1
|
Liu Y, Zhu J, Jin Y, Sun Z, Wu X, Zhou H, Yang Y. Disrupting bile acid metabolism by suppressing Fxr causes hepatocellular carcinoma induced by YAP activation. Nat Commun 2025; 16:3583. [PMID: 40234449 PMCID: PMC12000370 DOI: 10.1038/s41467-025-58809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Disruption of bile acid (BA) metabolism causes various liver diseases including hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains elusive. Here, we report that BA metabolism is directly controlled by a repressor function of YAP, which induces cholestasis by altering BA levels and composition via inhibiting the transcription activity of Fxr, a key physiological BA sensor. Elevated BA levels further activate hepatic YAP, resulting in a feedforward cycle leading to HCC. Mechanistically, Teads are found to bind Fxr in a DNA-binding-independent manner and recruit YAP to epigenetically suppress Fxr. Promoting BA excretion, or alleviating YAP repressor function by pharmacologically activating Fxr and inhibiting HDAC1, or overexpressing an Fxr target gene Bsep to promote BA exportation, alleviate cholestasis and HCC caused by YAP activation. Our results identify YAP's transcriptional repressor role in BA metabolism as a key driver of HCC and suggest its potential as a therapeutic target.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Humans
- Bile Acids and Salts/metabolism
- YAP-Signaling Proteins
- Animals
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Male
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cell Line, Tumor
- Cell Cycle Proteins/metabolism
- Cholestasis/metabolism
- Cholestasis/genetics
- Gene Expression Regulation, Neoplastic
- Liver/metabolism
- Liver/pathology
- Hep G2 Cells
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
2
|
Vitale G, Sciveres M, Mandato C, d'Adamo AP, Di Giorgio A. Genotypes and different clinical variants between children and adults in progressive familial intrahepatic cholestasis: a state-of-the-art review. Orphanet J Rare Dis 2025; 20:80. [PMID: 39984942 PMCID: PMC11846186 DOI: 10.1186/s13023-025-03599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
INTRODUCTION Progressive Familial intrahepatic cholestasis (PFIC) are rare disorders of bile acid (BAs) secretion and transport with a genetic background. PFIC are paediatric manifestations, but the same variants causing PFIC can also cause cholestasis with a later paediatric onset or adult-onset cholestatic disease (AOCD). Pruritus is a symptom of cholestasis that can be so devastating that it requires a liver transplant (LT) in children; some PFIC types have been described as at risk of liver cancer development. Commonly prescribed medications for PFIC symptoms can partially relieve pruritus without changing the natural history of the disease. Recently, a therapy reducing the intestinal resorption of BAs has been approved; it is effective on both pruritus and cholestasis in PFIC, potentially being a disease-modifying intervention. AREAS COVERED The clinical and genetic characteristics of different PFIC and AOCD are summarized to provide a common background for geneticists and paediatric and adult hepatologists in diagnosis and management. EXPERT OPINION Collaboration between paediatric and adult hepatologists and geneticists will become crucial for cholestatic disease research and patient treatment. Therefore, adult hepatologists will need to learn more about FIC. This might enable the implementation of individualized surveillance in FIC patients and the evaluation of patient family histories.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Marco Sciveres
- Epatologia e Clinica dei Trapianti, Ospedale Pediatrico IRCCS Bambino Gesù, Rome, Italy
| | - Claudia Mandato
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Section of Pediatrics, Baronissi (Salerno), Italy
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, 34137, Trieste, Italy.
| | - Angelo Di Giorgio
- Pediatric Hepatology Gastroenterology and Transplantation, Hospital Papa Giovanni XIII, Bergamo, Italy
- Department of Medicine, Hospital Santa Maria della Misericordia, University of Udine, Udine, Italy
| |
Collapse
|
3
|
Young EP, O’Neill AF, Rangaswami AA. Pediatric Hepatocellular Carcinoma: A Review of Predisposing Conditions, Molecular Mechanisms, and Clinical Considerations. Int J Mol Sci 2025; 26:1252. [PMID: 39941018 PMCID: PMC11818592 DOI: 10.3390/ijms26031252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Pediatric hepatocellular carcinoma (HCC) is a rare malignant liver tumor affecting children and adolescents and occurring either sporadically or in the context of underlying liver disease. In this review, we detail the epidemiology of pediatric HCC with a focus on predisposing factors including hepatic or systemic disease, genetic disorders, and familial cancer syndromes. We summarize existing research on the pathophysiology of pediatric HCC, including molecular mechanisms of oncogenesis, highlighting unique disease features differentiating pediatric HCC from adult HCC. We then survey the landscape of therapeutic options for pediatric HCC, including novel therapeutics. Lastly, we discuss the pathologic spectrum upon which pediatric HCC is postulated to exist, ranging from hepatoblastoma to HCC and including the hybrid entity hepatocellular neoplasm not otherwise specifed (HCN-NOS). In summary, we highlight the key clinical and molecular features of pediatric HCC that may inform future research and novel approaches to the clinical care of these patients.
Collapse
Affiliation(s)
- Elizabeth P. Young
- Department of Pediatrics, Division of Oncology, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Allison F. O’Neill
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02215, USA;
| | - Arun A. Rangaswami
- Department of Pediatrics, Division of Oncology, University of California San Francisco, San Francisco, CA 94158, USA;
| |
Collapse
|
4
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Chu H, Shan Y, Jiang C, Zhong Y, Liu Z, Fang X, Yang Z. PNMA1 is a novel immune modulator and therapeutic target in hepatocellular carcinoma linked to bile acid metabolism. Sci Rep 2025; 15:738. [PMID: 39754028 PMCID: PMC11698831 DOI: 10.1038/s41598-024-84368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8+ T cells, and immune checkpoints. Mechanistically, PNMA1 shapes a suppressive tumor microenvironment strongly linked to bile acid metabolism. It promotes tumor progression via immune inhibition and PI3K-AKT pathway activation. Notably, PNMA1 has emerged as a promising therapeutic target for tyrosine kinase inhibitors, as confirmed by reduced IC50 values and molecular docking. Experimental knockdown of PNMA1 hindered HepG2 cell proliferation and migration. Furthermore, PNMA1 is a pivotal HCC biomarker and therapeutic target with a focus on cancer progression, immune modulation, and bile acid metabolism.
Collapse
Affiliation(s)
- Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yuezhan Shan
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, 130033, Jilin, China
| | - Yumin Zhong
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zijing Liu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
6
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
7
|
Pimentel JM, Nobre S, Oliveira RC, Martins R, Cipriano MA. Hepatocellular carcinoma associated with progressive intrahepatic familial cholestasis type 2: a case report. CLINICAL TRANSPLANTATION AND RESEARCH 2024; 38:241-245. [PMID: 39344700 PMCID: PMC11464154 DOI: 10.4285/ctr.24.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Progressive familial intrahepatic cholestasis type 2 (PFIC2) is an autosomal recessive disorder typically presenting in infancy with cholestasis and rapidly progressing to cirrhosis. PFIC has been associated with an elevated risk of hepatocellular carcinoma (HCC), a neoplasm that is uncommon in children. PFIC type 4 has the strongest link to this type of cancer, although a few cases have also been connected to PFIC2. Herein, we report the case of a 2-year-old boy who underwent liver transplantation due to PFIC2. Histological examination showed cirrhosis and four small HCCs. Over a 20-year period following the transplantation, there was no recurrence of the disease or HCC. Although rare, HCC development can occur in PFIC and may complicate the prognosis. Liver transplantation offers a potential cure for both the metabolic disease and the neoplasm.
Collapse
Affiliation(s)
- João Miguel Pimentel
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Department of Pathology, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Susana Nobre
- Unidade de Hepatologia e Transplantação Hepática Pediátrica, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | - Rui Caetano Oliveira
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Department of Pathology, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- Centro de Investigação em Meio Ambiente, Genética e Oncobiologia (CIMAGO), Coimbra, Portugal
| | - Ricardo Martins
- Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
- Department of Surgery, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
8
|
Hof WFJ, de Boer JF, Verkade HJ. Emerging drugs for the treatment of progressive familial intrahepatic cholestasis: a focus on phase II and III trials. Expert Opin Emerg Drugs 2024; 29:305-320. [PMID: 38571480 DOI: 10.1080/14728214.2024.2336986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Progressive familial intrahepatic cholestasis (PFIC) is a group of disorders characterized by inappropriate bile formation, causing hepatic accumulation of bile acids and, subsequently, liver injury. Until recently, no approved treatments were available for these patients. AREAS COVERED Recent clinical trials for PFIC treatment have focused on intestine-restricted ileal bile acid transporter (IBAT) inhibitors. These compounds aim to reduce the pool size of bile acids by interrupting their enterohepatic circulation. Other emerging treatments in the pipeline include systemic IBAT inhibitors, synthetic bile acid derivatives, compounds targeting bile acid synthesis via the FXR/FGF axis, and chaperones/potentiators that aim to enhance the residual activity of the mutated transporters. EXPERT OPINION Substantial progress has been made in drug development for PFIC patients during the last couple of years. Although data concerning long-term efficacy are as yet only scarcely available, new therapies have demonstrated robust efficacy in a considerable fraction of patients at least on the shorter term. However, a substantial fraction of PFIC patients do not respond to these novel therapies and thus still requires surgical treatment, including liver transplantation before adulthood. Hence, there is still an unmet medical need for long-term effective medical, preferably non-surgical, treatment for all PFIC patients.
Collapse
Affiliation(s)
- Willemien F J Hof
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
10
|
Verkade HJ, Felzen A, Keitel V, Thompson R, Gonzales E, Strnad P, Kamath B, van Mil S. EASL Clinical Practice Guidelines on genetic cholestatic liver diseases. J Hepatol 2024; 81:303-325. [PMID: 38851996 DOI: 10.1016/j.jhep.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/10/2024]
Abstract
Genetic cholestatic liver diseases are caused by (often rare) mutations in a multitude of different genes. While these diseases differ in pathobiology, clinical presentation and prognosis, they do have several commonalities due to their cholestatic nature. These Clinical Practice Guidelines (CPGs) offer a general approach to genetic testing and management of cholestatic pruritus, while exploring diagnostic and treatment approaches for a subset of genetic cholestatic liver diseases in depth. An expert panel appointed by the European Association for the Study of the Liver has created recommendations regarding diagnosis and treatment, based on the best evidence currently available in the fields of paediatric and adult hepatology, as well as genetics. The management of these diseases generally takes place in a tertiary referral centre, in order to provide up-to-date approaches and expertise. These CPGs are intended to support hepatologists (for paediatric and adult patients), residents and other healthcare professionals involved in the management of these patients with concrete recommendations based on currently available evidence or, if not available, on expert opinion.
Collapse
|
11
|
Hao Z, Liu X, He H, Wei Z, Shu X, Wang J, Sun B, Zhou H, Wang J, Niu Y, Hu Z, Hu S, Liu Y, Fu Z. CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med 2024; 30:79. [PMID: 38844847 PMCID: PMC11157842 DOI: 10.1186/s10020-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Huanhuan He
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jianzhi Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jiucheng Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ying Niu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiyong Hu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Shaobo Hu
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
12
|
Joshi D, Nayagam J, Clay L, Yerlett J, Claridge L, Day J, Ferguson J, Mckie P, Vara R, Pargeter H, Lockyer R, Jones R, Heneghan M, Samyn M. UK guideline on the transition and management of childhood liver diseases in adulthood. Aliment Pharmacol Ther 2024; 59:812-842. [PMID: 38385884 DOI: 10.1111/apt.17904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/15/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Improved outcomes of liver disease in childhood and young adulthood have resulted in an increasing number of young adults (YA) entering adult liver services. The adult hepatologist therefore requires a working knowledge in diseases that arise almost exclusively in children and their complications in adulthood. AIMS To provide adult hepatologists with succinct guidelines on aspects of transitional care in YA relevant to key disease aetiologies encountered in clinical practice. METHODS A systematic literature search was undertaken using the Pubmed, Medline, Web of Knowledge and Cochrane database from 1980 to 2023. MeSH search terms relating to liver diseases ('cholestatic liver diseases', 'biliary atresia', 'metabolic', 'paediatric liver diseases', 'autoimmune liver diseases'), transition to adult care ('transition services', 'young adult services') and adolescent care were used. The quality of evidence and the grading of recommendations were appraised using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. RESULTS These guidelines deal with the transition of YA and address key aetiologies for the adult hepatologist under the following headings: (1) Models and provision of care; (2) screening and management of mental health disorders; (3) aetiologies; (4) timing and role of liver transplantation; and (5) sexual health and fertility. CONCLUSIONS These are the first nationally developed guidelines on the transition and management of childhood liver diseases in adulthood. They provide a framework upon which to base clinical care, which we envisage will lead to improved outcomes for YA with chronic liver disease.
Collapse
Affiliation(s)
- Deepak Joshi
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Jeremy Nayagam
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Lisa Clay
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Jenny Yerlett
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| | - Lee Claridge
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Jemma Day
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James Ferguson
- National Institute for Health Research, Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Paul Mckie
- Department of Social Work, King's College Hospital NHS Foundation Trust, London, UK
| | - Roshni Vara
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
- Evelina London Children's Hospital, London, UK
| | | | | | - Rebecca Jones
- Leeds Liver Unit, St James's University Hospital, Leeds, UK
| | - Michael Heneghan
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, UK
| | - Marianne Samyn
- Paediatric Liver, GI and Nutrition service, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Kondou H, Nakano S, Mizuno T, Bessho K, Hasegawa Y, Nakazawa A, Tanikawa K, Azuma Y, Okamoto T, Inui A, Imagawa K, Kasahara M, Zen Y, Suzuki M, Hayashi H. Clinical symptoms, biochemistry, and liver histology during the native liver period of progressive familial intrahepatic cholestasis type 2. Orphanet J Rare Dis 2024; 19:57. [PMID: 38341604 PMCID: PMC10858576 DOI: 10.1186/s13023-024-03080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 2 (PFIC2) is an ultra-rare disease caused by mutations in the ABCB11 gene. This study aimed to understand the course of PFIC2 during the native liver period. METHODS From November 2014 to October 2015, a survey to identify PFIC2 patients was conducted in 207 hospitals registered with the Japanese Society of Pediatric Gastroenterology, Hepatology, and Nutrition. Investigators retrospectively collected clinical data at each facility in November 2018 using pre-specified forms. RESULTS Based on the biallelic pathogenic variants in ABCB11 and/or no hepatic immunohistochemical detection of BSEP, 14 Japanese PFIC2 patients were enrolled at seven facilities. The median follow-up was 63.2 [47.7-123.3] months. The median age of disease onset was 2.5 [1-4] months. Twelve patients underwent living donor liver transplantation (LDLT), with a median age at LDLT of 9 [4-57] months. Two other patients received sodium 4-phenylbutyrate (NaPB) therapy and survived over 60 months with the native liver. No patients received biliary diversion. The cases that resulted in LDLT had gradually deteriorated growth retardation, biochemical tests, and liver histology since the initial visit. In the other two patients, jaundice, growth retardation, and most of the biochemical tests improved after NaPB therapy was started, but pruritus and liver fibrosis did not. CONCLUSIONS Japanese PFIC2 patients had gradually worsening clinical findings since the initial visit, resulting in LDLT during infancy. NaPB therapy improved jaundice and growth retardation but was insufficient to treat pruritus and liver fibrosis.
Collapse
Affiliation(s)
- Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, Nara, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Hasegawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Yoshihiro Azuma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tatsuya Okamoto
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Eastern Hospital, Kanagawa, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital and King's College London, London, UK
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
15
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Heinz N, Vittorio J. Treatment of Cholestasis in Infants and Young Children. Curr Gastroenterol Rep 2023; 25:344-354. [PMID: 37651067 DOI: 10.1007/s11894-023-00891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE OF REVIEW Cholestasis is characterized by a conjugated hyperbilirubinemia secondary to impaired bile synthesis, transport, or excretion from the liver. It is always pathologic and can be indicative of an underlying hepatobiliary, genetic, or metabolic disorder, several of which require timely diagnosis to ensure proper management and optimal outcomes. This review provides an overview of the evaluation of cholestasis with a focus on current and emerging treatment strategies. RECENT FINDINGS Increased accessibility of next generation sequencing (NGS) allows for utilization of genetic testing early in the diagnostic process. This may alter the clinical algorithm for diagnosis of cholestatic disorders. An enhanced understanding of the underlying pathophysiology may help guide future development of targeted therapies, such as ileal bile acid transporter (IBAT) inhibitors. These were recently approved for treatment of cholestatic pruritus in patients with Alagille syndrome and Progressive Familial Intrahepatic Cholestasis. Current management of cholestasis is aimed at the biochemical consequences of impaired bile flow, including malnutrition, pruritus, and progressive fibrosis. NGS has led to an enhanced understanding of biliary pathology and may guide development of future treatment modalities based on specific gene mutations. Rapid discernment of the underlying etiology is essential as new treatment modalities emerge.
Collapse
Affiliation(s)
- Nicole Heinz
- New York University (NYU) Transplant Institute, NYU Langone Health, 160 East 32nd Street, Suite L3 Medical Level, New York, NY, USA
| | - Jennifer Vittorio
- New York University (NYU) Transplant Institute, NYU Langone Health, 160 East 32nd Street, Suite L3 Medical Level, New York, NY, USA.
| |
Collapse
|
17
|
Gao Y, Lin J, Ye C, Guo S, Jiang C. Microbial transformations of bile acids and their receptors in the regulation of metabolic dysfunction-associated steatotic liver disease. LIVER RESEARCH 2023; 7:165-176. [PMID: 39958385 PMCID: PMC11792070 DOI: 10.1016/j.livres.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 01/03/2025]
Abstract
Bile acids (BAs) play important roles in the digestion of dietary fats and molecular signal transduction, and modulation of the BA composition usually affects the progression of metabolic diseases. While the liver produces primary BAs, the gut microbiota modifies these products into various forms that greatly increase their diversity and biological functions. Mechanistically, BAs can regulate their own metabolism and transport as well as other key aspects of metabolic processes via dedicated BA receptors. Disruption of BA transport and homeostasis leads to the progression of liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC). Here, we summarize the microbial transformations of BAs and their downstream signaling in the development of metabolic diseases and present new insights into novel therapeutic strategies targeting BA pathways that may contribute to these diseases.
Collapse
Affiliation(s)
- Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Siqi Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
18
|
Maury EA, Sherman MA, Genovese G, Gilgenast TG, Kamath T, Burris S, Rajarajan P, Flaherty E, Akbarian S, Chess A, McCarroll SA, Loh PR, Phillips-Cremins JE, Brennand KJ, Macosko EZ, Walters JT, O’Donovan M, Sullivan P, Sebat J, Lee EA, Walsh CA. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. CELL GENOMICS 2023; 3:100356. [PMID: 37601975 PMCID: PMC10435376 DOI: 10.1016/j.xgen.2023.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 06/09/2023] [Indexed: 08/22/2023]
Abstract
While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)-present in some but not all cells-remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e-4), with recurrent somatic deletions of exons 1-5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5' deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk.
Collapse
Affiliation(s)
- Eduardo A. Maury
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Bioinformatics & Integrative Genomics Program and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maxwell A. Sherman
- Brigham and Women’s Hospital, Division of Genetics & Center for Data Sciences, Boston, MA, USA
| | - Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas G. Gilgenast
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tushar Kamath
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - S.J. Burris
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Prashanth Rajarajan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Andrew Chess
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Steven A. McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital, Division of Genetics & Center for Data Sciences, Boston, MA, USA
| | | | - Kristen J. Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Department of Genetics & Genomics, Icahn Institute of Genomics and Multiscale Biology, Department of Psychiatry, Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine of Mount Sinai, New York, NY, USA
- Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA, USA
| | - James T.R. Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, Wales
| | - Michael O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychiatry and Clinical Neurosciences, Cardiff University, Cardiff, Wales
| | - Patrick Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan Sebat
- University of California San Diego, Department of Psychiatry, Department of Cellular & Molecular Medicine, Beyster Center of Psychiatric Genomics, San Diego, CA, USA
| | - Eunjung A. Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Nissen TN, Rechnitzer C, Albertsen BK, Borgwardt L, Christensen VB, Fallentin E, Hasle H, Johansen LS, Maroun LL, Nissen KB, Rasmussen A, Rathe M, Rosthøj S, Schultz NA, Wehner PS, Jørgensen MH, Brok J. Epidemiological Study of Malignant Paediatric Liver Tumours in Denmark 1985-2020. Cancers (Basel) 2023; 15:3355. [PMID: 37444465 DOI: 10.3390/cancers15133355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Malignant liver tumours in children are rare and national outcomes for this tumour entity are rarely published. This study mapped paediatric liver tumours in Denmark over 35 years and reported on the incidence, outcomes and long-term adverse events. METHODS We identified all liver tumours from the Danish Childhood Cancer Registry and reviewed the case records for patient and tumour characteristics, treatment and clinical outcome. RESULTS We included 79 patients in the analyses. Overall crude incidence was ~2.29 per 1 million children (<15 yr) per year, with 61 hepatoblastomas (HB), 9 hepatocellular carcinomas and 9 other hepatic tumours. Overall 5-year survival was 84%, 78% and 44%, respectively. Nine patients had underlying liver disease or predisposition syndrome. Seventeen children underwent liver transplantation, with two late complications, biliary stenosis and liver fibrosis. For HB, age ≥ 8 years and diagnosis prior to 2000 were significant predictors of a poorer outcome. Adverse events included reduced renal function in 10%, reduced cardiac function in 6% and impaired hearing function in 60% (19% needed hearing aids). Behavioural conditions requiring additional support in school were registered in 10 children. CONCLUSIONS In Denmark, incidences of malignant liver tumours during the last four decades have been increasing, as reported in the literature. HB survival has improved since the year 2000 and is comparable with international results. Reduced hearing is the major treatment-related side effect and affects approximately 60% of patients.
Collapse
Affiliation(s)
- Thomas N Nissen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Catherine Rechnitzer
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Birgitte K Albertsen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, 8200 Aarhus, Denmark
| | - Lotte Borgwardt
- Department of Radiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Vibeke B Christensen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Eva Fallentin
- Department of Radiology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Henrik Hasle
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Lars S Johansen
- Department of Paediatric Surgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Lisa L Maroun
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Karin B Nissen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Allan Rasmussen
- Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Mathias Rathe
- Department of Paediatric Haematology and Oncology, H. C. Andersen Children's Hospital, Odense University Hospital, 5000 Odense, Denmark
| | - Steen Rosthøj
- Department of Paediatrics and Adolescent Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Nicolai A Schultz
- Department of Surgery and Transplantation, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Peder S Wehner
- Department of Paediatric Haematology and Oncology, H. C. Andersen Children's Hospital, Odense University Hospital, 5000 Odense, Denmark
| | - Marianne H Jørgensen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Jesper Brok
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Yu D, Lu Z, Wang R, Xiang Y, Li H, Lu J, Zhang L, Chen H, Li W, Luan X, Chen L. FXR agonists for colorectal and liver cancers, as a stand-alone or in combination therapy. Biochem Pharmacol 2023; 212:115570. [PMID: 37119860 DOI: 10.1016/j.bcp.2023.115570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Farnesoid X receptor (FXR, NR1H4) is generally considered as a tumor suppressor of colorectal and liver cancers. The interaction between FXR, bile acids (BAs) and gut microbiota is closely associated with an increased risk of colorectal and liver cancers. Increasing evidence shows that FXR agonists may be potential therapeutic agents for colorectal and liver cancers. However, FXR agonists alone do not produce the desired results due to the complicated pathogenesis and single therapeutic mechanism, which suggests that effective treatments will require a multimodal approach. Based on the principle of improvingefficacy andreducingside effects, combination therapy is currently receiving considerable attention. In this review, colorectal and liver cancers are grouped together to discuss the effects of FXR agonists alone or in combination for combating the two cancers. We hope that this review will provide a theoretical basis for the clinical application of novel FXR agonists or combination with FXR agonists against colorectal and liver cancers.
Collapse
Affiliation(s)
- Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhou Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yusen Xiang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Herrmann J, Petit P, Grabhorn E, Lenz A, Jürgens J, Franchi-Albella S. Liver cirrhosis in children - the role of imaging in the diagnostic pathway. Pediatr Radiol 2023; 53:714-726. [PMID: 36040526 PMCID: PMC10027649 DOI: 10.1007/s00247-022-05480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 07/31/2022] [Indexed: 10/14/2022]
Abstract
Liver cirrhosis in children is a rare disease with multifactorial causes that are distinct from those in adults. Underlying reasons include cholestatic, viral, autoimmune, hereditary, metabolic and cardiac disorders. Early detection of fibrosis is important as clinical stabilization or even reversal of fibrosis can be achieved in some disorders with adequate treatment. This article focuses on the longitudinal evaluation of children with chronic liver disease with noninvasive imaging tools, which play an important role in detecting cirrhosis, defining underlying causes, grading fibrosis and monitoring patients during follow-up. Ultrasound is the primary imaging modality and it is used in a multiparametric fashion. Magnetic resonance imaging and computed tomography are usually applied second line for refined tissue characterization, clarification of nodular lesions and full delineation of abdominal vessels, including portosystemic communications.
Collapse
Affiliation(s)
- Jochen Herrmann
- Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| | - Philippe Petit
- Aix Marseille Université, Hopital Timone-Enfants, Marseille, France
| | - Enke Grabhorn
- Department of Pediatric Gastroenterology and Hepatology, University Medical Center Hamburg, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center, Hamburg, Germany
| | - Julian Jürgens
- Section of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
| | - Stéphanie Franchi-Albella
- Department of Pediatric Radiology, Hôpital Bicêtre, National Reference Centre for Rare Pediatric Liver Diseases, Paris, France
| |
Collapse
|
22
|
Xing L, Zhang Y, Li S, Tong M, Bi K, Zhang Q, Li Q. A Dual Coverage Monitoring of the Bile Acids Profile in the Liver-Gut Axis throughout the Whole Inflammation-Cancer Transformation Progressive: Reveal Hepatocellular Carcinoma Pathogenesis. Int J Mol Sci 2023; 24:ijms24054258. [PMID: 36901689 PMCID: PMC10001964 DOI: 10.3390/ijms24054258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the terminal phase of multiple chronic liver diseases, and evidence supports chronic uncontrollable inflammation being one of the potential mechanisms leading to HCC formation. The dysregulation of bile acid homeostasis in the enterohepatic circulation has become a hot research issue concerning revealing the pathogenesis of the inflammatory-cancerous transformation process. We reproduced the development of HCC through an N-nitrosodiethylamine (DEN)-induced rat model in 20 weeks. We achieved the monitoring of the bile acid profile in the plasma, liver, and intestine during the evolution of "hepatitis-cirrhosis-HCC" by using an ultra-performance liquid chromatography-tandem mass spectrometer for absolute quantification of bile acids. We observed differences in the level of primary and secondary bile acids both in plasma, liver, and intestine when compared to controls, particularly a sustained reduction of intestine taurine-conjugated bile acid level. Moreover, we identified chenodeoxycholic acid, lithocholic acid, ursodeoxycholic acid, and glycolithocholic acid in plasma as biomarkers for early diagnosis of HCC. We also identified bile acid-CoA:amino acid N-acyltransferase (BAAT) by gene set enrichment analysis, which dominates the final step in the synthesis of conjugated bile acids associated with the inflammatory-cancer transformation process. In conclusion, our study provided comprehensive bile acid metabolic fingerprinting in the liver-gut axis during the inflammation-cancer transformation process, laying the foundation for providing a new perspective for the diagnosis, prevention, and treatment of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Li
- Correspondence: (Q.Z.); (Q.L.)
| |
Collapse
|
23
|
Pathology of Combined Hepatocellular Carcinoma-Cholangiocarcinoma: An Update. Cancers (Basel) 2023; 15:cancers15020494. [PMID: 36672443 PMCID: PMC9856551 DOI: 10.3390/cancers15020494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a rare primary liver cancer that is composed of both hepatocellular and cholangiocellular differentiated cells. It is slightly more common in men and among Asian and Pacific islanders. Overall, risk factors are similar to classic risk factors of hepatocellular carcinoma (HCC). The classification has significantly evolved over time. The last WHO classification (2019) mainly emphasized diagnosis on morphological basis with routine stainings, discarded previously recognized classifications with carcinomas with stem cell features, introduced intermediate cell carcinoma as a specific subtype and considered cholangiolocarcinoma as a subtype of cholangiocellular carcinoma. Immunohistochemical markers may be applied for further specification but have limited value for diagnosis. Recent discoveries in molecular pathway regulation may pioneer new therapeutic approaches for this poor prognostic and challenging diagnosis.
Collapse
|
24
|
Felzen A, van Wessel DB, Gonzales E, Thompson RJ, Jankowska I, Shneider BL, Sokal E, Grammatikopoulos T, Kadaristiana A, Jacquemin E, Spraul A, Lipiński P, Czubkowski P, Rock N, Shagrani M, Broering D, Nicastro E, Kelly D, Nebbia G, Arnell H, Fischler B, Hulscher JB, Serranti D, Arikan C, Polat E, Debray D, Lacaille F, Goncalves C, Hierro L, Muñoz Bartolo G, Mozer-Glassberg Y, Azaz A, Brecelj J, Dezsőfi A, Calvo PL, Grabhorn E, Hartleif S, van der Woerd WJ, Kamath BM, Wang JS, Li L, Durmaz Ö, Kerkar N, Jørgensen MH, Fischer R, Jimenez-Rivera C, Alam S, Cananzi M, Laverdure N, Ferreira CT, Guerrero FO, Wang H, Sency V, Kim KM, Chen HL, de Carvalho E, Fabre A, Bernabeu JQ, Zellos A, Alonso EM, Sokol RJ, Suchy FJ, Loomes KM, McKiernan PJ, Rosenthal P, Turmelle Y, Horslen S, Schwarz K, Bezerra JA, Wang K, Hansen BE, Verkade HJ. Genotype-phenotype relationships of truncating mutations, p.E297G and p.D482G in bile salt export pump deficiency. JHEP Rep 2022; 5:100626. [PMID: 36687469 PMCID: PMC9852554 DOI: 10.1016/j.jhepr.2022.100626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background & Aims Bile salt export pump (BSEP) deficiency frequently necessitates liver transplantation in childhood. In contrast to two predicted protein truncating mutations (PPTMs), homozygous p.D482G or p.E297G mutations are associated with relatively mild phenotypes, responsive to surgical interruption of the enterohepatic circulation (siEHC). The phenotype of patients with a compound heterozygous genotype of one p.D482G or p.E297G mutation and one PPTM has remained unclear. We aimed to assess their genotype-phenotype relationship. Methods From the NAPPED database, we selected patients with homozygous p.D482G or p.E297G mutations (BSEP1/1; n = 31), with one p.D482G or p.E297G, and one PPTM (BSEP1/3; n = 30), and with two PPTMs (BSEP3/3; n = 77). We compared clinical presentation, native liver survival (NLS), and the effect of siEHC on NLS. Results The groups had a similar median age at presentation (0.7-1.3 years). Overall NLS at age 10 years was 21% in BSEP1/3 vs. 75% in BSEP1/1 and 23% in BSEP3/3 (p <0.001). Without siEHC, NLS in the BSEP1/3 group was similar to that in BSEP3/3, but considerably lower than in BSEP1/1 (at age 10 years: 38%, 30%, and 71%, respectively; p = 0.003). After siEHC, BSEP1/3 and BSEP3/3 were associated with similarly low NLS, while NLS was much higher in BSEP1/1 (10 years after siEHC, 27%, 14%, and 92%, respectively; p <0.001). Conclusions Individuals with BSEP deficiency with one p.E297G or p.D482G mutation and one PPTM have a similarly severe disease course and low responsiveness to siEHC as those with two PPTMs. This identifies a considerable subgroup of patients who are unlikely to benefit from interruption of the enterohepatic circulation by either surgical or ileal bile acid transporter inhibitor treatment. Impact and implications This manuscript defines the clinical features and prognosis of individuals with BSEP deficiency involving the combination of one relatively mild and one very severe BSEP deficiency mutation. Until now, it had always been assumed that the mild mutation would be enough to ensure a relatively good prognosis. However, our manuscript shows that the prognosis of these patients is just as poor as that of patients with two severe mutations. They do not respond to biliary diversion surgery and will likely not respond to the new IBAT (ileal bile acid transporter) inhibitors, which have recently been approved for use in BSEP deficiency.
Collapse
Key Words
- ABCB11, ATP-binding cassette, sub-family B member 11
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BSEP
- BSEP, bile salt export pump
- ChiLDReN, Childhood Liver Disease Research Network
- GGT, gamma-glutamyltransferase
- HCC, hepatocellular carcinoma
- LTx, liver transplantation
- NAPPED, NAtural course and Prognosis of PFIC and Effect of biliary Diversion
- NLS, native liver survival
- PFIC2
- PFIC2, progressive familial intrahepatic cholestasis type 2
- PPTM, predicted protein truncating mutation
- REDCap, Research Electronic Data Capture
- TSB, total serum bilirubin
- UDCA, ursodeoxycholic acid
- compound heterozygosity
- genotype
- interruption of the enterohepatic circulation
- phenotype
- sBAs, serum bile acids
- siEHC, surgical interruption of the enterohepatic circulation
Collapse
Affiliation(s)
- Antonia Felzen
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Daan B.E. van Wessel
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Emmanuel Gonzales
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Saclay, CHU Bicêtre, Paris, France,European Reference Network on Hepatological Diseases (ERN RARE-LIVER),INSERM, UMR-S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | | | - Irena Jankowska
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Benjamin L. Shneider
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Childhood Liver Disease Research Network (ChiLDReN)
| | - Etienne Sokal
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Pediatric Gastorenterology and Hepatology, Université Catholique de Louvain, Cliniques St Luc, Brussels, Belgium
| | | | | | - Emmanuel Jacquemin
- Pediatric Hepatology & Pediatric Liver Transplant Department, Centre de Référence de l'Atrésie des Voies Biliaires et des Cholestases Génétiques, Filière de Santé des Maladies Rares du Foie de l'enfant et de l'adulte, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris-Saclay, CHU Bicêtre, Paris, France,European Reference Network on Hepatological Diseases (ERN RARE-LIVER),INSERM, UMR-S 1193, Hepatinov, Université Paris-Saclay, Orsay, France
| | - Anne Spraul
- INSERM, UMR-S 1193, Hepatinov, Université Paris-Saclay, Orsay, France,Service de Biochemie, Bicêtre Hôspital, AP-HP, Université Paris-Sud, Paris-Saclay, Inserm UMR-S 1174, France
| | - Patryk Lipiński
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Piotr Czubkowski
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Nathalie Rock
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Division of Pediatric Specialties, Department of Pediatrics, Gynecology and Obstetrics, University Hospitals of Geneva, Switzerland
| | - Mohammad Shagrani
- Liver & SB Transplant & Hepatobiliary-Pancreatic Surgery, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia,Alfaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - Dieter Broering
- Liver & SB Transplant & Hepatobiliary-Pancreatic Surgery, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Deirdre Kelly
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | - Gabriella Nebbia
- Servizio Di Epatologia e Nutrizione Pediatrica, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Henrik Arnell
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Pediatric Gastroenterology Hepatology and Nutrition, Astrid Lindgren Children’s Hospital, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Björn Fischler
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Pediatric Gastroenterology Hepatology and Nutrition, Astrid Lindgren Children’s Hospital, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Jan B.F. Hulscher
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Pediatric Surgery, University Medical Center Groningen, Groningen, the Netherlands
| | - Daniele Serranti
- Pediatric and Liver Unit, Meyer Children’s University Hospital of Florence, Florence, Italy
| | - Cigdem Arikan
- Koc University School of Medicine, Pediatric GI and Hepatology Liver Transplantation Center, Kuttam System in Liver Medicine, Istanbul, Turkey
| | - Esra Polat
- Pediatric Gastroenterology, Sancaktepe Training and Research Hospital, Istanbul, Turkey
| | - Dominique Debray
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Gastroenterology-Hepatology-Nutrition Unit, APHP-Necker Enfants Malades University Hospital, Paris, France
| | - Florence Lacaille
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Gastroenterology-Hepatology-Nutrition Unit, APHP-Necker Enfants Malades University Hospital, Paris, France
| | - Cristina Goncalves
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Previously Coimbra University Hospital Center, Coimbra, Portugal, Now Pediatric Gastroenterology/Hepatology Center Lisbon, Portugal
| | - Loreto Hierro
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Service of Pediatric Hepatology and Transplantation, Children's Hospital La Paz, La Paz University Hospital, Madrid, Spain
| | - Gema Muñoz Bartolo
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Service of Pediatric Hepatology and Transplantation, Children's Hospital La Paz, La Paz University Hospital, Madrid, Spain
| | - Yael Mozer-Glassberg
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Amer Azaz
- Pediatric Gastroenterology, Hepatology and Nutrition, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Jernej Brecelj
- Department of Gastroenterology, Hepatology and Nutrition, University Children's Hospital Ljubljana, and Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Antal Dezsőfi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Pier Luigi Calvo
- Pediatic Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera Città Della Salute e Della Scienza University Hospital, Turin, Italy
| | - Enke Grabhorn
- Pediatric Hepatology and Liver Transplantation, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Steffen Hartleif
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Pediatric Gastroenterology and Hepatology, University Children’s Hospital Tυ¨bingen, University Medical Center Tυ¨bingen, Tυ¨bingen, Germany
| | - Wendy J. van der Woerd
- Pediatric Gastroenterology, Hepatology and Nutrition, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Binita M. Kamath
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Jian-She Wang
- Children’s Hospital of Fudan University, Shanghai, China
| | - Liting Li
- Children’s Hospital of Fudan University, Shanghai, China
| | - Özlem Durmaz
- Department of Child Health and Diseases, Gastroenterology, Hepatology and Nutrition, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nanda Kerkar
- Pediatric Gastroenterology, Hepatology and Nutrition, University of Rochester Medical Center, Rochester, NY, USA
| | - Marianne Hørby Jørgensen
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Department of Pediatrics and Adolescent Medicine, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Ryan Fischer
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Mercy Hospital, Kansas City, MO, USA
| | - Carolina Jimenez-Rivera
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Seema Alam
- Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Mara Cananzi
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Unit of Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women’s and Children’s Health, University Hospital of Padova, Padova, Italy
| | - Noemie Laverdure
- Service de Gastroentérologie, Hépatologie et Nutrition Pédiatriques, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Lyon, France
| | | | - Felipe Ordoñez Guerrero
- Pediatric Gastroenterology and Hepatology, Fundación Cardioinfantil Instituto de Cardiologia, Bogotá, Colombia
| | - Heng Wang
- DDC Clinic - Center for Special Needs Children, Adolescent Medicine and Pediatrics, Middlefield, OH, USA
| | - Valerie Sency
- DDC Clinic - Center for Special Needs Children, Adolescent Medicine and Pediatrics, Middlefield, OH, USA
| | - Kyung Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Seoul, South Korea
| | - Huey-Ling Chen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Elisa de Carvalho
- Pediatric Gastroenterology and Hepatology, Brasília Children's Hospital, Brasilia, Brazil
| | - Alexandre Fabre
- INSERM, MMG, Aix Marseille University, Marseille, France,Service de Pédiatrie Multidisciplinaire, Timone Enfant, Marseille, France
| | - Jesus Quintero Bernabeu
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Pediatric Hepatology and Liver Transplant Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Aglaia Zellos
- First Department of Pediatrics, Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, Greece
| | - Estella M. Alonso
- Childhood Liver Disease Research Network (ChiLDReN),Division of Pediatric Gastroenterology, Hepatology and Nutrition, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Ronald J. Sokol
- Childhood Liver Disease Research Network (ChiLDReN),Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Frederick J. Suchy
- Childhood Liver Disease Research Network (ChiLDReN),Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen M. Loomes
- Childhood Liver Disease Research Network (ChiLDReN),Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick J. McKiernan
- Childhood Liver Disease Research Network (ChiLDReN),Department of Pediatric Gastroenterology and Hepatology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Rosenthal
- Childhood Liver Disease Research Network (ChiLDReN),Department of Pediatrics and Surgery, UCSF Benioff Children's Hospital, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Yumirle Turmelle
- Childhood Liver Disease Research Network (ChiLDReN),Section of Hepatology, Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon Horslen
- Childhood Liver Disease Research Network (ChiLDReN),Department of Pediatric Gastroenterology and Hepatology, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Schwarz
- Childhood Liver Disease Research Network (ChiLDReN),Division of Pediatric Gastroenterology, University of California San Diego, Rady Children's Hospital San Diego, CA, USA
| | - Jorge A. Bezerra
- Childhood Liver Disease Research Network (ChiLDReN),Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kasper Wang
- Childhood Liver Disease Research Network (ChiLDReN),Division of General Pediatric Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Bettina E. Hansen
- Toronto Center for Liver Disease, University Health Network, Toronto, Canada,IHPME, University of Toronto, Toronto, Canada,Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henkjan J. Verkade
- Pediatric Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, the Netherlands,European Reference Network on Hepatological Diseases (ERN RARE-LIVER),Corresponding author. Address: Pediatric Gastroenterology & Hepatology, Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands. Tel.: +31 50 3614147, fax: +31 50 361 1704
| | | |
Collapse
|
25
|
Nayagam JS, Foskett P, Strautnieks S, Agarwal K, Miquel R, Joshi D, Thompson RJ. Clinical phenotype of adult-onset liver disease in patients with variants in ABCB4, ABCB11, and ATP8B1. Hepatol Commun 2022; 6:2654-2664. [PMID: 35894240 PMCID: PMC9512461 DOI: 10.1002/hep4.2051] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022] Open
Abstract
Variants in ATP8B1, ABCB11, and ABCB4 underlie the most prevalent forms of progressive familial intrahepatic cholestasis. We aim to describe variants in these genes in a cohort of patients with adult-onset liver disease, and explore a genotype-phenotype correlation. Patients with onset of liver disease aged above 18 who underwent sequencing of cholestasis genes for clinical purposes over a 5-year period were identified. Bioinformatic analysis of variants was performed. Liver histology was evaluated in patients with variants. Of the 356 patients tested, at least one variant was identified in 101 (28.4%): 46 ABCB4, 35 ABCB11, and 28 ATP8B1. Patients with ABCB4 variants had chronic liver disease (71.7%) and pregnancy-associated liver dysfunction (75%), with a younger age of onset in more severe genotypes (p = 0.046). ABCB11 variants presented with pregnancy-associated liver dysfunction (82.4%) and acute/episodic cholestasis (40%), with no association between age of onset and genotype severity. ATP8B1 variants were associated with chronic liver disease (75%); however, they were commonly seen in patients with an alternate etiology of liver disease and variants were of low predicted pathogenicity. In adults with suspected genetic cholestasis, variants in cholestasis genes were frequently identified and were likely to contribute to the development of liver disease, particularly ABCB4 and ABCB11. Variants were often in heterozygous state, and they should no longer be considered recessive Mendelian traits. Sequencing cholestasis genes in selected patients with adult-onset disease should be considered, with interpretation in close collaboration with histopathologists and geneticists.
Collapse
Affiliation(s)
- Jeremy S. Nayagam
- Institute of Liver StudiesKing's College HospitalLondonUK
- Institute of Liver Studies, Immunology & Microbial SciencesKing's College LondonLondonUK
| | - Pierre Foskett
- Institute of Liver StudiesKing's College HospitalLondonUK
| | | | - Kosh Agarwal
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Rosa Miquel
- Liver Histopathology LaboratoryInstitute of Liver StudiesKing's College HospitalLondonUK
| | - Deepak Joshi
- Institute of Liver StudiesKing's College HospitalLondonUK
| | - Richard J. Thompson
- Institute of Liver StudiesKing's College HospitalLondonUK
- Institute of Liver Studies, Immunology & Microbial SciencesKing's College LondonLondonUK
| |
Collapse
|
26
|
Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat 2022; 43:1162-1182. [PMID: 35642569 PMCID: PMC9357071 DOI: 10.1002/humu.24418] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The ATP-binding cassette (ABC) transporter superfamily comprises membrane proteins that efflux various substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 human disorders or phenotypes with Mendelian inheritance, including cystic fibrosis, adrenoleukodystrophy, retinal degeneration, cholesterol, and bile transport defects. To provide tools to study the function of human ABC transporters we compiled data from multiple genomics databases. We analyzed ABC gene conservation within human populations and across vertebrates and surveyed phenotypes of ABC gene mutations in mice. Most mouse ABC gene disruption mutations have a phenotype that mimics human disease, indicating they are applicable models. Interestingly, several ABCA family genes, whose human function is unknown, have cholesterol level phenotypes in the mouse. Genome-wide association studies confirm and extend ABC traits and suggest several new functions to investigate. Whole-exome sequencing of tumors from diverse cancer types demonstrates that mutations in ABC genes are not common in cancer, but specific genes are overexpressed in select tumor types. Finally, an analysis of the frequency of loss-of-function mutations demonstrates that many human ABC genes are essential with a low level of variants, while others have a higher level of genetic diversity.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Translational Genomics, National Cancer Institute, Gaithersburg, Maryland 21702
| | | | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, 10032
- Department of Pathology & Cell Biology, Columbia University, New York, New York, 10032
| |
Collapse
|
27
|
Rare Inherited Cholestatic Disorders and Molecular Links to Hepatocarcinogenesis. Cells 2022; 11:cells11162570. [PMID: 36010647 PMCID: PMC9406938 DOI: 10.3390/cells11162570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer affecting adults and the second most common primary liver cancer affecting children. Recent years have seen a significant increase in our understanding of the molecular changes associated with HCC. However, HCC is a complex disease, and its molecular pathogenesis, which likely varies by aetiology, remains to be fully elucidated. Interestingly, some inherited cholestatic disorders that manifest in childhood are associated with early HCC development. This review will thus explore how three genes that are associated with liver disease in childhood (ABCB11, TJP2 and VPS33B) might play a role in the initiation and progression of HCC. Specifically, chronic bile-induced damage (caused by ABCB11 changes), disruption of intercellular junction formation (caused by TJP2 changes) and loss of normal apical–basal cell polarity (caused by VPS33B changes) will be discussed as possible mechanisms for HCC development.
Collapse
|
28
|
Abstract
Bile acid transport is a complex physiologic process, of which disruption at any step can lead to progressive intrahepatic cholestasis (PFIC). The first described PFIC disorders were originally named as such before identification of a genetic cause. However, advances in clinical molecular genetics have led to the identification of additional disorders that can cause these monogenic inherited cholestasis syndromes, and they are now increasingly referred to by the affected protein causing disease. The list of PFIC disorders is expected to grow as more causative genes are discovered. Here forth, we present a comprehensive overview of known PFIC disorders.
Collapse
Affiliation(s)
- Sara Hassan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA. https://twitter.com/SaraHassanMD
| | - Paula Hertel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin Street, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Vitale G, Mattiaccio A, Conti A, Turco L, Seri M, Piscaglia F, Morelli MC. Genetics in Familial Intrahepatic Cholestasis: Clinical Patterns and Development of Liver and Biliary Cancers: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14143421. [PMID: 35884482 PMCID: PMC9322180 DOI: 10.3390/cancers14143421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The family of inherited intrahepatic cholestasis includes autosomal recessive cholestatic rare diseases of childhood involved in bile acids secretion or bile transport defects. Specific genetic pathways potentially cause many otherwise unexplained cholestasis or hepatobiliary tumours in a healthy liver. Lately, next-generation sequencing and whole-exome sequencing have improved the diagnostic procedures of familial intrahepatic cholestasis (FIC), as well as the discovery of several genes responsible for FIC. Moreover, mutations in these genes, even in the heterozygous status, may be responsible for cryptogenic cholestasis in both young and adults. Mutations in FIC genes can influence serum and hepatic levels of bile acids. Experimental studies on the NR1H4 gene have shown that high bile acids concentrations cause excessive production of inflammatory cytokines, resistance to apoptosis, and increased cell regeneration, all risk conditions for developing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). NR1H4 gene encodes farnesoid X-activated receptor having a pivotal role in bile salts synthesis. Moreover, HCC and CCA can emerge in patients with several FIC genes such as ABCB11, ABCB4 and TJP2. Herein, we reviewed the available data on FIC-related hepatobiliary cancers, reporting on genetics to the pathophysiology, the risk factors and the clinical presentation.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
- Correspondence:
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| |
Collapse
|
30
|
Ibrahim SH, Kamath BM, Loomes KM, Karpen SJ. Cholestatic liver diseases of genetic etiology: Advances and controversies. Hepatology 2022; 75:1627-1646. [PMID: 35229330 DOI: 10.1002/hep.32437] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
With the application of modern investigative technologies, cholestatic liver diseases of genetic etiology are increasingly identified as the root cause of previously designated "idiopathic" adult and pediatric liver diseases. Here, we review advances in the field enhanced by a deeper understanding of the phenotypes associated with specific gene defects that lead to cholestatic liver diseases. There are evolving areas for clinicians in the current era specifically regarding the role for biopsy and opportunities for a "sequencing first" approach. Risk stratification based on the severity of the genetic defect holds promise to guide the decision to pursue primary liver transplantation versus medical therapy or nontransplant surgery, as well as early screening for HCC. In the present era, the expanding toolbox of recently approved therapies for hepatologists has real potential to help many of our patients with genetic causes of cholestasis. In addition, there are promising agents under study in the pipeline. Relevant to the current era, there are still gaps in knowledge of causation and pathogenesis and lack of fully accepted biomarkers of disease progression and pruritus. We discuss strategies to overcome the challenges of genotype-phenotype correlation and draw attention to the extrahepatic manifestations of these diseases. Finally, with attention to identifying causes and treatments of genetic cholestatic disorders, we anticipate a vibrant future of this dynamic field which builds upon current and future therapies, real-world evaluations of individual and combined therapeutics, and the potential incorporation of effective gene editing and gene additive technologies.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatric GastroenterologyMayo ClinicRochesterMinnesotaUSA
| | - Binita M Kamath
- The Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Kathleen M Loomes
- The Children's Hospital of Philadelphia and Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Saul J Karpen
- Emory University School of Medicine and Children's Healthcare of AtlantaAtlantaGeorgiaUSA
| |
Collapse
|
31
|
Loomes KM, Squires RH, Kelly D, Rajwal S, Soufi N, Lachaux A, Jankowska I, Mack C, Setchell KDR, Karthikeyan P, Kennedy C, Dorenbaum A, Desai NK, Garner W, Jaecklin T, Vig P, Miethke A, Thompson RJ. Maralixibat for the treatment of PFIC: Long-term, IBAT inhibition in an open-label, Phase 2 study. Hepatol Commun 2022; 6:2379-2390. [PMID: 35507739 PMCID: PMC9426380 DOI: 10.1002/hep4.1980] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/13/2023] Open
Abstract
Children with progressive familial intrahepatic cholestasis, including bile salt export pump (BSEP) and familial intrahepatic cholestasis–associated protein 1 (FIC1) deficiencies, suffer debilitating cholestatic pruritus that adversely affects growth and quality of life (QoL). Reliance on surgical interventions, including liver transplantation, highlights the unmet therapeutic need. INDIGO was an open‐label, Phase 2, international, long‐term study to assess the efficacy and safety of maralixibat in children with FIC1 or BSEP deficiencies. Thirty‐three patients, ranging from 12 months to 18 years of age, were enrolled. Eight had FIC1 deficiency and 25 had BSEP deficiency. Of the latter, 6 had biallelic, protein truncating mutations (t)‐BSEP, and 19 had ≥ 1 nontruncating mutation (nt)‐BSEP. Patients received maralixibat 266 μg/kg orally, once daily, from baseline to Week 72, with twice‐daily dosing permitted from Week 72. Long‐term efficacy was determined at Week 240. Serum bile acid (sBA) response (reduction in sBAs of > 75% from baseline or concentrations <102.0 μmol/L) was achieved in 7 patients with nt‐BSEP, 6 during once‐daily dosing, and 1 after switching to twice‐daily dosing. sBA responders also demonstrated marked reductions in sBAs and pruritus, and increases in height, weight, and QoL. All sBA responders remained liver transplant–free after > 5 years. No patients with FIC1 deficiency or t‐BSEP deficiency met the sBA responder criteria during the study. Maralixibat was generally well‐tolerated throughout the study. Conclusion: Response to maralixibat was dependent on progressive familial intrahepatic cholestasis subtype, and 6 of 19 patients with nt‐BSEP experienced rapid and sustained reductions in sBA levels. The 7 responders survived with native liver and experienced clinically significant reductions in pruritus and meaningful improvements in growth and QoL. Maralixibat may represent a well‐tolerated alternative to surgical intervention.
Collapse
Affiliation(s)
- Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert H Squires
- Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deirdre Kelly
- Liver Unit, Birmingham Women's and Children's Hospital, Birmingham, UK.,University of Birmingham, Birmingham, UK
| | | | - Nisreen Soufi
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Los Angeles, Los Angeles, California, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alain Lachaux
- Hepatology and Nutrition Reference Center for Rare Diseases, Children's Hospital of Lyon, HCL, and Claude Bernard Lyon University 1, Lyon, France
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Feeding Disorders, and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Cara Mack
- Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | - Alejandro Dorenbaum
- Department of Pediatrics, Stanford School of Medicine, Palo Alto, California, USA
| | - Nirav K Desai
- Takeda Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Will Garner
- Mirum Pharmaceuticals, Foster City, California, USA
| | | | - Pamela Vig
- Mirum Pharmaceuticals, Foster City, California, USA
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
32
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
33
|
Lipiński P, Ciara E, Jurkiewicz D, Płoski R, Wawrzynowicz-Syczewska M, Pawłowska J, Jankowska I. Progressive familial intrahepatic cholestasis type 3: Report of four clinical cases, novel ABCB4 variants and long-term follow-up. Ann Hepatol 2022; 25:100342. [PMID: 33757843 DOI: 10.1016/j.aohep.2021.100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Progressive familial intrahepatic cholestasis type 3 (PFIC-3) is a rare autosomal recessive cholestatic liver disorder caused by mutations in the ABCB4 gene. The aim of this study was to present the phenotypic and genotypic spectrum of 4 Polish PFIC-3 patients diagnosed in a one-referral centre. MATERIALS AND METHODS The study included 4 patients with cholestasis and pathogenic variants in the ABCB4 gene identified by next-generation sequencing (NGS) of a targeted-gene panel or whole exome sequencing (WES). Clinical, laboratory, histological, and molecular data were collected. RESULTS Four patients (three males) were identified. The age at first noted clinical signs and symptoms was 6, 2.5, 14, and 2 years respectively; the mean age was 6 years. Those signs and symptoms include pruritus (2 out of 4 patients) and hepatomegaly with splenomegaly (4 out of 4 patients). The age at the time of referral to our centre was 9, 3, 15, and 2.5 years respectively, while the mean age was 7 years. Chronic cholestatic liver disease of unknown aetiology was established in all of them. The NGS analysis was performed in all patients at the last follow-up visit. Three novel variants including c.902T>A, p.Met301Lys, c.3279+1G>A, p.?, and c.3524T>A, p.Leu1175His were identified. The time from the first consultation to the final diagnosis was 14, 9, 3, and 1 year respectively; the mean was 6.8 years. A detailed follow-up was presented. CONCLUSIONS The clinical phenotype of PFIC-3 could be variable. The clinical and biochemical diagnosis of PFIC-3 is difficult, thus the NGS study is very useful in making a proper diagnosis.
Collapse
Affiliation(s)
- Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland; Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland.
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Dorota Jurkiewicz
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wawrzynowicz-Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University in Szczecin, Poland
| | - Joanna Pawłowska
- Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Nutritional Disturbances and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
34
|
Huang X, Fan M, Huang W. Pleiotropic roles of FXR in liver and colorectal cancers. Mol Cell Endocrinol 2022; 543:111543. [PMID: 34995680 PMCID: PMC8818033 DOI: 10.1016/j.mce.2021.111543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022]
Abstract
Nuclear receptor farnesoid X receptor (FXR) is generally considered a cell protector of enterohepatic tissues and a suppressor of liver cancer and colorectal carcinoma (CRC). Loss or reduction of FXR expression occurs during carcinogenesis, and the FXR level is inversely associated with the aggressive behaviors of the malignancy. Global deletion of FXR and tissue-specific deletion of FXR display distinct effects on tumorigenesis. Epigenetic silencing and inflammatory context are two main contributors to impaired FXR expression and activity. FXR exerts its antitumorigenic function via the following mechanisms: 1) FXR regulates multiple metabolic processes, notably bile acid homeostasis; 2) FXR antagonizes hepatic and enteric inflammation; 3) FXR impedes aberrant activation of some cancer-related pathways; and 4) FXR downregulates a number of oncogenes while upregulating some tumor suppressor genes. Restoring FXR functions via its agonists provides a therapeutic approach for patients with liver cancer and CRC. However, an in-depth understanding of the species-specific pharmacological effects is a prerequisite for assessing the clinical safety and efficacy of FXR agonists in human cancer treatment.
Collapse
Affiliation(s)
- Xiongfei Huang
- Department of Pathology and Institute of Oncology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350004, PR China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, 350108, PR China.
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
35
|
Grammatikopoulos T, Hadzic N, Foskett P, Strautnieks S, Samyn M, Vara R, Dhawan A, Hertecant J, Al Jasmi F, Rahman O, Deheragoda M, Bull LN, Thompson RJ. Liver Disease and Risk of Hepatocellular Carcinoma in Children With Mutations in TALDO1. Hepatol Commun 2022; 6:473-479. [PMID: 34677006 PMCID: PMC8870026 DOI: 10.1002/hep4.1824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mutations in the transaldolase 1 (TALDO1) gene have been described in a limited number of cases. Several organs can be affected and clinical manifestations are variable, but often include liver dysfunction and/or hepatosplenomegaly. We report 4 patients presenting with liver disease: 2 with early-onset hepatocellular carcinoma (HCC). Patients with cholestasis and mutations in TALDO1 were identified by next-generation sequencing. Clinical, laboratory, and histological data were collected. Four (1 male) patients were identified with variants predicted to be damaging in TALDO1. Three patients were homozygous (two protein truncating/one missense mutations), 1 one was compound heterozygous (two missense mutations). Median age at presentation was 4 months (range, 2-210 days) with jaundice (3), hepatosplenomegaly (3), and pancytopaenia (1). The diagnosis was corroborated by detection of minimal transaldolase enzyme activity in skin fibroblasts in two cases and raised urine polyols in the third. Three patients underwent liver transplantation (LT), 2 of whom had confirmed HCC on explanted liver. One patient suddenly died shortly after LT. The nontransplanted case has a chronic liver disease with multiple dysplastic liver nodules, but normal liver biochemistry and alpha-fetoprotein. Median follow-up was 4 years (range, 1-21). Conclusion: Transaldolase deficiency can include early-onset normal gamma-glutamyltransferase liver disease with multisystem involvement and variable progression. Patients with this disease are at risk of early-onset HCC and may require early LT.
Collapse
Affiliation(s)
- Tassos Grammatikopoulos
- Pediatric Liver, GI & Nutrition Center and MowatLabsKing's College HospitalLondonUnited Kingdom.,Institute of Liver StudiesKing's College LondonLondonUnited Kingdom
| | - Nedim Hadzic
- Pediatric Liver, GI & Nutrition Center and MowatLabsKing's College HospitalLondonUnited Kingdom
| | - Pierre Foskett
- Institute of Liver StudiesKing's College HospitalLondonUnited Kingdom
| | | | - Marianne Samyn
- Pediatric Liver, GI & Nutrition Center and MowatLabsKing's College HospitalLondonUnited Kingdom
| | - Roshni Vara
- Department of Pediatric Inherited Metabolic DiseasesEvelina Children's HospitalLondonUnited Kingdom
| | - Anil Dhawan
- Pediatric Liver, GI & Nutrition Center and MowatLabsKing's College HospitalLondonUnited Kingdom
| | - Jozef Hertecant
- Division of Genetics/MetabolicsDepartment of PediatricsTawam HospitalAl AinUnited Arab Emirates
| | - Fatma Al Jasmi
- Division of Genetics/MetabolicsDepartment of PediatricsTawam HospitalAl AinUnited Arab Emirates
| | - Obydur Rahman
- Institute of Liver StudiesKing's College HospitalLondonUnited Kingdom
| | - Maesha Deheragoda
- Institute of Liver StudiesKing's College HospitalLondonUnited Kingdom
| | - Laura N Bull
- Institute for Human Genetics and Liver Center LaboratoryDepartment of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Richard J Thompson
- Pediatric Liver, GI & Nutrition Center and MowatLabsKing's College HospitalLondonUnited Kingdom.,Institute of Liver StudiesKing's College LondonLondonUnited Kingdom
| | | |
Collapse
|
36
|
Chen W, Zhang Q, Ding M, Yao J, Guo Y, Yan W, Yu S, Shen Q, Huang M, Zheng Y, Lin Y, Wang Y, Liu Z, Lu L. Alcohol triggered bile acid disequilibrium by suppressing BSEP to sustain hepatocellular carcinoma progression. Chem Biol Interact 2022; 356:109847. [PMID: 35149083 DOI: 10.1016/j.cbi.2022.109847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs), the most important components of bile, attribute predominately to maintain metabolic homeostasis. In hepatocellular carcinoma (HCC) patients, the BAs homeostasis was seriously disturbed, especially in those patients with alcohol-intake history. However, whether alcohol consumption could promote HCC progression via influencing BAs homeostasis and the precise mechanism underlying are still unclear. In our study, by collecting HCC specimens from both alcohol-drinkers (n = 15) and non-alcohol drinkers (n = 22), we found that compared to non-alcohol intake HCC patients, BAs homeostasis was disturbed in HCC patients who drank alcohol. Furthermore, ethanol treatment was also found to promote HCC progression by markedly activating oncogenes (RAS, MYC, MET, and HER2), while remarkably suppressing tumor suppressor genes (BRCA2 and APC). We evaluated 14 key functional genes that maintain the homeostasis of BAs and found that either in alcohol-intake HCC patients (n = 15), or in ethanol-treated mice, BSEP, rate-limiting transporter governing excreting BAs from liver into bile duct, was remarkably decreased when exposed to alcohol. Moreover, by screening for changes in the epigenetic landscape of liver cancer cells exposed to alcohol, we strikingly found that histone methyltransferases (RBBP-5, Suv39h1, ASH2L, and SET7/9) were increased, and KMT3B, KMT4, and KMT7 gene expression was also elevated, while histone demethyltransferases (JARID1a, JARID1b, JARID1c) were decreased. In summary, we found that alcohol could trigger BAs disequilibrium to initiate and promote HCC progression. Our study provided a novel and supplementary mechanism to determine the important role of alcohol-intake in HCC development regarding from the perspective of BAs homeostasis.
Collapse
Affiliation(s)
- Wenbo Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qisong Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Ming Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jingjing Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yajuan Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Wenxin Yan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shaofang Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qinghong Shen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Min Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yaqiu Zheng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuefang Lin
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
37
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(115)||chr(108)||chr(113)||chr(84),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
38
|
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135;select dbms_pipe.receive_message(chr(80)||chr(106)||chr(79)||chr(120),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
39
|
Arzumanian VA, Kiseleva OI, Poverennaya EV. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int J Mol Sci 2021; 22:13135. [PMID: 34884942 PMCID: PMC8658661 DOI: 10.3390/ijms222313135] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer death worldwide. Representing such a dramatic impact on our lives, liver cancer is a significant public health concern. Sustainable and reliable methods for preventing and treating liver cancer require fundamental research on its molecular mechanisms. Cell lines are treated as in vitro equivalents of tumor tissues, making them a must-have for basic research on the nature of cancer. According to recent discoveries, certified cell lines retain most genetic properties of the original tumor and mimic its microenvironment. On the other hand, modern technologies allowing the deepest level of detail in omics landscapes have shown significant differences even between samples of the same cell line due to cross- and mycoplasma infection. This and other observations suggest that, in some cases, cell cultures are not suitable as cancer models, with limited predictive value for the effectiveness of new treatments. HepG2 is a popular hepatic cell line. It is used in a wide range of studies, from the oncogenesis to the cytotoxicity of substances on the liver. In this regard, we set out to collect up-to-date information on the HepG2 cell line to assess whether the level of heterogeneity of the cell line allows in vitro biomedical studies as a model with guaranteed production and quality.
Collapse
|
40
|
Jeyaraj R, Bounford KM, Ruth N, Lloyd C, MacDonald F, Hendriksz CJ, Baumann U, Gissen P, Kelly D. The Genetics of Inherited Cholestatic Disorders in Neonates and Infants: Evolving Challenges. Genes (Basel) 2021; 12:1837. [PMID: 34828443 PMCID: PMC8621872 DOI: 10.3390/genes12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Many inherited conditions cause cholestasis in the neonate or infant. Next-generation sequencing methods can facilitate a prompt diagnosis in some of these cases; application of these methods in patients with liver diseases of unknown cause has also uncovered novel gene-disease associations and improved our understanding of physiological bile secretion and flow. By helping to define the molecular basis of certain cholestatic disorders, these methods have also identified new targets for therapy as well patient subgroups more likely to benefit from specific therapies. At the same time, sequencing methods have presented new diagnostic challenges, such as the interpretation of single heterozygous genetic variants. This article discusses those challenges in the context of neonatal and infantile cholestasis, focusing on difficulties in predicting variant pathogenicity, the possibility of other causal variants not identified by the genetic screen used, and phenotypic variability among patients with variants in the same genes. A prospective, observational study performed between 2010-2013, which sequenced six important genes (ATP8B1, ABCB11, ABCB4, NPC1, NPC2 and SLC25A13) in an international cohort of 222 patients with infantile liver disease, is given as an example of potential benefits and challenges that clinicians could face having received a complex genetic result. Further studies including large cohorts of patients with paediatric liver disease are needed to clarify the spectrum of phenotypes associated with, as well as appropriate clinical response to, single heterozygous variants in cholestasis-associated genes.
Collapse
Affiliation(s)
- Rebecca Jeyaraj
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK;
| | - Kirsten McKay Bounford
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK;
| | - Nicola Ruth
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| | - Carla Lloyd
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| | - Fiona MacDonald
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s Hospital, Birmingham B15 2TG, UK;
| | - Christian J. Hendriksz
- Steve Biko Academic Unit, Level D3 New Pretoria Academic Hospital, Malherbe Street, Pretoria 0002, South Africa;
| | - Ulrich Baumann
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Paediatric Gastroenterology and Hepatology, Hannover Medical School, 30625 Hannover, Germany
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Deirdre Kelly
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK; (N.R.); (U.B.); (D.K.)
- Liver Unit, Birmingham Women’s and Children’s Hospital, Birmingham B4 6NH, UK;
| |
Collapse
|
41
|
Abstract
Malignant primary liver tumors are rare in children. Yet a wide histologic spectrum is seen, particularly in hepatoblastoma, the most common malignant liver tumor in children. Furthermore, there can be significant morphologic overlap with hepatocellular carcinoma, the second most common pediatric liver malignancy, and tumors with hybrid features of hepatoblastoma and hepatocellular carcinoma are also reported (currently placed in the provisional category of malignant hepatocellular neoplasm, not otherwise specified). This review provides detailed morphologic descriptions and updates in the evolving clinical context of these tumors, and presents recent molecular advances that may further help in accurate classification of these tumors, which is critical in their management.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Department of Pathology, University of California San Francisco, 1825 4th Street Room M2369, Box 4066, San Francisco, CA 94143, USA.
| |
Collapse
|
42
|
Gertzen CGW, Gohlke H, Häussinger D, Herebian D, Keitel V, Kubitz R, Mayatepek E, Schmitt L. The many facets of bile acids in the physiology and pathophysiology of the human liver. Biol Chem 2021; 402:1047-1062. [PMID: 34049433 DOI: 10.1515/hsz-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
43
|
Long-Term Outcome after Liver Transplantation for Progressive Familial Intrahepatic Cholestasis. MEDICINA-LITHUANIA 2021; 57:medicina57080854. [PMID: 34441060 PMCID: PMC8400732 DOI: 10.3390/medicina57080854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Background and Objectives: Progressive familial intrahepatic cholestasis (PFIC) is a rare autosomal recessive inherited disease divided into five types (PFIC 1-5). Characteristic for all types is early disease onset, which may result clinically in portal hypertension, fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and extrahepatic manifestations. Liver transplantation (LT) is the only successful treatment approach. Our aim is to present the good long-term outcomes after liver transplantation for PFIC1, focusing on liver function as well as the occurrence of extrahepatic manifestation after liver transplantation. Materials and Methods: A total of seven pediatric patients with PFIC1 underwent liver transplantation between January 1999 and September 2019 at the Department of Surgery, Charité Campus Virchow Klinikum and Charité Campus Mitte of Charité-Universitätsmedizin Berlin. Long-term follow-up data were collected on all patients, specifically considering liver function and extrahepatic manifestations. Results: Seven (3.2%) recipients were found from a cohort of 219 pediatric patients. Two of the seven patients had multilocular HCC in cirrhosis. Disease recurrence or graft loss did not occur in any patient. Two patients (male, siblings) had persistently elevated liver parameters but showed excellent liver function. Patient and graft survival during long-term follow-up was 100%, and no severe extrahepatic manifestations requiring hospitalization or surgery occurred. We noted a low complication rate during long-term follow-up and excellent patient outcome. Conclusions: PFIC1 long-term follow-up after LT shows promising results for this rare disease. In particular, the clinical relevance of extrahepatic manifestations seems acceptable, and graft function seems to be barely affected. Further multicenter studies are needed to analyze the clinically inhomogeneous presentation and to better understand the courses after LT.
Collapse
|
44
|
van Wessel DB, Thompson RJ, Gonzales E, Jankowska I, Shneider BL, Sokal E, Grammatikopoulos T, Kadaristiana A, Jacquemin E, Spraul A, Lipiński P, Czubkowski P, Rock N, Shagrani M, Broering D, Algoufi T, Mazhar N, Nicastro E, Kelly D, Nebbia G, Arnell H, Fischler B, Hulscher JB, Serranti D, Arikan C, Debray D, Lacaille F, Goncalves C, Hierro L, Muñoz Bartolo G, Mozer‐Glassberg Y, Azaz A, Brecelj J, Dezsőfi A, Luigi Calvo P, Krebs‐Schmitt D, Hartleif S, van der Woerd WL, Wang J, Li L, Durmaz Ö, Kerkar N, Hørby Jørgensen M, Fischer R, Jimenez‐Rivera C, Alam S, Cananzi M, Laverdure N, Targa Ferreira C, Ordonez F, Wang H, Sency V, Mo Kim K, Chen H, Carvalho E, Fabre A, Quintero Bernabeu J, Alonso EM, Sokol RJ, Suchy FJ, Loomes KM, McKiernan PJ, Rosenthal P, Turmelle Y, Rao GS, Horslen S, Kamath BM, Rogalidou M, Karnsakul WW, Hansen B, Verkade HJ. Impact of Genotype, Serum Bile Acids, and Surgical Biliary Diversion on Native Liver Survival in FIC1 Deficiency. Hepatology 2021; 74:892-906. [PMID: 33666275 PMCID: PMC8456904 DOI: 10.1002/hep.31787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/17/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Mutations in ATPase phospholipid transporting 8B1 (ATP8B1) can lead to familial intrahepatic cholestasis type 1 (FIC1) deficiency, or progressive familial intrahepatic cholestasis type 1. The rarity of FIC1 deficiency has largely prevented a detailed analysis of its natural history, effects of predicted protein truncating mutations (PPTMs), and possible associations of serum bile acid (sBA) concentrations and surgical biliary diversion (SBD) with long-term outcome. We aimed to provide insights by using the largest genetically defined cohort of patients with FIC1 deficiency to date. APPROACH AND RESULTS This multicenter, combined retrospective and prospective study included 130 patients with compound heterozygous or homozygous predicted pathogenic ATP8B1 variants. Patients were categorized according to the number of PPTMs (i.e., splice site, frameshift due to deletion or insertion, nonsense, duplication), FIC1-A (n = 67; no PPTMs), FIC1-B (n = 29; one PPTM), or FIC1-C (n = 34; two PPTMs). Survival analysis showed an overall native liver survival (NLS) of 44% at age 18 years. NLS was comparable among FIC1-A, FIC1-B, and FIC1-C (% NLS at age 10 years: 67%, 41%, and 59%, respectively; P = 0.12), despite FIC1-C undergoing SBD less often (% SBD at age 10 years: 65%, 57%, and 45%, respectively; P = 0.03). sBAs at presentation were negatively associated with NLS (NLS at age 10 years, sBAs < 194 µmol/L: 49% vs. sBAs ≥ 194 µmol/L: 15%; P = 0.03). SBD decreased sBAs (230 [125-282] to 74 [11-177] μmol/L; P = 0.005). SBD (HR 0.55, 95% CI 0.28-1.03, P = 0.06) and post-SBD sBA concentrations < 65 μmol/L (P = 0.05) tended to be associated with improved NLS. CONCLUSIONS Less than half of patients with FIC1 deficiency reach adulthood with native liver. The number of PPTMs did not associate with the natural history or prognosis of FIC1 deficiency. sBA concentrations at initial presentation and after SBD provide limited prognostic information on long-term NLS.
Collapse
Affiliation(s)
- Daan B.E. van Wessel
- Pediatric Gastroenterology and HepatologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | | | - Emmanuel Gonzales
- Pediatric Hepatology & Pediatric Liver Transplant DepartmentCentre de Référence de l’Atrésie des Voies Biliaires et des Cholestases GénétiquesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAssistance Publique‐Hôpitaux de ParisFaculté de Médecine Paris‐SaclayCHU BicêtreParisFrance
- European Reference Network on Hepatological Diseases
| | - Irena Jankowska
- European Reference Network on Hepatological Diseases
- Gastroenterology, Hepatology, Nutritional Disorders and Pediatricsthe Children’s Memorial Health InstituteWarsawPoland
| | - Benjamin L. Shneider
- Division of Pediatric Gastroenterology, Hepatology, and NutritionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
- Childhood Liver Disease Research Network (ChiLDReN)
| | - Etienne Sokal
- European Reference Network on Hepatological Diseases
- Cliniques St. LucUniversité Catholique de LouvainBrusselsBelgium
| | | | | | - Emmanuel Jacquemin
- Pediatric Hepatology & Pediatric Liver Transplant DepartmentCentre de Référence de l’Atrésie des Voies Biliaires et des Cholestases GénétiquesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAssistance Publique‐Hôpitaux de ParisFaculté de Médecine Paris‐SaclayCHU BicêtreParisFrance
- INSERMUMR‐S 1193Université Paris‐SaclayOrsayFrance
| | - Anne Spraul
- INSERMUMR‐S 1193Université Paris‐SaclayOrsayFrance
- Biochemistry UnitCentre de Référence de l’Atrésie des Voies Biliaires et des Cholestases GénétiquesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAssistance Publique‐Hôpitaux de ParisFaculté de Médecine Paris‐SaclayCHU BicêtreParisFrance
| | - Patryk Lipiński
- European Reference Network on Hepatological Diseases
- Gastroenterology, Hepatology, Nutritional Disorders and Pediatricsthe Children’s Memorial Health InstituteWarsawPoland
| | - Piotr Czubkowski
- European Reference Network on Hepatological Diseases
- Gastroenterology, Hepatology, Nutritional Disorders and Pediatricsthe Children’s Memorial Health InstituteWarsawPoland
| | - Nathalie Rock
- Cliniques St. LucUniversité Catholique de LouvainBrusselsBelgium
| | - Mohammad Shagrani
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
| | - Dieter Broering
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Talal Algoufi
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Nejat Mazhar
- Department of Liver & SB Transplant & Hepatobiliary‐Pancreatic SurgeryKing Faisal Specialist Hospital & Research CenterRiyadhSaudi Arabia
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and TransplantationOspedale Papa Giovanni XXIIIBergamoItaly
| | - Deirdre Kelly
- European Reference Network on Hepatological Diseases
- Liver UnitBirmingham Women’s and Children’s HospitalUniversity of BirminghamBirminghamUnited Kingdom
| | - Gabriella Nebbia
- Servizio Di Epatologia e Nutrizione PediatricaFondazione Irccs Ca’ Granda Ospedale Maggiore PoliclinicoMilanoItaly
| | - Henrik Arnell
- European Reference Network on Hepatological Diseases
- Pediatric Digestive DiseasesAstrid Lindgren Children’s HospitalCLINTECKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Fischler
- European Reference Network on Hepatological Diseases
- Pediatric Digestive DiseasesAstrid Lindgren Children’s HospitalCLINTECKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Jan B.F. Hulscher
- European Reference Network on Hepatological Diseases
- Pediatric SurgeryUniversity Medical Center GroningenGroningenthe Netherlands
| | - Daniele Serranti
- Pediatric and Liver UnitMeyer Children’s University Hospital of FlorenceFlorenceItaly
| | - Cigdem Arikan
- Pediatric GI and Hepatology Liver Transplantation CenterKuttam System in Liver MedicineKoc University School of MedicineIstanbulTurkey
| | - Dominique Debray
- Pediatric Hepatology unit, Reference Center for Biliary Atresia and Genetic Cholestatic DiseasesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAPHP‐Neckler Enfants Malades University HospitalFaculté de Médecine Paris‐CentreParisFrance
| | - Florence Lacaille
- Pediatric Hepatology unit, Reference Center for Biliary Atresia and Genetic Cholestatic DiseasesFilière de Santé des Maladies Rares du Foie de l’enfant et de l’adulteEuropean Reference Network RARE‐LIVERAPHP‐Neckler Enfants Malades University HospitalFaculté de Médecine Paris‐CentreParisFrance
| | - Cristina Goncalves
- European Reference Network on Hepatological Diseases
- Coimbra University Hospital CenterCoimbraPortugal
| | - Loreto Hierro
- European Reference Network on Hepatological Diseases
- Pediatric Liver ServiceLa Paz University HospitalMadridSpain
| | - Gema Muñoz Bartolo
- European Reference Network on Hepatological Diseases
- Pediatric Liver ServiceLa Paz University HospitalMadridSpain
| | - Yael Mozer‐Glassberg
- Institute of Gastroenterology, Nutrition and Liver DiseasesSchneider Children’s Medical Center of IsraelPetach TikvahIsrael
| | - Amer Azaz
- Sheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - Jernej Brecelj
- Department of Gastroenterology, Hepatology and NutritionUniversity Children’s Hospital LjubljanaLjubljanaSlovenia
- Department of PediatricsFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Antal Dezsőfi
- First Department of PediatricsSemmelweis UniversityBudapestHungary
| | - Pier Luigi Calvo
- Pediatic Gastroenterology UnitRegina Margherita Children’s HospitalAzienda Ospedaliera Città Della Salute e Della Scienza University HospitalTorinoItaly
| | | | - Steffen Hartleif
- European Reference Network on Hepatological Diseases
- University Children’s Hospital TϋbingenTϋbingenGermany
| | - Wendy L. van der Woerd
- Pediatric Gastroenterology, Hepatology and NutritionWilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jian‐She Wang
- Children’s Hospital of Fudan UniversityShanghaiChina
| | - Li‐ting Li
- Children’s Hospital of Fudan UniversityShanghaiChina
| | - Özlem Durmaz
- Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey
| | - Nanda Kerkar
- Pediatric Gastroenterology, Hepatology and NutritionUniversity of Rochester Medical CenterRochesterNYUSA
| | - Marianne Hørby Jørgensen
- European Reference Network on Hepatological Diseases
- Pediatric and Adolescent DepartmentDepartment of Pediatrics and Adolescent MedicineRigshospitalet Copenhagen University HospitalCopenhagenDenmark
| | - Ryan Fischer
- Section of Hepatology and Transplant MedicineChildren’s Mercy HospitalKansas CityMOUSA
| | - Carolina Jimenez‐Rivera
- Department of PediatricsChildren’s Hospital of Eastern OntarioUniversity of OttawaOttawaCanada
| | - Seema Alam
- Pediatric HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Mara Cananzi
- European Reference Network on Hepatological Diseases
- Pediatric Gastroenterology and HepatologyUniversity Hospital of PadovaPadovaItaly
| | - Noémie Laverdure
- European Reference Network on Hepatological Diseases
- Service de Gastroentérologie, Hépatologie et Nutrition PédiatriquesHospices Civils de LyonHôpital Femme Mère EnfantLyonFrance
| | | | - Felipe Ordonez
- Fundación Cardioinfantil Instituto de CardiologiaPediatric Gastroenterology and HepatologyBogotáColombia
| | - Heng Wang
- DDC Clinic Center for Special Needs ChildrenMiddlefieldOHUSA
| | - Valerie Sency
- DDC Clinic Center for Special Needs ChildrenMiddlefieldOHUSA
| | - Kyung Mo Kim
- Department of PediatricsAsan Medical Center Children’s HospitalSeoulSouth Korea
| | - Huey‐Ling Chen
- Division of Pediatric Gastroenterology, Hepatology and NutritionNational Taiwan University Children’s HospitalTaipeiTaiwan
| | - Elisa Carvalho
- Pediatric Gastroenterology and HepatologyBrasília Children’s HospitalBrasiliaBrazil
| | - Alexandre Fabre
- INSERMMMGAix Marseille UniversityMarseilleFrance
- Serveice de Pédiatrie MultidisciplinaireTimone EnfantMarseilleFrance
| | - Jesus Quintero Bernabeu
- European Reference Network on Hepatological Diseases
- Pediatric Hepatology and Liver Transplant UnitBarcelonaSpain
| | - Estella M. Alonso
- Childhood Liver Disease Research Network (ChiLDReN)
- Division of Pediatric Gastroenterology, Hepatology and NutritionAnn & Robert H. Lurie Children’s HospitalChicagoILUSA
| | - Ronald J. Sokol
- Childhood Liver Disease Research Network (ChiLDReN)
- Section of Pediatric Gastroenterology, Hepatology and NutritionDepartment of PediatricsChildren’s Hospital ColoradoUniversity of Colorado School of MedicineAuroraCOUSA
| | - Frederick J. Suchy
- Childhood Liver Disease Research Network (ChiLDReN)
- Icahn School of Medicine at Mount SinaiMount Sinai Kravis Children’s HospitalNew YorkNYUSA
| | - Kathleen M. Loomes
- Childhood Liver Disease Research Network (ChiLDReN)
- Division of Gastroenterology, Hepatology and NutritionChildren’s Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Patrick J. McKiernan
- Childhood Liver Disease Research Network (ChiLDReN)
- Department of Pediatric Gastroenterology and HepatologyUniversity of Pittsburgh Medical Center Children’s Hospital of PittsburghPittsburghPAUSA
| | - Philip Rosenthal
- Childhood Liver Disease Research Network (ChiLDReN)
- Department of Pediatrics and SurgeryUCSF Benioff Children’s HospitalUniversity of California San Francisco School of MedicineSan FranciscoCAUSA
| | - Yumirle Turmelle
- Childhood Liver Disease Research Network (ChiLDReN)
- Section of HepatologyDepartment of PediatricsSt. Louis Children’s HospitalWashington University School of MedicineSt. LouisMOUSA
| | - Girish S. Rao
- Childhood Liver Disease Research Network (ChiLDReN)
- Riley Hospital for ChildrenIndiana University School of MedicineIndianapolisINUSA
| | - Simon Horslen
- Childhood Liver Disease Research Network (ChiLDReN)
- Department of PediatricsSeattle Children’s HospitalUniversity of WashingtonSeattleWAUSA
| | - Binita M. Kamath
- Childhood Liver Disease Research Network (ChiLDReN)
- The Hospital for Sick ChildrenUniversity of TorontoTorontoCanada
| | - Maria Rogalidou
- Division of Pediatric Gastroenterology & HepatologyFirst Pediatrics DepartmentUniversity of AthensAgia Sofia Children’s HospitalAthensGreece
| | - Wikrom W. Karnsakul
- Division of Pediatric Gastroenterology, Nutrition, and HepatologyDepartment of PediatricsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bettina Hansen
- Toronto Center for Liver DiseaseUniversity Health NetworkTorontoCanada
- IHPMEUniversity of TorontoTorontoCanada
| | - Henkjan J. Verkade
- Pediatric Gastroenterology and HepatologyUniversity Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- European Reference Network on Hepatological Diseases
| | | |
Collapse
|
45
|
Rao B, Li J, Ren T, Yang J, Zhang G, Liu L, Wang H, Huang M, Ren Z, Yu Z. RPL19 Is a Prognostic Biomarker and Promotes Tumor Progression in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:686547. [PMID: 34350180 PMCID: PMC8327752 DOI: 10.3389/fcell.2021.686547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies, and the therapeutic outcome remains undesirable due to its recurrence and metastasis. Gene dysregulation plays a pivotal role in the occurrence and progression of cancer, and the molecular mechanisms are largely unknown. METHODS The differentially expressed genes of HCC screened from the GSE39791 dataset were used to conduct weighted gene co-expression network analysis. The selected hub genes were validated in The Cancer Genome Atlas (TCGA) database and 11 HCC datasets from the Gene Expression Omnibus (GEO) database. Then, a tissue microarray comprising 90 HCC specimens and 90 adjacent normal specimens was used to validate the hub genes. Moreover, the Hallmark, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to identify enriched pathways. Then, we conducted the immune infiltration analysis. RESULTS A total of 17 co-expression modules were obtained by weighted gene co-expression network analysis. The green, blue, and purple modules were the most relevant to HCC samples. Four hub genes, RPL19, RPL35A, RPL27A, and RPS12, were identified. Interestingly, we found that all four genes were highly expressed in HCC and that their high expression was related to a poor prognosis by analyzing the TCGA and GEO databases. Furthermore, we investigated RPL19 in HCC tissue microarrays and demonstrated that RPL19 was overexpressed in tumor tissues compared with non-tumor tissues (p = 0.016). Moreover, overexpression of RPL19 predicted a poor prognosis in hepatocellular carcinoma (p < 0.0007). Then, enrichment analysis revealed that cell cycle pathways were significantly enriched, and bile acid metabolism-related pathways were significantly down-regulated when RPL19 was highly expressed. Furthermore, immune infiltration analysis showed that immune response was suppressed. CONCLUSION Our study demonstrates that RPL19 may play an important role in promoting tumor progression and is correlated with a poor prognosis in HCC. RPL19 may serve as a promising biomarker and therapeutic target for the precise diagnosis and treatment of HCC in the future.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Ren
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guizhen Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maoxin Huang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
46
|
Sheps JA, Wang R, Wang J, Ling V. The protective role of hydrophilic tetrahydroxylated bile acids (THBA). Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158925. [PMID: 33713832 DOI: 10.1016/j.bbalip.2021.158925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 01/14/2023]
Abstract
Bile acids are key components of bile required for human health. In humans and mice, conditions of reduced bile flow, cholestasis, induce bile acid detoxification by producing tetrahydroxylated bile acids (THBA), more hydrophilic and less cytotoxic than the usual bile acids, which are typically di- or tri-hydroxylated. Mice deficient in the Bile Salt Export Pump (Bsep, or Abcb11), the primary bile acid transporter in liver cells, produce high levels of THBA, and avoid the severe liver damage typically seen in humans with BSEP deficiencies. THBA can suppress bile acid-induced liver damage in Mdr2-deficient mice, caused by their lack of phospholipids in bile exposing their biliary tracts to unbound bile acids. Here we review THBA-related works in both animals and humans, and discuss their potential relevance and applications as a class of functional bile acids.
Collapse
Affiliation(s)
- Jonathan A Sheps
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Renxue Wang
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jianshe Wang
- Department of Pediatrics, Fudan University Shanghai Medical College, The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Victor Ling
- BC Cancer Research Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia Vancouver, British Columbia, Canada.
| |
Collapse
|
47
|
Conde de la Rosa L, Garcia-Ruiz C, Vallejo C, Baulies A, Nuñez S, Monte MJ, Marin JJG, Baila-Rueda L, Cenarro A, Civeira F, Fuster J, Garcia-Valdecasas JC, Ferrer J, Karin M, Ribas V, Fernandez-Checa JC. STARD1 promotes NASH-driven HCC by sustaining the generation of bile acids through the alternative mitochondrial pathway. J Hepatol 2021; 74:1429-1441. [PMID: 33515644 PMCID: PMC8573791 DOI: 10.1016/j.jhep.2021.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Besides their physiological role in bile formation and fat digestion, bile acids (BAs) synthesised from cholesterol in hepatocytes act as signalling molecules that modulate hepatocellular carcinoma (HCC). Trafficking of cholesterol to mitochondria through steroidogenic acute regulatory protein 1 (STARD1) is the rate-limiting step in the alternative pathway of BA generation, the physiological relevance of which is not well understood. Moreover, the specific contribution of the STARD1-dependent BA synthesis pathway to HCC has not been previously explored. METHODS STARD1 expression was analyzed in a cohort of human non-alcoholic steatohepatitis (NASH)-derived HCC specimens. Experimental NASH-driven HCC models included MUP-uPA mice fed a high-fat high-cholesterol (HFHC) diet and diethylnitrosamine (DEN) treatment in wild-type (WT) mice fed a HFHC diet. Molecular species of BAs and oxysterols were analyzed by mass spectrometry. Effects of NASH-derived BA profiles were investigated in tumour-initiated stem-like cells (TICs) and primary mouse hepatocytes (PMHs). RESULTS Patients with NASH-associated HCC exhibited increased hepatic expression of STARD1 and an enhanced BA pool. Using NASH-driven HCC models, STARD1 overexpression in WT mice increased liver tumour multiplicity, whereas hepatocyte-specific STARD1 deletion (Stard1ΔHep) in WT or MUP-uPA mice reduced tumour burden. These findings mirrored the levels of unconjugated primary BAs, β-muricholic acid and cholic acid, and their tauroconjugates in STARD1-overexpressing and Stard1ΔHep mice. Incubation of TICs or PMHs with a mix of BAs mimicking this profile stimulated expression of genes involved in pluripotency, stemness and inflammation. CONCLUSIONS The study reveals a previously unrecognised role of STARD1 in HCC pathogenesis, wherein it promotes the synthesis of primary BAs through the mitochondrial pathway, the products of which act in TICs to stimulate self-renewal, stemness and inflammation. LAY SUMMARY Effective therapy for hepatocellular carcinoma (HCC) is limited because of our incomplete understanding of its pathogenesis. The contribution of the alternative pathway of bile acid (BA) synthesis to HCC development is unknown. We uncover a key role for steroidogenic acute regulatory protein 1 (STARD1) in non-alcoholic steatohepatitis-driven HCC, wherein it stimulates the generation of BAs in the mitochondrial acidic pathway, the products of which stimulate hepatocyte pluripotency and self-renewal, as well as inflammation.
Collapse
Affiliation(s)
- Laura Conde de la Rosa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Carmen Vallejo
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Baulies
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Susana Nuñez
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J Monte
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Jose J G Marin
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Lucia Baila-Rueda
- Instituto Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV, Madrid, Spain
| | - Ana Cenarro
- Instituto Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV, Madrid, Spain
| | - Fernando Civeira
- Instituto Investigación Sanitaria Aragón, Hospital Universitario Miguel Servet, Zaragoza, Spain; CIBERCV, Madrid, Spain
| | - Josep Fuster
- HepatoBilioPancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, ICMDiM, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Juan C Garcia-Valdecasas
- HepatoBilioPancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, ICMDiM, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Joana Ferrer
- HepatoBilioPancreatic Surgery and Liver and Pancreatic Transplantation Unit, Department of Surgery, ICMDiM, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vicent Ribas
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
48
|
The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2021; 18:335-347. [PMID: 33568795 DOI: 10.1038/s41575-020-00404-2] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Farnesoid X receptor (FXR) is a ligand-activated transcription factor involved in the control of bile acid (BA) synthesis and enterohepatic circulation. FXR can influence glucose and lipid homeostasis. Hepatic FXR activation by obeticholic acid is currently used to treat primary biliary cholangitis. Late-stage clinical trials investigating the use of obeticholic acid in the treatment of nonalcoholic steatohepatitis are underway. Mouse models of metabolic disease have demonstrated that inhibition of intestinal FXR signalling reduces obesity, insulin resistance and fatty liver disease by modulation of hepatic and gut bacteria-mediated BA metabolism, and intestinal ceramide synthesis. FXR also has a role in the pathogenesis of gastrointestinal and liver cancers. Studies using tissue-specific and global Fxr-null mice have revealed that FXR acts as a suppressor of hepatocellular carcinoma, mainly through regulating BA homeostasis. Loss of whole-body FXR potentiates progression of spontaneous colorectal cancer, and obesity-induced BA imbalance promotes intestinal stem cell proliferation by suppressing intestinal FXR in Apcmin/+ mice. Owing to altered gut microbiota and FXR signalling, changes in overall BA levels and specific BA metabolites probably contribute to enterohepatic tumorigenesis. Modulating intestinal FXR signalling and altering BA metabolites are potential strategies for gastrointestinal and liver cancer prevention and treatment. In this Review, studies on the role of FXR in metabolic diseases and gastrointestinal and liver cancer are discussed, and the potential for development of targeted drugs are summarized.
Collapse
|
49
|
Use of a Comprehensive 66-Gene Cholestasis Sequencing Panel in 2171 Cholestatic Infants, Children, and Young Adults. J Pediatr Gastroenterol Nutr 2021; 72:654-660. [PMID: 33720099 DOI: 10.1097/mpg.0000000000003094] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Cholestasis is caused by a wide variety of etiologies, often genetic in origin. Broad overlap in clinical presentations, particularly in newborns, renders prioritizing diagnostic investigations challenging. In this setting, a timely, comprehensive assessment using a multigene panel by a clinical diagnostic laboratory would likely prove useful. We summarize initial findings from a testing program designed to discover genetic causes of cholestasis. METHODS A neonatal/adult sequencing panel containing 66 genes (originally 57; nine added March 2017) relevant to cholestasis was used. A broad range of eligible patients were enrolled with current/history of cholestasis without an identified cause, or unexplained chronic liver disease. DNA sequencing utilized a custom-designed capture library, and variants were classified and reported as benign, likely benign, variant of unknown significance (VOUS), likely pathogenic (LP), or pathogenic (P), according to the clinical interpretation workflow at EGL Genetics (Tucker, GA). RESULTS A total of 2433 samples were submitted between February 2016 and December 2017; 2171 results were reported. Median turnaround time was 21 days. Results from the 2171 subjects (57% <1 year old) included 583 P variants, 79 LP variants, and 3117 VOUS; 166 P/LP variants and 415 VOUS were novel. The panel's overall diagnostic yield was 12% (n = 265/2171) representing 32 genes. The top five genetic diagnoses for the group, in order: JAG1 + NOTCH2 (Alagille syndrome), ABCB11, SERPINA1, ABCB4, and POLG. CONCLUSIONS These findings support the utility of comprehensive rapid multigene testing in diagnosing cholestasis and highlight the evolving understanding of genetic variants contributing to the pathogenesis of cholestasis.
Collapse
|
50
|
Lucas B, Ravishankar S, Pateva I. Pediatric Primary Hepatic Tumors: Diagnostic Considerations. Diagnostics (Basel) 2021; 11:333. [PMID: 33670452 PMCID: PMC7922091 DOI: 10.3390/diagnostics11020333] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is the third most common site of abdominal tumors in children. This review article aims to summarize current evidence surrounding identification and diagnosis of primary hepatic tumors in the pediatric population based upon clinical presentation, epidemiology, and risk factors as well as classical imaging, histopathological, and molecular diagnostic findings. Readers will be able to recognize the features and distinguish between benign and malignant hepatic tumors within different age groups.
Collapse
Affiliation(s)
- Bryony Lucas
- Rainbow Babies and Children’s Hospital—Department of Pediatrics, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjita Ravishankar
- Rainbow Babies and Children’s Hospital—Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Irina Pateva
- Rainbow Babies and Children’s Hospital—Department of Pediatric Hematology and Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|