1
|
Li X, Chen X, Guo H. Plasminogen activator inhibitor 1 is a novel predictor in human serum/follicular fluid for diminished ovarian reserve. BMC Womens Health 2025; 25:210. [PMID: 40301911 PMCID: PMC12039065 DOI: 10.1186/s12905-025-03710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/02/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Diminished ovarian reserve (DOR) is a common female reproductive aging disease, which showed significant impacts on the quality of life and fertility in women. Plasminogen activator inhibitor 1 (PAI-1) is considered to be a major profibrotic factor. The development of DOR is closely related to ovarian fibrosis. The aim of the study was to investigate the expression of PAI-1,which is clinically relevant to DOR. METHODS This case-control study included 40 infertile women with DOR and 40 infertile women with normal ovarian function. PAI-1 and reproductive hormones in serum and follicle fluid were determined in all subjects. Receiver operating characteristic curve (ROC) was applied to evaluate PAI-1 in prediction and diagnosis of DOR. The mRNA and protein expression of PAI-1 in KGN cells induced by cyclophosphamide (CTX) were observed by Western blot (WB) and quantitative real-time PCR (qRT-PCR). RESULTS The sensitivity and specificity of PAI-1 levels in serum/follicular fluid for predicting DOR were 90%/97.5% and 70%/82.5%, respectively. The AUC of PAI-1 in follicular fluid was 0.955(95% CI 0.913-0.997), which cutoff level and Youden index were 68.58 ng/mL and 0.825 for DOR. PAI-1 in serum and follicle fluid showed negative association with Anti-Müllerian hormone (AMH) and antral follicle count (AFC) (serum r= -0.391,r= -0.453;follicle fluid r= -0.486,r= -0.534;p < 0.01), however, they were positively correlated with follicle-stimulating hormone (FSH) and follicle-stimulating hormone/luteinizing hormone (FSH/LH) (serum r = 0.307,r = 0.388;follicle fluid r = 0.300,r = 0.384;p < 0.05). The ROC analysis indicated that serum PAI-1 has great prediction of DOR, with an AUC of 0.841, a sensitivity of 90%, and a specificity of 70%. Additionally, the qRT-PCR results demonstrated that the mRNA levels of PAI-1 increased in the CTX-induced cells (P < 0.05). The western blot results were consistent with qRT-PCR results. CONCLUSION Our study reveals that the expression of PAI-1 is higher in serum and follicular fluid of DOR patients. And it is positively correlated with FSH, FSH/LH and negatively correlated with AMH/AFC, which is necessary to investigate the role of PAI-1 in regulating the growth and development of follicles and the pathogenesis of DOR in future.
Collapse
Affiliation(s)
- Xinshu Li
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xue Chen
- Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hua Guo
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Piao D, Youn I, Huynh TH, Kim HW, Noh SG, Chung HY, Oh DC, Seo EK. Identification of New Polyacetylenes from Dendropanax morbifera with PPAR-α Activity Study. Molecules 2024; 29:5942. [PMID: 39770031 PMCID: PMC11677830 DOI: 10.3390/molecules29245942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Dendropanax morbifera Leveille is a traditional medicine used to treat migraine headache and dysmenorrhea. In this study, three polyacetylenes, methyl (10E,9R,16R)-16-acetoxy-9-hydroxyoctadeca-10,17-dien-12,14-diynoate (1), methyl (10E,9R,16S)-9,16-dihydroxyoctadeca-10-en-12,14-diynoate (2), and methyl (10Z,9R,16S)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (3), were isolated from the aerial parts of D. morbifera, together with seven known compounds (4-10). Importantly, the isolates (6 and 8) were found in the family Araliaceae for the first time in this study. Compounds 1-10 were evaluated for their binding affinity to AMPK and CTSS receptors using in silico docking simulations. Only compound 7 increased the protein expression levels of PPAR-α, Sirt1, and AMPK when administered to HepG2 cells as a PPAR-α agonist. On the other hand, 7 did not produce any significant reduction in CTSS activity. This study could pave the way for the discovery of novel treatments from D. morbifera targeting PPAR-α and AMPK.
Collapse
Affiliation(s)
- Donglan Piao
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (D.P.); (I.Y.)
| | - Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (D.P.); (I.Y.)
| | - Thanh-Hau Huynh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (D.-C.O.)
| | - Hyun Woo Kim
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.W.K.); (S.G.N.); (H.Y.C.)
| | - Sang Gyun Noh
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.W.K.); (S.G.N.); (H.Y.C.)
| | - Hae Young Chung
- Department of Pharmacy and Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.W.K.); (S.G.N.); (H.Y.C.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (T.-H.H.); (D.-C.O.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (D.P.); (I.Y.)
| |
Collapse
|
3
|
Almohawes ZN, El-Kott A, Morsy K, Shati AA, El-Kenawy AE, Khalifa HS, Elsaid FG, Abd-Lateif AEKM, Abu-Zaiton A, Ebealy ER, Abdel-Daim MM, Ghanem RA, Abd-Ella EM. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2024; 130:257-274. [PMID: 35061559 DOI: 10.1080/13813455.2021.2024578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.
Collapse
Affiliation(s)
- Zakiah N Almohawes
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Cairo University, Cairo, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Eman R Ebealy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmaceutical Sciences Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham A Ghanem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum, Egypt
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
4
|
Zhang D, Ma Y, Liu J, Wang D, Geng Z, Wen D, Chen H, Wang H, Li L, Zhu X, Wang X, Huang M, Zou C, Chen Y, Ma L. Fenofibrate improves hepatic steatosis, insulin resistance, and shapes the gut microbiome via TFEB-autophagy in NAFLD mice. Eur J Pharmacol 2023; 960:176159. [PMID: 37898287 DOI: 10.1016/j.ejphar.2023.176159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major liver disease subtype worldwide, is commonly associated with insulin resistance and obesity. NAFLD is characterized by an excessive hepatic lipid accumulation, as well as hepatic steatosis. Fenofibrate is a peroxisome proliferator-activated receptor α agonist widely used in clinical therapy to effectively ameliorate the development of NAFLD, but its mechanism of action is incompletely understood. Here, we found that fenofibrate dramatically modulate the gut microbiota composition of high-fat diet (HFD)-induced NAFLD mouse model, and the change of gut microbiota composition is dependent on TFEB-autophagy axis. Furthermore, we also found that fenofibrate improved hepatic steatosis, and increased the activation of TFEB, which severed as a regulator of autophagy, thus, the protective effects of fenofibrate against NAFLD are depended on TFEB-autophagy axis. Our study demonstrates the host gene may influence the gut microbiota and highlights the role of TFEB and autophagy in the protective effect of NAFLD. This work expands our understanding of the regulatory interactions between the host and gut microbiota and provides novel strategies for alleviating obesity.
Collapse
Affiliation(s)
- Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Yicheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, PR China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming, 650500, PR China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Zuotao Geng
- Department of Pediatrics, Women and Children's Hospital of Lijiang, Lijiang, 674100, PR China
| | - Daiyan Wen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Hui Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Lanyi Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Xiaotong Zhu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Xuemin Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Minshan Huang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, PR China.
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, 650500, PR China.
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, 650032, PR China.
| |
Collapse
|
5
|
Wang X, Luo J, Lu Z, Fang S, Sun M, Luo W, Shen J, Liu A, Ye H. Therapeutic effect of fenofibrate for non-alcoholic steatohepatitis in mouse models is dependent on regime design. Front Pharmacol 2023; 14:1190458. [PMID: 37251331 PMCID: PMC10213340 DOI: 10.3389/fphar.2023.1190458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver diseases. In most cases, NAFLD progresses from benign steatosis to steatohepatitis (NASH), and then to cirrhosis. No treatment is currently approved for NAFLD/NASH in the clinic. Fenofibrate (FENO) has been clinically used to treat dyslipidemia for more than a half century, but its effects on NASH are not established. FENO's half-life is quite different between rodent and human. The aim of this study was to investigate the potential of pharmacokinetic-based FENO regime for NASH treatment and the underlying mechanisms. Methods: Two typical mouse NASH models, methionine-choline deficient (MCD) diet-fed mice and choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, were used. MCD model was designed as therapeutic evaluation in experiment 1 and CDAHFD model was designed as preventive in experiment 2. Three doses of FENO (5, 25, 125 mg/kg), two times a day (BID), were administered to the above models. Serum markers of liver injury, cholestasis, and the histology of liver tissues were investigated. Normal mice were used as a model in experiment 3 for toxicity evaluation, Quantitative-PCR and Western Blot assays were used to investigate the inflammatory responses, bile acid synthesis as well as lipid catabolism. Results: Mice on the MCD and CDAHFD diets developed steatohepatitis as expected. Treatment with FENO (25 mg/kg·BID) significantly decreased hepatic steatosis, inflammation and fibrosis in both therapeutic and preventive models. In the MCD model, the therapeutic action of FENO (25 mg/kg·BID) and 125 mg/kg·BID on histopathology and the expression of inflammatory cytokines were comparable. In reducing macrophage infiltration and bile acid load, FENO (25 mg/kg·BID) was superior to 125 mg/kg·BID. In all the aspects mentioned above, FENO (25 mg/kg·BID) was the best among the 3 doses in the CDAHFD model. In a third experiment, the effects of FENO (25 mg/kg·BID) and 125 mg/kg·BID on lipid catabolism were comparable, but 125 mg/kg·BID increased the expression of inflammatory factors and bile acid load. In both models, FENO (5 mg/kg·BID) showed little effect in hepatic steatosis and inflammation, neither the adverse effects. FENO (125 mg/kg·BID) aggravated liver inflammation, increased bile acid synthesis, and promoted the potential of liver proliferation. In toxicity risk assay, FENO (25 mg/kg·BID) treatment showed low potential to trigger bile acid synthesis, inflammation and hepatocyte proliferation. Conclusion: A new regime, FENO (25 mg/kg·BID) is potentially a therapeutic strategy for the NASH treatment. Translational medicine is warranted to prove its effectiveness in the clinic.
Collapse
Affiliation(s)
- Xinxue Wang
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jia Luo
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Zhuoheng Lu
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Shenzhe Fang
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Mengxia Sun
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Wenjing Luo
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jianwei Shen
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| | - Aiming Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, China
| | - Hua Ye
- Department of Gastroenterology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Youssef FS, El-Sherbeni SA, Negm WA. A perspective study of the possible impact of obeticholic acid against SARS-CoV-2 infection. Inflammopharmacology 2023; 31:9-19. [PMID: 36484974 PMCID: PMC9735105 DOI: 10.1007/s10787-022-01111-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
The causative agent of CoV disease 2019 is a new coronavirus CoV type 2, affecting the respiratory tract with severe manifestations (SARS-CoV-2). Covid-19 is mainly symptomless, with slight indications in about 85% of the affected cases. Many efforts were done to face this pandemic by testing different drugs and agents to make treatment protocols in different countries. However, the use of these proposed drugs is associated with the development of adverse events. Remarkably, the successive development of SARS-CoV-2 variants which could affect persons even they were vaccinated, prerequisite wide search to find efficient and safe agents to face SARS-CoV-2 infection. Obeticholic acid (OCA), which has anti-inflammatory effects, may efficiently treat Covid-19. Thus, the goal of this perspective study is to focus on the possible medicinal effectiveness in managing Covid-19. OCA is a powerful farnesoid X receptor (FXR) agonist possessing marked antiviral and anti-inflammatory effects. FXR is dysregulated in Covid-19 resulting in hyper-inflammation with concurrent occurrence of hypercytokinemia. Interestingly, OCA inhibits the reaction between this virus and angiotensin-converting enzyme type 2 (ACE2) receptors. FXR agonists control the expression of ACE2 and the inflammatory signaling pathways in this respiratory syndrome, which weakens the effects of Covid-19 disease and accompanied complications. Taken together, FXR agonists like OCA may reveal both direct and indirect impacts in the modulation of immune reaction in SARS-CoV-2 conditions. It is highly recommended to perform many investigations regarding different phases of the discovery of new drugs.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566 Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
7
|
Mahmoudi A, Jamialahmadi T, Johnston TP, Sahebkar A. Impact of fenofibrate on NAFLD/NASH: A genetic perspective. Drug Discov Today 2022; 27:2363-2372. [PMID: 35569762 DOI: 10.1016/j.drudis.2022.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), caused by an accumulation of fat deposits in hepatocytes, prevalently affects at least one-third of the world's population. The progression of this disorder can potentially include a spectrum of consecutive stages, specifically: steatosis, steatohepatitis and cirrhosis. Fenofibrate exhibits potential therapeutic efficacy for NAFLD owing to several properties, which include antioxidant, apoptotic, anti-inflammatory and antifibrotic activity. In the present review, we discuss the direct or indirect impact of fenofibrate on genes involved at various stages in the progression of NAFLD. Moreover, we have reviewed studies that compare fenofibrate with other drugs in treating NAFLD, as well as recent clinical trials, in an attempt to identify reliable scientific and clinical evidence concerning the therapeutic effects and benefits of fenofibrate on NAFLD. Teaser.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Zhang D, Niu S, Ma Y, Chen H, Wen Y, Li M, Zhou B, Deng Y, Shi C, Pu G, Yang M, Wang X, Zou C, Chen Y, Ma L. Fenofibrate Improves Insulin Resistance and Hepatic Steatosis and Regulates the Let-7/SERCA2b Axis in High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice. Front Pharmacol 2022; 12:770652. [PMID: 35126113 PMCID: PMC8807641 DOI: 10.3389/fphar.2021.770652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Fenofibrate is widely used in clinical therapy to effectively ameliorate the development of non-alcoholic fatty liver disease (NAFLD); however, its specific molecular mechanism of action remains largely unknown. MicroRNAs (miRNAs) are key mediators in regulating endoplasmic reticulum (ER) stress during NAFLD, and the deregulation of miRNAs has been demonstrated in NAFLD pathophysiology. The present study aimed to identify whether fenofibrate could influence miRNA expression in NAFLD and investigate the specific mechanism of action of fenofibrate in lipid metabolism disorder-associated diseases. We found that fenofibrate alleviated ER stress and increased the levels of SERCA2b, which serves as a regulator of ER stress. Additionally, the levels of let-7 miRNA were regulated by fenofibrate; let-7 was found to target the 3′ untranslated region of SERCA2b. The present data suggest that the protective effects of fenofibrate against insulin resistance and its suppressive activity against excessive hepatic lipid accumulation may be related to the alteration of the let-7/SERCA2b axis and alleviation of ER stress.
Collapse
Affiliation(s)
- Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Shanzhuang Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yicheng Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yu Wen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Mingke Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Bo Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Yi Deng
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chunjing Shi
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Guangyu Pu
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Meng Yang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuanli Chen
- Faculty of Basic Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Yuanli Chen, ; Lanqing Ma,
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
- *Correspondence: Yuanli Chen, ; Lanqing Ma,
| |
Collapse
|
9
|
Wang Y, Zheng L, Zhou Z, Yao D, Huang Y, Liu B, Duan Y, Li Y. Review article: insights into the bile acid-gut microbiota axis in intestinal failure-associated liver disease-redefining the treatment approach. Aliment Pharmacol Ther 2022; 55:49-63. [PMID: 34713470 DOI: 10.1111/apt.16676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Intestinal failure-associated liver disease (IFALD) increases mortality of patients with intestinal failure (IF), but lacks effective prevention or treatment approaches. Bile acids, gut microbiota and the host have close and complex interactions, which play a central role in modulating host immune and metabolic homeostasis. Increasing evidence suggests that derangement of the bile acid-gut microbiota (BA-GM) axis contributes to the development of IFALD. AIMS To review the BA-GM axis in the pathogenesis and clinical applications of IFALD, and to explore future directions for effective disease management. METHODS We conducted a literature search on bile acid and gut microbiota in IF and liver diseases. RESULTS The BA-GM axis demonstrates a unique IF signature manifesting as an increase in primary-to-secondary bile acids ratio, disturbed enterohepatic circulation, blunted bile acid signalling pathways, gut microbial dysbiosis, and altered microbial metabolic outputs. Bile acids and gut microbiota shape the compositional and functional alterations of each other in IF; collaboratively, they promote immune dysfunction and metabolic aberration in the liver. Diagnostic markers and treatments targeting the BA-GM axis showed promising potential in the management of IFALD. CONCLUSIONS Bile acids and gut microbiota play a central role in the development of IFALD and make attractive biomarkers as well as therapeutic targets. A multitarget, individualised therapy aiming at different parts of the BA-GM axis may provide optimal clinical benefits and requires future investigation.
Collapse
Affiliation(s)
- Yaoxuan Wang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Danhua Yao
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Yuhua Huang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Bin Liu
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Yantao Duan
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| | - Yousheng Li
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Du J, Xiang X, Xu D, Cui K, Pang Y, Xu W, Mai K, Ai Q. LPS Stimulation Induces Small Heterodimer Partner Expression Through the AMPK-NRF2 Pathway in Large Yellow Croaker ( Larimichthys crocea). Front Immunol 2021; 12:753681. [PMID: 34819934 PMCID: PMC8607525 DOI: 10.3389/fimmu.2021.753681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The mall heterodimer partner (SHP) plays an important regulatory role in mammal inflammation. The main objective of this study was to investigate the response of SHP to inflammatory stimulation and its underlying mechanism. The shp gene from large yellow croakers, was cloned, and this gene is mainly expressed in the liver and intestine. Lipopolysaccharide (LPS) stimulation induced the mRNA expression and protein level of SHP in macrophages of large yellow croakers. Overexpression of SHP significantly decreased mRNA expression of tnfα, il-1β, il-6 and cox2 induced by LPS treatment in macrophages. LPS stimulation increased the phosphorylation level of Adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) in macrophages. AMPK inhibitor treatment significantly decreased the expression of SHP induced by LPS while AMPK activator significantly increased the expression of SHP. The nuclear factor-erythroid 2-related factor 2 (NRF2) increased the promoter activity of SHP in large yellow croakers and the level of nuclear NRF2 was increased by LPS stimulation and AMPK activation. NRF2 inhibitor treatment significantly decreased mRNA expression of shp induced by LPS and AMPK activator. In conclusion, LPS can induce SHP expression by activating the AMPK-NRF2 pathway while SHP could negatively regulate LPS-induced inflammation in large yellow croakers. This study may be benefit to the development of immunology of marine fish and provide new ideas for inflammation-related diseases.
Collapse
Affiliation(s)
- Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kun Cui
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yuning Pang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Liberale L, Akhmedov A, Vlachogiannis NI, Bonetti NR, Nageswaran V, Miranda MX, Puspitasari YM, Schwarz L, Costantino S, Paneni F, Beer JH, Ruschitzka F, Montecucco F, Lüscher TF, Stamatelopoulos K, Stellos K, Camici GG. Sirtuin 5 promotes arterial thrombosis by blunting the fibrinolytic system. Cardiovasc Res 2021; 117:2275-2288. [PMID: 32931562 DOI: 10.1093/cvr/cvaa268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS Arterial thrombosis as a result of plaque rupture or erosion is a key event in acute cardiovascular events. Sirtuin 5 (SIRT5) belongs to the lifespan-regulating sirtuin superfamily and has been implicated in acute ischaemic stroke and cardiac hypertrophy. This project aims at investigating the role of SIRT5 in arterial thrombus formation. METHODS AND RESULTS Sirt5 transgenic (Sirt5Tg/0) and knock-out (Sirt5-/-) mice underwent photochemically induced carotid endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) were treated with SIRT5 silencing-RNA (si-SIRT5) as well as peripheral blood mononuclear cells from acute coronary syndrome (ACS) patients and non-ACS controls (case-control study, total n = 171) were used to increase the translational relevance of our data. Compared to wild-type controls, Sirt5Tg/0 mice displayed accelerated arterial thrombus formation following endothelial-specific damage. Conversely, in Sirt5-/- mice, arterial thrombosis was blunted. Platelet function was unaltered, as assessed by ex vivo collagen-induced aggregometry. Similarly, activation of the coagulation cascade as assessed by vascular and plasma tissue factor (TF) and TF pathway inhibitor expression was unaltered. Increased thrombus embolization episodes and circulating D-dimer levels suggested augmented activation of the fibrinolytic system in Sirt5-/- mice. Accordingly, Sirt5-/- mice showed reduced plasma and vascular expression of the fibrinolysis inhibitor plasminogen activator inhibitor (PAI)-1. In HAECs, SIRT5-silencing inhibited PAI-1 gene and protein expression in response to TNF-α. This effect was mediated by increased AMPK activation and reduced phosphorylation of the MAP kinase ERK 1/2, but not JNK and p38 as shown both in vivo and in vitro. Lastly, both PAI-1 and SIRT5 gene expressions are increased in ACS patients compared to non-ACS controls after adjustment for cardiovascular risk factors, while PAI-1 expression increased across tertiles of SIRT5. CONCLUSION SIRT5 promotes arterial thrombosis by modulating fibrinolysis through endothelial PAI-1 expression. Hence, SIRT5 may be an interesting therapeutic target in the context of atherothrombotic events.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Nikolaos I Vlachogiannis
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH Newcastle upon Tyne, UK
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Vanasa Nageswaran
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Melroy X Miranda
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Yustina M Puspitasari
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Lena Schwarz
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden, Im Ergel 1, 5404 Baden, Switzerland
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, L.go R. Benzi 10, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Kimon Stamatelopoulos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH Newcastle upon Tyne, UK
- Department of Clinical Therapeutics, Alexandra Hospital, University of Athens, Lourou 4-2, 115 28 Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Framlington Place, NE2 4HH Newcastle upon Tyne, UK
- Department of Cardiology, Newcastle Hospitals NHS Foundation Trust, Freeman Rd, High Heaton, Newcastle upon Tyne NE7 7DN, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020; 12:nu12113476. [PMID: 33198317 PMCID: PMC7696073 DOI: 10.3390/nu12113476] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The circadian rhythm plays a chief role in the adaptation of all bodily processes to internal and environmental changes on the daily basis. Next to light/dark phases, feeding patterns constitute the most essential element entraining daily oscillations, and therefore, timely and appropriate restrictive diets have a great capacity to restore the circadian rhythm. One of the restrictive nutritional approaches, caloric restriction (CR) achieves stunning results in extending health span and life span via coordinated changes in multiple biological functions from the molecular, cellular, to the whole-body levels. The main molecular pathways affected by CR include mTOR, insulin signaling, AMPK, and sirtuins. Members of the family of nuclear receptors, the three peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ take part in the modulation of these pathways. In this non-systematic review, we describe the molecular interconnection between circadian rhythm, CR-associated pathways, and PPARs. Further, we identify a link between circadian rhythm and the outcomes of CR on the whole-body level including oxidative stress, inflammation, and aging. Since PPARs contribute to many changes triggered by CR, we discuss the potential involvement of PPARs in bridging CR and circadian rhythm.
Collapse
|
13
|
Noguchi R, Kaji K, Namisaki T, Moriya K, Kawaratani H, Kitade M, Takaya H, Aihara Y, Douhara A, Asada K, Nishimura N, Miyata T, Yoshiji H. Novel oral plasminogen activator inhibitor‑1 inhibitor TM5275 attenuates hepatic fibrosis under metabolic syndrome via suppression of activated hepatic stellate cells in rats. Mol Med Rep 2020; 22:2948-2956. [PMID: 32945412 PMCID: PMC7453658 DOI: 10.3892/mmr.2020.11360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
An orally bioavailable small molecule inhibitor of plasminogen activator inhibitor‑1 (PAI‑1) is currently being clinically assessed as a novel antithrombotic agent. Although PAI‑1 is known to serve a key role in the pathogenesis of metabolic syndrome (MetS) including nonalcoholic steatohepatitis (NASH), the pharmacological action of an oral PAI‑1 inhibitor against the development of MetS‑related liver fibrosis remains unclear. The current study was designed to explicate the effect of TM5275, an oral PAI‑1 inhibitor, on MetS‑related hepatic fibrogenesis. The in vivo antifibrotic effect of orally administered TM5275 was investigated in two different rat MetS models. Fischer 344 rats received a choline‑deficient L‑amino‑acid‑defined diet for 12 weeks to induce steatohepatitis with development of severe hepatic fibrosis. Otsuka Long‑Evans Tokushima Fatty rats, used to model congenital diabetes, underwent intraperitoneal injection of porcine serum for 6 weeks to induce hepatic fibrosis under diabetic conditions. In each experimental model, TM5275 markedly ameliorated the development of hepatic fibrosis and suppressed the proliferation of activated hepatic stellate cells (HSCs). Additionally, the hepatic production of tumor growth factor (TGF)‑β1 and total collagen was suppressed. In vitro assays revealed that TGF‑β1 stimulated the upregulation of Serpine1 mRNA expression, which was inhibited by TM5275 treatment in cultured HSC‑T6 cells, a rat HSC cell line. Furthermore, TM5275 substantially attenuated the TGF‑β1‑stimulated proliferative and fibrogenic activity of HSCs by inhibiting AKT phosphorylation. Collectively, TM5275 demonstrated an antifibrotic effect on liver fibrosis in different rat MetS models, suppressing TGF‑β1‑induced HSC proliferation and collagen synthesis. Thus, PAI‑1 inhibitors may serve as effective future therapeutic agents against NASH‑based hepatic fibrosis.
Collapse
Affiliation(s)
- Ryuichi Noguchi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kei Moriya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Mitsuteru Kitade
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroaki Takaya
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Yosuke Aihara
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Akitoshi Douhara
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kiyoshi Asada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Toshio Miyata
- United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
14
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
15
|
Li L, Lv H, Jiang Z, Qiao F, Chen L, Zhang M, Du Z. Peroxisomal proliferator‐activated receptor α‐b deficiency induces the reprogramming of nutrient metabolism in zebrafish. J Physiol 2020; 598:4537-4553. [DOI: 10.1113/jp279814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ling‐Yu Li
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Hong‐Bo Lv
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Zhe‐Yue Jiang
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Fang Qiao
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Li‐Qiao Chen
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Mei‐Ling Zhang
- LANEH School of Life Sciences East China Normal University Shanghai China
| | - Zhen‐Yu Du
- LANEH School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
16
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
17
|
Li T, Du M, Wang H, Mao X. Milk fat globule membrane and its component phosphatidylcholine induce adipose browning both in vivo and in vitro. J Nutr Biochem 2020; 81:108372. [PMID: 32416448 DOI: 10.1016/j.jnutbio.2020.108372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
The functional induction of brown-like adipocytes in white adipose tissue (WAT) provides a defense against obesity. The aim of this study was to analyze the effects of milk fat globule membrane (MFGM) and its component phosphatidylcholine (PC) on the brown remodeling of WAT. Male C57BL/6 J mice were fed a high-fat diet (HFD) for 8 weeks and then fed HFD for another 8 weeks with MFGM. In vitro studies were performed in C3H10T1/2 pluripotent stem cells, 3T3-L1 pre-adipocytes and differentiated inguinal WAT stromal vascular cells (SVCs) to determine the role of MFGM and PC on the formation of brown-like adipocytes. MFGM decreased fasting glucose and serum insulin levels in HFD-fed mice. MFGM improved glucose tolerance and insulin sensitivity, and induced browning of inguinal WAT. MFGM and its component PC stimulated transformation of brown-like adipocytes in C3H10T1/2 pluripotent stem cells, 3T3-L1 adipocytes and SVCs by increasing the protein expression of UCP1, PGC-1α, PRDM16 as well as the mRNA expression of other thermogenic genes and beige cell markers. MFGM and PC also increased mitochondrial DNA (mtDNA) copy number, mitochondrial density and oxygen consumption rate and up-regulated the mRNA expression of mitochondria-biogenesis-related genes in vitro. PPARα inhibitor GW6471 treatment or knockdown of PPARα using lentivirus-expressing shRNA inhibited the PC-induced increase in the protein expression of UCP1, PGC-1α and PRDM16 in C3H10T1/2 pluripotent stem cells and 3T3-L1 adipocytes, indicating the potential role of PPARα in PC-mediated brown-like adipocyte formation. In conclusion, MFGM and milk PC induced adipose browning, which has major protective effects against obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
18
|
Wang H, Mao X, Du M. Phytanic acid activates PPARα to promote beige adipogenic differentiation of preadipocytes. J Nutr Biochem 2019; 67:201-211. [PMID: 30951974 DOI: 10.1016/j.jnutbio.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
A better understanding of the mechanisms of beige and brown adipogenesis is needed for developing strategies to prevent and treat obesity and associated metabolic disorders. Phytanic acid (PA) exists in a wide range of foods, especially in milk fat and marine foods, but its effects on obesity and beige adipogenesis remain poorly defined. The objective is to investigate the effects and regulatory mechanisms of PA in the beige adipogenesis. In 3T3-L1 preadipocytes, PA elevated the expression of brown adipogenic markers, suggesting that PA promotes beige adipogenic differentiation in committed adipogenic cells. In uncommitted C3H10T1/2 cells, while PA increased PGC1α expression, it did not increase brown adipogenic regulators PRDM16 or UCP1 expression, suggesting that PA had no significant effects on brown adipocyte commitment. PA also enhanced mitochondrial biogenesis and oxygen consumption. Promotion of both mitochondriogenesis and beige adipogenic differentiation were blocked by using PPARα antagonist or with Pparα knockdown, showing that PA-mediated beige/brown adipogenic differentiation is dependent on PPARα. Additionally, the PA-regulated effect is independent on β3-adrenergic receptor. Taken together, PA promotes beige adipogenic differentiation, but not the commitment of progenitor cells to the brown adipocyte lineage. PPARα is a key mediator during PA-induced beige/brown adipogenic differentiation.
Collapse
Affiliation(s)
- Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
19
|
Yang T, Khan GJ, Wu Z, Wang X, Zhang L, Jiang Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019; 24:112-128. [DOI: 10.1016/j.drudis.2018.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/03/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
|
20
|
Lee J, Lee J, Cho YS. Peroxisome Proliferator-Activated Receptor α Agonist and Its Target Nanog Cooperate to Induce Pluripotency. J Clin Med 2018; 7:jcm7120488. [PMID: 30486372 PMCID: PMC6306698 DOI: 10.3390/jcm7120488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/23/2023] Open
Abstract
The pharmaceutical compounds that modulate pluripotent stem cell (PSC) identity and function are increasingly adopted to generate qualified PSCs and their derivatives, which have promising potential in regenerative medicine, in pursuit of more accuracy and safety and less cost. Here, we demonstrate the peroxisome proliferator-activated receptor α (PPARα) agonist as a novel enhancer of pluripotency acquisition and induced pluripotent stem cell (iPSC) generation. We found that PPARα agonist, examined and selected Food and Drug Administration (FDA) -approved compound libraries, increase the expression of pluripotency-associated genes, such as Nanog, Nr5A2, Oct4, and Rex1, during the reprogramming process and facilitate iPSC generation by enhancing their reprogramming efficiency. A reprogramming-promoting effect of PPARα occurred via the upregulation of Nanog, which is essential for the induction and maintenance of pluripotency. Through bioinformatic analysis, we identified putative peroxisome proliferator responsive elements (PPREs) located within the promoter region of the Nanog gene. We also determined that PPARα can activate Nanog transcription by specific binding to putative PPREs. Taken together, our findings suggest that PPARα is an important regulator of PSC pluripotency and reprogramming, and PPARα agonists can be used to improve PSC technology and regenerative medicine.
Collapse
Affiliation(s)
- Jungwoon Lee
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Biotechnology, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Korea.
| | - Yee Sook Cho
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea.
- Department of Bioscience, KRIBB School, University of Science and Technology (UST), Daejeon 34113, Korea.
| |
Collapse
|
21
|
Carino A, Biagioli M, Marchianò S, Scarpelli P, Zampella A, Limongelli V, Fiorucci S. Disruption of TFGβ-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.02.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Zou A, Magee N, Deng F, Lehn S, Zhong C, Zhang Y. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis. J Biol Chem 2018; 293:8656-8671. [PMID: 29666185 DOI: 10.1074/jbc.ra117.001653] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/17/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide, ranging from nonalcoholic fatty liver (NAFL, steatosis without hepatocellular injury) to the more aggressive nonalcoholic steatohepatitis (NASH, steatosis with ballooning, inflammation, or fibrosis). Although many studies have greatly contributed to the elucidation of NAFLD pathogenesis, the disease progression from NAFL to NASH remains incompletely understood. Nuclear receptor small heterodimer partner (Nr0b2, SHP) is a transcriptional regulator critical for the regulation of bile acid, glucose, and lipid metabolism. Here, we show that SHP levels are decreased in the livers of patients with NASH and in diet-induced mouse NASH. Exposing primary mouse hepatocytes to palmitic acid and lipopolysaccharide in vitro, we demonstrated that the suppression of Shp expression in hepatocytes is due to c-Jun N-terminal kinase (JNK) activation, which stimulates c-Jun-mediated transcriptional repression of Shp Interestingly, in vivo induction of hepatocyte-specific SHP in steatotic mouse liver ameliorated NASH progression by attenuating liver inflammation and fibrosis, but not steatosis. Moreover, a key mechanism linking the anti-inflammatory role of hepatocyte-specific SHP expression to inflammation involved SHP-induced suppression of NF-κB p65-mediated induction of chemokine (C-C motif) ligand 2 (CCL2), which activates macrophage proinflammatory polarization and migration. In summary, our results indicate that a JNK/SHP/NF-κB/CCL2 regulatory network controls communications between hepatocytes and macrophages and contributes to the disease progression from NAFL to NASH. Our findings may benefit the development of new management or prevention strategies for NASH.
Collapse
Affiliation(s)
- An Zou
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Nancy Magee
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Fengyan Deng
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Sarah Lehn
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Cuncong Zhong
- the Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, Kansas 66045, and
| | - Yuxia Zhang
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, .,the Liver Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
23
|
Vela D, Sopi RB, Mladenov M. Low Hepcidin in Type 2 Diabetes Mellitus: Examining the Molecular Links and Their Clinical Implications. Can J Diabetes 2018; 42:179-187. [DOI: 10.1016/j.jcjd.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/14/2023]
|
24
|
Milenković J, Miljković E, Milenković K, Bojanić N. PLASMINOGEN ACTIVATOR INHIBITOR 1 (PAI - 1) AS A POTENTIAL DIAGNOSTIC AND THERAPEUTIC TARGET. ACTA MEDICA MEDIANAE 2018. [DOI: 10.5633/amm.2018.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Liang Z, Li T, Jiang S, Xu J, Di W, Yang Z, Hu W, Yang Y. AMPK: a novel target for treating hepatic fibrosis. Oncotarget 2017; 8:62780-62792. [PMID: 28977988 PMCID: PMC5617548 DOI: 10.18632/oncotarget.19376] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common process of excessive extracellular matrix (ECM) accumulation following inflammatory injury. Fibrosis is involved in the pathogenesis of almost all liver diseases for which there is no effective treatment. 5'-AMP-activated protein kinase (AMPK) is a cellular energy sensor that can ameliorate the process of hepatic fibrogenesis. Given the existing evidence, we first introduce the basic background of AMPK and hepatic fibrosis and the actions of AMPK in hepatic fibrosis. Second, we discuss the three phases of hepatic fibrosis and potential drugs that target AMPK. Third, we analyze possible anti-fibrosis mechanisms and other benefits of AMPK on the liver. Finally, we summarize and briefly explain the current objections to targeting AMPK. This review may aid clinical and basic research on AMPK, which may be a novel drug candidate for hepatic fibrosis.
Collapse
Affiliation(s)
- Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an 710069, China
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Jing Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an 710069, China
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
26
|
Takei K, Han SI, Murayama Y, Satoh A, Oikawa F, Ohno H, Osaki Y, Matsuzaka T, Sekiya M, Iwasaki H, Yatoh S, Yahagi N, Suzuki H, Yamada N, Nakagawa Y, Shimano H. Selective peroxisome proliferator-activated receptor-α modulator K-877 efficiently activates the peroxisome proliferator-activated receptor-α pathway and improves lipid metabolism in mice. J Diabetes Investig 2017; 8:446-452. [PMID: 28084058 PMCID: PMC5497046 DOI: 10.1111/jdi.12621] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/21/2016] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
Aims/Introduction Peroxisome proliferator‐activated receptor‐α (PPARα) is a therapeutic target for hyperlipidemia. K‐877 is a new selective PPARα modulator (SPPARMα) that activates PPARα transcriptional activity. The aim of the present study was to assess the effects of K‐877 on lipid metabolism in vitro and in vivo compared with those of classical PPARα agonists. Materials and Methods To compare the effects of K‐877 on PPARα transcriptional activity with those of the classical PPARα agonists Wy14643 (Wy) and fenofibrate (Feno), the cell‐based PPARα transactivation luciferase assay was carried out. WT and Ppara−/− mice were fed with a moderate‐fat (MF) diet for 6 days, and methionine–choline‐deficient (MCD) diet for 4 weeks containing Feno or K‐877. Results In luciferase assays, K‐877 activated PPARα transcriptional activity more efficiently than the classical PPARα agonists Feno and Wy. After being fed MF diet containing 0.001% K‐877 or 0.2% Feno for 6 days, mice in the K‐877 group showed significant increases in the expression of Ppara and its target genes, leading to marked reductions in plasma triglyceride levels compared with those observed in Feno‐treated animals. These K‐877 effects were blunted in Ppara−/− mice, confirming that K‐877 activates PPARα. In further experiments, K‐877 (0.00025%) and Feno (0.1%) equally improved the pathology of MCD diet‐induced non‐alcoholic fatty liver disease, with increased expression of hepatic fatty acid oxidation genes. Conclusions The present data show that K‐877 is an attractive PPARα‐modulating drug and can efficiently reduce plasma triglyceride levels, thereby alleviating the dysregulation of lipid metabolism.
Collapse
Affiliation(s)
- Kenta Takei
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aoi Satoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fusaka Oikawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
27
|
Decoding the role of the nuclear receptor SHP in regulating hepatic stellate cells and liver fibrogenesis. Sci Rep 2017; 7:41055. [PMID: 28117422 PMCID: PMC5259793 DOI: 10.1038/srep41055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
The small heterodimer partner (SHP) is an orphan nuclear receptor that lacks the DNA binding domain while conserves a putative ligand-binding site, thought that endogenous ligands for this receptor are unknown. Previous studies have determined that SHP activation protects against development of liver fibrosis a process driven by trans-differentiation and activation of hepatic stellate cells (HSCs), a miofibroblast like cell type, involved in extracellular matrix (ECM) deposition. To dissect signals involved in this activity we generated SHP-overexpressing human and rat HSCs. Forced expression of SHP in HSC-T6 altered the expression of 574 genes. By pathway and functional enrichment analyses we detected a cluster of 46 differentially expressed genes involved in HSCs trans-differentiation. Using a isoxazole scaffold we designed and synthesized a series of SHP agonists. The most potent member of this group, ISO-COOH (EC50: 9 μM), attenuated HSCs trans-differentiation and ECM deposition in vitro, while in mice rendered cirrhotic by carbon tetrachloride (CCl4) or α-naphthyl-isothiocyanate (ANIT), protected against development of liver fibrosis as measured by morphometric analysis and expression of α-SMA and α1-collagen mRNAs. In aggregate, present results identify SHP as a counter-regulatory signal for HSCs transactivation and describe a novel class of SHP agonists endowed with anti-fibrotic activity.
Collapse
|
28
|
Lee JH, Kim H, Park SJ, Woo JH, Joe EH, Jou I. Small heterodimer partner SHP mediates liver X receptor (LXR)–dependent suppression of inflammatory signaling by promoting LXR SUMOylation specifically in astrocytes. Sci Signal 2016; 9:ra78. [DOI: 10.1126/scisignal.aaf4850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Sohn M, Kim K, Uddin MJ, Lee G, Hwang I, Kang H, Kim H, Lee JH, Ha H. Delayed treatment with fenofibrate protects against high-fat diet-induced kidney injury in mice: the possible role of AMPK autophagy. Am J Physiol Renal Physiol 2016; 312:F323-F334. [PMID: 27465995 DOI: 10.1152/ajprenal.00596.2015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/22/2016] [Indexed: 11/22/2022] Open
Abstract
Fenofibrate activates not only peroxisome proliferator-activated receptor-α (PPARα) but also adenosine monophosphate-activated protein kinase (AMPK). AMPK-mediated cellular responses protect kidney from high-fat diet (HFD)-induced injury, and autophagy resulting from AMPK activation has been regarded as a stress-response mechanism. Thus the present study examined the role of AMPK and autophagy in the renotherapeutic effects of fenofibrate. C57BL/6J mice were divided into three groups: normal diet (ND), HFD, and HFD + fenofibrate (HFD + FF). Fenofibrate was administered 4 wk after the initiation of the HFD when renal injury was initiated. Mouse proximal tubule cells (mProx24) were used to clarify the role of AMPK. Feeding mice with HFD for 12 wk induced insulin resistance and kidney injury such as albuminuria, glomerulosclerosis, tubular injury, and inflammation, which were effectively inhibited by fenofibrate. In addition, fenofibrate treatment resulted in the activation of renal AMPK, upregulation of fatty acid oxidation (FAO) enzymes and antioxidants, and induction of autophagy in the HFD mice. In mProx24 cells, fenofibrate activated AMPK in a concentration-dependent manner, upregulated FAO enzymes and antioxidants, and induced autophagy, all of which were inhibited by treatment of compound C, an AMPK inhibitor. Fenofibrate-induced autophagy was also significantly blocked by AMPKα1 siRNA but not by PPARα siRNA. Collectively, these results demonstrate that delayed treatment with fenofibrate has a therapeutic effect on HFD-induced kidney injury, at least in part, through the activation of AMPK and induction of subsequent downstream effectors: autophagy, FAO enzymes, and antioxidants.
Collapse
Affiliation(s)
- Minji Sohn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Keumji Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Md Jamal Uddin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Gayoung Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Inah Hwang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyeji Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyunji Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jung Hwa Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
30
|
Yuk JM, Jin HS, Jo EK. Small Heterodimer Partner and Innate Immune Regulation. Endocrinol Metab (Seoul) 2016; 31:17-24. [PMID: 26754583 PMCID: PMC4803555 DOI: 10.3803/enm.2016.31.1.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022] Open
Abstract
The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues.
Collapse
Affiliation(s)
- Jae Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyo Sun Jin
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun Kyeong Jo
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.
| |
Collapse
|
31
|
Inhibition of cereblon by fenofibrate ameliorates alcoholic liver disease by enhancing AMPK. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2662-70. [DOI: 10.1016/j.bbadis.2015.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/10/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
|
32
|
Jung GS, Jeon JH, Choi YK, Jang SY, Park SY, Kim MK, Shin EC, Jeong WI, Lee IK, Kang YN, Park KG. Small heterodimer partner attenuates profibrogenic features of hepatitis C virus-infected cells. Liver Int 2015; 35:2233-45. [PMID: 25976932 DOI: 10.1111/liv.12871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/08/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS An atypical orphan nuclear receptor small heterodimer partner (SHP) is known to be regulated by AMP-activated protein kinase (AMPK). Both of them inhibit TGF-β and Smad signalling and exhibit antifibrotic activity in the liver. However, little is known about the protective effects of SHP and AMPK against hepatitis c virus (HCV)-induced hepatic fibrosis. METHODS Levels of SHP, p-AMPK and fibrotic markers in HCV-infected human liver and in Huh-7.5 cells infected with HCV genotype 2a (JFH-1) were investigated. The effect of adenovirus-mediated overexpression of SHP (Ad-SHP) and AMPK activation via metformin and 5-amino-1-b-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) on fibrotic gene expression was evaluated in HCV-infected cells. Finally, we examined the effect of Ad-SHP and AMPK activators on invasion and activation of LX2 human HSCs induced by conditioned media from HCV-infected hepatocyte (CM). RESULTS In HCV-infected human livers and Huh-7.5 cells infected with HCV, SHP mRNA and protein levels were diminished compared with controls, whereas profibrotic factors were increased. Pharmacological AMPK activation recovered SHP expression, and Ad-SHP inhibited HCV-induced fibrotic gene expression. This finding was accompanied by inhibition of HCV-stimulated nuclear factor-kappa B, an inducer of TGF-β. Moreover, CytoSelect invasion assay revealed that enhanced activity and invasiveness of hepatic stellate cells induced by CM. CONCLUSION These results demonstrate that overexpression of SHP and activation of AMPK reverses profibrogenic features of HCV-infected cells by decreasing TGF-β and fibrotic gene expression. These findings provide a rationale for SHP as a possible therapeutic target against HCV-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Gwon-Soo Jung
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Se Young Jang
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Soo Young Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yu Na Kang
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
33
|
Mozzicafreddo M, Cuccioloni M, Bonfili L, Cecarini V, Palermo FA, Cocci P, Mosconi G, Capone A, Ricci I, Eleuteri AM, Angeletti M. Environmental pollutants directly affect the liver X receptor alpha activity: Kinetic and thermodynamic characterization of binding. J Steroid Biochem Mol Biol 2015; 152:1-7. [PMID: 25869557 DOI: 10.1016/j.jsbmb.2015.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Liver X receptor is a ligand-activated transcription factor, which is mainly involved in cholesterol homeostasis, bile acid and triglycerides metabolism, and, as recently discovered, in the glucose metabolism by direct regulation of liver glucokinase. Its modulation by exogenous factors, such as drugs, industrial by-products, and chemicals is documented. Owing to the abundance of these synthetic molecules in the environment, and to the established target role of this receptor, a number of representative compounds of phthalate, organophosphate and fibrate classes were tested as ligands/modulators of human liver X receptor, using an integrated approach, combining an in silico molecular docking technique with an optical SPR biosensor binding study. The compounds of interest were predicted and proved to target the oxysterols-binding site of human LXRα with measurable binding kinetic constants and with affinities ranging between 4.3 × 10(-7) and 4.3 × 10(-8)M. Additionally, non-cytotoxic concentration of these chemicals induced relevant changes in the LXRα gene expression levels and other target genes (SREBP-1c and LGK) in human liver hepatocellular carcinoma cell line (HepG2), as demonstrated by q-RT-PCR.
Collapse
Affiliation(s)
- Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy.
| | | | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | - Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | | | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | - Aida Capone
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | - Irene Ricci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032 Italy
| |
Collapse
|
34
|
Abstract
Atherosclerosis is a chronic inflammatory disease with deposition of excessive cholesterol in the arterial intima. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor. Activation of PPARα plays an important role in the metabolism of multiple lipids, including high-density lipoprotein, cholesterol, low-density lipoprotein, triglyceride, phospholipid, bile acids, and fatty acids. Increased PPARα activity also mitigates atherosclerosis by blocking macrophage foam cell formation, vascular inflammation, vascular smooth muscle cell proliferation and migration, plaque instability, and thrombogenicity. Clinical use of synthetic PPARα agonist fibrate improved dyslipidemia and attenuated atherosclerosis-related disease risk. This review summarizes PPARα in lipid and lipoprotein metabolism and atherosclerosis, and also highlights its potential therapeutic benefits.
Collapse
|
35
|
Kim KS, Jin SG, Mustapha O, Yousaf AM, Kim DW, Kim YH, Kim JO, Yong CS, Woo JS, Choi HG. Novel fenofibric acid-loaded controlled release pellet bioequivalent to choline fenofibrate-loaded commercial product in beagle dogs. Int J Pharm 2015; 490:273-80. [DOI: 10.1016/j.ijpharm.2015.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/22/2015] [Indexed: 02/08/2023]
|
36
|
Fenofibrate is effective adjunctive therapy in the treatment of primary biliary cirrhosis: A meta-analysis. Clin Res Hepatol Gastroenterol 2015; 39:296-306. [PMID: 25882906 DOI: 10.1016/j.clinre.2015.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIM Fenofibrate is a potential novel therapy for primary biliary cirrhosis (PBC). We performed a systematic review and a meta-analysis of studies of fenofibrate in PBC. METHODS Electronic database search was performed for relevant studies. A search of abstracts presented in the main scientific meetings in the field and articles in press was also performed. Random effect model was used to pool the effect size across studies for changes in alkaline phosphatase, GGT, bilirubin and IgM levels before and after treatment and the overall rate of complete response to fenofibrate therapy. RESULTS Six studies with 102 patients met the inclusion criteria. All studies were case series and in all, patients who had no or incomplete response to UDCA had fenofibrate added at a dose of 100-200mg daily. Treatment duration ranged from 8-100weeks. Treatment with fenofibrate was associated with a significant decrease in alkaline phosphatase (-114IU/L, 95% CI: -152 to -76, P<0.0001); a significant decrease in GGT level (-92IU/L, 95% CI: -149 to -43; P=0.0004); significant decrease in total bilirubin (-0.11mg/dL, 95% CI: -0.18 to -0.08; P=0.0008); and a significant decrease in IgM level (-88mg/dL, 95% CI: -119 to -58; P<0.0001). The complete response rate was 69% (95% CI: 53-82%) with an odds ratio of 82.8 (95% CI: 21.6-317.2; P=0.024) while on fenofibrate. CONCLUSIONS Fenofibrate at doses of 100-200mg daily appears to be effective adjunctive therapy in PBC patients who had no or incomplete response to UDCA. There is a critical need for larger scale randomized trials to determine its effect on liver-related morbidity and mortality (or progression towards end-stage disease).
Collapse
|
37
|
Pisonero-Vaquero S, Martínez-Ferreras Á, García-Mediavilla MV, Martínez-Flórez S, Fernández A, Benet M, Olcoz JL, Jover R, González-Gallego J, Sánchez-Campos S. Quercetin ameliorates dysregulation of lipid metabolism genes via the PI3K/AKT pathway in a diet-induced mouse model of nonalcoholic fatty liver disease. Mol Nutr Food Res 2015; 59:879-93. [PMID: 25712622 DOI: 10.1002/mnfr.201400913] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Flavonoids and related compounds seem to have favorable effects on nonalcoholic fatty liver disease (NAFLD) progression, although the exact mechanisms implicated are poorly understood. In this study, we aimed to investigate the effect of the flanovol quercetin on gene expression deregulation involved in the development of NAFLD, as well as the possible implication of phosphatidylinositol 3-kinase (PI3K)/AKT pathway modulation. METHODS AND RESULTS We used an in vivo model based on methionine- and choline-deficient (MCD) diet-fed mice and an in vitro model consisting of Huh7 cells incubated with MCD medium. MCD-fed mice showed classical pathophysiological characteristics of nonalcoholic steatohepatitis, associated with altered transcriptional regulation of fatty acid uptake- and trafficking-related gene expression, with increased lipoperoxidation. PI3K/AKT pathway was activated by MCD and triggered gene deregulation causing either activation or inhibition of all studied genes as demonstrated through cell incubation with the PI3K-inhibitor LY294002. Treatment with quercetin reduced AKT phosphorylation, and oxidative/nitrosative stress, inflammation and lipid metabolism-related genes displayed a tendency to normalize in both in vivo and in vitro models. CONCLUSION These results place quercetin as a potential therapeutic strategy for preventing NAFLD progression by attenuating gene expression deregulation, at least in part through PI3K/AKT pathway inactivation.
Collapse
|
38
|
Benet M, Guzmán C, Pisonero-Vaquero S, García-Mediavilla MV, Sánchez-Campos S, Martínez-Chantar ML, Donato MT, Castell JV, Jover R. Repression of the nuclear receptor small heterodimer partner by steatotic drugs and in advanced nonalcoholic fatty liver disease. Mol Pharmacol 2015; 87:582-94. [PMID: 25576488 DOI: 10.1124/mol.114.096313] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small heterodimer partner (SHP) (NR0B2) is an atypical nuclear receptor that lacks a DNA-binding domain. It interacts with and inhibits many transcription factors, affecting key metabolic processes, including bile acid, cholesterol, fatty acid, and drug metabolism. Our aim was to determine the influence of steatotic drugs and nonalcoholic fatty liver disease (NAFLD) on SHP expression and investigate the potential mechanisms. SHP was found to be repressed by steatotic drugs (valproate, doxycycline, tetracycline, and cyclosporin A) in cultured hepatic cells and the livers of different animal models of NAFLD: iatrogenic (tetracycline-treated rats), genetic (glycine N-methyltransferase-deficient mice), and nutritional (mice fed a methionine- and choline-deficient diet). Among the different transcription factors investigated, CCAAT-enhancer-binding protein α (C/EBPα) showed the strongest dominant-repressive effect on SHP expression in HepG2 and human hepatocytes. Reporter assays revealed that the inhibitory effect of C/EBPα and steatotic drugs colocalize between -340 and -509 base pair of the SHP promoter, and mutation of a predicted C/EBPα response element at -473 base pair abolished SHP repression by both C/EBPα and drugs. Moreover, inhibition of major stress signaling pathways demonstrated that the mitogen-activated protein kinase kinase 1/2 pathway activates, while the phosphatidylinositol 3 kinase pathway represses SHP in a C/EBP-dependent manner. We conclude that SHP is downregulated by several steatotic drugs and in advanced NAFLD. These conditions can activate signals that target C/EBPα and consequently repress SHP, thus favoring the progression and severity of NAFLD.
Collapse
Affiliation(s)
- Marta Benet
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Carla Guzmán
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Sandra Pisonero-Vaquero
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Victoria García-Mediavilla
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Sonia Sánchez-Campos
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Luz Martínez-Chantar
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - M Teresa Donato
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - José Vicente Castell
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| | - Ramiro Jover
- Experimental Hepatology Unit, IIS Hospital La Fe, Valencia (M.B., C.G., M.T.D., J.V.C., R.J.); CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona (M.B., M.V.G.-M., S.S.-C., M.L.M.-C., M.T.D., J.V.C., R.J.); Institute of Biomedicine, University of León, León (S.P.-V., M.V.G.-M., S.S.-C.); CIC bioGUNE, Technology Park of Bizkaia, Derio (M.L.M.-C.); and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain (M.T.D., J.V.C., R.J.)
| |
Collapse
|
39
|
Abstract
Obesity and metabolic syndrome pose significant risk for the progression of many types of chronic illness, including liver disease. Hormones released from adipocytes, adipocytokines, associated with obesity and metabolic syndrome, have been shown to control hepatic inflammation and fibrosis. Hepatic fibrosis is the final common pathway that can result in cirrhosis, and can ultimately require liver transplantation. Initially, two key adipocytokines, leptin and adiponectin, appeared to control many fundamental aspects of the cell and molecular biology related to hepatic fibrosis and its resolution. Leptin appears to act as a profibrogenic molecule, while adiponectin has strong-antifibrotic properties. In this review, we emphasize pertinent data associated with these and other recently discovered adipocytokines that may drive or halt the fibrogenic response in the liver.
Collapse
Affiliation(s)
- Neeraj K Saxena
- University of Maryland School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Howard Hall, Room 301, 660W. Redwood Street, Baltimore, MD 21201, USA.
| | - Frank A Anania
- Emory University School of Medicine, Division of Digestive Diseases, Suite 201, 615 Michael Street, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
40
|
Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JYL. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:19-29. [PMID: 24796972 DOI: 10.1016/j.bbalip.2014.04.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Yunpeng Qi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
41
|
Kim MS, Lee KT, Iseli TJ, Hoy AJ, George J, Grewal T, Roufogalis BD. Compound K modulates fatty acid-induced lipid droplet formation and expression of proteins involved in lipid metabolism in hepatocytes. Liver Int 2013; 33:1583-93. [PMID: 23998390 DOI: 10.1111/liv.12287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS A key factor in the development of type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) is hepatic steatosis. Incubation of human hepatic cells with free fatty acids (FFAs) causes accumulation of neutral lipids in lipid droplets (LDs) and serves as a model for hepatic steatosis. Ginsenosides, active constituents of ginsengs, have demonstrated beneficial effects in various pharmacological areas, including diabetes, however their effect on lipid accumulation in hepatocytes remains unclear. Here, we examine the effect of compound K (ComK), an active metabolite of ginsenosides, on the regulation of LD formation and on the expression of proteins involved in lipid homeostasis in hepatocytes. METHODS HuH7 cells were pretreated with ComK, followed by lipid loading with FFA. LDs were visualized using Oil Red O staining and immunohistochemistry for the LD-related protein PLIN2. Triglyceride levels were determined in isolated LDs. The expression of proteins involved in lipid homeostasis was examined by Western blotting. RESULTS Treatment with ComK significantly decreased LD formation in FFA-loaded HuH7 cells and increased phosphorylation levels of AMPK, and its substrate ACC. ComK also increased protein expression of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase (ACOX1) together with elevated activity of a PPAR-α response element reporter construct. These effects were inhibited by the PPAR-α antagonist MK886. CONCLUSIONS ComK reduced LD formation and TG accumulation in FFA-loaded hepatocytes, in part by up-regulating AMPK activity and PPAR-α related pathways. These results suggest that ComK may have efficacy for the treatment of hepatic steatosis and associated diseases.
Collapse
Affiliation(s)
- Moon-Sun Kim
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Lee KC, Chan CC, Yang YY, Hsieh YC, Huang YH, Lin HC. Aliskiren attenuates steatohepatitis and increases turnover of hepatic fat in mice fed with a methionine and choline deficient diet. PLoS One 2013; 8:e77817. [PMID: 24204981 PMCID: PMC3804600 DOI: 10.1371/journal.pone.0077817] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/04/2013] [Indexed: 01/22/2023] Open
Abstract
Background & Aims Activation of the renin-angiotensin-system is known to play a role in nonalcoholic steatohepatitis. Renin knockout mice manifest decreased hepatic steatosis. Aliskiren is the first direct renin inhibitor to be approved for clinical use. Our study aims to evaluate the possible therapeutic effects and mechanism of the chronic administration of aliskiren in a dietary steatohepatitis murine model. Methods Male C57BL/6 mice were fed with a methionine and choline-deficient (MCD) diet to induce steatohepatitis. After 8 weeks of feeding, the injured mice were randomly assigned to receive aliskiren (50 mg·kg-1 per day) or vehicle administration for 4 weeks. Normal controls were also administered aliskiren (50 mg·kg-1 per day) or a vehicle for 4 weeks. Results In the MCD mice, aliskiren attenuated hepatic steatosis, inflammation and fibrosis. Aliskiren did not change expression of lipogenic genes but increase turnover of hepatic fat by up-regulating peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1a, cytochrome P450-4A14 and phosphorylated AMP-activated protein kinase. Furthermore, aliskiren decreased the hepatic expression of angiotensin II and nuclear factor κB. The levels of oxidative stress, hepatocyte apoptosis, activation of Kupffer cells and hepatic stellate cells, and pro-fibrotic markers were also reduced in the livers of the MCD mice receiving aliskiren. Conclusions Aliskiren attenuates steatohepatitis and fibrosis in mice fed with a MCD diet. Thus, the noted therapeutic effects might come from not only the reduction of angiotensin II but also the up-regulation of fatty acid oxidation-related genes.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Che-Chang Chan
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Ying-Ying Yang
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- * E-mail: (YHH); (HCL)
| | - Han-Chieh Lin
- Division of Gastroenterology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- * E-mail: (YHH); (HCL)
| |
Collapse
|
43
|
Yang CS, Yuk JM, Kim JJ, Hwang JH, Lee CH, Kim JM, Oh GT, Choi HS, Jo EK. Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2. PLoS One 2013; 8:e63435. [PMID: 23704907 PMCID: PMC3660347 DOI: 10.1371/journal.pone.0063435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/28/2013] [Indexed: 01/15/2023] Open
Abstract
The orphan nuclear receptor, small heterodimer partner (SHP), appears to play a negative regulatory role in innate immune signaling. Emerging evidence warrants further study on the therapeutic targeting of SHP to suppress excessive and deleterious inflammation. Here we show that fenofibrate, which targets SHP, is required for inhibiting systemic inflammation via mitochondrial uncoupling protein 2 (UCP2). In vivo administration of fenofibrate ameliorated systemic inflammatory responses and increased survival upon experimental sepsis through SHP. An abundance of SHP was observed in mice fed fenofibrate and in cultured macrophages through LKB1-dependent activation of the AMP-activated protein kinase pathway. Fenofibrate significantly blocked endotoxin-triggered inflammatory signaling responses via SHP, but not via peroxisome proliferator-activated receptor (PPAR)-α. In addition to the known mechanism by which SHP modulates innate signaling, we identify a new role of fenofibrate-induced SHP on UCP2 induction, which is required for the suppression of inflammatory responses through modulation of mitochondrial ROS production. These data strongly suggest that the SHP-inducing drug fenofibrate paves the way for novel therapies for systemic inflammation by targeting SHP.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Jae-Min Yuk
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Jwa-Jin Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Jung Hwan Hwang
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, S. Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, S. Korea
| | - Jin-Man Kim
- Department of Pathology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
| | - Goo Taeg Oh
- Division of Life and Pharmaceutical Science, Ewha Womans University, Seoul, S. Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, S. Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, S. Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, S. Korea
- * E-mail:
| |
Collapse
|
44
|
Spruss A, Henkel J, Kanuri G, Blank D, Püschel GP, Bischoff SC, Bergheim I. Female mice are more susceptible to nonalcoholic fatty liver disease: sex-specific regulation of the hepatic AMP-activated protein kinase-plasminogen activator inhibitor 1 cascade, but not the hepatic endotoxin response. Mol Med 2012; 18:1346-55. [PMID: 22952059 DOI: 10.2119/molmed.2012.00223] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022] Open
Abstract
As significant differences between sexes were found in the susceptibility to alcoholic liver disease in human and animal models, it was the aim of the present study to investigate whether female mice also are more susceptible to the development of non-alcoholic fatty liver disease (NAFLD). Male and female C57BL/6J mice were fed either water or 30% fructose solution ad libitum for 16 wks. Liver damage was evaluated by histological scoring. Portal endotoxin levels and markers of Kupffer cell activation and insulin resistance, plasminogen activator inhibitor 1 (PAI-1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK ) were measured in the liver. Adiponectin mRNA expression was determined in adipose tissue. Hepatic steatosis was almost similar between male and female mice; however, inflammation was markedly more pronounced in livers of female mice. Portal endotoxin levels, hepatic levels of myeloid differentiation primary response gene (88) (MyD88) protein and of 4-hydroxynonenal protein adducts were elevated in animals with NAFLD regardless of sex. Expression of insulin receptor substrate 1 and 2 was decreased to a similar extent in livers of male and female mice with NAFLD. The less pronounced susceptibility to liver damage in male mice was associated with a superinduction of hepatic pAMPK in these mice whereas, in livers of female mice with NAFLD, PAI-1 was markedly induced. Expression of adiponectin in visceral fat was significantly lower in female mice with NAFLD but unchanged in male mice compared with respective controls. In conclusion, our data suggest that the sex-specific differences in the susceptibility to NAFLD are associated with differences in the regulation of the adiponectin-AMPK-PAI-1 signaling cascade.
Collapse
Affiliation(s)
- Astrid Spruss
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Kim YD, Kim YH, Tadi S, Yu JH, Yim YH, Jeoung NH, Shong M, Hennighausen L, Harris RA, Lee IK, Lee CH, Choi HS. Metformin inhibits growth hormone-mediated hepatic PDK4 gene expression through induction of orphan nuclear receptor small heterodimer partner. Diabetes 2012; 61:2484-94. [PMID: 22698918 PMCID: PMC3447904 DOI: 10.2337/db11-1665] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth hormone (GH) is a counter-regulatory hormone that plays an important role in preventing hypoglycemia during fasting. Because inhibition of the pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinase 4 (PDK4) conserves substrates for gluconeogenesis, we tested whether GH increases PDK4 expression in liver by a signaling pathway sensitive to inhibition by metformin. The effects of GH and metformin were determined in the liver of wild-type, small heterodimer partner (SHP)-, PDK4-, and signal transducer and activator of transcription 5 (STAT5)-null mice. Administration of GH in vivo increased PDK4 expression via a pathway dependent on STAT5 phosphorylation. Metformin inhibited the induction of PDK4 expression by GH via a pathway dependent on AMP-activated protein kinase (AMPK) and SHP induction. The increase in PDK4 expression and PDC phosphorylation by GH was reduced in STAT5-null mice. Metformin decreased GH-mediated induction of PDK4 expression and metabolites in wild-type but not in SHP-null mice. In primary hepatocytes, dominant-negative mutant-AMPK and SHP knockdown prevented the inhibitory effect of metformin on GH-stimulated PDK4 expression. SHP directly inhibited STAT5 association on the PDK4 gene promoter. Metformin inhibits GH-induced PDK4 expression and metabolites via an AMPK-SHP-dependent pathway. The metformin-AMPK-SHP network may provide a novel therapeutic approach for the treatment of hepatic metabolic disorders induced by the GH-mediated pathway.
Collapse
Affiliation(s)
- Yong Deuk Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- World Class University Program, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Yong-Hoon Kim
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Surendar Tadi
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Ji Hoon Yu
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yong-Hyeon Yim
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Nam Ho Jeoung
- Department of Fundamental Medical and Pharmaceutical Sciences, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Department of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University, Chungnam, Republic of Korea
| | - Robert A. Harris
- World Class University Program, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - In-Kyu Lee
- Roudebush VA Medical Center and the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, , and Chul-Ho Lee,
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Research Institute of Medical Sciences, Department of Biomedical Science, Chonnam National University Medical School, Gwangju, Republic of Korea
- Corresponding authors: Hueng-Sik Choi, , and Chul-Ho Lee,
| |
Collapse
|
46
|
Posnack NG, Swift LM, Kay MW, Lee NH, Sarvazyan N. Phthalate exposure changes the metabolic profile of cardiac muscle cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1243-51. [PMID: 22672789 PMCID: PMC3440133 DOI: 10.1289/ehp.1205056] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Phthalates are common plasticizers present in medical-grade plastics and other everyday products. They can also act as endocrine-disrupting chemicals and have been linked to the rise in metabolic disorders. However, the effect of phthalates on cardiac metabolism remains largely unknown. OBJECTIVES We examined the effect of di(2-ethylhexyl)phthalate (DEHP) on the metabolic profile of cardiomyocytes because alterations in metabolic processes can lead to cell dysfunction. METHODS Neonatal rat cardiomyocytes were treated with DEHP at a concentration and duration comparable to clinical exposure (50-100 μg/mL, 72 hr). We assessed the effect of DEHP on gene expression using microarray analysis. Physiological responses were examined via fatty acid utilization, oxygen consumption, mitochondrial mass, and Western blot analysis. RESULTS Exposure to DEHP led to up-regulation of genes associated with fatty acid transport, esterification, mitochondrial import, and β-oxidation. The functional outcome was an increase in myocyte fatty acid-substrate utilization, oxygen consumption, mitochondrial mass, PPARα (peroxisome proliferator-activated receptor α) protein expression, and extracellular acidosis. Treatment with a PPARα agonist (Wy-14643) only partially mimicked the effects observed in DEHP-treated cells. CONCLUSIONS Data suggest that DEHP exposure results in metabolic remodeling of cardiomyocytes, whereby cardiac cells increase their dependence on fatty acids for energy production. This fuel switch may be regulated at both the gene expression and posttranscription levels. Our findings have important clinical implications because chronic dependence on fatty acids is associated with an accumulation in lipid intermediates, lactate, protons, and reactive oxygen species. This dependence can sensitize the heart to ischemic injury and ventricular dysfunction.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
47
|
Fenofibrate inhibited the differentiation of T helper 17 cells in vitro. PPAR Res 2012; 2012:145654. [PMID: 22792085 PMCID: PMC3388320 DOI: 10.1155/2012/145654] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Uncontrolled activity of T cells mediates autoimmune and inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and atherosclerosis. Recent findings suggest that enhanced activity of interleukin-17 (IL-17) producing T helper 17 cells (Th17 cells) plays an important role in autoimmune diseases and inflammatory diseases. Previous papers have revealed that a lipid-lowering synthetic ligand of peroxisome proliferator-activated receptor α (PPARα), fenofibrate, alleviates both atherosclerosis and a few nonlipid-associated autoimmune diseases such as autoimmune colitis and multiple sclerosis. However, the link between fenofibrate and Th17 cells is lacking. In the present study, we hypothesized that fenofibrate inhibited the differentiation of Th17 cells. Our results showed that fenofibrate inhibited transforming growth factor-β (TGF-β) and IL-6-induced differentiation of Th17 cells in vitro. However, other PPARα ligands such as WY14643, GW7647 and bezafibrate did not show any effect on Th17 differentiation, indicating that this effect of fenofibrate might be PPARα independent. Furthermore, our data showed that fenofibrate reduced IL-21 production and STAT3 activation, a critical signal in the Th17 differentiation. Thus, by ameliorating the differentiation of Th17 cells, fenofibrate might be beneficial for autoimmunity and inflammatory diseases.
Collapse
|
48
|
Uebi T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T, Sasagawa S, Doi J, Tatsumi K, Mitamura K, Morii E, Aozasa K, Kawamura T, Okumura M, Nakae J, Takikawa H, Fukusato T, Koura M, Nish M, Hamsten A, Silveira A, Bertorello AM, Kitagawa K, Nagaoka Y, Kawahara H, Tomonaga T, Naka T, Ikegawa S, Tsumaki N, Matsuda J, Takemori H. Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 2012; 7:e37803. [PMID: 22662228 PMCID: PMC3360605 DOI: 10.1371/journal.pone.0037803] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/24/2012] [Indexed: 01/20/2023] Open
Abstract
Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3(-/-) mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3(-/-) mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3(-/-) mice. Lipid metabolism disorders in Sik3(-/-) mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice.
Collapse
Affiliation(s)
- Tatsuya Uebi
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Yumi Itoh
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Osamu Hatano
- Department of Anatomy, Nara Medical University, Nara, Japan
| | - Ayako Kumagai
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Masato Sanosaka
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoru Sasagawa
- Department of Bone and Cartilage Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junko Doi
- Food and Nutrition, Senri Kinran University, Osaka, Japan
| | - Keita Tatsumi
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kuniko Mitamura
- Faculty of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuyuki Aozasa
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Kawamura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Nakae
- Frontier Medicine on Metabolic Syndrome, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Takikawa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Fukusato
- Department of Pathology, Teikyo University School of Medicine, Tokyo, Japan
| | - Minako Koura
- Animal Models for Human Diseases, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Mayumi Nish
- Department of Anatomy, Nara Medical University, Nara, Japan
| | - Anders Hamsten
- Cardiovascular Genetics and Genomics, Atherosclerosis Research Unit, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Angela Silveira
- Cardiovascular Genetics and Genomics, Atherosclerosis Research Unit, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Alejandro M. Bertorello
- Membrane Signaling Networks, Atherosclerosis Research Unit, Karolinska Institutet, CMM, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Kazuo Kitagawa
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Nagaoka
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Hidehisa Kawahara
- Department of Life Science and Biotechnology, Kansai University, Suita, Osaka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Tetsuji Naka
- Laboratory for Immune Signal, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Shigeo Ikegawa
- Faculty of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Noriyuki Tsumaki
- Department of Bone and Cartilage Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Junichiro Matsuda
- Animal Models for Human Diseases, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
| | - Hiroshi Takemori
- Laboratory of Cell Signaling and Metabolic Disease, National Institute of Biomedical Innovation, Ibaraki, Osaka, Japan
- * E-mail:
| |
Collapse
|
49
|
Kim YD, Kim YH, Cho YM, Kim DK, Ahn SW, Lee JM, Chanda D, Shong M, Lee CH, Choi HS. Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small heterodimer partner (SHP) in mouse models. Diabetologia 2012; 55:1482-94. [PMID: 22349108 DOI: 10.1007/s00125-012-2494-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/09/2012] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS IL-6 is a proinflammatory cytokine associated with the pathogenesis of hepatic diseases. Metformin is an anti-diabetic drug used for the treatment of type 2 diabetes, and orphan nuclear receptor small heterodimer partner (SHP, also known as NR0B2), a transcriptional co-repressor, plays an important role in maintaining metabolic homeostasis. Here, we demonstrate that metformin-mediated activation of AMP-activated protein kinase (AMPK) increases SHP protein production and regulates IL-6-induced hepatic insulin resistance. METHODS We investigated metformin-mediated SHP production improved insulin resistance through the regulation of an IL-6-dependent pathway (involving signal transducer and activator of transcription 3 [STAT3] and suppressor of cytokine signalling 3 [SOCS3]) in both Shp knockdown and Shp null mice. RESULTS IL-6-induced STAT3 transactivation and SOCS3 production were significantly repressed by metformin, adenoviral constitutively active AMPK (Ad-CA-AMPK), and adenoviral SHP (Ad-SHP), but not in Shp knockdown, or with the adenoviral dominant negative form of AMPK (Ad-DN-AMPK). Chromatin immunoprecipitation (ChIP), co-immunoprecipitation (Co-IP) and protein localisation studies showed that SHP inhibits DNA binding of STAT3 on the Socs3 gene promoter via interaction and colocalisation within the nucleus. Upregulation of inflammatory genes and downregulation of hepatic insulin signalling by acute IL-6 treatment were observed in wild-type mice but not in Shp null mice. Finally, chronic IL-6 exposure caused hepatic insulin resistance, leading to impaired insulin tolerance and elevated gluconeogenesis, and these phenomena were aggravated in Shp null mice. CONCLUSIONS/INTERPRETATION Our results demonstrate that SHP upregulation by metformin may prevent hepatic disorders by regulating the IL-6-dependent pathway, and that this pathway can help to ameliorate the pathogenesis of cytokine-mediated metabolic dysfunction.
Collapse
Affiliation(s)
- Y D Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Fibrosis is defined as a fibroproliferative or abnormal fibroblast activation-related disease. Deregulation of wound healing leads to hyperactivation of fibroblasts and excessive accumulation of extracellular matrix (ECM) proteins in the wound area, the pathological manifestation of fibrosis. The accumulation of excessive levels of collagen in the ECM depends on two factors: an increased rate of collagen synthesis and or decreased rate of collagen degradation by cellular proteolytic activities. The urokinase/tissue type plasminogen activator (uPA/tPA) and plasmin play significant roles in the cellular proteolytic degradation of ECM proteins and the maintenance of tissue homeostasis. The activities of uPA/tPA/plasmin and plasmin-dependent MMPs rely mostly on the activity of a potent inhibitor of uPA/tPA, plasminogen activator inhibitor-1 (PAI-1). Under normal physiologic conditions, PAI-1 controls the activities of uPA/tPA/plasmin/MMP proteolytic activities and thus maintains the tissue homeostasis. During wound healing, elevated levels of PAI-1 inhibit uPA/tPA/plasmin and plasmin-dependent MMP activities, and, thus, help expedite wound healing. In contrast to this scenario, under pathologic conditions, excessive PAI-1 contributes to excessive accumulation of collagen and other ECM protein in the wound area, and thus preserves scarring. While the level of PAI-1 is significantly elevated in fibrotic tissues, lack of PAI-1 protects different organs from fibrosis in response to injury-related profibrotic signals. Thus, PAI-1 is implicated in the pathology of fibrosis in different organs including the heart, lung, kidney, liver, and skin. Paradoxically, PAI-1 deficiency promotes spontaneous cardiac-selective fibrosis. In this review, we discuss the significance of PAI-1 in the pathogenesis of fibrosis in multiple organs.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|