1
|
Monel B, Lamothe PA, Meyo J, McLean AP, Quinones-Alvarado R, Laporte M, Boucau J, Walker BD, Kavanagh DG, Garcia-Beltran WF, Pacheco Y. SLAMF6 enables efficient attachment, synapse formation, and killing of HIV-1-infected CD4 + T cells by virus-specific CD8 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633914. [PMID: 39896504 PMCID: PMC11785116 DOI: 10.1101/2025.01.20.633914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Efficient recognition and elimination of HIV-1-infected CD4+ T cells by cytotoxic CD8+ T cells (CTLs) require target cell engagement and the formation of a well-organized immunological synapse. Surface proteins belonging to the SLAM family are known to be crucial for stabilizing the immunological synapse and regulating antiviral responses during lymphotropic viral infections. In the context of HIV-1, there have been reports of SLAMF6 down-regulation in HIV-1-infected CD4+ T cells; however, the significance of this modulation for CTL function remains unclear. In this investigation, we used CTL lines from People living with HIV (PLWH) to examine the impact of SLAMF6 blockade on three pivotal processes: (1) the formation of CD8+-CD4+ T-cell conjugates, (2) the establishment of the immunological synapse, and (3) the killing and cytokine production capacity of HIV-1-specific CTLs during HIV-1 infection. Our findings reveal that the inability to form CD8+-CD4+ T-cell conjugates following incubation with an anti-SLAMF6 blocking antibody is primarily attributable to a defect in actin ring formation at the immunological synapse. Furthermore, SLAMF6 blockade leads to a reduction in the killing efficiency of HIV-1-infected CD4+ T cells by HIV-1-specific CTLs, underscoring the critical role of SLAMF6 in cytolytic function. This study highlights the importance of SLAMF6 receptors in modulating cytotoxic antiviral responses, shedding light on potential avenues for manipulation and enhancement of this pathway in the context of HIV and other lymphotropic viral infections.
Collapse
Affiliation(s)
- Blandine Monel
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - Pedro A. Lamothe
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine. Emory University School of Medicine. Atlanta, Georgia, USA
| | - James Meyo
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- EMD Serono, Boston, Massachusetts, USA
| | - Anna P. McLean
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Maine Medical Center, Department of Psychiatry
| | | | - Mélanie Laporte
- Nantes Université, Univ Angers, INSERM, CNRS, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302/EMR6001, F-44000 Nantes, France
| | - Julie Boucau
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Bruce D. Walker
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Daniel G. Kavanagh
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- WCG, Princeton, New Jersey, USA
| | - Wilfredo F. Garcia-Beltran
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yovana Pacheco
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts, USA
- Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| |
Collapse
|
2
|
Sallam M, Khalil R. Contemporary Insights into Hepatitis C Virus: A Comprehensive Review. Microorganisms 2024; 12:1035. [PMID: 38930417 PMCID: PMC11205832 DOI: 10.3390/microorganisms12061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis C virus (HCV) remains a significant global health challenge. Approximately 50 million people were living with chronic hepatitis C based on the World Health Organization as of 2024, contributing extensively to global morbidity and mortality. The advent and approval of several direct-acting antiviral (DAA) regimens significantly improved HCV treatment, offering potentially high rates of cure for chronic hepatitis C. However, the promising aim of eventual HCV eradication remains challenging. Key challenges include the variability in DAA access across different regions, slightly variable response rates to DAAs across diverse patient populations and HCV genotypes/subtypes, and the emergence of resistance-associated substitutions (RASs), potentially conferring resistance to DAAs. Therefore, periodic reassessment of current HCV knowledge is needed. An up-to-date review on HCV is also necessitated based on the observed shifts in HCV epidemiological trends, continuous development and approval of therapeutic strategies, and changes in public health policies. Thus, the current comprehensive review aimed to integrate the latest knowledge on the epidemiology, pathophysiology, diagnostic approaches, treatment options and preventive strategies for HCV, with a particular focus on the current challenges associated with RASs and ongoing efforts in vaccine development. This review sought to provide healthcare professionals, researchers, and policymakers with the necessary insights to address the HCV burden more effectively. We aimed to highlight the progress made in managing and preventing HCV infection and to highlight the persistent barriers challenging the prevention of HCV infection. The overarching goal was to align with global health objectives towards reducing the burden of chronic hepatitis, aiming for its eventual elimination as a public health threat by 2030.
Collapse
Affiliation(s)
- Malik Sallam
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
- Department of Clinical Laboratories and Forensic Medicine, Jordan University Hospital, Amman 11942, Jordan
| | - Roaa Khalil
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
3
|
Srivastava A, Hollenbach JA. The immunogenetics of COVID-19. Immunogenetics 2022; 75:309-320. [PMID: 36534127 PMCID: PMC9762652 DOI: 10.1007/s00251-022-01284-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The worldwide coronavirus disease 2019 pandemic was sparked by the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) that first surfaced in December 2019 (COVID-19). The effects of COVID-19 differ substantially not just between patients individually but also between populations with different ancestries. In humans, the human leukocyte antigen (HLA) system coordinates immune regulation. Since HLA molecules are a major component of antigen-presenting pathway, they play an important role in determining susceptibility to infectious disease. It is likely that differential susceptibility to SARS-CoV-2 infection and/or disease course in COVID-19 in different individuals could be influenced by the variations in the HLA genes which are associated with various immune responses to SARS-CoV-2. A growing number of studies have identified a connection between HLA variation and diverse COVID-19 outcomes. Here, we review research investigating the impact of HLA on individual responses to SARS-CoV-2 infection and/or progression, also discussing the significance of MHC-related immunological patterns and its use in vaccine design.
Collapse
Affiliation(s)
- Anshika Srivastava
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| | - Jill A. Hollenbach
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, CA USA
| |
Collapse
|
4
|
Nii-Trebi NI, Matsuoka S, Kawana-Tachikawa A, Bonney EY, Abana CZ, Ofori SB, Mizutani T, Ishizaka A, Shiino T, Ohashi J, Naruse TK, Kimura A, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana. PLoS One 2022; 17:e0269390. [PMID: 35653364 PMCID: PMC9162337 DOI: 10.1371/journal.pone.0269390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naïve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa.
Collapse
Affiliation(s)
- Nicholas I. Nii-Trebi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christopher Z. Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson B. Ofori
- Department of Medicine, Koforidua Government Hospital, Eastern Region, Ghana
| | | | - Aya Ishizaka
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kiyono
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William K. Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (WKA); (TM)
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (WKA); (TM)
| |
Collapse
|
5
|
Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J Immunol Res 2022; 2022:9710376. [PMID: 35664353 PMCID: PMC9162874 DOI: 10.1155/2022/9710376] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/08/2022] [Indexed: 12/19/2022] Open
Abstract
The human leukocyte antigen (HLA) system is one of the most crucial host factors influencing disease progression in bacterial and viral infections. This review provides the basic concepts of the structure and function of HLA molecules in humans. Here, we highlight the main findings on the associations between HLA class I and class II alleles and susceptibility to important infectious diseases such as tuberculosis, leprosy, melioidosis, Staphylococcus aureus infection, human immunodeficiency virus infection, coronavirus disease 2019, hepatitis B, and hepatitis C in populations worldwide. Finally, we discuss challenges in HLA typing to predict disease outcomes in clinical implementation. Evaluation of the impact of HLA variants on the outcome of bacterial and viral infections would improve the understanding of pathogenesis and identify those at risk from infectious diseases in distinct populations and may improve the individual treatment.
Collapse
|
6
|
Saigusa R, Roy P, Freuchet A, Gulati R, Ghosheh Y, Suthahar SSA, Durant CP, Hanna DB, Kiosses WB, Orecchioni M, Wen L, Wu R, Kuniholm MH, Landay AL, Anastos K, Tien PC, Gange SJ, Kassaye S, Vallejo J, Hedrick CC, Kwok WW, Sette A, Hodis HN, Kaplan RC, Ley K. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:462-475. [PMID: 35990517 PMCID: PMC9383695 DOI: 10.1038/s44161-022-00063-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is accompanied by a CD4 T cell response to apolipoprotein B (APOB). Major Histocompatibility Complex (MHC)-II tetramers can be used to isolate antigen-specific CD4 T cells by flow sorting. Here, we produce, validate and use an MHC-II tetramer, DRB1*07:01 APOB-p18, to sort APOB-p18-specific cells from peripheral blood mononuclear cell samples from 8 DRB1*07:01+ women with and without subclinical cardiovascular disease (sCVD). Single cell RNA sequencing showed that transcriptomes of tetramer+ cells were between regulatory and memory T cells in healthy women and moved closer to memory T cells in women with sCVD. TCR sequencing of tetramer+ cells showed clonal expansion and V and J segment usage similar to those found in regulatory T cells. These findings suggest that APOB-specific regulatory T cells may switch to a more memory-like phenotype in women with atherosclerosis. Mouse studies showed that such switched cells promote atherosclerosis.
Collapse
Affiliation(s)
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - David B. Hanna
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
| | | | | | - Lai Wen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Runpei Wu
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H. Kuniholm
- University at Albany, Department of Epidemiology and Biostatistics, Rensselaer, NY, USA
| | - Alan L. Landay
- Rush University Medical Center, Department of Internal Medicine, Chicago, IL, USA
| | - Kathryn Anastos
- Albert Einstein College of Medicine, Departments of Medicine and Epidemiology & Population Health, Bronx NY, USA
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Stephen J. Gange
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore MD, USA
| | - Seble Kassaye
- Georgetown University, Georgetown University Medical Center, Washington, DC, USA
| | | | | | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Tetramer Core Laboratory, Seattle, WA, USA
| | | | - Howard N. Hodis
- Keck School of Medicine, University of Southern California Departments of Medicine and Population and Public Health Sciences, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Robert C. Kaplan
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- University of California San Diego, San Diego, CA, USA
| |
Collapse
|
7
|
Valencia A, Vergara C, Thio CL, Vince N, Douillard V, Grifoni A, Cox AL, Johnson EO, Kral AH, Goedert JJ, Mangia A, Piazzolla V, Mehta SH, Kirk GD, Kim AY, Lauer GM, Chung RT, Price JC, Khakoo SI, Alric L, Cramp ME, Donfield SM, Edlin BR, Busch MP, Alexander G, Rosen HR, Murphy EL, Wojcik GL, Carrington M, Gourraud PA, Sette A, Thomas DL, Duggal P. Trans-ancestral fine-mapping of MHC reveals key amino acids associated with spontaneous clearance of hepatitis C in HLA-DQβ1. Am J Hum Genet 2022; 109:299-310. [PMID: 35090584 PMCID: PMC8874224 DOI: 10.1016/j.ajhg.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQβ1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQβ1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQβ1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQβ1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQβ1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.
Collapse
Affiliation(s)
- Ana Valencia
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Universidad Pontificia Bolivariana, Medellín, Antioquia 050031, Colombia
| | - Candelaria Vergara
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chloe L Thio
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Nicolas Vince
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Venceslas Douillard
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Alba Grifoni
- Center for infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Andrea L Cox
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - Alex H Kral
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC 27709, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessandra Mangia
- Liver Unit, Medical Sciences Department, Fondazione "Casa Sollievo della Sofferenza" IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Valeria Piazzolla
- Liver Unit, Medical Sciences Department, Fondazione "Casa Sollievo della Sofferenza" IRCCS, 71013 San Giovanni Rotondo, Italy
| | - Shruti H Mehta
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Gregory D Kirk
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arthur Y Kim
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jennifer C Price
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Salim I Khakoo
- University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Laurent Alric
- Internal Medicine-Department of Digestive Diseases, Rangueil Hospital, Toulouse University, 1, 31400 Toulouse, France
| | | | | | - Brian R Edlin
- SUNY Downstate College of Medicine, Brooklyn, NY 11203, USA
| | - Michael P Busch
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA 94118, USA
| | - Graeme Alexander
- UCL Institute for Liver and Digestive Health, The Royal Free Hospital, Pond St, Hampstead, London NW3 2QG, UK
| | | | - Edward L Murphy
- University of California San Francisco and Vitalant Research Institute, San Francisco, CA 94118, USA
| | - Genevieve L Wojcik
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Pierre-Antoine Gourraud
- Université de Nantes, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes 44000, France
| | - Alessandro Sette
- Center for infectious Diseases and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - David L Thomas
- Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Priya Duggal
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Hartlage AS, Kapoor A. Hepatitis C Virus Vaccine Research: Time to Put Up or Shut Up. Viruses 2021; 13:1596. [PMID: 34452460 PMCID: PMC8402855 DOI: 10.3390/v13081596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022] Open
Abstract
Unless urgently needed to prevent a pandemic, the development of a viral vaccine should follow a rigorous scientific approach. Each vaccine candidate should be designed considering the in-depth knowledge of protective immunity, followed by preclinical studies to assess immunogenicity and safety, and lastly, the evaluation of selected vaccines in human clinical trials. The recently concluded first phase II clinical trial of a human hepatitis C virus (HCV) vaccine followed this approach. Still, despite promising preclinical results, it failed to protect against chronic infection, raising grave concerns about our understanding of protective immunity. This setback, combined with the lack of HCV animal models and availability of new highly effective antivirals, has fueled ongoing discussions of using a controlled human infection model (CHIM) to test new HCV vaccine candidates. Before taking on such an approach, however, we must carefully weigh all the ethical and health consequences of human infection in the absence of a complete understanding of HCV immunity and pathogenesis. We know that there are significant gaps in our knowledge of adaptive immunity necessary to prevent chronic HCV infection. This review discusses our current understanding of HCV immunity and the critical gaps that should be filled before embarking upon new HCV vaccine trials. We discuss the importance of T cells, neutralizing antibodies, and HCV genetic diversity. We address if and how the animal HCV-like viruses can be used for conceptualizing effective HCV vaccines and what we have learned so far from these HCV surrogates. Finally, we propose a logical but narrow path forward for HCV vaccine development.
Collapse
Affiliation(s)
- Alex S. Hartlage
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
9
|
Ashfaq UA, Saleem S, Masoud MS, Ahmad M, Nahid N, Bhatti R, Almatroudi A, Khurshid M. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vaccinology and molecular docking approach. PLoS One 2021; 16:e0245072. [PMID: 33534822 PMCID: PMC7857617 DOI: 10.1371/journal.pone.0245072] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Middle East respiratory syndrome (MERS-COV), first identified in Saudi Arabia, was caused by a novel strain of coronavirus. Outbreaks were recorded from different regions of the world, especially South Korea and the Middle East, and were correlated with a 35% mortality rate. MERS-COV is a single-stranded, positive RNA virus that reaches the host by binding to the receptor of dipeptidyl-peptides. Because of the unavailability of the vaccine available for the protection from MERS-COV infection, the rapid case detection, isolation, infection prevention has been recommended to combat MERS-COV infection. So, vaccines for the treatment of MERS-COV infection need to be developed urgently. A possible antiviral mechanism for preventing MERS-CoV infection has been considered to be MERS-CoV vaccines that elicit unique T-cell responses. In the present study, we incorporated both molecular docking and immunoinformatic approach to introduce a multiepitope vaccine (MEP) against MERS-CoV by selecting 15 conserved epitopes from seven viral proteins such as three structural proteins (envelope, membrane, and nucleoprotein) and four non-structural proteins (ORF1a, ORF8, ORF3, ORF4a). The epitopes, which were examined for non-homologous to host and antigenicity, were selected on the basis of conservation between T-cell, B-cell, and IFN-γ epitopes. The selected epitopes were then connected to the adjuvant (β-defensin) at the N-terminal through an AAY linker to increase the immunogenic potential. Structural modelling and physiochemical characteristic were applied to the vaccine construct developed. Afterwards the structure has been successfully docked with antigenic receptor, Toll-like receptor 3 (TLR-3) and in-silico cloning ensures that its expression efficiency is legitimate. Nonetheless the MEP presented needs tests to verify its safety and immunogenic profile.
Collapse
Affiliation(s)
- Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- * E-mail:
| | - Saman Saleem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rashid Bhatti
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
10
|
Oladejo BO, Adeboboye CF, Adebolu TT. Understanding the genetic determinant of severity in viral diseases: a case of SARS-Cov-2 infection. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020; 21:77. [PMID: 38624552 PMCID: PMC7773422 DOI: 10.1186/s43042-020-00122-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background Numerous research studies have identified specific human gene variants that affect enhanced susceptibility to viral infections. More recently is the current pandemic where the SARS-CoV-2 infection has shown a high degree of person-to-person clinical variability. A wide range of disease severity occurs in the patients' experiences, from asymptomatic cases, mild infections to serious life threatening conditions requiring admission into the intensive care unit (ICU). Main body of the abstract Although, it is generally reported that age and co-morbidities contribute significantly to the variations in the clinical outcome of the scourge of COVID-19, a hypothetical question of the possibility of genetic involvement in the susceptibility and severity of the disease arose when some unique severe outcomes were seen among young patients with no co-morbidity. The role human genetics play in clinical response to the viral infections is scarcely understood; however, several ongoing researches all around the world are currently focusing on possible genetic factors. This review reports the possible genetic factors that have been widely studied in defining the severity of viral infections using SARS-CoV-2 as a case study. These involve the possible involvements of ACE2, HLA, and TLR genes such as TLR7 and TLR3 in the presentation of a more severe condition. Short conclusion Understanding these variations could help to inform efforts to identify people at increased risk of infection outbreaks through genetic diagnosis of infections by locating disease genes or mutations that predispose patients to severe infection. This will also suggest specific targets for therapy and prophylaxis.
Collapse
|
11
|
Ursu LD, Calenic B, Diculescu M, Dima A, Stoian IT, Constantinescu I. Clinical and histopathological changes in different KIR gene profiles in chronic HCV Romanian patients. Int J Immunogenet 2020; 48:16-24. [PMID: 32961633 DOI: 10.1111/iji.12515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV)-infected individuals may have a faster progression of liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC) development when influenced by host, viral and environmental factors. Hepatitis C virus disease progression is also associated with genetic variants of specific killer cell immunoglobulin-like receptors (KIRs) and genes of the major histocompatibility complex (MHC). The aim of the present study was to correlate clinical, virologic and biochemical parameters and to evaluate the possible influence of KIR genes and their HLA class I ligands in patients infected with hepatitis C virus. The present study analysed a total of 127 chronic HCV-infected patients for various biochemical and genetics factors that can influence disease progression and prognosis. Liver function parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), direct bilirubin (DB), alpha-fetoprotein (AFP), HCV RNA levels and fibrosis indices were analysed using well-established biochemical methods. At the same time, KIR and HLA genotyping was performed using a polymerase chain reaction sequence-specific primer technique. Analysis of HLA class I and HLA ligands revealed that HLA-C*12:02 and HLA-A3 and HLA-A11 were positively associated with the F3-F4 fibrosis group (p = .026; OR = 8.717, CI = 1.040-73.077; respectively, p = .047; OR = 2.187; 95% CI = 1.066-4.486). KIR2DL2-positive patients had high median levels of AST after treatment and direct bilirubin levels when compared to KIR2DL2-negative patients (p = .013, respectively, p = .028). KIR2DL2/KIR2DL2-C1C1 genotype was associated with increased AST, ALT and GGT levels. A higher GGT level was also observed in KIR2DS2-C1-positive patients when compared to KIR2DS2-C1-negative patients. The present research demonstrates several links between specific clinical, virologic and biochemical parameters and the expression of KIR genes and their HLA ligands in HCV-infected patients. These connections should be taken into account when considering disease development and treatment.
Collapse
Affiliation(s)
- Larisa Denisa Ursu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mircea Diculescu
- Gastroenterology and Hepatology Department, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Alina Dima
- Rheumatology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Iulia Teodora Stoian
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
12
|
Kemming J, Thimme R, Neumann-Haefelin C. Adaptive Immune Response against Hepatitis C Virus. Int J Mol Sci 2020; 21:ijms21165644. [PMID: 32781731 PMCID: PMC7460648 DOI: 10.3390/ijms21165644] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
A functional adaptive immune response is the major determinant for clearance of hepatitis C virus (HCV) infection. However, in the majority of patients, this response fails and persistent infection evolves. Here, we dissect the HCV-specific key players of adaptive immunity, namely B cells and T cells, and describe factors that affect infection outcome. Once chronic infection is established, continuous exposure to HCV antigens affects functionality, phenotype, transcriptional program, metabolism, and the epigenetics of the adaptive immune cells. In addition, viral escape mutations contribute to the failure of adaptive antiviral immunity. Direct-acting antivirals (DAA) can mediate HCV clearance in almost all patients with chronic HCV infection, however, defects in adaptive immune cell populations remain, only limited functional memory is obtained and reinfection of cured individuals is possible. Thus, to avoid potential reinfection and achieve global elimination of HCV infections, a prophylactic vaccine is needed. Recent vaccine trials could induce HCV-specific immunity but failed to protect from persistent infection. Thus, lessons from natural protection from persistent infection, DAA-mediated cure, and non-protective vaccination trials might lead the way to successful vaccination strategies in the future.
Collapse
Affiliation(s)
- Janine Kemming
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Robert Thimme
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79102 Freiburg im Breisgau, Germany; (J.K.); (R.T.)
- Correspondence: ; Tel.: +49-761-270-32800
| |
Collapse
|
13
|
Khalid H, Ashfaq UA. Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. J Biomed Inform 2020; 108:103498. [PMID: 32621883 DOI: 10.1016/j.jbi.2020.103498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 05/03/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023]
Abstract
Hepatitis C Virus (HCV) infection is a major cause of chronic liver disease, hepatocellular carcinoma, and the single most common indication for liver transplantation. HCV vaccines eliciting specific T-cell responses, have been considered as potent method to prevent HCV infection. Despite several reports on progress of vaccine, these vaccine failed in mediating clinical relevance activity against HCV in humans. In this study we integrated both immunoinformatic and molecular docking approach to present a multiepitope vaccine against HCV by designating 17 conserved epitopes from eight viral proteins such as Core protein, E1, E2, NS2, NS34A, NS4B, NS5A, and NS5B. The epitopes were prioritized based on conservation among epitopes of T cell, B cell and IFN-γ that were then scanned for non-homologous to host and antigenicity. The prioritized epitopes were then linked together by AAY linker and adjuvant (β-defensin) were attached at N-terminal to enhance immunogenic potential. The construct thus formed were subjected to structural modeling and physiochemical characteristics. The modeled structure were successfully docked to antigenic receptor TLR-3 and In-silico cloning confers the authenticity of its expression efficiency. However, the proposed construct need to be validate experimentally to ensure its safety and immunogenic profile.
Collapse
Affiliation(s)
- Hina Khalid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
14
|
Debebe BJ, Boelen L, Lee JC, Thio CL, Astemborski J, Kirk G, Khakoo SI, Donfield SM, Goedert JJ, Asquith B. Identifying the immune interactions underlying HLA class I disease associations. eLife 2020; 9:54558. [PMID: 32238263 PMCID: PMC7253178 DOI: 10.7554/elife.54558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Variation in the risk and severity of many autoimmune diseases, malignancies and infections is strongly associated with polymorphisms at the HLA class I loci. These genetic associations provide a powerful opportunity for understanding the etiology of human disease. HLA class I associations are often interpreted in the light of 'protective' or 'detrimental' CD8+ T cell responses which are restricted by the host HLA class I allotype. However, given the diverse receptors which are bound by HLA class I molecules, alternative interpretations are possible. As well as binding T cell receptors on CD8+ T cells, HLA class I molecules are important ligands for inhibitory and activating killer immunoglobulin-like receptors (KIRs) which are found on natural killer cells and some T cells; for the CD94:NKG2 family of receptors also expressed mainly by NK cells and for leukocyte immunoglobulin-like receptors (LILRs) on myeloid cells. The aim of this study is to develop an immunogenetic approach for identifying and quantifying the relative contribution of different receptor-ligand interactions to a given HLA class I disease association and then to use this approach to investigate the immune interactions underlying HLA class I disease associations in three viral infections: Human T cell Leukemia Virus type 1, Human Immunodeficiency Virus type 1 and Hepatitis C Virus as well as in the inflammatory condition Crohn's disease.
Collapse
Affiliation(s)
- Bisrat J Debebe
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Lies Boelen
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - James C Lee
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | -
- Johns Hopkins University, Baltimore, United States.,Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chloe L Thio
- Johns Hopkins University, Baltimore, United States
| | | | - Gregory Kirk
- Johns Hopkins University, Baltimore, United States
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, United States
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Kovacs AAZ, Kono N, Wang CH, Wang D, Frederick T, Operskalski E, Tien PC, French AL, Minkoff H, Kassaye S, T. Golub E, Aouizerat BE, Kuniholm MH, Millstein J. Association of HLA Genotype With T-Cell Activation in Human Immunodeficiency Virus (HIV) and HIV/Hepatitis C Virus-Coinfected Women. J Infect Dis 2020; 221:1156-1166. [PMID: 31802115 PMCID: PMC7325713 DOI: 10.1093/infdis/jiz589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Global immune activation and HLA alleles are each associated with the pathogenesis of human immunodeficiency virus (HIV) and hepatitis C virus . METHODS We evaluated the relationship between 44 HLA class I and 28 class II alleles and percentages of activated CD8 (CD8+CD38+DR+) and CD4 (CD4+CD38+DR+) T cells in 586 women who were naive to highly active antiretroviral therapy. We used linear generalized estimating equation regression models, adjusting for race/ethnicity, age, HIV load, and hepatitis C virus infection and controlling for multiplicity using a false discovery rate threshold of 0.10. RESULTS Ten HLA alleles were associated with CD8 and/or CD4 T-cell activation. Lower percentages of activated CD8 and/or CD4 T cells were associated with protective alleles B*57:03 (CD8 T cells, -6.6% [P = .002]; CD4 T cells, -2.7% [P = .007]), C*18:01 (CD8 T cells, -6.6%; P < .0008) and DRB1*13:01 (CD4 T cells, -2.7%; P < .0004), and higher percentages were found with B*18:01 (CD8 T cells, 6.2%; P < .0003), a detrimental allele. Other alleles/allele groups associated with activation included C*12:03, group DQA1*01:00, DQB1*03:01, DQB1*03:02, DQB1*06:02, and DQB1*06:03. CONCLUSION These findings suggest that a person's HLA type may play a role in modulating T-cell activation independent of viral load and sheds light on the relationship between HLA, T-cell activation, immune control, and HIV pathogenesis.
Collapse
Affiliation(s)
- Andrea A Z Kovacs
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Naoko Kono
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chia-Hao Wang
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
- City of Hope National Medical Center, Duarte, California
| | - Daidong Wang
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Toni Frederick
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eva Operskalski
- Department of Pediatrics, Maternal, Child and Adolescent Center for Infectious Diseases and Virology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco and Department of Veterans Affairs, San Francisco, California
| | - Audrey L French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Rush Medical School, Chicago, Illinois
| | - Howard Minkoff
- Departments of Obstetrics and Gynecology Maimonides Medical Center and SUNY Downstate, Brooklyn, New York
| | - Seble Kassaye
- Department of Medicine, Georgetown University School of Medicine, Washington, DC
| | - Elizabeth T. Golub
- Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Baltimore, Maryland
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, New York
- Department of Oral and Maxillofacial Surgery, New York University, New York, New York
| | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York
| | - Joshua Millstein
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
Cox AL. Challenges and Promise of a Hepatitis C Virus Vaccine. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036947. [PMID: 31548228 DOI: 10.1101/cshperspect.a036947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 1.5-2 million new hepatitis C virus (HCV) infections occur globally each year. Critical to the World Health Organization's (WHO) HCV elimination strategy is an 80% reduction in incidence of HCV infections by 2030. However, even among high-income countries, few are on target to achieve the WHO's incident infection-reduction goal. A preventative vaccine could have a major impact in achieving incidence-reduction targets globally. However, barriers to HCV vaccine development are significant and include at-risk populations that are often marginalized: viral diversity, limited options for testing HCV vaccines, and an incomplete understanding of protective immune responses. In part because of those factors, testing of only one vaccine strategy has been completed in at-risk individuals as of 2019. Despite challenges, immunity against HCV protects against chronic infection in some repeated HCV exposures and an effective HCV vaccine could prevent transmission regardless of risk factors. Ultimately, prophylactic vaccines will likely be necessary to achieve global HCV elimination.
Collapse
Affiliation(s)
- Andrea L Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
17
|
Huang J, Xu R, Wang M, Liao Q, Huang K, Shan Z, You Q, Li C, Rong X, Fu Y. Association of HLA-DQB1*03:01 and DRB1*11:01 with spontaneous clearance of hepatitis C virus in Chinese Li ethnicity, an ethnic group genetically distinct from Chinese Han ethnicity and infected with unique HCV subtype. J Med Virol 2019; 91:1830-1836. [PMID: 31254396 DOI: 10.1002/jmv.25531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
Specific human leukocyte antigen (HLA) class I and class II alleles have been associated with spontaneous clearance or persistent infection of hepatitis C virus (HCV), which seemed to be restricted by the host's ethnicity and viral genotype. Recently we reported a high prevalence and spontaneous clearance rate of HCV in a cohort of Chinese Li ethnicity who were infected with new variants of HCV genotype 6. In this study, we found that the distribution of HLA class I and class II alleles in HCV infected individuals of Chinese Li ethnicity (n = 143) was distinct from that of Chinese Han ethnicity which was reported in our previous study. HLA-DRB1*11:01 and DQB1*03:01 were more prevalent in Chinese Li subjects who cleared HCV spontaneously than those who were chronically infected (P = .036 and P = .024, respectively), which were consistent with our previous report regarding the Chinese Han population. Multivariate logistic regression analysis showed that DQB1*03:01 (odds ratio = 3.899, P = .017), but not DRB1*11:01, associated with HCV spontaneous clearance, independent of age, sex, and IFNL3 genotype. Because DQB1*03:01 and DRB1*11:01 were tightly linked because of linkage disequilibrium, our results clearly supported the associations of these two alleles with HCV spontaneous clearance in Chinese Li as well as Han ethnicity.
Collapse
Affiliation(s)
- Jieting Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Ke Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
| | - Qingzhu You
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Laboratory of Guangzhou, Guangzhou, Guangdong, China
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Dewi SK, Ali S, Prasasty VD. Broad Spectrum Peptide Vaccine Design Against Hepatitis C Virus. Curr Comput Aided Drug Des 2019; 15:120-135. [PMID: 30280672 DOI: 10.2174/1573409914666181003151222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 08/12/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a global burden. There is no peptide vaccine found as modality to cure the disease is available due to the weak cellular immune response and the limitation to induce humoral immune response. METHODS Five predominated HCV subtypes in Indonesia (1a, 1b, 1c, 3a, and 3k) were aligned and the conserved regions were selected. Twenty alleles of class I MHC including HLA-A, HLA-B, and HLAC types were used to predict the potential epitopes by using NetMHCPan and IEDB. Eight alleles of HLA-DRB1, together with a combination of 3 alleles of HLA-DQA1 and 5 alleles of HLA-DQB1 were utilized for Class II MHC epitopes prediction using NetMHCIIPan and IEDB. LBtope and Ig- Pred were used to predict B cells epitopes. Moreover, proteasome analysis was performed by NetCTL and the stability of the epitopes in HLA was calculated using NetMHCStabPan for Class I. All predicted epitopes were analyzed for its antigenicity, toxicity, and stability. Population coverage, molecular docking and molecular dynamics were performed for several best epitopes. RESULTS The results showed that two best epitopes from envelop protein, GHRMAWDMMMNWSP (E1) and PALSTGLIHLHQN (E2) were selected as promising B cell and CD8+ T cell inducers. Other two peptides, LGIGTVLDQAETAG and VLVLNPSVAATLGF, taken from NS3 protein were selected as CD4+ T cell inducer. CONCLUSION This study suggested the utilization of all four peptides to make a combinational peptide vaccine for in vivo study to prove its ability in inducing secondary response toward HCV.
Collapse
Affiliation(s)
- Sherly Kurnia Dewi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Soegianto Ali
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.,Faculty of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
19
|
Xu R, Yu Y, Leitch ECM, Wang M, Huang K, Huang J, Tang X, Liao Q, Song D, Shan Z, Li C, Mclauchlan J, Rong X. HCV genotype 6 prevalence, spontaneous clearance and diversity among elderly members of the Li ethnic minority in Baisha County, China. J Viral Hepat 2019; 26:529-540. [PMID: 30629794 DOI: 10.1111/jvh.13062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 01/01/2023]
Abstract
The epidemiology of hepatitis C virus varies widely across geographical regions and ethnic groups. Our previous study showed that 6 strains isolated from Baisha County, Hainan Island, China, were all new genotype 6 (gt6) subtypes which differed significantly from subtypes of other regions. In the current study, we conducted a comprehensive epidemiological survey of HCV in the Li ethnic group, native to Baisha County. Anti-HCV antibodies were detected by 2 independent ELISAs in all participants, and positive results confirmed by the recombinant immunoblot assay (RIBA) and HCV RNA viral loads were measured. Univariate chi-square test and multivariable logistic regression analyses were used to determine the risk factors for HCV infection and spontaneous clearance rates. Indeterminate RIBA results were excluded or included in analyses; consequently, findings were expressed as a range. Direct sequencing of partial regions within NS5B and E1 was employed for genotyping. Among 1682 participants, 117 to 153 were anti-HCV positive (7.0%-9.1%), with 42.7%-52.6% confirmed to have cleared infection. Anti-HCV positivity was associated with older age (≥60 years) (OR = 0.02, 95% CI 0.01-0.05, P < 0.01) and surgery (OR = 2.75, 95% CI 1.36-5.57, P < 0.01), with no significant difference found between the HCV infection group and the HCV spontaneous clearance group. The gt6 subtype distribution characteristics of Baisha County were unique, complex and diverse. The sequences did not cluster with known gt6 subtypes but formed 4 Baisha community-specific groups. HCV infection in members of the Li minority ethnic group is characterized by high prevalence rates in the elderly, high spontaneous clearance rates and broad gt6 diversity.
Collapse
Affiliation(s)
- Ru Xu
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Yongjuan Yu
- Department of Clinical Laboratory, People's Hospital of Baisha Li Autonomous County, Hainan, China
| | | | - Min Wang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Ke Huang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Jieting Huang
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Xi Tang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiao Liao
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Dandan Song
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China
| | - Chengyao Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - John Mclauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Xia Rong
- Institute of Clinical Blood Transfusion, Guangzhou Blood Center, Guangzhou, Guangdong, China.,School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Irshad M, Gupta P, Irshad K. Immunopathogenesis of Liver Injury During Hepatitis C Virus Infection. Viral Immunol 2019; 32:112-120. [PMID: 30817236 DOI: 10.1089/vim.2018.0124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present report describes current concepts about the mechanism of liver cell injury caused by host immune response against hepatitis C virus (HCV) infection in human beings. This report is based on the observations from experimental studies and follow-up actions on human liver diseases. The results from different investigations suggest that liver injury depends on the presentation of viral antigen and the level of host immune response raised against HCV-related peptides. Both innate and adaptive immunity are triggered to counter the viral onset. During development of host immunity, the cell-mediated immune response involving CD4+ Th1 cells and CD8+ cytotoxic T-lymphocyte (CTL) cells were found to play a major role in causing liver damage. The hepatic Innate lymphoid cells (ILCs) subsets are involved in the immune regulation of different liver diseases: viral hepatitis, mechanical liver injury, and fibrosis. Humoral immunity and natural killer (NK) cell action also contributed in liver cell injury by antibody-dependent cellular cytotoxicity (ADCC). In fact, immunopathogenesis of HCV infection is a complex phenomenon where regulation of immune response at several steps decides the possibility of viral elimination or persistence. Regulation of immune response was noted starting from viral-host interaction to immune reaction cascade engaged in cell damage. The activation or suppression of interferon-stimulated genes, NK cell action, CTL inducement by regulatory T cells (Treg), B cell proliferation, and so on was demonstrated during HCV infection. Involvement of HLA in antigen presentation, as well as types of viral genotypes, also influenced host immune response against HCV peptides. The combined effect of all these effector mechanisms ultimately decides the progression of viral onset to acute or chronic infection. In conclusion, immunopathogenesis of liver injury after HCV infection may be ascribed mainly to host immune response. Second, it is cell-mediated immunity that plays a predominant role in liver cell damage.
Collapse
Affiliation(s)
- Mohammad Irshad
- 1 Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Gupta
- 2 Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- 3 Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
21
|
Li Q, Liu S, Zhang S, Liu C, Sun M, Li C, Zhang X, Chen J, Yao Y, Shi L. Human leucocyte antigen but not KIR alleles and haplotypes associated with chronic HCV infection in a Chinese Han population. Int J Immunogenet 2019; 46:263-273. [PMID: 30932338 DOI: 10.1111/iji.12425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The host immune system plays a key role in the elimination of infected cells which depend on killer-cell immunoglobulin-like receptors (KIR), human leucocyte antigen (HLA) class I molecules and their combinations. To evaluate the roles of HLAclass I, KIR genes and their combination in Chronic hepatitis C virus (HCV) infection (CHC), a total of 301 CHCs and 239 controls in a Chinese Han population were included for HLA and KIR genotyping using next-generation sequencing and multiplex PCR sequence-specific priming, respectively. The allele frequency of HLA-C*08:01 was significantly higher in the CHCs than that of the controls (0.088 vs. 0.040, OR = 2.332, 95%CI: 1.361-3.996, p = 0.022), while the frequencies of B*13:01 (0.032 vs. 0.084, OR = 0.357, 95%CI: 0.204-0.625, p = 0.009) and C*08:04 (0.008 vs. 0.038, OR = 0.214, 95%CI: 0.079-0.581, p = 0.022) were significantly lower in the CHCs. The frequencies of haplotype A*11:01-C*08:01 were higher in the CHCs (0.058 vs. 0.019, OR = 3.096, 95%CI: 1.486-6.452, p = 0.026), while haplotype B*13:01-C*03:04 were lower in the CHCs compared to the controls (0.028 vs. 0.071, OR = 0.377, 95%CI: 0.207-0.685, p = 0.012). No association of CHC with KIR genes, genotypes, or haplotypes, as well as HLA/KIR combinations was observed. Our results indicated that HLA-C*08:01 was a risk factor for CHC, while HLA-C*08:04 and HLA-B*13:01 were protective factors against CHC. Haplotypes HLA-A*11:01-C*08:01 could increase susceptibility to CHC, while HLA-B*13:01-C*03:04 could be protective against CHC in the Chinese Han population.
Collapse
Affiliation(s)
- Qiongfen Li
- Division for Expended Program of Immunization of Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | | | - Chengxiu Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
22
|
Hartlage AS, Murthy S, Kumar A, Trivedi S, Dravid P, Sharma H, Walker CM, Kapoor A. Vaccination to prevent T cell subversion can protect against persistent hepacivirus infection. Nat Commun 2019; 10:1113. [PMID: 30846697 PMCID: PMC6405742 DOI: 10.1038/s41467-019-09105-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Efforts to develop an effective vaccine against the hepatitis C virus (HCV; human hepacivirus) have been stymied by a lack of small animal models. Here, we describe an experimental rat model of chronic HCV-related hepacivirus infection and its response to T cell immunization. Immune-competent rats challenged with a rodent hepacivirus (RHV) develop chronic viremia characterized by expansion of non-functional CD8+ T cells. Single-dose vaccination with a recombinant adenovirus vector expressing hepacivirus non-structural proteins induces effective immunity in majority of rats. Resolution of infection coincides with a vigorous recall of intrahepatic cellular responses. Host selection of viral CD8 escape variants can subvert vaccine-conferred immunity. Transient depletion of CD8+ cells from vaccinated rats prolongs infection, while CD4+ cell depletion results in chronic viremia. These results provide direct evidence that co-operation between CD4+ and CD8+ T cells is important for hepacivirus immunity, and that subversion of responses can be prevented by prophylactic vaccination. Development of a HCV vaccine is hampered by a lack of appropriate small animal models. Here, Hartlage et al. describe a rat model of hepacivirus persistence and show that persistence can be prevented by vaccination with viral non-structural proteins.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA. .,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Sette LHBC, Lopes EPDA, Guedes dos Anjos NC, Valente LM, Vieira de Oliveira SA, Lucena-Silva N. High prevalence of occult hepatitis C infection in predialysis patients. World J Hepatol 2019; 11:109-118. [PMID: 30705723 PMCID: PMC6354127 DOI: 10.4254/wjh.v11.i1.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Occult hepatitis C virus (HCV) infection (OCI) may be associated with extrahepatic diseases and it is known that the patients with chronic kidney disease (CKD) who are on hemodialysis (HD) present a higher prevalence of this type of infection than the general population, with a worse clinical outcome. However, there are no data in the literature to assess the presence of OCI in patients prior to the initiation of renal replacement therapy (RRT). Therefore, this study aimed to evaluate the occurrence and epidemiological aspects of OCI in patients with Predialysis CKD. We hypothesize that this infection could occur before RRT initiation.
AIM To research the status in predialysis patients when HD patients have high prevalence of OCI.
METHODS A cross-sectional study was conducted between 2015 and 2017. Adults with creatinine clearance < 60 mL/min·1.73 m2 (predialysis patients) were recruited to the study. Pregnant and postpartum women, patients with glomerulopathies, and patients showing positivity for serological markers of hepatitis B virus (HBV), HCV or human immunodeficiency virus infection were excluded. Patients were diagnosed with OCI according to test results of anti-HCV antibody negativity and HCV RNA positivity in either ultracentrifuged serum or, if serum-negative, in peripheral blood mononuclear cells.
RESULTS Among the 91 total patients included in the study, the prevalence of OCI was 16.5%. Among these 15 total OCI patients, 1 was diagnosed by 14 ultracentrifuged serum results and 14 were diagnosed by peripheral blood mononuclear cell results. Compared to the non-OCI group, the OCI patients presented higher frequency of older age (P = 0.002), patients with CKD of mixed etiology (P = 0.019), and patients with markers of previous HBV infection (i.e., combined positivity for anti-hepatitis B core protein antibody and anti-hepatitis B surface protein antibody) (P = 0.001).
CONCLUSION Among predialysis patients, OCI involved the elderly, patients with CKD of mixed etiology, and patients with previous HBV infection.
Collapse
Affiliation(s)
| | | | | | - Lucila Maria Valente
- Nephrology-Department of Clinical Medicine, Federal University of Pernambuco, Pernambuco 50670-901, Brazil
| | | | - Norma Lucena-Silva
- Laboratory of Immunogenetics of the Aggeu Magalhães Institute - Fiocruz Pernambuco, Pernambuco 50670-420, Brazil
| |
Collapse
|
24
|
El-Bendary M, Neamatallah M, Elalfy H, Besheer T, Kamel E, Mousa H, Eladl AH, El-Setouhy M, El-Gilany AH, El-Waseef A, Esmat G. HLA Class II-DRB1 Alleles with Hepatitis C Virus Infection Outcome in Egypt: A Multicentre Family-based Study. Ann Hepatol 2019; 18:68-77. [PMID: 31113612 DOI: 10.5604/01.3001.0012.7864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Hepatitis C virus (HCV) infection is a global medical problem. HLA -DRB1 alleles have an important role in immune response against HCV. The aim of this study is to clarify the contribution of HLA -DRB1 alleles in HCV susceptibility in a multicentre family-based study. MATERIAL AND METHODS A total of 162 Egyptian families were recruited in this study with a total of 951 individuals (255 with chronic hepatitis C (CHC), 588 persons in the control group(-ve household contact to HCV) and 108 persons who spontaneously cleared the virus (SVC). All subjects were genotyped for HLA -DRB1 alleles by SSP-PCR and sequence based typing (SBT) methods. RESULTS The carriage of alleles 3:01:01 and 13:01:01 were highly significant in CHC when compared to that of control and SVC groups [OR of 3 family = 5.1289, PC (Bonferroni correction ) = 0.0002 and 5.9847, PC = 0.0001 and OR of 13 family = 4.6860, PC = 0.0002 and OR = 6.5987, PC = 0.0001 respectively]. While DRB1*040501, DRB1*040101, DRB1*7:01:01 and DRB1*110101 alleles were more frequent in SVC group than CHC patients (OR = 0.4052, PC = 0.03, OR: OR = 0.0916,PC = 0.0006, OR = 0.1833,PC = 0.0006 and OR = 0.4061, PC = 0.0001 respectively). CONCLUSIONS It was concluded that among the Egyptian families, HLA-DRB1*030101, and DRB1*130101 alleles associated with the risk of progression to CHC infection, while DRB1*040101, DRB1*040501, DRB1*7:01:01and DRB1*110101 act as protective alleles against HCV infection.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Tropical Medicine & Hepatology, Mansoura Faculty Of Medicine, Mansoura University, Mansoura,Dakahlyia, Egypt.
| | - Mustafa Neamatallah
- Medical Biochemistry, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Hatem Elalfy
- Tropical Medicine & Hepatology, Mansoura Faculty Of Medicine, Mansoura University, Mansoura,Dakahlyia, Egypt
| | - Tarek Besheer
- Tropical Medicine & Hepatology, Mansoura Faculty Of Medicine, Mansoura University, Mansoura,Dakahlyia, Egypt
| | - Emily Kamel
- Public Health & Preventive Medicine, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Hend Mousa
- Biochemistry, Mansoura Faculty of Science, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Abdel-Hamid Eladl
- Internal Medicine Department, Alazhar Faculty of Medicine-Assiut University, Assiut, Egypt
| | - Maged El-Setouhy
- Department of Community and Occupational Medicine, Ain Shams Faculty of Medicine. Ain Shams University, Cairo, Egypt
| | - Abdel-Hady El-Gilany
- Public Health & Preventive Medicine, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Ahmed El-Waseef
- Biochemistry, Mansoura Faculty of Science, Mansoura University, Mansoura, Dakahlyia, Egypt
| | - Gamal Esmat
- Tropical Medicine & Hepatology, Cairo Faculty of Medicine
| |
Collapse
|
25
|
Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156:418-430. [PMID: 30268785 PMCID: PMC6340767 DOI: 10.1053/j.gastro.2018.08.060] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
Risk factors for hepatitis C virus (HCV) infection vary, and there were an estimated 1.75 million new cases worldwide in 2015. The World Health Organization aims for a 90% reduction in new HCV infections by 2030. An HCV vaccine would prevent transmission, regardless of risk factors, and significantly reduce the global burden of HCV-associated disease. Barriers to development include virus diversity, limited models for testing vaccines, and our incomplete understanding of protective immune responses. Although highly effective vaccines could prevent infection altogether, immune responses that increase the rate of HCV clearance and prevent chronic infection may be sufficient to reduce disease burden. Adjuvant envelope or core protein and virus-vectored nonstructural antigen vaccines have been tested in healthy volunteers who are not at risk for HCV infection; viral vectors encoding nonstructural proteins are the only vaccine strategy to be tested in at-risk individuals. Despite development challenges, a prophylactic vaccine is necessary for global control of HCV.
Collapse
Affiliation(s)
- Justin R. Bailey
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, Oxford University, UK
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland,Reprint requests Address requests for reprints to: Andrea L. Cox, MD, PhD, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 551 Rangos Building, 855 N Wolfe Street, Baltimore, Maryland 21205. fax: (443)769-1221.
| |
Collapse
|
26
|
O'Brien TR, Yang HI, Groover S, Jeng WJ. Genetic Factors That Affect Spontaneous Clearance of Hepatitis C or B Virus, Response to Treatment, and Disease Progression. Gastroenterology 2019; 156:400-417. [PMID: 30287169 DOI: 10.1053/j.gastro.2018.09.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) and hepatitis B virus (HBV) infections can lead to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Over the past decade, studies of individuals infected with these viruses have established genetic associations with the probability of developing a chronic infection, risk of disease progression, and likelihood of treatment response. We review genetic and genomic methods that have been used to study risk of HBV and HCV infection and patient outcomes. For example, genome-wide association studies have linked a region containing the interferon lambda genes to spontaneous and treatment-induced clearance of HCV. We review the genetic variants associated with HCV and HBV infection, and how these variants affect specific expression or activities of their products. Further studies of these variants could provide insights into risk factors for and mechanisms of chronic infection and disease progression, as well as new strategies for treatment.
Collapse
Affiliation(s)
- Thomas R O'Brien
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland.
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sarah Groover
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| | - Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Liver Research Unit, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
27
|
Ikram A, Zaheer T, Awan FM, Obaid A, Naz A, Hanif R, Paracha RZ, Ali A, Naveed AK, Janjua HA. Exploring NS3/4A, NS5A and NS5B proteins to design conserved subunit multi-epitope vaccine against HCV utilizing immunoinformatics approaches. Sci Rep 2018; 8:16107. [PMID: 30382118 PMCID: PMC6208421 DOI: 10.1038/s41598-018-34254-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) vaccines, designed to augment specific T-cell responses, have been designated as an important aspect of effective antiviral treatment. However, despite the current satisfactory progress of these vaccines, extensive past efforts largely remained unsuccessful in mediating clinically relevant anti-HCV activity in humans. In this study, we used a series of immunoinformatics approaches to propose a multiepitope vaccine against HCV by prioritizing 16 conserved epitopes from three viral proteins (i.e., NS34A, NS5A, and NS5B). The prioritised epitopes were tested for their possible antigenic combinations with each other along with linker AAY using structural modelling and epitope-epitope interactions analysis. An adjuvant (β-defensin) at the N-terminal of the construct was added to enhance the immunogenicity of the vaccine construct. Molecular dynamics (MD) simulation revealed the most stable structure of the proposed vaccine. The designed vaccine is potentially antigenic in nature and can form stable and significant interactions with Toll-like receptor 3 and Toll-like receptor 8. The proposed vaccine was also subjected to an in silico cloning approach, which confirmed its expression efficiency. These analyses suggest that the proposed vaccine can elicit specific immune responses against HCV; however, experimental validation is required to confirm the safety and immunogenicity profile of the proposed vaccine construct.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tahreem Zaheer
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rumeza Hanif
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling & Simulation (RCMS), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Islamic International Medical College, Riphah International University Rawalpindi, Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
28
|
McCarthy EK, Vakos A, Cottagiri M, Mantilla JJ, Santhanam L, Thomas DL, Amzel LM, Rose NR, Njoku DB. Identification of a Shared Cytochrome p4502E1 Epitope Found in Anesthetic Drug-Induced and Viral Hepatitis. mSphere 2018; 3:e00453-18. [PMID: 30305319 PMCID: PMC6180222 DOI: 10.1128/msphere.00453-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cytochrome p4502E1 (CYP2E1) autoantibodies are biomarkers for drug-induced hepatitis and chronic hepatitis C. However, major histocompatibility-restricted CYP2E1 epitopes associated with these diseases have not been identified. We hypothesized that CYP2E1 epitopes associated with different types of hepatitis may be shared and may impact immune responses and metabolism. SYFPEITHI epitope prediction identified CYP2E1 candidate epitopes that would be recognized by MHC II haplotypes. Candidate epitopes were tested for induction of hepatitis and CYP2E1 autoantibodies in mice and recognition by sera from patients with anesthetic drug-induced and viral hepatitis. Human liver cells treated with epitope hybridoma serum were analyzed for mitochondrial stress. CYP2E1 activity was measured in human microsomes similarly treated. Epitope antibodies in viral hepatitis sera were analyzed using linear regression to uncover associations with liver pathology. A P value of <0.05 was considered significant. One epitope (Gly113-Leu135) induced hepatitis and CYP2E1 autoantibodies in mice after modification of Lys123 (P < 0.05). Gly113-Leu135 antiserum recognized mitochondria and endoplasmic reticula (P < 0.05), upregulated HSP27 (P < 0.01) and mitochondrial oxidative stress via complex 1 inhibition (P < 0.001), and inhibited CYP2E1 activity. Gly113-Leu135 IgG4 detected in viral hepatitis sera was associated with severe hepatic fibrosis (P = 0.0142). We found a novel CYP2E1 epitope that was detected in anesthetic and viral hepatitis and that triggered hepatitis in mice. Our findings may improve understanding of hepatic immune responses triggered by metabolism or viruses.IMPORTANCE Drug-induced hepatitis is the leading reason that an approved drug is removed from the commercial market. Halogenated anesthetics can induce hepatitis in susceptible persons, and cytochrome p4502E1 (CYP2E1) enzymes responsible for their metabolism induce antibodies in addition to hepatitis. CYP2E1 antibodies detected in anesthetic hepatitis patients have been detected in patients with viral hepatitis, suggesting that these different forms of hepatitis could develop immune reactions to a common segment or epitope of CYP2E1. We have found a common MHC-restricted CYP2E1 epitope in anesthetic and viral hepatitis that is a dominant epitope in anesthetic hepatitis and is significantly associated with fibrosis in patients with viral hepatitis. Along with conformational epitopes, our identification of MHC-restricted CYP2E1 epitopes can be used to develop specific diagnostic tests for drug-induced or viral hepatitis or associated fibrosis or to predict individuals at risk for developing these diseases or their sequelae.
Collapse
Affiliation(s)
- Elisa K McCarthy
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amanda Vakos
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Merylin Cottagiri
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joel J Mantilla
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David L Thomas
- Division of Infectious Disease, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard University, Cambridge, Massachusetts, USA
| | - Dolores B Njoku
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Kimura T, Kobiyama K, Winkels H, Tse K, Miller J, Vassallo M, Wolf D, Ryden C, Orecchioni M, Dileepan T, Jenkins MK, James EA, Kwok WW, Hanna DB, Kaplan RC, Strickler HD, Durkin HG, Kassaye SG, Karim R, Tien PC, Landay AL, Gange SJ, Sidney J, Sette A, Biol.Sci., Ley K. Regulatory CD4 + T Cells Recognize Major Histocompatibility Complex Class II Molecule-Restricted Peptide Epitopes of Apolipoprotein B. Circulation 2018; 138:1130-1143. [PMID: 29588316 PMCID: PMC6160361 DOI: 10.1161/circulationaha.117.031420] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND CD4+ T cells play an important role in atherosclerosis, but their antigen specificity is poorly understood. Immunization with apolipoprotein B (ApoB, core protein of low density lipoprotein) is known to be atheroprotective in animal models. Here, we report on a human APOB peptide, p18, that is sequence-identical in mouse ApoB and binds to both mouse and human major histocompatibility complex class II molecules. METHODS We constructed p18 tetramers to detect human and mouse APOB-specific T cells and assayed their phenotype by flow cytometry including CD4 lineage transcription factors, intracellular cytokines, and T cell receptor activation. Apolipoprotein E-deficient ( Apoe-/-) mice were vaccinated with p18 peptide or adjuvants alone, and atherosclerotic burden in the aorta was determined. RESULTS In human peripheral blood mononuclear cells from donors without cardiovascular disease, p18 specific CD4+ T cells detected by a new human leukocyte antigen-antigen D related-p18 tetramers were mostly Foxp3+ regulatory T cells (Tregs). Donors with subclinical cardiovascular disease as detected by carotid artery ultrasound had Tregs coexpressing retinoic acid-related orphan receptor gamma t or T-bet, which were both almost absent in donors without cardiovascular disease. In Apoe-/- mice, immunization with p18 induced Tregs and reduced atherosclerotic lesions. After peptide restimulation, responding CD4+ T cells identified by Nur77-GFP (green fluorescent protein) were highly enriched in Tregs. A new mouse I-Ab-p18 tetramer identified the expansion of p18-specific CD4+ T cells on vaccination, which were enriched for interleukin-10-producing Tregs. CONCLUSIONS These findings show that APOB p18-specific CD4+ T cells are mainly Tregs in healthy donors, but coexpress other CD4 lineage transcription factors in donors with subclinical cardiovascular disease. This study identifies ApoB peptide 18 as the first Treg epitope in human and mouse atherosclerosis.
Collapse
Affiliation(s)
- Takayuki Kimura
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Kouji Kobiyama
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Kevin Tse
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jacqueline Miller
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Melanie Vassallo
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Dennis Wolf
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Christian Ryden
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Marc K. Jenkins
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Eddie A. James
- Tetramer Core Laboratory, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - William W. Kwok
- Tetramer Core Laboratory, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - David B. Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Howard D. Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Helen G. Durkin
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Seble G. Kassaye
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Roksana Karim
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Alan L. Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Stephen J. Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Biol.Sci.
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
30
|
Frias M, Rivero-Juárez A, López-López P, Rivero A. Pharmacogenetics and the treatment of HIV-/HCV-coinfected patients. Pharmacogenomics 2018; 19:979-995. [PMID: 29992850 DOI: 10.2217/pgs-2018-0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review will summarize the role of pharmacogenetics in the natural history of hepatitis C, particularly in patients with HIV/HCV and will take the perspective of pharmacogenetics and its influence on the response to antiviral therapy and the susceptibility to develop adverse effects. This review will also devote a section to host genetics in other clinical situations, such as disease progression and acute HCV infection, which may determine whether treatment of HIV-/HCV-coinfected patients is implemented or deferred.
Collapse
Affiliation(s)
- Mario Frias
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| | - Antonio Rivero-Juárez
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| | - Pedro López-López
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| | - Antonio Rivero
- Department of Clinical Virology & Zooneses, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba. Córdoba, 14004, Spain
| |
Collapse
|
31
|
Saito H, Umemura T, Joshita S, Yamazaki T, Fujimori N, Kimura T, Komatsu M, Matsumoto A, Tanaka E, Ota M. KIR2DL2 combined with HLA-C1 confers risk of hepatitis C virus-related hepatocellular carcinoma in younger patients. Oncotarget 2018; 9:19650-19661. [PMID: 29731972 PMCID: PMC5929415 DOI: 10.18632/oncotarget.24752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 01/17/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are involved in the activation and inhibition of natural killer cells. Although combinations of KIRs and HLA have been associated with spontaneous and treatment-induced clearance of hepatitis C virus (HCV) infection, their roles are not fully understood in the context of hepatocellular carcinoma (HCC) development. We enrolled 787 consecutive patients with chronic HCV infection, which included 174 cases of HCC, and 325 healthy subjects to clarify the involvement of HLA-Bw and C, KIRs, and major histocompatibility complex class I chain-related gene A (MICA) gene polymorphisms (rs2596542 and rs1051792) in chronic HCV infection and HCV-related HCC. We observed a significant association with chronic hepatitis C susceptibility for HLA-Bw4 (P = 0.00012; odds ratio [OR] = 1.66) and significant protective associations for HLA-C2 and KIR2DL1-HLA-C2 (both P = 0.00099; OR = 0.57). When HCC patients were stratified into younger (<65 years) and older (≥65 years) groups, the frequencies of KIR2DL2-HLA-C1 and KIR2DS2-HLA-C1 (P = 0.008; OR = 2.89 and P = 0.015; OR = 2.79, respectively) as well as rs2596542 and rs1051792 (P = 0.020; OR = 2.17 and P = 0.038; OR = 2.01, respectively) were significantly higher in younger patients. KIR2DL2-HLA-C1 (OR = 2.75; 95% confidence interval: 1.21-6.21, P = 0.015) and rs1051792 (OR = 2.48; 95% confidence interval: 1.23-4.98, P = 0.011) were independently associated with HCC development in younger patients. These results suggest that KIR2DL2-HLA-C1 and rs1051792 may represent molecular biomarkers to identify early onset HCV-related HCC.
Collapse
Affiliation(s)
- Hiromi Saito
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Next Generation Medicine, Shinshu University, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan.,Research Center for Next Generation Medicine, Shinshu University, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoyuki Fujimori
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Michiharu Komatsu
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akihiro Matsumoto
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
32
|
Adland E, Hill M, Lavandier N, Csala A, Edwards A, Chen F, Radkowski M, Kowalska JD, Paraskevis D, Hatzakis A, Valenzuela-Ponce H, Pfafferott K, Williams I, Pellegrino P, Borrow P, Mori M, Rockstroh J, Prado JG, Mothe B, Dalmau J, Martinez-Picado J, Tudor-Williams G, Frater J, Stryhn A, Buus S, Teran GR, Mallal S, John M, Buchbinder S, Kirk G, Martin J, Michael N, Fellay J, Deeks S, Walker B, Avila-Rios S, Cole D, Brander C, Carrington M, Goulder P. Differential Immunodominance Hierarchy of CD8 + T-Cell Responses in HLA-B*27:05- and -B*27:02-Mediated Control of HIV-1 Infection. J Virol 2018; 92:e01685-17. [PMID: 29167337 PMCID: PMC5790925 DOI: 10.1128/jvi.01685-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022] Open
Abstract
The well-characterized association between HLA-B*27:05 and protection against HIV disease progression has been linked to immunodominant HLA-B*27:05-restricted CD8+ T-cell responses toward the conserved Gag KK10 (residues 263 to 272) and polymerase (Pol) KY9 (residues 901 to 909) epitopes. We studied the impact of the 3 amino acid differences between HLA-B*27:05 and the closely related HLA-B*27:02 on the HIV-specific CD8+ T-cell response hierarchy and on immune control of HIV. Genetic epidemiological data indicate that both HLA-B*27:02 and HLA-B*27:05 are associated with slower disease progression and lower viral loads. The effect of HLA-B*27:02 appeared to be consistently stronger than that of HLA-B*27:05. In contrast to HLA-B*27:05, the immunodominant HIV-specific HLA-B*27:02-restricted CD8+ T-cell response is to a Nef epitope (residues 142 to 150 [VW9]), with Pol KY9 subdominant and Gag KK10 further subdominant. This selection was driven by structural differences in the F pocket, mediated by a polymorphism between these two HLA alleles at position 81. Analysis of autologous virus sequences showed that in HLA-B*27:02-positive subjects, all three of these CD8+ T-cell responses impose selection pressure on the virus, whereas in HLA-B*27:05-positive subjects, there is no Nef VW9-mediated selection pressure. These studies demonstrate that HLA-B*27:02 mediates protection against HIV disease progression that is at least as strong as or stronger than that mediated by HLA-B*27:05. In combination with the protective Gag KK10 and Pol KY9 CD8+ T-cell responses that dominate HIV-specific CD8+ T-cell activity in HLA-B*27:05-positive subjects, a Nef VW9-specific response is additionally present and immunodominant in HLA-B*27:02-positive subjects, mediated through a polymorphism at residue 81 in the F pocket, that contributes to selection pressure against HIV.IMPORTANCE CD8+ T cells play a central role in successful control of HIV infection and have the potential also to mediate the eradication of viral reservoirs of infection. The principal means by which protective HLA class I molecules, such as HLA-B*27:05 and HLA-B*57:01, slow HIV disease progression is believed to be via the particular HIV-specific CD8+ T cell responses restricted by those alleles. We focus here on HLA-B*27:05, one of the best-characterized protective HLA molecules, and the closely related HLA-B*27:02, which differs by only 3 amino acids and which has not been well studied in relation to control of HIV infection. We show that HLA-B*27:02 is also protective against HIV disease progression, but the CD8+ T-cell immunodominance hierarchy of HLA-B*27:02 differs strikingly from that of HLA-B*27:05. These findings indicate that the immunodominant HLA-B*27:02-restricted Nef response adds to protection mediated by the Gag and Pol specificities that dominate anti-HIV CD8+ T-cell activity in HLA-B*27:05-positive subjects.
Collapse
Affiliation(s)
- Emily Adland
- Department of Paediatrics, University of Oxford, United Kingdom
| | - Matilda Hill
- Department of Paediatrics, University of Oxford, United Kingdom
| | - Nora Lavandier
- Department of Paediatrics, University of Oxford, United Kingdom
| | - Anna Csala
- Department of Paediatrics, University of Oxford, United Kingdom
| | - Anne Edwards
- Department of GU Medicine, The Churchill Hospital, Oxford University NHS Foundation Trust, Oxford, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Justyna D Kowalska
- Department of Immunopathology of Infectious and Parasitic Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | - Angelos Hatzakis
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Humberto Valenzuela-Ponce
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Katja Pfafferott
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, Mortimer Market Centre, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, Mortimer Market Centre, London, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Masahiko Mori
- Department of Paediatrics, University of Oxford, United Kingdom
| | - Jürgen Rockstroh
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Mothe
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Judith Dalmau
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Martin School, University of Oxford, Oxford, United Kingdom
| | - Anette Stryhn
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Soren Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo Reyes Teran
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mina John
- Institute of Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Susan Buchbinder
- San Francisco Department of Public Health, HIV Research Section, San Francisco, California, USA
| | - Gregory Kirk
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jeffrey Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Nelson Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | - Steve Deeks
- San Francisco Department of Public Health, HIV Research Section, San Francisco, California, USA
| | - Bruce Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
| | - Santiago Avila-Rios
- Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - David Cole
- Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Immunocore Limited, Abingdon, Oxfordshire, United Kingdom
| | - Christian Brander
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland, USA
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, United Kingdom
| |
Collapse
|
33
|
Lee MH, Huang YH, Chen HY, Khor SS, Chang YH, Lin YJ, Jen CL, Lu SN, Yang HI, Nishida N, Sugiyama M, Mizokami M, Yuan Y, L'Italien G, Tokunaga K, Chen CJ. Human leukocyte antigen variants and risk of hepatocellular carcinoma modified by hepatitis C virus genotypes: A genome-wide association study. Hepatology 2018; 67:651-661. [PMID: 28921602 DOI: 10.1002/hep.29531] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
We conducted a genome-wide association study to discover genetic variants associated with hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). We genotyped 502 HCC cases and 749 non-HCC controls using the Axiom-CHB genome-wide array. After identifying single-nucleotide polymorphism clusters located in the human leukocyte antigen (HLA) region which were potentially associated with HCC, HLA-DQB1 genotyping was performed to analyze 994 anti-HCV seropositives collected in the period 1991-2013 in a community-based cohort for evaluating long-term predictability of HLA variants for identifying the risk of HCC. Cox proportional hazards models were used to estimate the hazard ratios and 95% confidence intervals of HLA genotypes for determining the aforementioned HCC risk. Eight single-nucleotide polymorphisms in the proximity of HLA-DQB1 were associated with HCC (P < 8.7 × 10-8 ) in the genome-wide association study. Long-term follow-up showed a significant association with HLA-DQB1*03:01 and DQB1*06:02 (P < 0.05). The adjusted hazard ratios associated with HCC were 0.45 (0.30-0.68) and 2.11 (1.34-3.34) for DQB1*03:01 and DQB1*06:02, respectively. After stratification by HCV genotypes, DQB1*03:01 showed protective effects only in patients with HCV genotype 1, whereas DQB1*06:02 conferred risk of HCC only in patients with HCV non-1 genotypes. HLA imputation analyses revealed that HLA-DRB1*15:01, which is in linkage disequilibrium with DQB1*06:02, also increased the risk of HCC (odds ratio, 1.96; 95% confidence interval, 1.31-2.93). Haplotype analysis supported that DQB1*03:01 and DQB1*06:02 are primarily protective and susceptible variants, respectively. Conclusion: HLA-DQB1 was independently associated with HCC; HCV genotypes modified the effects of HLA-DQB1 on the risk of HCC. (Hepatology 2018;67:651-661).
Collapse
Affiliation(s)
- Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Toyo, Japan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Lan Jen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Sheng-Nan Lu
- Department of Gastroenterology, Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hwai-I Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Nao Nishida
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Yong Yuan
- World Wide Health Economics and Outcomes Research, Bristol-Myers Squibb, Princeton, NJ
| | | | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Toyo, Japan
| | | | | |
Collapse
|
34
|
Wolski D, Foote PK, Chen DY, Lewis-Ximenez LL, Fauvelle C, Aneja J, Walker A, Tonnerre P, Torres-Cornejo A, Kvistad D, Imam S, Waring MT, Tully DC, Allen TM, Chung RT, Timm J, Haining WN, Kim AY, Baumert TF, Lauer GM. Early Transcriptional Divergence Marks Virus-Specific Primary Human CD8 + T Cells in Chronic versus Acute Infection. Immunity 2017; 47:648-663.e8. [PMID: 29045899 PMCID: PMC5708133 DOI: 10.1016/j.immuni.2017.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2017] [Accepted: 09/13/2017] [Indexed: 01/11/2023]
Abstract
Distinct molecular pathways govern the differentiation of CD8+ effector T cells into memory or exhausted T cells during acute and chronic viral infection, but these are not well studied in humans. Here, we employed an integrative systems immunology approach to identify transcriptional commonalities and differences between virus-specific CD8+ T cells from patients with persistent and spontaneously resolving hepatitis C virus (HCV) infection during the acute phase. We observed dysregulation of metabolic processes during early persistent infection that was linked to changes in expression of genes related to nucleosomal regulation of transcription, T cell differentiation, and the inflammatory response and correlated with subject age, sex, and the presence of HCV-specific CD4+ T cell populations. These early changes in HCV-specific CD8+ T cell transcription preceded the overt establishment of T cell exhaustion, making this signature a prime target in the search for the regulatory origins of T cell dysfunction in chronic viral infection.
Collapse
Affiliation(s)
- David Wolski
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France; Université de Strasbourg, Strasbourg 67081, France
| | - Peter K Foote
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Diana Y Chen
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lia L Lewis-Ximenez
- Laboratory of Viral Hepatitis, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040, Brazil
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France; Université de Strasbourg, Strasbourg 67081, France
| | - Jasneet Aneja
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andreas Walker
- Institute for Virology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Pierre Tonnerre
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Almudena Torres-Cornejo
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel Kvistad
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sabrina Imam
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T Waring
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Damien C Tully
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Todd M Allen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Raymond T Chung
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Timm
- Institute for Virology, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf 40225, Germany
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Y Kim
- Division of Infectious Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg 67000, France; Université de Strasbourg, Strasbourg 67081, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg 67000, France
| | - Georg M Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Abstract
Supplemental Digital Content is Available in the Text. Background: Recent studies reported that the CD4/CD8 T-cell ratio is inversely associated with biomarkers traditionally used to measure immune activation and systemic inflammation in highly active antiretroviral therapy–treated HIV-infected (HIV+) patients. The relation of hepatitis C virus (HCV) coinfection with the CD4/CD8 ratio in HIV+ patients is unknown. Methods: We examined 50,201 CD4/CD8 ratios measured over 20 years in 3 groups of HIV+ women enrolled in the Women's Interagency HIV Study: HCV antibody negative (n = 1734), cleared HCV (n = 231), and chronic HCV (n = 751) in multivariate models. IFNL4-ΔG genotype and HCV viral load were also considered. Results: Compared with HCV antibody negative status, chronic HCV infection was associated with lower CD4/CD8 ratios when HIV viral load was suppressed to the lower limit of quantification (β = −0.08; P = 0.002). Cleared HCV (β = −0.10; P = 0.0009), but not IFNL4-ΔG genotype or HCV viral load, was also associated with lower CD4/CD8 ratios when HIV viral load was suppressed to the lower limit of quantification. Conclusions: The association of HCV coinfection with CD4/CD8 ratio is consistent with previously observed associations of HCV coinfection with biomarkers traditionally used to measure immune activation and systemic inflammation in HIV+ patients. These data provide additional support for the use of CD4/CD8 ratio for routine monitoring of immune activation and inflammation in HIV+ patients, including those with HIV/HCV coinfection; however, the unexpected association between cleared HCV and lower CD4/CD8 ratio requires additional study.
Collapse
|
36
|
Chowdhry M, Makroo RN, Singh M, Agrawal S, Kumar M, Thakur Y. Human leucocyte antigen Class I and II alleles associated with anti-hepatitis C virus-positive patients of North India. Indian J Med Microbiol 2017; 34:299-302. [PMID: 27514950 DOI: 10.4103/0255-0857.188317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE Humans are the only known natural hosts of hepatitis C virus (HCV). This study was undertaken to examine the frequencies of human leucocyte antigens (HLAs) Class I and Class II genotype profiles in anti-HCV-infected patients of Northern India. MATERIALS AND METHODS From a period of January 2013 to August 2014, 148 anti-HCV-positive patients of North India referred to the Department of Molecular Biology and Transplant Immunology, Indraprastha Apollo Hospitals, New Delhi, for performing HLA typing were included in the study. RESULTS AFNx0102, AFNx0131 allele frequency decreased significantly in anti-HCV-positive patients. Frequencies for HLA-B loci did not reach any statistical significance. Among the Class II alleles, HLA-DRB1FNx0103 and HLA-DRB1FNx0110 were significantly higher in the patient population, and HLA-DRB1FNx0115 was significantly decreased in the patient population as compared to the controls. CONCLUSION HLA-AFNx0133 was significantly increased as compared to control population and showed geographic variation in HCV-infected individuals of India.
Collapse
Affiliation(s)
- M Chowdhry
- Department of Transplant Immunology, Molecular Biology and Transfusion Medicine, Apollo Hospitals, New Delhi, India
| | - R N Makroo
- Department of Transplant Immunology, Molecular Biology and Transfusion Medicine, Apollo Hospitals, New Delhi, India
| | - M Singh
- Department of Transplant Immunology, Molecular Biology and Transfusion Medicine, Apollo Hospitals, New Delhi, India
| | - S Agrawal
- Department of Transplant Immunology, Molecular Biology and Transfusion Medicine, Apollo Hospitals, New Delhi, India
| | - M Kumar
- Department of Transplant Immunology, Molecular Biology and Transfusion Medicine, Apollo Hospitals, New Delhi, India
| | - Y Thakur
- Department of Transplant Immunology, Molecular Biology and Transfusion Medicine, Apollo Hospitals, New Delhi, India
| |
Collapse
|
37
|
Herta T, Fischer J, Berg T. Genetik metabolischer und viraler Lebererkrankungen. DER GASTROENTEROLOGE 2017; 12:16-31. [DOI: 10.1007/s11377-016-0128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Ikram A, Obaid A, Awan FM, Hanif R, Naz A, Paracha RZ, Ali A, Janjua HA. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine. Antiviral Res 2017; 137:112-124. [PMID: 27984060 DOI: 10.1016/j.antiviral.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4+ and CD8+ T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy.
Collapse
Affiliation(s)
- Aqsa Ikram
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Ayesha Obaid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Faryal Mehwish Awan
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rumeza Hanif
- Department of Healtcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Anam Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Rehan Zafar Paracha
- Department of Computer Sciences, RCMS, National University of Sciences and Technology (NUST), Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Pakistan.
| |
Collapse
|
39
|
Kuniholm MH, Xie X, Anastos K, Xue X, Reimers L, French AL, Gange SJ, Kassaye SG, Kovacs A, Wang T, Aouizerat BE, Strickler HD. Human leucocyte antigen class I and II imputation in a multiracial population. Int J Immunogenet 2016; 43:369-375. [PMID: 27774761 DOI: 10.1111/iji.12292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/14/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
Human leucocyte antigen (HLA) genes play a central role in response to pathogens and in autoimmunity. Research to understand the effects of HLA genes on health has been limited because HLA genotyping protocols are labour intensive and expensive. Recently, algorithms to impute HLA genotype data using genome-wide association study (GWAS) data have been published. However, imputation accuracy for most of these algorithms was based primarily on training data sets of European ancestry individuals. We considered performance of two HLA-dedicated imputation algorithms - SNP2HLA and HIBAG - in a multiracial population of n = 1587 women with HLA genotyping data by gold standard methods. We first compared accuracy - defined as the percentage of correctly predicted alleles - of HLA-B and HLA-C imputation using SNP2HLA and HIBAG using a breakdown of the data set into an 80% training group and a 20% testing group. Estimates of accuracy for HIBAG were either the same or better than those for SNP2HLA. We then conducted a more thorough test of HIBAG imputation accuracy using five independent 10-fold cross-validation procedures with delineation of ancestry groups using ancestry informative markers. Overall accuracy for HIBAG was 89%. Accuracy by HLA gene was 93% for HLA-A, 84% for HLA-B, 94% for HLA-C, 83% for HLA-DQA1, 91% for HLA-DQB1 and 88% for HLA-DRB1. Accuracy was highest in the African ancestry group (the largest group) and lowest in the Hispanic group (the smallest group). Despite suboptimal imputation accuracy for some HLA gene/ancestry group combinations, the HIBAG algorithm has the advantage of providing posterior estimates of accuracy which enable the investigator to analyse subsets of the population with high predicted (e.g. >95%) imputation accuracy.
Collapse
Affiliation(s)
- M H Kuniholm
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - X Xie
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - K Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - X Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - L Reimers
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A L French
- Ruth M. Rothstein CORE Center, Stroger Hospital of Cook County, Chicago, IL, USA
| | - S J Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - S G Kassaye
- Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - A Kovacs
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA
| | - T Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - B E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, NY, USA.,Department of Oral and Maxillofacial Surgery, New York University, New York, NY, USA
| | - H D Strickler
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
40
|
Heim MH, Bochud PY, George J. Host - hepatitis C viral interactions: The role of genetics. J Hepatol 2016; 65:S22-S32. [PMID: 27641986 DOI: 10.1016/j.jhep.2016.07.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) is a major cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN)-induced genes, and a delayed induction of adaptive immune responses. There is a strong association between genetic variants in the IFNλ (IL28B) locus with the rate of spontaneous clearance. Individuals with the ancestral IFNλ4 allele capable of producing a fully active IFNλ4 are paradoxically not able to clear HCV in the acute phase and develop chronic hepatitis C (CHC) with more than 90% probability. In the chronic phase of HCV infection, the wild-type IFNλ4 genotype is strongly associated with an induction of hundreds of classical type I/type III IFN stimulated genes in hepatocytes. However, the activation of the endogenous IFN system in the liver is ineffective in clearing HCV, and is even associated with impaired therapeutic responses to pegylated (Peg)IFNα containing treatments. While the role of genetic variation in the IFNλ locus to the outcome of CHC treatment has declined, it is clear that variation not only at this locus, but also at other loci, modulate clinically important liver phenotypes, including inflammation, fibrosis progression and the development of hepatocellular cancer. In this review, we summarize current knowledge about the role of genetics in the host response to viral hepatitis and the potential future evolution of knowledge in understanding host-viral interactions.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne-CHUV, Switzerland.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
41
|
Cuypers L, Li G, Neumann-Haefelin C, Piampongsant S, Libin P, Van Laethem K, Vandamme AM, Theys K. Mapping the genomic diversity of HCV subtypes 1a and 1b: Implications of structural and immunological constraints for vaccine and drug development. Virus Evol 2016; 2:vew024. [PMID: 27774307 PMCID: PMC5072459 DOI: 10.1093/ve/vew024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite significant progress in hepatitis C (HCV) treatment, global viral eradication remains a challenge. An in-depth map of its genome diversity within the context of structural and immunological constraints could contribute to the design of pan-genotypic antivirals and preventive vaccines. For such analyses, extensive information is only available for the highly prevalent HCV genotypes (GT) 1a and 1b. Using 647 GT1a and 408 GT1b full-genome sequences obtained from the Los Alamos database, we found that respectively 3 per cent and 82 per cent of all codon positions are under positive and negative selective pressure, suggesting variation mainly accumulates due to random genetic drift. An association between conservation and both structured RNA and secondary protein structures confirmed the important role of structural elements at nucleotide and at amino acid level. Remarkably, CD8+ T-cell epitopes in HCV GT1a were significantly more conserved, while at the same time containing more sites under positive selection. Similarly, CD4+ T-cell epitopes were significantly more conserved in both HCV subtypes, but under less positive selective pressure in GT1b and more negative selective pressure in GT1a. In contrast, B-cell epitopes in both subtypes were less conserved and under less stringent negative selection. These findings argue against immune selective pressure as the main force of between-host diversifying evolution. Despite its high variability, HCV is under strict evolutionary constraints, most probably to keep its genes and proteins functional during the replication cycle. These are encouraging findings for vaccine and drug design, which could consider these newly established genetic diversity profiles.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Guangdi Li
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium; Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Supinya Piampongsant
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium; Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, University of Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
| | - Pieter Libin
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Kristel Van Laethem
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Anne-Mieke Vandamme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium; Center for Global Health and Tropical Medicine, Microbiology Unit, Institute for Hygiene and Tropical Medicine, University Nova de Lisboa, Rua da Junqueira 100, Lisbon, 1349-008, Portugal
| | - Kristof Theys
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
42
|
Influence of IFNL3 and HLA-DPB1 genotype on postpartum control of hepatitis C virus replication and T-cell recovery. Proc Natl Acad Sci U S A 2016; 113:10684-9. [PMID: 27601657 DOI: 10.1073/pnas.1602337113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chronic hepatitis C virus (HCV) infection is characterized by exhaustion of virus-specific T-cells and stable viremia. Pregnancy is an exception. Viremia gradually climbs during gestation but sometimes declines sharply in the months following delivery. Here, we demonstrated that postpartum HCV control was associated with enhanced virus-specific T-cell immunity. Women with viral load declines of at least 1 log10 between the third trimester and 3-mo postpartum exhibited HCV-specific T-cell responses of greater breadth (P = 0.0052) and magnitude (P = 0.026) at 3-mo postpartum than women who failed to control viremia. Moreover, viral dynamics were consistent in women after consecutive pregnancies, suggesting genetic underpinnings. We therefore searched for genetic associations with human leukocyte antigen (HLA) alleles and IFN-λ3 gene (IFNL3) polymorphisms that influence HCV infection outcome. Postpartum viral control was associated with the IFNL3 rs12979860 genotype CC (P = 0.045 at 6 mo) that predicts a positive response to IFN-based therapy. Suppression of virus replication after pregnancy was also strongly influenced by the HLA class II DPB1 locus. HLA-DPB1 alleles are classified by high and low patterns of expression. Carriage of at least one high-expression HLA-DPB1 allele predicted resurgent virus-specific T-cell immunity and viral control at 3-mo postpartum (P = 0.0002). When considered together in multivariable analysis, IFNL3 and HLA-DPB1 independently affected viral control at 3- and 6-mo postpartum. Together, these findings support a model where spontaneous control of HCV such as sometimes follows pregnancy is governed by genetic polymorphisms that affect type III IFN signaling and virus-specific cellular immune responses.
Collapse
|
43
|
Huang J, Huang K, Xu R, Wang M, Liao Q, Xiong H, Li C, Tang X, Shan Z, Zhang M, Rong X, Nelson K, Fu Y. The Associations of HLA-A*02:01 and DRB1*11:01 with Hepatitis C Virus Spontaneous Clearance Are Independent of IL28B in the Chinese Population. Sci Rep 2016; 6:31485. [PMID: 27511600 PMCID: PMC4980596 DOI: 10.1038/srep31485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Spontaneous clearance of hepatitis C virus (HCV) occurs in 10-40% of the infections. Specific human leukocyte antigen (HLA) alleles have been identified in associating with HCV clearance. However, data on the association of HLA with the spontaneous clearance of HCV are scarce in the Chinese population. In the current study we studied the HLA class I and class II genes in 231 Chinese voluntary blood donors who had cleared HCV infection spontaneously compared to 429 subjects with chronic HCV infections. We also studied their IL28B SNP (rs8099917) genotype, since a number of investigators have found a strong association of IL28B with spontaneous or treatment induced HCV clearance. We found that HLA-A*02:01 and DQB1*05:02 distributed differently between the two groups after Bonferroni correction (odds ratio [OR] = 1.839, Pc = 0.024 and OR = 0.547, Pc = 0.016, respectively). Multivariate logistic regression analysis suggested that A*02:01 and DRB1*11:01 (OR = 1.798, P = 0.008 and OR = 1.921, P = 0.005, respectively) were associated with HCV spontaneous clearance, independent of age, gender and IL28B polymorphism. We concluded that in the Chinese population, HLA-A*02:01 and DRB1*11:01 might be associated with the host capacity to clear HCV independent of IL28B, which suggesting that the innate and adaptive immune responses both play an important role in the control of HCV.
Collapse
Affiliation(s)
- Jieting Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ke Huang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ru Xu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Huaping Xiong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xi Tang
- Department of Transfusion Medicine, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Shan
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Faculty of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Xia Rong
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| | - Kenrad Nelson
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, Guangdong, China
- The Key Medical Disciplines and Specialties Program of Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Wang LS, D'Souza LS, Jacobson IM. Hepatitis C-A clinical review. J Med Virol 2016; 88:1844-55. [PMID: 27097298 DOI: 10.1002/jmv.24554] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2016] [Indexed: 12/18/2022]
Abstract
With an estimated prevalence of about 170 million people worldwide, chronic hepatitis C is an important cause of chronic liver disease associated with a substantial risk of cirrhosis and hepatocellular carcinoma. The recent past has borne witness to remarkable advancements in the treatment of chronic hepatitis C with the development of novel, effective, and well tolerated medications that have resulted in paradigm shifts in treatment approaches and may potentially affect the natural history of the disease. We provide a clinical review of current concepts and future developments in the management of chronic hepatitis C to aid in the understanding and individualization of chronic hepatitis C treatment. J. Med. Virol. 88:1844-1855, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lan S Wang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Lionel S D'Souza
- Division of Digestive Diseases, Department of Medicine, Mount Sinai Beth Israel Medical Center, New York, New York
| | - Ira M Jacobson
- Division of Digestive Diseases, Department of Medicine, Mount Sinai Beth Israel Medical Center, New York, New York
| |
Collapse
|
45
|
Kuniholm MH, Ong E, Hogema BM, Koppelman M, Anastos K, Peters MG, Seaberg EC, Chen Y, Nelson KE, Linnen JM. Acute and Chronic Hepatitis E Virus Infection in Human Immunodeficiency Virus-Infected U.S. Women. Hepatology 2016; 63:712-20. [PMID: 26646162 PMCID: PMC4764464 DOI: 10.1002/hep.28384] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/03/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Exposure to hepatitis E virus (HEV) is common in the United States, but there are few data on prevalence of HEV/human immunodeficiency virus (HIV) coinfection in U.S. POPULATIONS We tested 2,919 plasma samples collected from HIV-infected (HIV(+)) women and men enrolled in U.S. cohort studies for HEV viremia using a high-throughput nucleic acid testing (NAT) platform. NAT(+) samples were confirmed by real-time polymerase chain reaction. Samples were selected for testing primarily on the basis of biomarkers of liver disease and immune suppression. Prevalence of HEV viremia was 3 of 2,606 and 0 of 313 in tested plasma samples collected from HIV(+) women and men, respectively. All HEV isolates were genotype 3a. Based on follow-up testing of stored samples, 1 woman had chronic HEV infection for >4 years whereas 2 women had acute HEV detectable at only a single study visit. CONCLUSIONS To our knowledge, this is the first reported case of chronic HEV infection in an HIV(+) U.S. individual. We also confirm that chronic HEV infection can persist despite a CD4(+) count >200 cells/mm(3). Overall, though, these data suggest that HEV infection is rare in the HIV(+) U.S. population.
Collapse
Affiliation(s)
- Mark H. Kuniholm
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Boris M. Hogema
- Sanquin Research and Diagnostics, Departments of Virology, Blood-borne Infections and the National Screening Laboratory, Amsterdam, the Netherlands
| | - Marco Koppelman
- Sanquin Research and Diagnostics, Departments of Virology, Blood-borne Infections and the National Screening Laboratory, Amsterdam, the Netherlands
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA,Department of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Marion G. Peters
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Eric C. Seaberg
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yue Chen
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenrad E. Nelson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
46
|
Quarleri JF, Oubiña JR. Hepatitis C virus strategies to evade the specific-T cell response: a possible mission favoring its persistence. Ann Hepatol 2016; 15:17-26. [PMID: 26626636 DOI: 10.5604/16652681.1184193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus. The number of HCV-infected individuals worldwide is estimated to be approximately 200 million. The vast majority of HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. The interaction between HCV and the host have a pivotal role in viral fitness, persistence, pathogenicity, and disease progression. The control of HCV infection requires both effective innate and adaptive immune responses. The HCV clearance during acute infection is associated with an early induction of the innate and a delayed initiation of the adaptive immune responses. However, in the vast majority of acute HCV infections, these responses are overcome and the virus persistence almost inexorably occurs. Recently, several host- and virus-related mechanisms responsible for the failure of both the innate and the adaptive immune responses have been recognized. Among the latter, the wide range of escape mutations to evade the specific-T-and B-cell responses as well as the T cell anergy and the CD8+ T cell exhaustion together with the interference with its function after prolonged virus exposure hold a pivotal role. Other HCV strategies include the modification or manipulation of molecules playing key roles in the induction of the interferon response and its induced effector proteins. In this review, we attempt to gain insights on the main T cell immune evasion strategies used by the virus in order to favor its persistence.
Collapse
Affiliation(s)
- Jorge Fabián Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Argentina
| | - José Raúl Oubiña
- Instituto de Microbiología y Parasitología Médica (IMPAM), Universidad de Buenos Aires-CONICET, Argentina
| |
Collapse
|
47
|
Rao X, Hoof I, van Baarle D, Keşmir C, Textor J. HLA Preferences for Conserved Epitopes: A Potential Mechanism for Hepatitis C Clearance. Front Immunol 2015; 6:552. [PMID: 26579127 PMCID: PMC4625101 DOI: 10.3389/fimmu.2015.00552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/15/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infections affect more than 170 million people worldwide. Most of these individuals are chronically infected, but some clear the infection rapidly. Host factors seem to play a key role in HCV clearance, among them are the human leukocyte antigen (HLA) class I molecules. Certain HLA molecules, e.g., B*27 and B*57, are associated with viral clearance. To identify potential mechanisms for these associations, we assess epitope distribution differences between HLA molecules using experimentally verified and in silico predicted HCV epitopes. Specifically, we show that the NS5B protein harbors the largest fraction of conserved regions among all HCV proteins. Such conserved regions could be good targets for cytotoxic T-cell (CTL) responses. We find that the protective HLA-B*27 molecule preferentially presents cytotoxic T-cell (CTL) epitopes from NS5B and, in general, presents the most strongly conserved epitopes among the 23 HLA molecules analyzed. In contrast, HLA molecules known to be associated with HCV persistence do not have similar preferences and appear to target the variable P7 protein. Overall, our analysis suggests that by targeting highly constrained - and thereby conserved - regions of HCV, the protective HLA molecule HLA-B*27 reduces the ability of HCV to escape the cytotoxic T-cell response of the host. For visualizing the distribution of both experimentally verified and predicted epitopes across the HCV genome, we created the HCV epitope browser, which is available at theory.bio.uu.nl/ucqi/hcv.
Collapse
Affiliation(s)
- Xiangyu Rao
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Ilka Hoof
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Debbie van Baarle
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Can Keşmir
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| | - Johannes Textor
- Theoretical Biology and Bioinformatics, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
48
|
Dold L, Ahlenstiel G, Althausen E, Luda C, Schwarze-Zander C, Boesecke C, Wasmuth JC, Rockstroh JK, Spengler U. Survival and HLA-B*57 in HIV/HCV Co-Infected Patients on Highly Active Antiretroviral Therapy (HAART). PLoS One 2015; 10:e0134158. [PMID: 26241854 PMCID: PMC4524598 DOI: 10.1371/journal.pone.0134158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/06/2015] [Indexed: 12/13/2022] Open
Abstract
Background and aims HLA class I alleles, in particular HLA-B*57, constitute the most consistent host factor determining outcomes in untreated HCV- and HIV-infection. In this prospective cohort study, we analysed the impact of HLA class I alleles on all-cause mortality in patients with HIV-, HCV- and HIV/HCV- co-infection receiving HAART. Methods In 2003 HLA-A and B alleles were determined and patients were prospectively followed in 3-month intervals until 2013 or death. HLA-A and B alleles were determined by strand-specific oligonucleotide hybridisation and PCR in 468 Caucasian patients with HCV- (n=120), HIV- (n=186) and HIV/HCV-infection (n=162). All patients with HIV-infection were on HAART. In each patient group, HLA class I-associated survival was analysed by Kaplan-Meier method and Cox regression analysis. Results At recruitment the proportion of patients carrying a HLA-B*57 allele differed between HIV- (12.9%) and HCV-infection (4.2%). Kaplan Meier analysis revealed significantly increased mortality in HLA-B*57-positive patients with HIV-infection (p=0.032) and HIV/HCV-co-infection (p=0.004), which was apparently linked to non-viral infections. Cox logistic regression analysis confirmed HLA-B*57 (p=0.001), serum gamma-glutamyltranspeptidase (p=0.003), serum bilirubin (p=0.022) and CD4 counts (p=0.041) as independent predictors of death in HIV-infected patients. Conclusion Differences in the prevalence of HLA-B*57 at study entry between HIV- and HCV- infected patients may reflect immune selection in the absence of antiviral therapy. When patients were treated with HAART, however, HLA-B*57 was associated with increased mortality and risk to die from bacterial infections and sepsis, suggesting an ambiguous role of HLA-B*57 for survival in HIV/HCV infection depending on the circumstances.
Collapse
Affiliation(s)
- Leona Dold
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
- * E-mail:
| | - Golo Ahlenstiel
- Westmead Clinical School, University of Sydney, Sydney, Australia
| | - Eva Althausen
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| | - Carolin Luda
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| | - Carolynne Schwarze-Zander
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| | - Christoph Boesecke
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| | - Jan-Christian Wasmuth
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| | - Jürgen Kurt Rockstroh
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine 1, Rheinische Friedrich-Wilhelms University Bonn, Bonn, Germany
- German Centre of Infection Research (DZIF), partner site Cologne-Bonn, Germany
| |
Collapse
|
49
|
Samimi-Rad K, Sadeghi F, Amirzargar A, Eshraghian MR, Alavian SM, Rahimnia R. Association of HLA class II alleles with hepatitis C virus clearance and persistence in thalassemia patients from Iran. J Med Virol 2015; 87:1565-72. [DOI: 10.1002/jmv.24211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Katayoun Samimi-Rad
- Department of Virology, School of Public Health; Tehran University of Medical Sciences (TUMS); Tehran Iran
| | - Farzin Sadeghi
- Department of Virology, School of Public Health; Tehran University of Medical Sciences (TUMS); Tehran Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, and Department of Immunology, School of Medicine; Tehran University of Medical Sciences (TUMS); Tehran Iran
| | - Mohamad Reza Eshraghian
- Department of Epidemiology and Biostatics, School of Public Health; Tehran University of Medical Sciences (TUMS); Tehran Iran
| | - Seyed-Moayed Alavian
- Research Center for Gastroenterology and Liver Disease; Baqiatallah University of Medical Sciences; Tehran Iran
| | - Ramin Rahimnia
- Department of Nanomedicine, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences (TUMS); Tehran Iran
| |
Collapse
|
50
|
Fitzmaurice K, Hurst J, Dring M, Rauch A, McLaren PJ, Günthard HF, Gardiner C, Klenerman P. Additive effects of HLA alleles and innate immune genes determine viral outcome in HCV infection. Gut 2015; 64:813-9. [PMID: 24996883 PMCID: PMC4392199 DOI: 10.1136/gutjnl-2013-306287] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic HCV infection is a leading cause of liver-related morbidity globally. The innate and adaptive immune responses are thought to be important in determining viral outcomes. Polymorphisms associated with the IFNL3 (IL28B) gene are strongly associated with spontaneous clearance and treatment outcomes. OBJECTIVE This study investigates the importance of HLA genes in the context of genetic variation associated with the innate immune genes IFNL3 and KIR2DS3. DESIGN We assess the collective influence of HLA and innate immune genes on viral outcomes in an Irish cohort of women (n=319) who had been infected from a single source as well as a more heterogeneous cohort (Swiss Cohort, n=461). In the Irish cohort, a number of HLA alleles are associated with different outcomes, and the impact of IFNL3-linked polymorphisms is profound. RESULTS Logistic regression was performed on data from the Irish cohort, and indicates that the HLA-A*03 (OR 0.36 (0.15 to 0.89), p=0.027) -B*27 (OR 0.12 (0.03 to 0.45), p=<0.001), -DRB1*01:01 (OR 0.2 (0.07 to 0.61), p=0.005), -DRB1*04:01 (OR 0.31 (0.12 to 0.85, p=0.02) and the CC IFNL3 rs12979860 genotypes (OR 0.1 (0.04 to 0.23), p<0.001) are significantly associated with viral clearance. Furthermore, DQB1*02:01 (OR 4.2 (2.04 to 8.66), p=0.008), KIR2DS3 (OR 4.36 (1.62 to 11.74), p=0.004) and the rs12979860 IFNL3 'T' allele are associated with chronic infection. This study finds no interactive effect between IFNL3 and these Class I and II alleles in relation to viral clearance. There is a clear additive effect, however. Data from the Swiss cohort also confirms independent and additive effects of HLA Class I, II and IFNL3 genes in their prediction of viral outcome. CONCLUSIONS This data supports a critical role for the adaptive immune response in the control of HCV in concert with the innate immune response.
Collapse
Affiliation(s)
| | - Jacob Hurst
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Emerging Infection, The Oxford Martin School, University of Oxford, Oxford, UK
| | - Megan Dring
- Natural Killer Cell Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Andri Rauch
- University Clinic of Infectious Diseases, University Hospital Bern and University of Bern, Bern, Switzerland
| | - Paul J McLaren
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clair Gardiner
- Natural Killer Cell Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|