial to evaluate the efficacy and safety of autologous HBV vaccine-pulsed DCs and their induced T cells (HPDCT) in CHB patients. This was a randomised, prospective, open-label, multicentre, superiority study and 309 treatment-naive CHB patients were divided into HPDCT plus nucleos(t)ide analogues (NAs) group (n = 84), NAs mono-therapy group (n = 82), HPDCT plus Peg-interferon (Peg-IFN) group (n = 69), Peg-IFN mono-therapy group (n = 74). Twelve times of HPDCT vaccinations were given intravenously, and all the patients were followed up for 72 weeks. In total, 1836 HPDCT infusions were administered with no obvious toxicity and side effect although few patients had self-limited low fever. More patients got HBsAg loss in those receiving HPDCT therapy. Patients of HPDCT plus Peg-IFN group with HBV DNA < 1 × 107 IU/mL at baseline exhibited earlier, stronger and longer lasting of viral response, especially HBV DNA < 20 IU/mL, than those patients of Peg-IFN mono-therapy group, from week 24 till week 72 (p < 0.05). Comparable efficacy was observed between the patients of HPDCT plus NAs group and NAs mono-therapy groups. In addition, CD25 on CD8+ T cells and HBV-specific CD8+ T cell increased significantly in patients of HPDCT combined antiviral drugs therapy. HPDCT combined with antiviral drugs was safe and able to enhance T cell immunity. Furthermore, HPDCT combined with Peg-IFN could provide an incremental benefit to patients with baseline levels of lower HBV DNA. Trial Registration: ClinicalTrials.gov identifier: NCT01935635.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lin Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lubiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Wei
- Department of Infectious Diseases and Hepatology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yuehua Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Yang F, Xiao H, Dai X, Xu M, Li M, Bai J, Dai N. Impact of APOBEC3s on the occurrence, development and prognosis of esophageal squamous cell carcinoma. Future Oncol 2025; 21:117-125. [PMID: 39840662 PMCID: PMC11852747 DOI: 10.1080/14796694.2024.2442300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a severe malignant tumor of the digestive system that poses a significant threat to human health. Despite its significance, the complex molecular mechanism regulating the occurrence and development of ESCC remain elusive. The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) members constitute a pivotal subfamily of the APOBEC family that possess cytidine deaminase activity. In recent years, APOBEC3s (A3s) have received increasing attention due to their pivotal roles in the occurrence, development, and prognosis of ESCC. This comprehensive review systematically summarizes the latest research progress on the mechanisms of action of A3s in ESCC and discusses their impact on the development and therapeutic considerations for ESCC, with a particular focus on their potential role in immunotherapy. These insights may be of great value in continued exploration of ESCC pathogenesis and provides a theoretical foundation for the development of clinical treatment strategies for ESCC.
Collapse
Affiliation(s)
- Fan Yang
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingfang Xu
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mengxia Li
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianying Bai
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Nan Dai
- Department of Oncology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Swanson J, Tonne J, Sangsuwannukul T, Thompson J, Kendall B, Liseth O, Metko M, Vile R. APOBEC3B expression in 293T viral producer cells drives mutations in chimeric antigen receptors and reduces CAR T cell efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200873. [PMID: 39403625 PMCID: PMC11472098 DOI: 10.1016/j.omton.2024.200873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 11/07/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are a clinically approved therapy for blood cancers. To produce clinical-grade CAR T cells, a retroviral or lentiviral vector is used to deliver the CAR and associated genes to patient T cells. Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) enzymes are known to be upregulated after transfection and retroviral infection and to deaminate cytidine to uracil in nucleic acids, resulting in cytidine-to-thymine mutations in DNA. Here, we hypothesized that APOBEC3 enzymes, induced during the production of CAR T cells, impact the efficacy of the resulting CAR T cells. We demonstrated that APOBEC3 family member APOBEC3B was upregulated at the RNA and protein levels after transfection of HEK293T cells with plasmids to make lentivirus, and that APOBEC3 signature mutations were present in the CAR construct. APOBEC3B overexpression in HEK293T cells led to further mutations in the resulting CAR T cells, and significantly decreased CAR T cell killing. APOBEC3B knockout in HEK293T cells led to reduced mutations in the CAR construct and significantly increased in CAR T cell killing. These results suggest that generation of CAR-expressing viruses from producer cell lines deficient in genome-modifying proteins such as APOBEC3B could enhance the quality of CAR T cell production.
Collapse
Affiliation(s)
- Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Olivia Liseth
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard Vile
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Lei Z, Wang L, Gao H, Guo S, Kang X, Yuan J, Lv Z, Jiang Y, Yi J, Chen Z, Wang G. Mechanisms underlying the compromised clinical efficacy of interferon in clearing HBV. Virol J 2024; 21:314. [PMID: 39633459 PMCID: PMC11619119 DOI: 10.1186/s12985-024-02589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic DNA virus that can cause acute or chronic hepatitis, representing a significant global health concern. By 2019, approximately 296 million individuals were chronically infected with HBV, with 1.5 million new cases annually and 820,000 deaths due to HBV-related cirrhosis and liver cancer. Current treatments for chronic hepatitis B include nucleotide analogs (NAs) and interferons (IFNs), particularly IFN-α. NAs, such as entecavir and tenofovir, inhibit viral reverse transcription, while IFN-α exerts antiviral effects by directly suppressing viral replication, modulating viral genome epigenetics, degrading cccDNA, and activating immune responses. Despite its potential, IFN-α shows limited clinical efficacy, partly due to HBV's interference with the IFN signaling pathway. HBV encodes proteins like HBc, Pol, HBsAg, and HBx that disrupt IFN-α function. For example, HBV Pol inhibits STAT1 phosphorylation, HBsAg suppresses STAT3 phosphorylation, and HBx interferes with IFN-α efficacy through multiple mechanisms. Additionally, HBV downregulates key genes in the IFN signaling pathway, further diminishing IFN-α's antiviral effects. Understanding these interactions is crucial for improving IFN-α-based therapies. Future research may focus on overcoming HBV resistance by targeting viral proteins or optimizing IFN-α delivery. In summary, HBV's ability to resist IFN-α limits its therapeutic effectiveness, highlighting the need for new strategies to enhance treatment outcomes.
Collapse
Affiliation(s)
- Zhuoyan Lei
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Luye Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Hanlin Gao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Shubian Guo
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Xinjian Kang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jiajun Yuan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Ziying Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Yuxin Jiang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China
| | - Jinping Yi
- Department of Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren St, Gongshu District, Hangzhou, 310015, Zhejiang Province, China.
| |
Collapse
|
6
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang W, Chen J, Sun W, Xie N, Tian F, Ruan Q, Song J. The impact of hepatitis B surface antigen seroconversion on the durability of functional cure induced by pegylated interferon alpha treatment. Virol J 2024; 21:243. [PMID: 39363288 PMCID: PMC11448035 DOI: 10.1186/s12985-024-02522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) loss is regarded as a pivotal criterion for assessing functional cure in patients diagnosed chronic hepatitis B (CHB). We conducted the research to investigate the real-world performance of HBsAg seroconversion in sustaining HBsAg loss. METHODS This retrospective analysis confirmed 295 patients who attained HBsAg loss through combination therapy involving nucleos(t)ide analogues (NAs) and pegylated interferon alpha (peg-IFNα). Employing Kaplan-Meier estimates method to conduct survival analysis. The forest plot was used to visualize the results of multivariate Cox regression, and selected variables were included in the nomogram. RESULTS HBsAg seroreversion was observed in 45 patients during follow-up periods, with a lower recurrence risk in patients with HBsAg seroconversion at the end of peg-IFNα therapy (EOT) (10.3% vs 37.3% at 96-week, P < 0.0001). Moreover, the sustainability of hepatitis B surface antibody (anti-HBs) in participants continuing therapy after HBsAg seroconversion was superior to those discontinued prematurely (72.5% vs 54.5% at 96 weeks, P = 0.012). Additionally, the former group was also relatively less likely to experience HBsAg reversion during long-term observation (8.4% vs 14.3% at 96 weeks, P = 0.280). Hepatitis B envelope antigen (HBeAg) status, anti-HBs status and consolidation treatment screened by multivariable analysis were utilized to construct a predictive model for HBsAg reversion. The concordance index(C-index = 0.77) and calibration plots indicated satisfactory discrimination and consistency of nomogram. CONCLUSIONS HBsAg seroconversion was beneficial for sustaining functional cure in patients treated with peg-IFNα. Continuing consolidation therapy after HBsAg seroconversion also contributed to maintain HBsAg seroconversion and improve the durability of HBsAg loss. The nomogram illustrated its efficacy as a valuable instrument in showcasing survival probability of functional cure.
Collapse
Affiliation(s)
- Wencong Zhang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wenjin Sun
- Department of Infectious Diseases, Ezhou Central Hospital, Ezhou, China
| | - Nana Xie
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Fangbing Tian
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Jianxin Song
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
8
|
Li Y, Wang F, Zhou J, Li L, Song C, Chen E. Optimal Treatment Based on Interferon No Longer Makes Clinical Cure of Chronic Hepatitis B Far Away: An Evidence-Based Review on Emerging Clinical Data. Clin Pharmacol Ther 2024; 116:295-303. [PMID: 38686952 DOI: 10.1002/cpt.3287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Chronic hepatitis B (CHB) remains a major global public health problem. The functional cure is the ideal therapeutic target recommended by the latest guidelines, and pursuing a functional cure has become the key treatment end point of current therapy and for upcoming clinical trials. In this review, based on the latest published clinical research evidence, we analyzed the concept and connotation of clinical cures and elaborated on the benefits of clinical cures in detail. Secondly, we have summarized various potential treatment methods for achieving clinical cures, especially elaborating on the latest research progress of interferon-based optimized treatment strategies in achieving clinical cures. We also analyzed which populations can achieve clinical cures and conducted a detailed analysis of relevant virological and serological markers in screening clinical cure advantage populations and predicting clinical cure achievement. In addition, we also introduced the difficulties that may be encountered in the current pursuit of achieving a clinical cure.
Collapse
Affiliation(s)
- Yujing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Fada Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Lanqing Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chengrun Song
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li YP, Liu CR, He L, Dang SS. Hepatitis B cure: Current situation and prospects. World J Hepatol 2024; 16:900-911. [PMID: 38948438 PMCID: PMC11212658 DOI: 10.4254/wjh.v16.i6.900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Achievement of a 'clinical cure' in chronic hepatitis B (CHB) implies sustained virological suppression and immunological control over the infection, which is the ideal treatment goal according to domestic and international CHB management guidelines. Clinical practice has shown encouraging results for specific patient cohorts using tailored treatment regimens. These regimens incorporate either nucleos(t)ide analogs, immunomodulatory agents such as pegylated interferon α, or a strategic combination of both, sequentially or concurrently administered. Despite these advancements in the clinical handling of hepatitis B, achieving a clinical cure remains elusive for a considerable subset of patients due to the number of challenges that preclude the realization of optimal treatment outcomes. These include, but are not limited to, the emergence of antiviral resistance, incomplete immune recovery, and the persistence of covalently closed circular DNA. Moreover, the variance in response to interferon therapy and the lack of definitive biomarkers for treatment cessation also contribute to the complexity of achieving a clinical cure. This article briefly overviews the current research progress and existing issues in pursuing a clinical cure for hepatitis B.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ling He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
10
|
Shen J, Xu X, Fan J, Chen H, Zhao Y, Huang W, Liu W, Zhang Z, Cui Q, Li Q, Niu Z, Jiang D, Cao G. APOBEC3-related mutations in the spike protein-encoding region facilitate SARS-CoV-2 evolution. Heliyon 2024; 10:e32139. [PMID: 38868014 PMCID: PMC11168432 DOI: 10.1016/j.heliyon.2024.e32139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2. The APOBEC3-related C > U mutations ranked as the second most common mutation types in the SARS-CoV-2 genome. mRNA expression of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) in peripheral blood cells increased with disease severity. A3B, a critical member of the APOBEC3 family, was significantly upregulated in both severe and moderate COVID-19 patients and positively associated with neutrophil proportion and COVID-19 severity. We identified USP18 protein, a key molecule centralizing the protein-protein interaction network of key APOBEC3 proteins. Furthermore, mRNA expression of USP18 was significantly correlated to ACE2 and TMPRSS2 expression in the tissue of upper airways. Knockdown of USP18 mRNA significantly decreased A3B expression. Ectopic expression of A3B gene increased SARS-CoV-2 infectivity. C > U mutations at S371F, S373L, and S375F significantly conferred with the immune escape of SARS-CoV-2. Thus, APOBEC3, whose expression are upregulated by inflammatory factors, might promote SARS-CoV-2 evolution and spread via upregulating USP18 level and facilitating the immune escape. A3B and USP18 might be therapeutic targets for interfering with SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Xinxin Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyan Fan
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Hongsen Chen
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Weijin Huang
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, 102629 Beijing, China
| | - Wenbin Liu
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Qianqian Cui
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, 102629 Beijing, China
| | - Qianqian Li
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, 102629 Beijing, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Dongming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai 200120, China
- Key Laboratory of Biological Defense, Ministry of Education, China
- Shanghai Key Laboratory of Medical Bioprotection, China
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Sinha P, Thio CL, Balagopal A. Intracellular Host Restriction of Hepatitis B Virus Replication. Viruses 2024; 16:764. [PMID: 38793645 PMCID: PMC11125714 DOI: 10.3390/v16050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The hepatitis B virus (HBV) infects hepatocytes and hijacks host cellular mechanisms for its replication. Host proteins can be frontline effectors of the cell's defense and restrict viral replication by impeding multiple steps during its intracellular lifecycle. This review summarizes many of the well-described restriction factors, their mechanisms of restriction, and counteractive measures of HBV, with a special focus on viral transcription. We discuss some of the limitations and knowledge gaps about the restriction factors, highlighting how these factors may be harnessed to facilitate therapeutic strategies against HBV.
Collapse
Affiliation(s)
| | | | - Ashwin Balagopal
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (P.S.); (C.L.T.)
| |
Collapse
|
12
|
Zhao S, Li Y, Xu J, Shen L. APOBEC3C is a novel target for the immune treatment of lower-grade gliomas. Neurol Res 2024; 46:227-242. [PMID: 38007705 DOI: 10.1080/01616412.2023.2287340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C (A3C) has been identified as a cancer molecular biomarker in the past decade. However, the practical role of A3C in lower-grade gliomas (LGGs) in improving the clinical outcome remains unclear. This study aims to discuss the function of A3C in immunotherapy in LGGs. METHODS The RNA-Sequencing (RNA-seq) and corresponding clinical data were extracted from UCSC Xena and the results were verified in the Chinese Glioma Genome Atlas (CGGA). Weighted gene co-expression network analysis (WGCNA) was used for screening A3C-related genes. Comprehensive bioinformation analyses were performed and multiple levels of expression, survival rate, and biological functions were assessed to explore the functions of A3C. RESULTS A3C expression was significantly higher in LGGs than in normal tissues but lower than in glioblastoma (GBM), indicating its role as an independent prognosis predictor for LGGs. Twenty-eight A3C-related genes were found with WGCNA for unsupervised clustering analysis and three modification patterns with different outcomes and immune cell infiltration were identified. A3C and the A3C score were also correlated with immune cell infiltration and the expression of immune checkpoints. In addition, the A3C score was correlated with increased sensitivity to chemotherapy. Single-cell RNA (scRNA) analysis indicated that A3C most probably expresses on immune cells, such as T cells, B cells and macrophage. CONCLUSIONS A3C is an immune-related prognostic biomarker in LGGs. Developing drugs to block A3C could enhance the efficiency of immunotherapy and improve disease survival.Abbreviation: A3C: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C; LGGs: lower-grade gliomas; CGGA: Chinese Glioma Genome Atlas; WGCNA: Weighted gene co-expression network analysis; scRNA: Single-cell RNA; HGG: higher-grade glioma; OS: overall survival; TME: tumor microenvironment; KM: Kaplan-Meier; PFI: progression-free interval; IDH: isocitrate dehydrogenase; ROC: receiver operating characteristic; GS: gene significance; MM: module membership; TIMER: Tumor IMmune Estimation Resource; GSVA: gene set variation analysis; ssGSEA: single-sample gene-set enrichment analysis; PCA: principal component analysis; AUC: area under ROC curve; HAVCR2: hepatitis A virus cellular receptor 2; PDCD1: programmed cell death 1; PDCD1LG2: PDCD1 ligand 2; PTPRC: protein tyrosine phosphatase receptor type C; ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma;BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOLCholangiocarcinoma; COADColon adenocarcinoma; DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and Neck squamous cell carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma.
Collapse
Affiliation(s)
- Shufa Zhao
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Yuntao Li
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Liang Shen
- Department of Neurosurgery, The affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
13
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
14
|
Timmerman AL, Commandeur L, Deijs M, Burggraaff MGJM, Lavell AHA, van der Straten K, Tejjani K, van Rijswijk J, van Gils MJ, Sikkens JJ, Bomers MK, van der Hoek L. The Impact of First-Time SARS-CoV-2 Infection on Human Anelloviruses. Viruses 2024; 16:99. [PMID: 38257799 PMCID: PMC10818381 DOI: 10.3390/v16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the Anelloviridae family dominate the blood virome, emerging early in life. The anellome, representing the variety of anelloviruses within an individual, stabilizes by adulthood. Despite their supposedly commensal nature, elevated anellovirus concentrations under immunosuppressive treatment indicate an equilibrium controlled by immunity. Here, we investigated whether anelloviruses are sensitive to the immune activation that accompanies a secondary infection. As a model, we investigated 19 health care workers (HCWs) with initial SARS-CoV-2 infection, with blood sampling performed pre and post infection every 4 weeks in a 3-month-follow-up during the early 2020 COVID-19 pandemic. A concurrently followed control group (n = 27) remained SARS-CoV-2-negative. Serum anellovirus loads were measured using qPCR. A significant decrease in anellovirus load was found in the first weeks after SARS-CoV-2 infection, whereas anellovirus concentrations remained stable in the uninfected control group. A restored anellovirus load was seen approximately 10 weeks after SARS-CoV-2 infection. For five subjects, an in-time anellome analysis via Illumina sequencing could be performed. In three of the five HCWs, the anellome visibly changed during SARS-CoV-2 infection and returned to baseline in two of these cases. In conclusion, anellovirus loads in blood can temporarily decrease upon an acute secondary infection.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Lisanne Commandeur
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Maarten G. J. M. Burggraaff
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - A. H. Ayesha Lavell
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Khadija Tejjani
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jacqueline van Rijswijk
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jonne J. Sikkens
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marije K. Bomers
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| |
Collapse
|
15
|
Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, Blanc J, Hocini H, Lefebvre C, El-Jahrani N, Kitsara M, L'honoré A, Kordeli E, Fornes P, Concordet JP, Tachdjian G, Rodriguez AM, Vartanian JP, Béhin A, Wahbi K, Joanne P, Agbulut O. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther 2024; 15:10. [PMID: 38167524 PMCID: PMC10763022 DOI: 10.1186/s13287-023-03619-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Yeranuhi Hovhannisyan
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Zhenlin Li
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Domitille Callon
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vivien Batoumeni
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Ksilink, Strasbourg, France
| | - Alexis Canette
- Service de Microscopie Électronique (IBPS-SME), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, Paris, France
| | - Jocelyne Blanc
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Nora El-Jahrani
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Maria Kitsara
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Aurore L'honoré
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Ekaterini Kordeli
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Paul Fornes
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Gérard Tachdjian
- Laboratoire de Cytogénétique, Service d'Histologie-Embryologie-Cytogénétique, AP-HP, Hôpital Antoine Béclère, Université Paris Saclay, Clamart, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Béhin
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Karim Wahbi
- Cardiology Department, AP-HP, Cochin Hospital, Université Paris Cité, Paris, France
| | - Pierre Joanne
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| | - Onnik Agbulut
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| |
Collapse
|
16
|
Zhao Q, Liu H, Tang L, Wang F, Tolufashe G, Chang J, Guo JT. Mechanism of interferon alpha therapy for chronic hepatitis B and potential approaches to improve its therapeutic efficacy. Antiviral Res 2024; 221:105782. [PMID: 38110058 DOI: 10.1016/j.antiviral.2023.105782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Hepatitis B virus (HBV) chronically infects 296 million people worldwide and causes more than 820,000 deaths annually due to cirrhosis and hepatocellular carcinoma. Current standard-of-care medications for chronic hepatitis B (CHB) include nucleos(t)ide analogue (NA) viral DNA polymerase inhibitors and pegylated interferon alpha (PEG-IFN-α). NAs can efficiently suppress viral replication and improve liver pathology, but not eliminate or inactivate HBV covalently closed circular DNA (cccDNA). CCC DNA is the most stable HBV replication intermediate that exists as a minichromosome in the nucleus of infected hepatocyte to transcribe viral RNA and support viral protein translation and genome replication. Consequentially, a finite duration of NA therapy rarely achieves a sustained off-treatment suppression of viral replication and life-long NA treatment is most likely required. On the contrary, PEG-IFN-α has the benefit of finite treatment duration and achieves HBsAg seroclearance, the indication of durable immune control of HBV replication and functional cure of CHB, in approximately 5% of treated patients. However, the low antiviral efficacy and poor tolerability limit its use. Understanding how IFN-α suppresses HBV replication and regulates antiviral immune responses will help rational optimization of IFN therapy and development of novel immune modulators to improve the rate of functional cure. This review article highlights mechanistic insight on IFN control of HBV infection and recent progress in development of novel IFN regimens, small molecule IFN mimetics and combination therapy of PEG-IFN-α with new direct-acting antivirals and therapeutic vaccines to facilitate the functional cure of CHB.
Collapse
Affiliation(s)
- Qiong Zhao
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Hui Liu
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Liudi Tang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Fuxuan Wang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | | | - Jinhong Chang
- Baruch S. Blumberg Institute, Doylestown, PA, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, PA, United States.
| |
Collapse
|
17
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
18
|
Lok J, Guerra Veloz MF, Agarwal K. Overview of New Targets for Hepatitis B Virus: Immune Modulators, Interferons, Bifunctional Peptides, Therapeutic Vaccines and Beyond. Clin Liver Dis 2023; 27:857-876. [PMID: 37778774 DOI: 10.1016/j.cld.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Nucleos(t)ide analogs are the cornerstone of treatment against hepatitis B virus; however, they have no direct effect on its transcriptional template (ie, covalently closed circular DNA) and so functional cure is rarely achieved. Over recent years, there has been a significant improvement in our understanding of the viral life cycle and its mechanisms of immune evasion. In this review article, we will explore novel therapeutic targets, discuss the latest data from clinical trials, and highlight future research priorities.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | | | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
19
|
Li YP, Liu CR, Hao M, Lu R, Dang SS. Clinical cure of hepatitis B: Delight and anticipation. Shijie Huaren Xiaohua Zazhi 2023; 31:837-845. [DOI: 10.11569/wcjd.v31.i20.837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Chen-Rui Liu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Miao Hao
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Rui Lu
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
20
|
Zhang S, Guo Y, Hu Y, Gao X, Bai F, Ding Q, Hou K, Wang Z, Sun X, Zhao H, Qu Z, Xu Q. The role of APOBEC3C in modulating the tumor microenvironment and stemness properties of glioma: evidence from pancancer analysis. Front Immunol 2023; 14:1242972. [PMID: 37809064 PMCID: PMC10551170 DOI: 10.3389/fimmu.2023.1242972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background It is now understood that APOBEC3 family proteins (A3s) are essential in tumor progression, yet their involvement in tumor immunity and stemness across diverse cancer types remains poorly understood. Methods In the present study, comprehensive genome-wide statistical and bioinformatic analyses were conducted to elucidate A3 family expression patterns, establishing clinically relevant correlations with prognosis, the tumor microenvironment(TME), immune infiltration, checkpoint blockade, and stemness across cancers. Different experimental techniques were applied, including RT-qPCR, immunohistochemistry, sphere formation assays, Transwell migration assays, and wound-healing assays, to investigate the impact of A3C on low-grade glioma (LGG) and glioblastoma multiforme (GBM), as well as its function in glioma stem cells(GSCs). Results Dysregulated expression of A3s was observed in various human cancer tissues. The prognostic value of A3 expression differed across cancer types, with a link to particularly unfavorable outcomes in gliomas. A3s are associated with the the TME and stemness in multiple cancers. Additionally, we developed an independent prognostic model based on A3s expression, which may be an independent prognostic factor for OS in patients with glioma. Subsequent validation underscored a strong association between elevated A3C expression and adverse prognostic outcomes, higher tumor grades, and unfavorable histology in glioma. A potential connection between A3C and glioma progression was established. Notably, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses implicated A3C in immune system-related diseases, with heightened A3C levels contributing to an immunosuppressive tumor microenvironment (TME) in glioma. Furthermore, in vitro experiments substantiated the role of A3C in sustaining and renewing glioma stem cells, as A3C deletion led to diminished proliferation, invasion, and migration of glioma cells. Conclusion The A3 family exhibits heterogeneous expression across various cancer types, with its expression profile serving as a predictive marker for overall survival in glioma patients. A3C emerges as a regulator of glioma progression, exerting its influence through modulation of the tumor microenvironment and regulation of stemness.
Collapse
Affiliation(s)
- Shoudu Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Yuanzheng Hu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Xiaofang Gao
- The Department of Science and Technology, Zhengzhou Revogene Ltd, Zhengzhou, Henan, China
| | - Fanghui Bai
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Kaiqi Hou
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Zongqing Wang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Xing Sun
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Hui Zhao
- The Department of Science and Technology, Zhengzhou Revogene Ltd, Zhengzhou, Henan, China
| | - Zhongyu Qu
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
21
|
Yu J, Shen Z, Chen S, Liu H, Du Z, Mao R, Wang J, Zhang Y, Zhu H, Yang S, Li J, Wu J, Dong M, Zhu M, Huang Y, Li J, Yuan Z, Xie Y, Lu M, Zhang J. Inhibition of HBV replication by EVA1A via enhancing cellular degradation of HBV components and its potential therapeutic application. Antiviral Res 2023:105643. [PMID: 37236321 DOI: 10.1016/j.antiviral.2023.105643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Hepatitis B virus (HBV) DNA is much higher during HBeAg-positive chronic HBV infection (EP-CBI) than during HBeAg-negative chronic HBV infection (EN-CBI), although the necroinflammation in liver is minimal and the adaptive immune response is similar in both phases. We previously reported that mRNA levels of EVA1A were higher in EN-CBI patients. In this study, we aimed to investigate whether EVA1A inhibits HBV gene expression and examine the underlying mechanisms. The available cell models for HBV replication and model HBV mice were used to investigate how EVA1A regulates HBV replication and the antiviral activity based on gene therapy. The signaling pathway was determined through RNA sequencing analysis. The results demonstrated that EVA1A can inhibit HBV gene expression in vitro and in vivo. In particular, EVA1A overexpression resulted in accelerated HBV RNA degradation and activation of the PI3K-Akt-mTOR pathway, two processes that directly and indirectly inhibiting HBV gene expression. EVA1A is a promising candidate for treating chronic hepatitis B (CHB). In conclusion, EVA1A is a new host restriction factor that regulates the HBV life cycle via a nonimmune process.
Collapse
Affiliation(s)
- Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyan Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Sisi Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Hu X, Luo H, Tan G, Li Y, Qin B. The expression of interleukin-1β in patients with chronic hepatitis B treated with pegylated-interferon-alpha combined with tenofovir disoproxil fumarate and monotherapy. BMC Gastroenterol 2023; 23:163. [PMID: 37208599 DOI: 10.1186/s12876-023-02812-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Anti-hepatitis B virus (HBV) treatment uses tenofovir disoproxil fumarate (TDF) along with Pegylated-interferon-alpha (Peg-IFN-α), which is more effective than TDF/Peg-IFN-α monotherapy. We have previously shown that interleukin-1beta (IL-1β) is related to the effectiveness of IFN-α treatment in chronic hepatitis B (CHB) patients. The aim was to investigate the expression of IL-1β in CHB patients treated with Peg-IFN-α combination with TDF and TDF/Peg-IFN-α monotherapy. METHODS Huh7 cells infected with HBV were stimulated by Peg-IFN-α and/or Tenofovir (TFV) for 24h. A single-center cohort study of prospective recruitment of CHB patients: untreated CHB (Group A), TDF combined with Peg-IFN-α therapy (Group B), Peg-IFN-α monotherapy (Group C), TDF monotherapy (Group D). Normal donors served as controls. The clinical datas and blood of patients were collected at 0, 12, and 24 weeks. According to the early response criteria, Group B and C were divided into two subgroups: the early response group (ERG) and the non-early response group (NERG). Stimulation of HBV-infected hepatoma cells with IL-1β to validate the antiviral activity of IL-1β. To test the blood sample, cell culture supernatant, and cell lysates and to assess the expression of IL-1β and HBV replication levels in various treatment protocols, Enzyme-Linked Immunosorbent Assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used. SPSS 26.0 and GraphPad Prism 8.0.2 software were used for statistical analysis. P values < 0.05 was considered to be statistically significant. RESULTS In vitro experiments, Peg-IFN-α plus TFV treatment group expressed higher IL-1β and inhibited HBV more effectively than monotherapy. Finally, 162 cases were enrolled for observation (Group A (n = 45), Group B (n = 46), Group C (n = 39), and Group D (n = 32)), and normal donors (n = 20) were enrolled for control. The early virological response rates of Group B, C, and D were 58.7%, 51.3%, and 31.2%. At 24 weeks, IL-1β in Group B(P = 0.007) and C(P = 0.034) showed higher than at 0 week. In Group B, the IL-1β showed an upward trend at 12w and 24w in the ERG. IL-1β significantly reduced HBV replication levels in hepatoma cells. CONCLUSION The increased expression of IL-1β may enhance the efficacy of TDF combined with Peg-IFN-α therapy in achieving an early response for CHB patients.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Haiying Luo
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guili Tan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yadi Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
23
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Mak LY, Hui RWH, Cheung KS, Fung J, Seto WK, Yuen MF. Advances in determining new treatments for hepatitis B infection by utilizing existing and novel biomarkers. Expert Opin Drug Discov 2023; 18:401-416. [PMID: 36943183 DOI: 10.1080/17460441.2023.2192920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) infection is a major global health threat and accounts for significant liver-related morbidity and mortality. An improved understanding of how hepatitis B virus (HBV) interacts with the host immune system allows the discovery of novel biomarkers and new treatment options. Viral biomarkers including hepatitis B surface antigen (HBsAg) and newer ones like HBV RNA and hepatitis B core-related antigen appear to be useful to select patients who are likely to benefit from cessation of long-term antiviral therapy. These markers can also help to confirm target engagement for novel compounds, and efficacy in HBsAg reduction and seroclearance is deemed essential as this is how the current treatment endpoint of functional cure is defined. AREAS COVERED In this review, the authors discuss the current standard of care and the gaps between such standard and the ideal goals for treatment in CHB. The authors highlight novel viral and immunological biomarkers that are potentially useful to evaluate treatment response. Novel treatment approaches in relation to these novel biomarkers are also evaluated. EXPERT OPINION Novel serum viral biomarkers and immunological markers are indispensable in the HBV functional cure program. These will likely become part of standard monitoring soon.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
25
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
26
|
G 1/S Cell Cycle Induction by Epstein-Barr Virus BORF2 Is Mediated by P53 and APOBEC3B. J Virol 2022; 96:e0066022. [PMID: 36069545 PMCID: PMC9517719 DOI: 10.1128/jvi.00660-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesvirus lytic infection causes cells to arrest at the G1/S phase of the cell cycle by poorly defined mechanisms. In a prior study using fluorescent ubiquitination-based cell cycle indicator (FUCCI) cells that express fluorescently tagged proteins marking different stages of the cell cycle, we showed that the Epstein-Barr virus (EBV) protein BORF2 induces the accumulation of G1/S cells, and that BORF2 affects p53 levels without affecting the p53 target protein p21. We also found that BORF2 specifically interacted with APOBEC3B (A3B) and forms perinuclear bodies with A3B that prevent A3B from mutating replicating EBV genomes. We now show that BORF2 also interacts with p53 and that A3B interferes with the BORF2-p53 interaction, although A3B and p53 engage distinct surfaces on BORF2. Cell cycle analysis showed that G1/S induction by BORF2 is abrogated when either p53 or A3B is silenced or when an A3B-binding mutant of BORF2 is used. Furthermore, silencing A3B in EBV lytic infection increased cell proliferation, supporting a role for A3B in G1/S arrest. These data suggest that the p53 induced by BORF2 is inactive when it binds BORF2, but is released and induces G1/S arrest when A3B is present and sequesters BORF2 in perinuclear bodies. Interestingly, this mechanism is conserved in the BORF2 homologue in HSV-1, which also re-localizes A3B, induces and binds p53, and induces G1/S dependent on A3B and p53. In summary, we have identified a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection. IMPORTANCE In lytic infection, herpesviruses cause cells to arrest at the G1/S phase of the cell cycle in order to provide an optimal environment for viral replication; however, the mechanisms involved are not well understood. We have shown that the Epstein-Barr virus BORF2 protein and its homologue in herpes simplex virus 1 both induce G1/S, and do this by similar mechanisms which involve binding p53 and APOBEC3B and induction of p53. Our study identifies a new mechanism by which G1/S arrest can be induced in herpesvirus lytic infection and a new role of APOBEC3B in herpesvirus lytic infection.
Collapse
|
27
|
Li N, Yu K, Dong M, Wang J, Yang F, Zhu H, Yu J, Yang J, Xie W, Mitra B, Mao R, Wu F, Guo H, Zhang J. Intrahepatic transcriptomics reveals gene signatures in chronic hepatitis B patients responded to interferon therapy. Emerg Microbes Infect 2022; 11:1876-1889. [PMID: 35815389 PMCID: PMC9336496 DOI: 10.1080/22221751.2022.2100831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains a substantial public health burden worldwide. Alpha-interferon (IFNα) is one of the two currently approved therapies for chronic hepatitis B (CHB), to explore the mechanisms underlying IFNα treatment response, we investigated baseline and 24-week on-treatment intrahepatic gene expression profiles in 21 CHB patients by mRNA-seq. The data analyses demonstrated that PegIFNα treatment significantly induced antiviral responses. Responders who achieved HBV DNA loss and HBeAg or HBsAg seroconversion displayed higher fold change and larger number of up-regulated interferon-stimulated genes (ISGs). Interestingly, lower expression levels of certain ISGs were observed in responders in their baseline biopsy samples. In HBeAg+ patients, non-responders had relative higher baseline HBeAg levels than responders. More importantly, HBeAg− patients showed higher HBsAg loss rate than HBeAg+ patients. Although a greater fold change of ISGs was observed in HBeAg− patients than HBeAg+ patients, upregulation of ISGs in HBeAg+ responders exceeded HBeAg− responders. Notably, PegIFNα treatment increased monocyte and mast cell infiltration, but decreased CD8 T cell and M1 macrophage infiltration in both responders and non-responders, while B cell infiltration was increased only in responders. Moreover, co-expression analysis identified ribosomal proteins as critical players in antiviral response. The data also indicate that IFNα may influence the production of viral antigens associated with endoplasmic reticulum. Collectively, the intrahepatic transcriptome analyses in this study enriched our understanding of IFN-mediated antiviral effects in CHB patients and provided novel insights into the development of potential strategies to improve IFNα therapy.
Collapse
Affiliation(s)
- Ning Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Kangkang Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jie Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingshu Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wentao Xie
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Bidisha Mitra
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, United States
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| | - Feizhen Wu
- Key Laboratory of Epigenetics, Institutes of Biomedical Science, Fudan University, China
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, United States
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Mak LY, Cheung KS, Fung J, Seto WK, Yuen MF. New strategies for the treatment of chronic hepatitis B. Trends Mol Med 2022; 28:742-757. [PMID: 35780008 DOI: 10.1016/j.molmed.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
Functional cure, as defined by seroclearance of hepatitis B surface antigen (HBsAg), is the desired treatment endpoint for chronic hepatitis B (CHB) infection, yet is rarely achieved with the currently approved therapy. Novel treatments currently in the clinical phase of development act by inhibiting viral replication/antigen reduction and/or by restoring host immune control. Although some agents are effective in reducing the viral antigen load, a greater magnitude of suppression is required to achieve functional cure. Compounds that target the covalently closed circular DNA (cccDNA) pool, hepatitis B X (HBx) protein inhibition, and mRNA destabilization are also in the preclinical phase of development. Challenges which remain include the clinical implications, immunological perturbations, and safety of these novel compounds to be used in the real-life setting.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong; Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
29
|
IFN-α inhibits HBV transcription and replication by promoting HDAC3-mediated de-2-hydroxyisobutyrylation of histone H4K8 on HBV cccDNA minichromosome in liver. Acta Pharmacol Sin 2022; 43:1484-1494. [PMID: 34497374 PMCID: PMC9160025 DOI: 10.1038/s41401-021-00765-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
The epigenetic modification of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a crucial role in cccDNA transcription and viral persistence. Interferon-α (IFN-α) is a pivotal agent against HBV cccDNA. However, the mechanism by which IFN-α modulates the epigenetic regulation of cccDNA remains poorly understood. In this study, we report that IFN-α2b enhances the histone deacetylase 3 (HDAC3)-mediated de-2-hydroxyisobutyrylation of histone H4 lysine 8 (H4K8) on HBV cccDNA minichromosome to restrict the cccDNA transcription in liver. By screening acetyltransferases and deacetylases, we identified that HDAC3 was an effective restrictor of HBV transcription and replication. Moreover, we found that HDAC3 was able to mediate the de-2-hydroxyisobutyrylation of H4K8 in HBV-expressing hepatoma cells. Then, the 2-hydroxyisobutyrylation of histone H4K8 (H4K8hib) was identified on the HBV cccDNA minichromosome, promoting the HBV transcription and replication. The H4K8hib was regulated by HDAC3 depending on its deacetylase domain in the system. The low level of HDAC3 and high level of H4K8hib were observed in the liver tissues from HBV-infected human liver-chimeric mice. The levels of H4K8hib on HBV cccDNA minichromosome were significantly elevated in the liver biopsy specimens from clinical hepatitis B patients, which was consistent with the high transcriptional activity of cccDNA. Strikingly, IFN-α2b effectively facilitated the histone H4K8 de-2-hydroxyisobutyrylation mediated by HDAC3 on the HBV cccDNA minichromosome in primary human hepatocytes and hepatoma cells, leading to the inhibition of HBV transcription and replication. Our finding provides new insights into the mechanism by which IFN-α modulates the epigenetic regulation of HBV cccDNA minichromosome.
Collapse
|
30
|
Huan C, Qu X, Li Z. Host Restrictive Factors Are the Emerging Storm Troopers Against Enterovirus: A Mini-Review. Front Immunol 2022; 13:910780. [PMID: 35603180 PMCID: PMC9114347 DOI: 10.3389/fimmu.2022.910780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Enterovirus infection continues to be a global health problem. The lack of specific drugs and broad-spectrum vaccines means an urgent need to develop effective strategies against enteroviruses. Host restrictive factors are a class of intrinsic host antiviral factors that have been broadly defined and investigated during HIV infections and have great significance for drug development and treatment design. In recent years, the essential role of host restrictive factors in regulating enteroviral infections has been gradually recognized and investigated. An increasing number of studies have shown that host-restrictive factors regulate multiple steps in the life cycle of enteroviruses. This mini-review discusses the restrictive factors against enteroviruses, their antiviral mechanism, and the arms race between them and enteroviruses. We also summarise the pathways that enteroviruses use to impair host antiviral signals. This mini-review characterizes the essential role of host restriction factors in enterovirus infections, which provides ideas and potential targets for antiviral drug design by regulating host restrictive factors. It also reveals potential future research on the interplay between host restrictive factors and enteroviruses.
Collapse
Affiliation(s)
- Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xinglong Qu
- Respiratory Department of the First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Zhang X, Wu Z, Hao Y, Yu T, Li X, Liang Y, Li J, Huang L, Xu Y, Li X, Xu X, Wang W, Xu G, Zhang X, Lv Q, Fang Y, Xu R, Qian W. Aberrantly Activated APOBEC3B Is Associated With Mutant p53-Driven Refractory/Relapsed Diffuse Large B-Cell Lymphoma. Front Immunol 2022; 13:888250. [PMID: 35592333 PMCID: PMC9112561 DOI: 10.3389/fimmu.2022.888250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor protein 53 (TP53) mutation predicts an unfavorable prognosis in diffuse large B-cell lymphoma (DLBCL), but the molecular basis for this association remains unclear. In several malignancies, the cytidine deaminase apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) has been reported to be associated with the TP53 G/C-to-A/T mutation. Here, we show that the frequency of this mutation was significantly higher in relapsed/refractory (R/R) than in non-R/R DLBCL, which was positively associated with the APOBEC3B expression level. APOBEC3B overexpression induced the TP53 G/C-to-A/T mutation in vitro, resulting in a phenotype similar to that of DLBCL specimens. Additionally, APOBEC3B-induced p53 mutants promoted the growth of DLBCL cells and enhanced drug resistance. These results suggest that APOBEC3B is a critical factor in mutant p53-driven R/R DLBCL and is therefore a potential therapeutic target.
Collapse
Affiliation(s)
- Xuzhao Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou, China
| | - Zhaoxing Wu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Hao
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Teng Yu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xian Li
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Liang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liansheng Huang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhen Li
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohua Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqin Wang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Genbo Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohong Zhang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qinghua Lv
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yongming Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rongzhen Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Kitamura K, Fukano K, Que L, Li Y, Wakae K, Muramatsu M. Activities of endogenous APOBEC3s and uracil-DNA-glycosylase affect the hypermutation frequency of hepatitis B virus cccDNA. J Gen Virol 2022; 103. [PMID: 35438620 DOI: 10.1099/jgv.0.001732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Lusheng Que
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yingfang Li
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| |
Collapse
|
33
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
34
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Differential gene expression reveals host factors for viral shedding variation in mallards ( Anas platyrhynchos) infected with low-pathogenic avian influenza virus. J Gen Virol 2022; 103:10.1099/jgv.0.001724. [PMID: 35353676 PMCID: PMC10519146 DOI: 10.1099/jgv.0.001724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intraspecific variation in pathogen shedding impacts disease transmission dynamics; therefore, understanding the host factors associated with individual variation in pathogen shedding is key to controlling and preventing outbreaks. In this study, ileum and bursa of Fabricius tissues of wild-bred mallards (Anas platyrhynchos) infected with low-pathogenic avian influenza (LPAIV) were evaluated at various post-infection time points to determine genetic host factors associated with intraspecific variation in viral shedding. By analysing transcriptome sequencing data (RNA-seq), we found that LPAIV-infected wild-bred mallards do not exhibit differential gene expression compared to uninfected birds, but that gene expression was associated with cloacal viral shedding quantity early in the infection. In both tissues, immune gene expression was higher in high/moderate shedding birds compared to low shedding birds, and significant positive relationships with viral shedding were observed. In the ileum, expression for host genes involved in viral cell entry was lower in low shedders compared to moderate shedders at 1 day post-infection (DPI), and expression for host genes promoting viral replication was higher in high shedders compared to low shedders at 2 DPI. Our findings indicate that viral shedding is a key factor for gene expression differences in LPAIV-infected wild-bred mallards, and the genes identified in this study could be important for understanding the molecular mechanisms driving intraspecific variation in pathogen shedding.
Collapse
Affiliation(s)
- Amanda C. Dolinski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jared J. Homola
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Mark D. Jankowski
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- U.S. Environmental Protection Agency, Region 10, Seattle,
WA 98101
| | - John D. Robinson
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
| | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State
University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan
State University, East Lansing, MI, USA
| |
Collapse
|
35
|
Jiang S, Wang X, Chen K, Yang P. Establishment of an inducible cell line for Hepatitis B virus genotype C2 and its pharmacological responses to interferons. Pharmacol Res 2022; 178:106142. [PMID: 35218895 DOI: 10.1016/j.phrs.2022.106142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis B virus (HBV) genotype C is closely associated with poor prognosis, contributing greatly to heavy chronic hepatitis B (CHB)-related liver disease burden in China and worldwide. However, the mechanistic studies on genotype C of HBV remain largely limited, partially because of a long-term lack of genotype C HBV-based stable cell tools. According to a bioinformatic analysis on the sub-genotype C2 HBV that is predominantly endemic in China, we selected 17.3 strain as a representative isolate. With a Tet-off gene expression system, an inducible viral replication and virion production of genotype C2 HBV were achieved in a cell line carrying persistent rcDNA-cccDNA recycling, termed HepG2-17.3, can be useful for virological studies on genotype C2 HBV. Additionally, this cell line has been formatted into cell-based assay that permits particular pharmacological screening of drug candidates, such as interferon regimens, for evaluations of the inhibitory effects on genotype C2 HBV replication.
Collapse
Affiliation(s)
- Shaodong Jiang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaili Chen
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyuan Yang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Zhang Y, Chen X, Cao Y, Yang Z. Roles of APOBEC3 in hepatitis B virus (HBV) infection and hepatocarcinogenesis. Bioengineered 2021; 12:2074-2086. [PMID: 34043485 PMCID: PMC8806738 DOI: 10.1080/21655979.2021.1931640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
APOBEC3 (A3) cytidine deaminases inhibit hepatitis B virus (HBV) infection and play vital roles in maintaining a variety of biochemical processes, including the regulation of protein expression and innate immunity. Emerging evidence indicates that the deaminated deoxycytidine biochemical activity of A3 proteins in single-stranded DNA makes them a double-edged sword. These enzymes can cause cellular genetic mutations at replication forks or within transcription bubbles, depending on the physiological state of the cell and the phase of the cell cycle. Under pathological conditions, aberrant expression of A3 genes with improper deaminase activity regulation may threaten genomic stability and eventually lead to cancer development. This review attempted to summarize the antiviral activities and underlying mechanisms of A3 editing enzymes in HBV infections. Moreover, the correlations between A3 genes and hepatocarcinogenesis were also elucidated.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary HospitalSchool of Medicine, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Ye J, Chen J. Interferon and Hepatitis B: Current and Future Perspectives. Front Immunol 2021; 12:733364. [PMID: 34557195 PMCID: PMC8452902 DOI: 10.3389/fimmu.2021.733364] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health burden worldwide for which there is still no effective curative treatment. Interferon (IFN) consists of a group of cytokines with antiviral activity and immunoregulatory and antitumor effects, that play crucial roles in both innate and adaptive immune responses. IFN-α and its pegylated form have been used for over thirty years to treat chronic hepatitis B (CHB) with advantages of finite treatment duration and sustained virologic response, however, the efficacy is limited and side effects are common. Here, we summarize the status and unique advantages of IFN therapy against CHB, review the mechanisms of IFN-α action and factors affecting IFN response, and discuss the possible improvement of IFN-based therapy and the rationale of combinations with other antiviral agents in seeking an HBV cure.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
39
|
Goh ZY, Ren EC, Ko HL. Intracellular interferon signalling pathways as potential regulators of covalently closed circular DNA in the treatment of chronic hepatitis B. World J Gastroenterol 2021; 27:1369-1391. [PMID: 33911462 PMCID: PMC8047536 DOI: 10.3748/wjg.v27.i14.1369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Infection with the hepatitis B virus (HBV) is still a major global health threat as 250 million people worldwide continue to be chronically infected with the virus. While patients may be treated with nucleoside/nucleotide analogues, this only suppresses HBV titre to sub-detection levels without eliminating the persistent HBV covalently closed circular DNA (cccDNA) genome. As a result, HBV infection cannot be cured, and the virus reactivates when conditions are favorable. Interferons (IFNs) are cytokines known to induce powerful antiviral mechanisms that clear viruses from infected cells. They have been shown to induce cccDNA clearance, but their use in the treatment of HBV infection is limited as HBV-targeting immune cells are exhausted and HBV has evolved multiple mechanisms to evade and suppress IFN signalling. Thus, to fully utilize IFN-mediated intracellular mechanisms to effectively eliminate HBV, instead of direct IFN administration, novel strategies to sustain IFN-mediated anti-cccDNA and antiviral mechanisms need to be developed. This review will consolidate what is known about how IFNs act to achieve its intracellular antiviral effects and highlight the critical interferon-stimulated gene targets and effector mechanisms with potent anti-cccDNA functions. These include cccDNA degradation by APOBECs and cccDNA silencing and transcription repression by epigenetic modifications. In addition, the mechanisms that HBV employs to disrupt IFN signalling will be discussed. Drugs that have been developed or are in the pipeline for components of the IFN signalling pathway and HBV targets that detract IFN signalling mechanisms will also be identified and discussed for utility in the treatment of HBV infections. Together, these will provide useful insights into design strategies that specifically target cccDNA for the eradication of HBV.
Collapse
Affiliation(s)
- Zhi Yi Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| |
Collapse
|
40
|
Wang G, Guan J, Khan NU, Li G, Shao J, Zhou Q, Xu L, Huang C, Deng J, Zhu H, Chen Z. Potential capacity of interferon-α to eliminate covalently closed circular DNA (cccDNA) in hepatocytes infected with hepatitis B virus. Gut Pathog 2021; 13:22. [PMID: 33845868 PMCID: PMC8040234 DOI: 10.1186/s13099-021-00421-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Interferon-alpha (IFN-α) and nucleot(s)ide analogs (NAs) are first-line drugs for the treatment of chronic hepatitis B virus (HBV) infections. Generally, NAs target the reverse transcription of HBV pregenomic RNA, but they cannot eliminate covalently-closed-circular DNA (cccDNA). Although effective treatment with NAs can dramatically decrease HBV proteins and DNA loads, and even promote serological conversion, cccDNA persists in the nucleus of hepatocytes due to the lack of effective anti-cccDNA drugs. Of the medications currently available, only IFN-α can potentially target cccDNA. However, the clinical effects of eradicating cccDNA using IFN-α in the hepatocytes of patients with HBV are not proficient as well as expected and are not well understood. Herein, we review the anti-HBV mechanisms of IFN-α involving cccDNA modification as the most promising approaches to cure HBV infection. We expect to find indications of promising areas of research that require further study to eliminate cccDNA of HBV in patients.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Nazif U Khan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Guojun Li
- Institute for Hepatology, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, Shenzhen, 518112, Guangdong, China.,The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, 518112, Shenzhen, China
| | - Junwei Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qihui Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lichen Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Chunhong Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jingwen Deng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, National Clinical Research Center for Infectious Diseases, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
41
|
Perez-Bercoff D, Laude H, Lemaire M, Hunewald O, Thiers V, Vignuzzi M, Blanc H, Poli A, Amoura Z, Caval V, Suspène R, Hafezi F, Mathian A, Vartanian JP, Wain-Hobson S. Sustained high expression of multiple APOBEC3 cytidine deaminases in systemic lupus erythematosus. Sci Rep 2021; 11:7893. [PMID: 33846459 PMCID: PMC8041901 DOI: 10.1038/s41598-021-87024-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
APOBEC3 (A3) enzymes are best known for their role as antiviral restriction factors and as mutagens in cancer. Although four of them, A3A, A3B, A3F and A3G, are induced by type-1-interferon (IFN-I), their role in inflammatory conditions is unknown. We thus investigated the expression of A3, and particularly A3A and A3B because of their ability to edit cellular DNA, in Systemic Lupus Erythematosus (SLE), a chronic inflammatory disease characterized by high IFN-α serum levels. In a cohort of 57 SLE patients, A3A and A3B, but also A3C and A3G, were upregulated ~ 10 to 15-fold (> 1000-fold for A3B) compared to healthy controls, particularly in patients with flares and elevated serum IFN-α levels. Hydroxychloroquine, corticosteroids and immunosuppressive treatment did not reverse A3 levels. The A3AΔ3B polymorphism, which potentiates A3A, was detected in 14.9% of patients and in 10% of controls, and was associated with higher A3A mRNA expression. A3A and A3B mRNA levels, but not A3C or A3G, were correlated positively with dsDNA breaks and negatively with lymphopenia. Exposure of SLE PBMCs to IFN-α in culture induced massive and sustained A3A levels by 4 h and led to massive cell death. Furthermore, the rs2853669 A > G polymorphism in the telomerase reverse transcriptase (TERT) promoter, which disrupts an Ets-TCF-binding site and influences certain cancers, was highly prevalent in SLE patients, possibly contributing to lymphopenia. Taken together, these findings suggest that high baseline A3A and A3B levels may contribute to cell frailty, lymphopenia and to the generation of neoantigens in SLE patients. Targeting A3 expression could be a strategy to reverse cell death and the generation of neoantigens.
Collapse
Affiliation(s)
- Danielle Perez-Bercoff
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg.
| | - Hélène Laude
- ICAReB Platform, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Morgane Lemaire
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Valérie Thiers
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre D'Immunologie Et Des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Caval
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Rodolphe Suspène
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - François Hafezi
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre D'Immunologie Et Des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| |
Collapse
|
42
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Lee S, Goyal A, Perelson AS, Ishida Y, Saito T, Gale M. Suppression of hepatitis B virus through therapeutic activation of RIG-I and IRF3 signaling in hepatocytes. iScience 2021; 24:101969. [PMID: 33458618 PMCID: PMC7797372 DOI: 10.1016/j.isci.2020.101969] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) mediates persistent infection, chronic hepatitis, and liver disease. HBV covalently closed circular (ccc)DNA is central to viral persistence such that its elimination is considered the cornerstone for HBV cure. Inefficient detection by pathogen recognition receptors (PRRs) in the infected hepatocyte facilitates HBV persistence via avoidance of innate immune activation and interferon regulatory factor (IRF)3 induction of antiviral gene expression. We evaluated a small molecule compound, F7, and 5'-triphosphate-poly-U/UC pathogen-associated-molecular-pattern (PAMP) RNA agonists of RIG-I, a PRR that signals innate immunity, for ability to suppress cccDNA. F7 and poly-U/UC PAMP treatment of HBV-infected cells induced RIG-I signaling of IRF3 activation to induce antiviral genes for suppression of cccDNA formation and accelerated decay of established cccDNA, and were additive to the actions of entecavir. Our study shows that activation of the RIG-I pathway and IRF3 to induce innate immune actions offers therapeutic benefit toward elimination of cccDNA.
Collapse
Affiliation(s)
- Sooyoung Lee
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Yuji Ishida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- PhoenixBio Co., Ltd., Research and Development Unit, Higashi-Hiroshima, Japan
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
44
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
45
|
Conner KL, Shaik AN, Marshall KA, Floyd AM, Ekinci E, Lindquist J, Sawant A, Lei W, Adolph MB, Chelico L, Siriwardena SU, Bhagwat A, Kim S, Cote ML, Patrick S. APOBEC3 enzymes mediate efficacy of cisplatin and are epistatic with base excision repair and mismatch repair in platinum response. NAR Cancer 2020; 2:zcaa033. [PMID: 33196045 PMCID: PMC7646253 DOI: 10.1093/narcan/zcaa033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023] Open
Abstract
Identifying the mechanisms mediating cisplatin response is essential for improving patient response. Previous research has identified base excision repair (BER) and mismatch repair (MMR) activity in sensitizing cells to cisplatin. Cisplatin forms DNA adducts including interstrand cross-links (ICLs) that distort the DNA helix, forcing adjacent cytosines to become extrahelical. These extrahelical cytosines provide a substrate for cytosine deaminases. Herein, we show that APOBEC3 (A3) enzymes are capable of deaminating the extrahelical cytosines to uracils and sensitizing breast cancer cells to cisplatin. Knockdown of A3s results in resistance to cisplatin and induction of A3 expression in cells with low A3 expression increases sensitivity to cisplatin. We show that the actions of A3s are epistatic with BER and MMR. We propose that A3-induced cytosine deamination to uracil at cisplatin ICLs results in repair of uracils by BER, which blocks ICL DNA repair and enhances cisplatin efficacy and improves breast cancer outcomes.
Collapse
Affiliation(s)
- Kayla L Conner
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Asra N Shaik
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Katie A Marshall
- Department of Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashley M Floyd
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Elmira Ekinci
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Jacob Lindquist
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Akshada Sawant
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Wen Lei
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | | | - Linda Chelico
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, SK S7N 5E5, Canada
| | - Sachini U Siriwardena
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ashok Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| | - Steve M Patrick
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, USA
| |
Collapse
|
46
|
Jaguva Vasudevan AA, Balakrishnan K, Gertzen CGW, Borvető F, Zhang Z, Sangwiman A, Held U, Küstermann C, Banerjee S, Schumann GG, Häussinger D, Bravo IG, Gohlke H, Münk C. Loop 1 of APOBEC3C Regulates its Antiviral Activity against HIV-1. J Mol Biol 2020; 432:6200-6227. [PMID: 33068636 DOI: 10.1016/j.jmb.2020.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race, and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly. In catarrhines (Old World monkeys and apes), the A3C loop 1 displays the conserved amino acid pair WE, while the corresponding consensus sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral sequence for the last common ancestor of A3C and of the C-terminal domains of A3D and A3F in primates. Here, we report that modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with substrate ssDNA, facilitating catalytic function, which results in a drastic increase in both deamination activity and in the ability to restrict HIV-1 and LINE-1 replication. Conversely, the modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. We propose that the two series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while diversifying selection resulted in the RK → WE modification in Old World anthropoids' A3C, possibly allowing for novel substrate specificity and function.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany; Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fanni Borvető
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
47
|
Bockmann JH, Stadler D, Xia Y, Ko C, Wettengel JM, Schulze Zur Wiesch J, Dandri M, Protzer U. Comparative Analysis of the Antiviral Effects Mediated by Type I and III Interferons in Hepatitis B Virus-Infected Hepatocytes. J Infect Dis 2020; 220:567-577. [PMID: 30923817 DOI: 10.1093/infdis/jiz143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type III interferons (IFNs) (λ1-3) activate similar signaling cascades as type I IFNs (α and β) via different receptors. Since IFN-α and lymphotoxin-β activate cytosine deamination and subsequent purging of nuclear hepatitis B virus (HBV) DNA, we investigated whether IFN-β and -λ may also induce these antiviral effects in differentiated HBV-infected hepatocytes. METHODS After determining the biological activity of IFN-α2, -β1, -λ1, and -λ2 in differentiated hepatocytes, their antiviral effects were analyzed in HBV-infected primary human hepatocytes and HepaRG cells. RESULTS Type I and III IFNs reduced nuclear open-circle DNA and covalently closed circular DNA (cccDNA) levels in HBV-infected cells. IFN-β and -λ were at least as efficient as IFN-α. Differential DNA-denaturing polymerase chain reaction and sequencing analysis revealed G-to-A sequence alterations of HBV cccDNA in IFN-α, -β, and -λ-treated liver cells indicating deamination. All IFNs induced apolipoprotein B messenger RNA-editing enzyme-catalytic polypeptide-like (APOBEC) deaminases 3A and 3G within 24 hours of treatment, but IFN-β and -λ induced longer-lasting expression of APOBEC deaminases in comparison to IFN-α. CONCLUSIONS IFN-β, IFN-λ1, and IFN-λ2 induce cccDNA deamination and degradation at least as efficiently as IFN-α, indicating that these antiviral cytokines are interesting candidates for the design of new therapeutic strategies aiming at cccDNA reduction and HBV cure.
Collapse
Affiliation(s)
- Jan-Hendrik Bockmann
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Daniela Stadler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Yuchen Xia
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, China
| | - Chunkyu Ko
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Julian Schulze Zur Wiesch
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| |
Collapse
|
48
|
Wang YX, Niklasch M, Liu T, Wang Y, Shi B, Yuan W, Baumert TF, Yuan Z, Tong S, Nassal M, Wen YM. Interferon-inducible MX2 is a host restriction factor of hepatitis B virus replication. J Hepatol 2020; 72:865-876. [PMID: 31863794 DOI: 10.1016/j.jhep.2019.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Non-cytolytic cure of HBV-infected hepatocytes by cytokines, including type I interferons (IFNs), is of importance for resolving acute and chronic infection. However, as IFNs stimulate hundreds of genes, those most relevant for HBV suppression remain largely unknown. Amongst them are the large myxovirus resistance (Mx) GTPases. Human MX1 (or MxA) is active against many RNA viruses, while MX2 (or MxB) was recently found to restrict HIV-1, HCV, and herpesviruses. Herein, we investigated the anti-HBV activity of MX2. METHODS The potential anti-HBV activity of MX2 and functional variants were assessed in transfected and HBV-infected hepatoma cells and primary human hepatocytes, employing multiple assays to analyze the synthesis and decay of HBV nucleic acids. The specific roles of MX2 in IFN-α-driven inhibition of HBV transcription and replication were assessed by MX2-specific shRNA interference (RNAi). RESULTS Both MX2 alone and IFN-α substantially inhibited HBV replication, due to significant deceleration of the synthesis and slight acceleration of the turnover of viral RNA. RNAi knockdown of MX2 significantly reduced the inhibitory effects of IFN-α. Strikingly, MX2 inhibited HBV infection by reducing covalently closed circular DNA (cccDNA), most likely by indirectly impairing the conversion of relaxed circular DNA to cccDNA rather than by destabilizing existing cccDNA. Various mutations affecting the GTPase activity and oligomerization status reduced MX2's anti-HBV activity. CONCLUSION MX2 is an important IFN-α inducible effector that decreases HBV RNA levels but can also potently inhibit HBV infection by indirectly impairing cccDNA formation. MX2 likely has the potential for therapeutic applications aimed at curing HBV infection by eliminating cccDNA. LAY SUMMARY This study shows that the protein MX2, which is induced by interferon-α, has important anti-hepatitis B virus (HBV) effector functions. MX2 can reduce the amount of covalently closed circular DNA, which is the form of DNA that HBV uses to maintain viral persistence within hepatocytes. MX2 also reduces HBV RNA levels by downregulating synthesis of viral RNA. MX2 likely represents a novel intrinsic HBV inhibitor that could have therapeutic potential, as well as being useful for improving our understanding of the complex biology of HBV and the antiviral mechanisms of interferon-α.
Collapse
Affiliation(s)
- Yong-Xiang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China.
| | - Matthias Niklasch
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, 79106 Freiburg, Germany
| | - Tiantian Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Yang Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Bisheng Shi
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, 201508 Shanghai, China
| | - Wenjie Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Thomas F Baumert
- Pôle Hépato-Digestif, Unité d'Hépatologie, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 67091 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Unité Inserm 1110, 67000 Strasbourg, France
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Michael Nassal
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, 79106 Freiburg, Germany
| | - Yu-Mei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| |
Collapse
|
49
|
Ni L, Li C, Li Y. Correlation of APOBEC3G expression with liver function indexes of patients with chronic hepatitis B and comparison in chronic hepatitis B, liver cirrhosis and liver cancer. Oncol Lett 2020; 19:2562-2567. [PMID: 32194760 DOI: 10.3892/ol.2020.11257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
Correlation of APOBEC3G expression with liver function indexes of patients with chronic hepatitis B and its expression in chronic hepatitis B, liver cirrhosis and liver cancer were investigated to evaluated the significance of APOBEC3G. Fifty-eight patients with chronic hepatitis B were selected, including 20 cases of chronic hepatitis B, 19 cases of liver cirrhosis and 19 cases of liver cancer. Liver function indexes were detected and analyzed, and messenger ribonucleic acid (mRNA) and protein expression levels of APOBEC3G in liver tissues were detected via reverse transcription-polymerase chain reaction (RT-PCR), western blotting and immunohistochemistry, followed by correlation analysis. Certain liver function indexes had significant differences among the three groups of patients (P<0.05). Results of RT-PCR, Western blotting and immunohistochemistry confirmed that the content of APOBEC3G in liver tissues was the highest in patients with chronic hepatitis B, slightly lower in patients with liver cirrhosis and the lowest in patients with liver cancer. The content of APOBEC3G mRNA in liver tissues had a certain correlation with the content of alanine aminotransferase (ALT) (r2 =0.34, P<0.05). Other liver function indexes had no significant correlations with APOBEC3G (P>0.05). APOBEC3G expression has a certain correlation with some liver function indexes of patients with chronic hepatitis B. There are significant differences in the expression level of APOBEC3G in patients with hepatitis, liver cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Lina Ni
- Department of Blood Transfusion, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| | - Chuanbao Li
- Department of Hepatobiliary Surgery, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| | - Yingbo Li
- Department of Blood Transfusion, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
50
|
Conner KL, Shaik AN, Ekinci E, Kim S, Ruterbusch JJ, Cote ML, Patrick SM. HPV induction of APOBEC3 enzymes mediate overall survival and response to cisplatin in head and neck cancer. DNA Repair (Amst) 2020; 87:102802. [PMID: 31981740 PMCID: PMC7033022 DOI: 10.1016/j.dnarep.2020.102802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/13/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Human papillomavirus (HPV) is associated with the development of head and neck squamous cell carcinomas (HNSC). Cisplatin is used to treat HNSC and induces DNA adducts including interstrand crosslinks (ICLs). Previous reports have shown that HPV positive HNSC patients respond better to cisplatin therapy. Our previous reports highlight that loss of base excision repair (BER) and mismatch repair (MMR) results in cisplatin resistance. Of importance, uracil DNA glycosylase (UNG) is required to initiate the BER response to cisplatin treatment and maintain drug sensitivity. These previous results highlight that specific cytidine deaminases could play an important role in the cisplatin response by activating the BER pathway to mediate drug sensitivity. The APOBEC3 (A3) family of cytidine deaminases are enzymes that restrict HPV as part of the immune defense to viral infection. In this study, the Cancer Genome Atlas (TCGA) HNSC data were used to assess the association between the expression of the seven proteins in the A3 cytidine deaminase family, HPV-status and survival outcomes. Higher A3 G expression in HPV-positive tumors corresponds with better overall survival (OS) (HR 0.33, 95 % CI 0.11-0.93, p = 0.04). FaDu and Scc-25 HNSC cell lines were used to assess alterations in A3, BER and MMR expression in response to cisplatin. We demonstrate that A3, Polβ, and MSH6 knockdown in HNSC cells results in resistance to cisplatin and carboplatin as well as an increase in the rate of ICL removal in FaDu and Scc-25 HNSC cells. Our results suggest that A3s activate BER in HNSC, mediate repair of cisplatin ICLs and thereby, sensitize cells to cisplatin which likely contributes to the improved patient responses observed in HPV infected patients.
Collapse
Affiliation(s)
- Kayla L Conner
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States
| | - Asra N Shaik
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States
| | - Elmira Ekinci
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States
| | - Julie J Ruterbusch
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States
| | - Michele L Cote
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States
| | - Steve M Patrick
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Institute, Detroit, MI 48201, United States.
| |
Collapse
|