1
|
Dai D, Wu D, Ni R, Li P, Tian Z, Shui Y, Hu H, Wei Q. Novel insights into the progression and prognosis of the calpain family members in hepatocellular carcinoma: a comprehensive integrated analysis. Front Mol Biosci 2023; 10:1162409. [PMID: 37503539 PMCID: PMC10368982 DOI: 10.3389/fmolb.2023.1162409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Objectives: The goal of our bioinformatics study was to comprehensively analyze the association between the whole calpain family members and the progression and prognosis of hepatocellular carcinoma (HCC). Methods: The data were collected from The Cancer Genome Atlas (TCGA). The landscape of the gene expression, copy number variation (CNV), mutation, and DNA methylation of calpain members were analyzed. Clustering analysis was performed to stratify the calpain-related groups. The least absolute shrinkage and selection operator (LASSO)-based Cox model was used to select hub survival genes. Results: We found 14 out of 16 calpain members expressed differently between tumor and normal tissues of HCC. The clustering analyses revealed high- and low-risk calpain groups which had prognostic difference. We found the high-risk calpain group had higher B cell infiltration and higher expression of immune checkpoint genes HAVCR2, PDCD1, and TIGHT. The CMap analysis found that the histone deacetylase (HDAC) inhibitor trichostatin A and the PI3K-AKT-mTOR pathway inhibitors LY-294002 and wortmannin might have a therapeutic effect on the high-risk calpain group. The DEGs between calpain groups were identified. Subsequent univariate Cox analysis of each DEG and LASSO-based Cox model obtained a calpain-related prognostic signature. The risk score model of this signature showed good ability to predict the overall survival of HCC patients in TCGA datasets and external validation datasets from the Gene Expression Omnibus database and the International Cancer Genome Consortium database. Conclusion: We found that calpain family members were associated with the progression, prognosis, and drug response of HCC. Our results require further studies to confirm.
Collapse
Affiliation(s)
- Dongjun Dai
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Dehao Wu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Runliang Ni
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhifeng Tian
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanguang Hu
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Association Between Chronic Hepatitis C Virus Infection and Esophageal Cancer: A Systematic Review and Meta-analysis. J Clin Gastroenterol 2022; 56:55-63. [PMID: 33780211 DOI: 10.1097/mcg.0000000000001532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is associated with increased risk of hepatobiliary tract cancer. However, whether chronic HCV infection is also associated with elevated risk of other types of cancer is still unknown. This systematic review and meta-analysis was conducted in order to investigate whether chronic HCV infection is positively associated with esophageal cancer. METHODS A systematic review was conducted using Embase and MEDLINE databases from inception to November 2019, with a search strategy that comprised the terms for "hepatitis C virus" and "cancer." Eligible studies were cohort studies consisting of patients with chronic HCV infection and comparators without HCV infection, and followed them for incident esophageal cancer. Hazard risk ratio, incidence rate ratio, relative risk or standardized incidence ratio of this association were extracted from each eligible study along with their 95% confidence intervals and were combined to calculate the pooled effect estimate using the random effect, generic inverse variance method. RESULTS A total of 20,459 articles were identified using this search strategy. After 2 rounds of independent review, 7 studies satisfied the inclusion criteria and were included in the meta-analysis. Chronic HCV infection was significantly associated with a higher incidence of esophageal cancer with the pooled relative risk of 1.61 (95% confidence interval: 1.19-2.17; I2=39%). The funnel plot was relatively symmetric which was not suggestive of publication bias. CONCLUSION This systematic review and meta-analysis demonstrated that there is a modest association between chronic HCV and incident esophageal cancer. However, more studies are needed to investigate the causality of this association.
Collapse
|
3
|
Nian H, Ma B. Calpain-calpastatin system and cancer progression. Biol Rev Camb Philos Soc 2021; 96:961-975. [PMID: 33470511 DOI: 10.1111/brv.12686] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/26/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022]
Abstract
The calpain system is required by many important physiological processes, including the cell cycle, cytoskeleton remodelling, cellular proliferation, migration, cancer cell invasion, metastasis, survival, autophagy, apoptosis and signalling, as well as the pathogenesis of a wide range of disorders, in which it may function to promote tumorigenesis. Calpains are intracellular conserved calcium-activated neutral cysteine proteinases that are involved in mediating cancer progression via catalysing and regulating the proteolysis of their specific substrates, which are important signalling molecules during cancer progression. μ-calpain, m-calpain, and their specific inhibitor calpastatin are the three molecules originally identified as comprising the calpain system and they contain several crucial domains, specific motifs, and functional sites. A large amount of data supports the roles of the calpain-calpastatin system in cancer progression via regulation of cellular adhesion, proliferation, invasion, metastasis, and cellular survival and death, as well as inflammation and angiogenesis during tumorigenesis, implying that the inhibition of calpain activity may be a potential anti-cancer intervention strategy targeting cancer cell survival, invasion and chemotherapy resistance.
Collapse
Affiliation(s)
- Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
4
|
D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol 2020; 26:5759-5783. [PMID: 33132633 PMCID: PMC7579760 DOI: 10.3748/wjg.v26.i38.5759] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) represents 90% of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV), hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins. DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.
Collapse
Affiliation(s)
- Simmone D'souza
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Keith CK Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada
| |
Collapse
|
5
|
Vescovo T, Pagni B, Piacentini M, Fimia GM, Antonioli M. Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Front Cell Dev Biol 2020; 8:47. [PMID: 32181249 PMCID: PMC7059124 DOI: 10.3389/fcell.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
About 20% of total cancer cases are associated to infections. To date, seven human viruses have been directly linked to cancer development: high-risk human papillomaviruses (hrHPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human T-lymphotropic virus 1 (HTLV-1). These viruses impact on several molecular mechanisms in the host cells, often resulting in chronic inflammation, uncontrolled proliferation, and cell death inhibition, and mechanisms, which favor viral life cycle but may indirectly promote tumorigenesis. Recently, the ability of oncogenic viruses to alter autophagy, a catabolic process activated during the innate immune response to infections, is emerging as a key event for the onset of human cancers. Here, we summarize the current understanding of the molecular mechanisms by which human oncogenic viruses regulate autophagy and how this negative regulation impacts on cancer development. Finally, we highlight novel autophagy-related candidates for the treatment of virus-related cancers.
Collapse
Affiliation(s)
- Tiziana Vescovo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Benedetta Pagni
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza," Rome, Italy
| | - Manuela Antonioli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
6
|
Molecular Mechanisms of Hepatocarcinogenesis Following Sustained Virological Response in Patients with Chronic Hepatitis C Virus Infection. Viruses 2018; 10:v10100531. [PMID: 30274202 PMCID: PMC6212901 DOI: 10.3390/v10100531] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the success of direct-acting antiviral (DAA) agents in treating chronic hepatitis C virus (HCV) infection, the number of cases of HCV-related hepatocellular carcinoma (HCC) is expected to increase over the next five years. HCC develops over the span of decades and is closely associated with fibrosis stage. HCV both directly and indirectly establishes a pro-inflammatory environment favorable for viral replication. Repeated cycles of cell death and regeneration lead to genomic instability and loss of cell cycle control. DAA therapy offers >90% sustained virological response (SVR) rates with fewer side effects and restrictions than interferon. While elimination of HCV helps to restore liver function and reverse mild fibrosis, post-SVR patients remain at elevated risk of HCC. A series of studies reporting higher than expected rates of HCC development among DAA-treated patients ignited debate over whether use of DAAs elevates HCC risk compared to interferon. However, recent prospective and retrospective studies based on larger patient cohorts have found no significant difference in risk between DAA and interferon therapy once other factors are taken into account. Although many mechanisms and pathways involved in hepatocarcinogenesis have been elucidated, our understanding of drivers specific to post-SVR hepatocarcinogenesis is still limited, and lack of suitable in vivo and in vitro experimental systems has hampered efforts to examine etiology-specific mechanisms that might serve to answer this question more thoroughly. Further research is needed to identify risk factors and biomarkers for post-SVR HCC and to develop targeted therapies based on more complete understanding of the molecules and pathways implicated in hepatocarcinogenesis.
Collapse
|
7
|
Visco C, Wang J, Tisi MC, Deng L, D'Amore ESG, Tzankov A, Montes-Moreno S, Dybkær K, Bhagat G, Hsi ED, van Krieken JH, Ponzoni M, Ferreri AJM, Møller MB, Piris MA, Medeiros LJ, Xu-Monette ZY, Young KH. Hepatitis C virus positive diffuse large B-cell lymphomas have distinct molecular features and lack BCL2 translocations. Br J Cancer 2017; 117:1685-1688. [PMID: 28949959 PMCID: PMC5729442 DOI: 10.1038/bjc.2017.345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The clinical presentation of patients with hepatitis C virus (HCV)-positive diffuse large B-cell lymphoma (DLBCL) is different from their HCV-negative counterparts, but the underlying molecular and pathological characteristics are largely under investigated. The virus has a role in lymphomagenesis, as witnessed by the curative potential of antiviral therapy in HCV-related low-grade B-cell lymphomas. METHODS We performed a case-control study including 44 HCV-positive cases of de novo DLBCL, comparing them with 132 HCV-negative patients as controls (ratio 3 to 1). Cases and controls were matched for age, lactate dehydrogenase level and international prognostic index at presentation. Patients were studied by gene expression profiling for cell-of-origin determination and to perform differential expression analysis between groups, fluorescence in-situ hybridisation and immunohistochemistry for MYC, BCL2 and BCL6, TP53 mutations, and diagnostic specimens reviewed to exclude transformation from low-grade lymphoma. RESULTS Compared to the HCV-negative controls, patients with HCV-positive de novo DLBCL had differential expression of genes that regulate innate immune response and modulate apoptotic pathways, have higher proliferative index, and lack BCL2 translocations. CONCLUSIONS HCV-positive DLBCL have distinct molecular and pathological features compared to the HCV-negative counterparts.
Collapse
Affiliation(s)
- Carlo Visco
- Department of Hematology, San Bortolo Hospital, Via Rodolfi, 37, Vicenza 36100, Italy
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinfen Wang
- Department of Pathology, Shanxi Cancer Hospital, Shanxi 030013, China
| | - Maria Chiara Tisi
- Department of Hematology, San Bortolo Hospital, Via Rodolfi, 37, Vicenza 36100, Italy
| | - Lijuan Deng
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | - Karen Dybkær
- Aalborg University Hospital, Aalborg 9100, Denmark
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA
| | - Eric D Hsi
- Cleveland Clinic, Cleveland, OH 44195, USA
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen 6525, The Netherlands
| | | | | | | | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander 39008, Spain
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
8
|
Kumar V, Ahmad A. Targeting calpains: A novel immunomodulatory approach for microbial infections. Eur J Pharmacol 2017; 814:28-44. [PMID: 28789934 DOI: 10.1016/j.ejphar.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 02/09/2023]
Abstract
Calpains are a family of Ca2+ dependent cytosolic non-lysosomal proteases with well conserved cysteine-rich domains for enzymatic activity. Due to their functional dependency on Ca2+ concentrations, they are involved in various cellular processes that are regulated by intracellular ca2+ concentration (i.e. embryo development, cell development and migration, maintenance of cellular architecture and structure etc.). Calpains are widely studied proteases in mammalian (i.e. mouse and human) physiology and pathophysiology due to their ubiquitous presence. For example, these proteases have been found to be involved in various inflammatory disorders such as neurodegeneration, cancer, brain and myocardial ischemia and infarction, cataract and muscular dystrophies etc. Besides their role in these sterile inflammatory conditions, calpains have also been shown to regulate a wide range of infectious diseases (i.e. sepsis, tuberculosis, gonorrhoea and bacillary dysentery etc.). One of these regulatory mechanisms mediated by calpains (i.e. calpain 1 and 2) during microbial infections involves the regulation of innate immune response, inflammation and cell death. Thus, the major emphasis of this review is to highlight the importance of calpains in the pathogenesis of various microbial (i.e. bacterial, fungal and viral) diseases and the use of calpain modulators as potential immunomodulators in microbial infections.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Paediatrics and Child Health, Children's Health Queensland Clinical Unit, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| | - Ali Ahmad
- Laboratory of innate immunity, CHU Ste-Justine Research Center/Department of Microbiology, Infectious Diseases and Immunology, University of Montreal, 3175 Cote Ste Catherine, Montreal, Quebec, Canada H3T 1C5.
| |
Collapse
|
9
|
Molecular mechanisms of hepatitis C virus-induced hepatocellular carcinoma. Clin Microbiol Infect 2016; 22:853-861. [PMID: 27476823 DOI: 10.1016/j.cmi.2016.07.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/09/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a major leading cause of hepatocellular carcinoma (HCC). HCV-induced hepatocarcinogenesis is a multistep process resulting from a combination of pathway alterations that are either caused directly by viral factors or immune mediated as a consequence of a chronic state of inflammation. Host genetic variation is now emerging as an additional element that contribute to increase the risk of developing HCC. The advent of direct-acting antiviral agents foresees a rapid decline of HCC rate in HCV patients. However, a full understanding of the HCV-mediated tumourigenic process is required to elucidate if pro-oncogenic signatures may persist after virus clearance, and to identify novel tools for HCC prevention and therapy. In this review, we summarize the current knowledge of the molecular mechanisms responsible for HCV-induced hepatocarcinogenesis.
Collapse
|
10
|
Viruses in cancer cell plasticity: the role of hepatitis C virus in hepatocellular carcinoma. Contemp Oncol (Pozn) 2015; 19:A62-7. [PMID: 25691824 PMCID: PMC4322526 DOI: 10.5114/wo.2014.47132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viruses are considered as causative agents of a significant proportion of human cancers. While the very stringent criteria used for their classification probably lead to an underestimation, only six human viruses are currently classified as oncogenic. In this review we give a brief historical account of the discovery of oncogenic viruses and then analyse the mechanisms underlying the infectious causes of cancer. We discuss viral strategies that evolved to ensure virus propagation and spread can alter cellular homeostasis in a way that increases the probability of oncogenic transformation and acquisition of stem cell phenotype. We argue that a useful way of analysing the convergent characteristics of viral infection and cancer is to examine how viruses affect the so-called cancer hallmarks. This view of infectious origin of cancer is illustrated by examples from hepatitis C infection, which is associated with a high proportion of hepatocellular carcinoma.
Collapse
|
11
|
Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes. Apoptosis 2015; 20:466-80. [DOI: 10.1007/s10495-014-1084-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Aweya JJ, Sze CW, Bayega A, Mohd-Ismail NK, Deng L, Hotta H, Tan YJ. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the hepatitis C virus RNA replication and viral release. Virology 2014; 474:41-51. [PMID: 25463603 PMCID: PMC7127593 DOI: 10.1016/j.virol.2014.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) induces cytopathic effects in the form of hepatocytes apoptosis thought to be resulted from the interaction between viral proteins and host factors. Using pathway specific PCR array, we identified 9 apoptosis-related genes that are dysregulated during HCV infection, of which the BH3-only pro-apoptotic Bcl-2 family protein, BIK, was consistently up-regulated at the mRNA and protein levels. Depletion of BIK protected host cells from HCV-induced caspase-3/7 activation but not the inhibitory effect of HCV on cell viability. Furthermore, viral RNA replication and release were significantly suppressed in BIK-depleted cells and over-expression of the RNA-dependent RNA polymerase, NS5B, was able to induce BIK expression. Immunofluorescence and co-immunoprecipitation assays showed co-localization and interaction of BIK and NS5B, suggesting that BIK may be interacting with the HCV replication complex through NS5B. These results imply that BIK is essential for HCV replication and that NS5B is able to induce BIK expression.
Collapse
Affiliation(s)
- Jude Juventus Aweya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Ching Wooen Sze
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Anthony Bayega
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore
| | - Nur Khairiah Mohd-Ismail
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore
| | - Lin Deng
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Yee-Joo Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore 138673, Singapore.
| |
Collapse
|
13
|
Understanding the interaction determinants of CAPN1 inhibition by CAST4 from bovines using molecular modeling techniques. Molecules 2014; 19:14316-51. [PMID: 25215589 PMCID: PMC6271145 DOI: 10.3390/molecules190914316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 11/17/2022] Open
Abstract
HCV-induced CAPN activation and its effects on virus-infected cells in a host-immune system have been studied recently. It has been shown that the HCV-nonstructural 5A protein acts as both an inducer and a substrate for host CAPN protease; it participates in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced antiviral processes. However, little is known regarding the disturbance of antiviral responses generated by bovine CAPN activation by BVDV, which is a surrogate model of HCV and is one of the most destructive diseases leading to great economic losses in cattle herds worldwide. This is also thought to be associated with the effects of either small CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first attempted to understand the bovine CAPN-CAST interaction sites and the interaction constraints of local binding architectures, were well reflected in the geometry between the pharmacophore features and its shape constraints identified using our modeled bovine CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV nonstructural proteins from all of the data obtained in the study.
Collapse
|
14
|
Moniruzzaman M, LeCleir GR, Brown CM, Gobler CJ, Bidle KD, Wilson WH, Wilhelm SW. Genome of brown tide virus (AaV), the little giant of the Megaviridae, elucidates NCLDV genome expansion and host-virus coevolution. Virology 2014; 466-467:60-70. [PMID: 25035289 DOI: 10.1016/j.virol.2014.06.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
Abstract
Aureococcus anophagefferens causes economically and ecologically destructive "brown tides" in the United States, China and South Africa. Here we report the 370,920bp genomic sequence of AaV, a virus capable of infecting and lysing A. anophagefferens. AaV is a member of the nucleocytoplasmic large DNA virus (NCLDV) group, harboring 377 putative coding sequences and 8 tRNAs. Despite being an algal virus, AaV shows no phylogenetic affinity to the Phycodnaviridae family, to which most algae-infecting viruses belong. Core gene phylogenies, shared gene content and genome-wide similarities suggest AaV is the smallest member of the emerging clade "Megaviridae". The genomic architecture of AaV demonstrates that the ancestral virus had an even smaller genome, which expanded through gene duplication and assimilation of genes from diverse sources including the host itself - some of which probably modulate important host processes. AaV also harbors a number of genes exclusive to phycodnaviruses - reinforcing the hypothesis that Phycodna- and Mimiviridae share a common ancestor.
Collapse
Affiliation(s)
| | - Gary R LeCleir
- Department of Microbiology, The University of Tennessee, TN 37996, United States
| | | | | | - Kay D Bidle
- Institute of Marine and Coastal Sciences, Rutgers, NJ 08901, United States
| | - William H Wilson
- Bigelow Lab for Ocean Sciences, Boothbay, ME 04544, United States
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, TN 37996, United States.
| |
Collapse
|
15
|
Marcq I, Nyga R, Cartier F, Amrathlal RS, Ossart C, Ouled-Haddou H, Ghamlouch H, Galmiche A, Chatelain D, Lamotte L, Debuysscher V, Fuentes V, Nguyen-Khac E, Regimbeau JM, Marolleau JP, Latour S, Bouhlal H. Identification of SLAMF3 (CD229) as an inhibitor of hepatocellular carcinoma cell proliferation and tumour progression. PLoS One 2013; 8:e82918. [PMID: 24376606 PMCID: PMC3869749 DOI: 10.1371/journal.pone.0082918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/29/2013] [Indexed: 01/26/2023] Open
Abstract
Although hepatocellular carcinoma (HCC) is one of the most common malignancies and constitutes the third leading cause of cancer-related deaths, the underlying molecular mechanisms are not fully understood. In the present study, we demonstrate for the first time that hepatocytes express signalling lymphocytic activation molecule family member 3 (SLAMF3/CD229) but not other SLAMF members. We provide evidence to show that SLAMF3 is involved in the control of hepatocyte proliferation and in hepatocellular carcinogenesis. SLAMF3 expression is significantly lower in primary human HCC samples and HCC cell lines than in human healthy primary hepatocytes. In HCC cell lines, the restoration of high levels of SLAMF3 expression inhibited cell proliferation and migration and enhanced apoptosis. Furthermore, SLAMF3 expression was associated with inhibition of HCC xenograft progression in the nude mouse model. The restoration of SLAMF3 expression levels also decreased the phosphorylation of MAPK ERK1/2, JNK and mTOR. In samples from resected HCC patients, SLAMF3 expression levels were significantly lower in tumorous tissues than in peritumoral tissues. Our results identify SLAMF3 as a specific marker of normal hepatocytes and provide evidence for its potential role in the control of proliferation of HCC cells.
Collapse
Affiliation(s)
- Ingrid Marcq
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Rémy Nyga
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Flora Cartier
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- INSERM U1053, Laboratoire de Physiologie du Cancer du Foie, Université Bordeaux Segalen, 146, rue Léo Saignat, Bordeaux, France
| | - Rabbind Singh Amrathlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Christèle Ossart
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Hakim Ouled-Haddou
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Hussein Ghamlouch
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Antoine Galmiche
- Service de Biochimie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Denis Chatelain
- Service d’Anatomie Pathologique, Centre Hospitalier Universitaire sud, Amiens, France
| | - Luciane Lamotte
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Véronique Debuysscher
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
| | - Vincent Fuentes
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’Immunologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Eric Nguyen-Khac
- Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Marc Regimbeau
- Service de chirurgie digestive Centre Hospitalier Universitaire sud, Amiens, France
| | - Jean-Pierre Marolleau
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
| | - Sylvain Latour
- IRNEM U768, Hôpital Necker enfants maladies, Paris, France
| | - Hicham Bouhlal
- INSERM UMR925 and EA 4666 UFR de Médecine, CAP-Santé (FED 4231), Université de Picardie Jules Verne, Amiens, France
- Service d’hématologie Clinique et de thérapie cellulaire Centre Hospitalier Universitaire sud, Amiens, France
- * E-mail:
| |
Collapse
|
16
|
Tani J, Shimamoto S, Mori K, Kato N, Moriishi K, Matsuura Y, Tokumitsu H, Tsuchiya M, Fujimoto T, Kato K, Miyoshi H, Masaki T, Kobayashi R. Ca(2+) /S100 proteins regulate HCV virus NS5A-FKBP8/FKBP38 interaction and HCV virus RNA replication. Liver Int 2013; 33:1008-18. [PMID: 23522085 DOI: 10.1111/liv.12151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIM FKBP8/FKBP38 is a unique FK506-binding protein with a C-terminal membrane anchor and localizes at the outer membranes of mitochondria and the endoplasmic reticulum. Similar to some immunophilins, such as FKBP51, FKBP52 and Cyclophilin 40, FKBP8/FKBP38 contain a putative Calmodulin-binding domain and a tetratricopeptide-repeat (TPR) domain for the binding of Hsp90. Both Hsp90 and the non-structural protein 5A (NS5A) of the hepatitis C virus (HCV) interact specifically with FKBP8/FKBP38 through its TPR domain, and the ternary complex formation plays a critical role in HCV RNA replication. The goal of this study is to evaluate that the host factor inhibits the ternary complex formation and the replication of HCV in vitro and in vivo. METHODS S100 proteins, FKBP38, FKBP8, HCV NS5A, Hsp90, and calmodulin were expressed in E.coli and purified. In vitro binding studies were performed by GST pull-down, S-tag pull-down and surface plasmon resonance analyses. The effect of S100 proteins on HCV replication was analysed by Western blotting using an HCV NS3 antibody following transfection of S100 proteins into the HCV replicon harbouring cell line (sO cells). RESULTS In vitro binding studies showed that S100A1, S100A2, S100A6, S100B and S100P directly interacted with FKBP8/FKBP38 in a Ca(2+) -dependent manner and inhibited the FKBP8/FKBP38-Hsp90 and FKBP8/FKBP38-NS5A interactions. Furthermore, overexpression of S100A1, S100A2 and S100A6 in sO cells resulted in the efficient inhibition of HCV replication. CONCLUSION The association of the S100 proteins with FKBP8/FKBP38 provides a novel Ca(2+) -dependent regulatory role in HCV replication through the NS5A-host protein interaction.
Collapse
Affiliation(s)
- Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Liang TJ. Current progress in development of hepatitis C virus vaccines. Nat Med 2013; 19:869-78. [PMID: 23836237 PMCID: PMC6263146 DOI: 10.1038/nm.3183] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
Despite major advances in the understanding and treatment of hepatitis C, a preventive vaccine remains elusive. The marked genetic diversity and multiple mechanisms of persistence of hepatitis C virus, combined with the relatively poor immune response of the infected host against the virus, are major barriers. The lack of robust and convenient model systems further hampers the effort to develop an effective vaccine. Advances in our understanding of virus-host interactions and protective immunity in hepatitis C virus infection provide an important roadmap to develop potent and broadly directed vaccine candidates targeting both humoral and cellular immune responses. Multiple approaches to generating and testing viral immunogens have met with variable success. Several candidates have advanced to clinical trials based on promising results in chimpanzees. The ultimate path to a successful preventive vaccine requires comprehensive evaluations of all aspects of protective immunity, innovative application of state-of-the-art vaccine technology and properly designed vaccine trials that can affirm definitive endpoints of efficacy.
Collapse
Affiliation(s)
- T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Simonin Y, Vegna S, Akkari L, Grégoire D, Antoine E, Piette J, Floc'h N, Lassus P, Yu GY, Rosenberg AR, Karin M, Durantel D, Hibner U. Lymphotoxin signaling is initiated by the viral polymerase in HCV-linked tumorigenesis. PLoS Pathog 2013; 9:e1003234. [PMID: 23555249 PMCID: PMC3605200 DOI: 10.1371/journal.ppat.1003234] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
Exposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis. The goal of our work was to investigate the initiation of the inflammatory processes triggered by HCV viral proteins in their host cell and their possible link with HCV-related liver cancer. We report a dramatic upregulation of the lymphotoxin signaling pathway and more specifically of lymphotoxin-β in tumors of the FL-N/35 HCV-transgenic mice. Lymphotoxin expression is accompanied by activation of NF-κB, neosynthesis of chemokines and intra-tumoral recruitment of mononuclear cells. Spectacularly, IKKβ inactivation in FL-N/35 mice drastically reduces tumor incidence. Activation of lymphotoxin-β pathway can be reproduced in several cellular models, including the full length replicon and HCV-infected primary human hepatocytes. We have identified NS5B, the HCV RNA dependent RNA polymerase, as the viral protein responsible for this phenotype and shown that pharmacological inhibition of its activity alleviates activation of the pro-inflammatory pathway. These results open new perspectives in understanding the inflammatory mechanisms linked to HCV infection and tumorigenesis. Hepatitis C affects nearly 200 million people worldwide. It results from the failure of the immune system to control the hepatitis C virus (HCV) replication and spread, leading to progressive liver disease that can culminate in fibrosis, cirrhosis and cancer. The inflammatory cells that infiltrate the diseased liver functionally contribute to fibrotic disease and cancer development by the release of potent soluble mediators that regulate cell survival and proliferation, angiogenesis, tissue remodelling, metabolism and genomic integrity. The goal of our work was to study the mechanisms of the initiation of the inflammatory process linked to HCV infection. We have shown that the presence of a single viral protein, namely NS5B, the RNA dependent RNA polymerase, promotes pro-inflammatory signaling. Moreover, inhibition of this pathway in HCV transgenic mice fully protects the animals from HCV-linked liver cancer. Our study contributes to a better understanding of the inflammatory mechanisms linked to HCV infection and thereby to tumorigenesis.
Collapse
Affiliation(s)
- Yannick Simonin
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
- * E-mail: (YS); (UH)
| | - Serena Vegna
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Leila Akkari
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Damien Grégoire
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Etienne Antoine
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Jacques Piette
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Nicolas Floc'h
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Guann-Yi Yu
- National Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon, Lyon, France
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
- * E-mail: (YS); (UH)
| |
Collapse
|
19
|
Lu JR, Lu WW, Lai JZ, Tsai FL, Wu SH, Lin CW, Kung SH. Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol 2013; 94:1477-1485. [PMID: 23515028 DOI: 10.1099/vir.0.047753-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of an array of childhood diseases with severe neurological manifestations implicated. EV71 infection is known to induce caspase-dependent apoptosis in cell cultures and animal models. However, whether an alternative apoptotic pathway independent of caspase activation can be triggered by EV71 infection has not been explored. In this study, we showed that calcium (Ca²⁺)-activated calpains are capable of mediating caspase-independent pathway activation during EV71-induced apoptosis in HeLa cells. Results from subcellular fractionation analysis and confocal imaging indicated that during EV71 infection, apoptosis-inducing factor (AIF), a primary mediator of the caspase-independent pathway, became truncated and translocated from the mitochondrion to nucleus. This was accompanied by the release of cytochrome c, and sharply decreased mitochondrial membrane potential. AIF knockdown data indicated significant protection against apoptotic cell death, with greater protection provided by the addition of a pan-caspase inhibitor. The Ca²⁺-dependent, calpain isoforms 1 and 2, but not cathepsins, were proven crucial for the altered AIF behaviour as studied by the pharmacological inhibitor and the knockdown approaches. We then analysed Ca²⁺ dynamics in the infected cells and found elevated levels of mitochondrial Ca²⁺. Treatment with ruthenium red, a mitochondrial Ca²⁺ influx inhibitor, significantly blocked calpain activations and AIF cleavage. Our conclusion was that calpain activation via Ca²⁺ flux plays an essential role in eliciting an AIF-mediated, caspase-independent apoptotic pathway in EV71-infected cells. These findings should be useful for understanding the virus-induced cytopathology and the impact of Ca²⁺ homeostasis on EV71 infection.
Collapse
Affiliation(s)
- Jia-Rong Lu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Wen-Wen Lu
- Department of Clinical Pathology, Cheng Hsin Rehabilitation Medical Center, Taipei, Taiwan, Republic of China
| | - Jian-Zhong Lai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Fu-Lian Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Szu-Hsien Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan, Republic of China
| | - Szu-Hao Kung
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
20
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
21
|
Hepatitis C viral protein NS5A induces EMT and participates in oncogenic transformation of primary hepatocyte precursors. J Hepatol 2012; 57:1021-8. [PMID: 22750466 DOI: 10.1016/j.jhep.2012.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/07/2012] [Accepted: 06/21/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Apicobasal polarity, which is essential for epithelial structure and function, is targeted by several tumour-related pathogens and is generally perturbed in the course of carcinogenesis. Hepatitis C virus (HCV) infection is associated with a strong risk of hepatocellular carcinoma, typically preceded by dysplastic alterations of cell morphology. We investigated the molecular mechanisms and the functional consequences of HCV-driven perturbations of epithelial polarity. METHODS We used biochemical, genetic, and cell biology approaches to assess the impact of hepatitis C viral protein NS5A on the polarity and function of hepatocytes and hepatic progenitors. Transgenic animals and xenograft models served for in vivo validation of the results obtained in cell culture. RESULTS We found that expression of HCV-NS5A in primary hepatic precursors and in immortalized hepatocyte cell lines gave rise to profound modifications of cell polarity, leading to epithelial to mesenchymal transition (EMT). NS5A, either alone or in the context of the full complement of viral proteins in the course of infection, acted through activating Twist2, a transcriptional regulator of EMT. The effects of NS5A were additive to those of TGF-β, a cytokine abundant in diseased liver and highly relevant to HCV-related pathology. Moreover, NS5A cooperates with oncogenic Ras, giving rise to transformed, invasive cells that are highly tumorigenic in vivo. CONCLUSIONS Our data suggest that in the context of HCV infection, NS5A favors formation of preneoplastic lesions by disrupting cell polarity and additional oncogenic events cooperate with the viral protein to give rise to motile and invasive tumour cells.
Collapse
|
22
|
Hepatitis C virus-induced activation of β-catenin promotes c-Myc expression and a cascade of pro-carcinogenetic events. Oncogene 2012; 32:4683-93. [PMID: 23108410 DOI: 10.1038/onc.2012.484] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 02/07/2023]
Abstract
Chronic infection by hepatitis C virus (HCV) is a major risk factor for the onset and development of hepatocellular carcinoma (HCC), although the underlying mechanisms are unclear. The c-Myc oncogene contributes to the genesis of many types of cancers, including HCC, partly via the induction of genetic damage and the inhibition of the cellular response to genotoxic stress. Here, we show a previously undiscovered mechanistic link between HCV infection and enhanced c-Myc expression. c-Myc expression was augmented in non-tumoral liver tissues from HCV-infected individuals with or without HCC and in hepatocyte cell lines harboring an HCV replicon and the infectious HCV strain JFH1. Increased c-Myc expression was confirmed in vivo in a transgenic murine model expressing the entire HCV open reading frame, demonstrating a direct role for HCV protein expression in c-Myc induction. Mechanistically, activation of Akt by the HCV non-structural protein NS5A, and the subsequent stabilization of the transcription factor β-catenin, was demonstrated to be responsible for activation of the c-Myc promoter, and for increased c-Myc transcription. β-Catenin-dependent c-Myc expression in this context led to increased production of reactive oxygen species, mitochondrial perturbation, enhanced DNA damage and aberrant cell-cycle arrest. Together, these data provide a novel insight into the mechanisms involved in HCV-associated HCCs, strongly suggesting that c-Myc has a crucial contributory role in this process.
Collapse
|
23
|
Chouteau P, Defer N, Florimond A, Caldéraro J, Higgs M, Gaudin A, Mérour E, Dhumeaux D, Lerat H, Pawlotsky JM. Hepatitis C virus (HCV) protein expression enhances hepatic fibrosis in HCV transgenic mice exposed to a fibrogenic agent. J Hepatol 2012; 57:499-507. [PMID: 22613003 DOI: 10.1016/j.jhep.2012.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 03/18/2012] [Accepted: 04/02/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS During chronic HCV infection, activation of fibrogenesis appears to be principally related to local inflammation. However, the direct role of hepatic HCV protein expression in fibrogenesis remains unknown. METHODS We used transgenic mice expressing the full length HCV open reading frame exposed to a 'second hit' of the fibrogenic agent carbon tetrachloride (CCl(4)). Both acute and chronic liver injuries were induced in these mice by CCl(4) injections. Liver injury, expression of matrix re-modeling genes, reactive oxygen species (ROS), inflammation, hepatocyte proliferation, ductular reaction and hepatic progenitor cells (HPC) expansion were examined. RESULTS After CCl(4) treatment, HCV transgenic mice exhibited enhanced liver fibrosis, significant changes in matrix re-modeling genes and increased ROS production compared to wild type littermates despite no differences in the degree of local inflammation. This increase was accompanied by a decrease in hepatocyte proliferation, which appeared to be due to delayed hepatocyte entry into the S phase. A prominent ductular reaction and hepatic progenitor cell compartment expansion were observed in transgenic animals. These observations closely mirror those previously made in HCV-infected individuals. CONCLUSIONS Together, these results demonstrate that expression of the HCV proteins in hepatocytes contributes to the development of hepatic fibrosis in the presence of other fibrogenic agents. In the presence of CCl(4), HCV transgenic mice display an intra-hepatic re-organization of several key cellular actors in the fibrogenic process.
Collapse
|
24
|
Kulkarni YM, Klinke DJ. Protein-based identification of quantitative trait loci associated with malignant transformation in two HER2+ cellular models of breast cancer. Proteome Sci 2012; 10:11. [PMID: 22357162 PMCID: PMC3305585 DOI: 10.1186/1477-5956-10-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A contemporary view of the cancer genome reveals extensive rearrangement compared to normal cells. Yet how these genetic alterations translate into specific proteomic changes that underpin acquiring the hallmarks of cancer remains unresolved. The objectives of this study were to quantify alterations in protein expression in two HER2+ cellular models of breast cancer and to infer differentially regulated signaling pathways in these models associated with the hallmarks of cancer. RESULTS A proteomic workflow was used to identify proteins in two HER2 positive tumorigenic cell lines (BT474 and SKBR3) that were differentially expressed relative to a normal human mammary epithelial cell line (184A1). A total of 64 (BT474-184A1) and 69 (SKBR3-184A1) proteins were uniquely identified that were differentially expressed by at least 1.5-fold. Pathway inference tools were used to interpret these proteins in terms of functionally enriched pathways in the tumor cell lines. We observed "protein ubiquitination" and "apoptosis signaling" pathways were both enriched in the two breast cancer models while "IGF signaling" and "cell motility" pathways were enriched in BT474 and "amino acid metabolism" were enriched in the SKBR3 cell line. CONCLUSION While "protein ubiquitination" and "apoptosis signaling" pathways were common to both the cell lines, the observed patterns of protein expression suggest that the evasion of apoptosis in each tumorigenic cell line occurs via different mechanisms. Evidently, apoptosis is regulated in BT474 via down regulation of Bid and in SKBR3 via up regulation of Calpain-11 as compared to 184A1.
Collapse
Affiliation(s)
- Yogesh M Kulkarni
- Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA.
| | | |
Collapse
|
25
|
Fan H, Ye Y, Luo Y, Tong T, Yan G, Liao M. Quantitative Proteomics Using Stable Isotope Labeling with Amino Acids in Cell Culture Reveals Protein and Pathway Regulation in Porcine Circovirus Type 2 Infected PK-15 Cells. J Proteome Res 2011; 11:995-1008. [DOI: 10.1021/pr200755d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huiying Fan
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| | - Yu Ye
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| | - Yongwen Luo
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| | - Tiezhu Tong
- Huizhou Entry-Exit Inspection and Quarantine Bureau, Huizhou 516001, China
| | - Guangrong Yan
- Institute of Life and Health
Engineering and National Engineering and Research Center for Genetic
Medicine, Jinan University, Guangzhou 510632,
China
| | - Ming Liao
- MOA Key Laboratory for Animal Vaccine Development, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642,
China
| |
Collapse
|
26
|
Lerat H, Higgs M, Pawlotsky JM. Animal models in the study of hepatitis C virus-associated liver pathologies. Expert Rev Gastroenterol Hepatol 2011; 5:341-52. [PMID: 21651352 DOI: 10.1586/egh.11.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is estimated that more than 170 million individuals worldwide are chronically infected with hepatitis C virus (HCV), with approximately 20% of the cases developing cirrhosis. Each year, between 1 and 4% of patients exhibiting cirrhosis develop hepatocellular carcinoma. Chronic HCV infection is also linked with the development of several metabolic disorders, including hepatic steatosis and insulin resistance. Research into HCV-related pathologies is hampered by a relative paucity of small animal models. As a result, little is known about the molecular mechanisms involved, and much of our current knowledge is drawn by inference from in vitro studies using overexpressed proteins. In this article, we will review the currently available animal models for the study of HCV pathogenesis, with an emphasis on murine models. Then, we will provide an overview of how these models have contributed to the deciphering of the molecular mechanisms underlying dysregulated lipid metabolism and hepatocellular carcinoma during HCV infection.
Collapse
Affiliation(s)
- Hervé Lerat
- Institut National de la Santé et de la Recherche Médicale, Unité U955, Université Paris-Est, Créteil, F-94010, France.
| | | | | |
Collapse
|
27
|
Zhang D, Feng GH. Advances in research of interaction between hepatitis C virus nonstructural proteins and host proteins. Shijie Huaren Xiaohua Zazhi 2011; 19:161-169. [DOI: 10.11569/wcjd.v19.i2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is another common cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma after hepatitis B virus (HBV). Up to now, the mechanisms by which HCV promotes persistent infection and cancer remain unclear, and there are neither effective drugs nor vaccines against HCV available. Interaction between virus proteins and host proteins is a hot topic in research of the pathogenesis of viral hepatitis. Recent research shows that interaction between HCV nonstructural proteins and host proteins has an important impact on viral replication, carcinogenesis, interferon resistance, and disorders of glycometabolism and lipid metabolism. This paper summarizes the recent advances in research of interaction between HCV nonstructural proteins and host proteins.
Collapse
|
28
|
BAD, a Proapoptotic Member of the BCL2 Family, Is a Potential Therapeutic Target in Hepatocellular Carcinoma. Mol Cancer Res 2010; 8:1116-25. [DOI: 10.1158/1541-7786.mcr-10-0029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Higgs MR, Lerat H, Pawlotsky JM. Downregulation of Gadd45beta expression by hepatitis C virus leads to defective cell cycle arrest. Cancer Res 2010; 70:4901-11. [PMID: 20530689 DOI: 10.1158/0008-5472.can-09-4554] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Members of the Gadd45 family play central roles in the cellular response to genotoxic stress and have been implicated in several human cancers, including hepatocellular carcinomas. Chronic infection by hepatitis C virus (HCV) is a major risk factor for the onset and development of primary hepatocellular tumors, although the underlying mechanisms are unclear. Here, we show a novel link between diminished Gadd45beta expression and HCV infection. Inhibited Gadd45beta expression was observed in both nontumoral and tumoral tissues from infected individuals, and in cell lines harboring a HCV replicon and the infectious HCV strain JFH1. Decreased Gadd45beta expression was confirmed in vivo in a transgenic murine model expressing the entire HCV open reading frame. Mechanistically, hypermethylation of the Gadd45beta promoter in the presence of HCV is responsible for this defect. Diminished Gadd45beta expression leads to aberrant cell cycle arrest and diminished DNA excision repair. Together, these results provide a novel insight into the mechanisms involved in HCV-associated hepatocellular carcinomas, showing that reduced Gadd45beta expression may play a contributory role to this process, and providing evidence that HCV may interfere with epigenetic gene expression by altering promoter methylation.
Collapse
Affiliation(s)
- Martin R Higgs
- Institut National de la Santé et de la Recherche Médicale U955, Créteil, France
| | | | | |
Collapse
|