1
|
Yan W, Cui X, Guo T, Liu N, Wang Z, Sun Y, Shang Y, Liu J, Zhu Y, Zhang Y, Chen L. ALOX15 Aggravates Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice with Type 2 Diabetes via Activating the PPARγ/CD36 Axis. Antioxid Redox Signal 2025. [PMID: 39815992 DOI: 10.1089/ars.2024.0670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD. Results: In this study, we observed upregulation of ALOX15 in the liver of high-fat diet (HFD)- and streptozotocin (STZ)-induced mice. Metabolomic analysis revealed elevated levels of ALOX15 metabolites, 12(S)-hydroperoxyeicosatetraenoic acid and 15(S)-hydroperoxyeicosatetraenoic acid. Transcriptomic analysis showed that the increased fatty acid uptake regulated by the PPARγ/CD36 pathway predominated in lipid accumulation. To elucidate the mechanism underlying ALOX15-induced lipid accumulation, HepG2 cells were transfected with a lentivirus expressing ALOX15 or small interfering RNA targeting ALOX15 and exposed to palmitic acid (PA). Both ALOX15 overexpression and PA exposure led to increased intracellular free fatty acid and triglyceride, resulting in lipotoxicity. ALOX15 overexpression aggravated the effect of PA, while the knockdown of ALOX15 attenuated PA-induced lipotoxicity. Moreover, the treatment with PPARγ antagonist GW9662 or CD36 inhibitor sulfosuccinimidyl oleate sodium effectively reduced lipid accumulation and lipotoxicity resulting from ALOX15 overexpression and PA exposure, indicating the involvement of the PPARγ/CD36 pathway in ALOX15-mediated lipid accumulation. Furthermore, liraglutide, a widely used glucagon-like peptide 1 receptor (GLP-1R) agonist (GLP-1RA), improved hepatic lipid accumulation in HFD/STZ-induced mice by suppressing the ALOX15/PPARγ/CD36 pathway. Innovation and Conclusion: Our study underscores the potential of ALOX15 as an emerging therapeutic target for MASLD. In addition, the GLP-1RA may confer hepatoprotection by regulating ALOX15, enhancing our comprehension of the mechanisms underpinning their protection on MASLD. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhuanzhuan Wang
- Biomedical Experimental Center of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuanrui Shang
- Department of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Institute of Cardiovascular Sciences, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
- International Obesity and Metabolic Disease Research Center (IIOMC), Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Adele R, Hussein R, Tavares E, Ahmed K, Di Scipio M, Charish J, Liang M, Monis S, Tumber A, Chen X, Paton TA, Roslin NM, Eileen C, Ivakine E, Sunny NE, Wilson MD, Campos E, Rajala RV, Maynes JT, Monnier PP, Paterson AD, Héon E, Vincent A. Autosomal-dominant macular dystrophy linked to a chromosome 17 tandem duplication. JCI Insight 2024; 9:e178768. [PMID: 39436697 PMCID: PMC11623951 DOI: 10.1172/jci.insight.178768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Hereditary macular dystrophies (HMDs) are a genetically diverse group of disorders that cause central vision loss due to photoreceptor and retinal pigment epithelium (RPE) damage. We investigated a family with a presumed novel autosomal-dominant HMD characterized by faint, hypopigmented RPE changes involving the central retina. Genome and RNA sequencing identified the disease-causing variant to be a 560 kb tandem duplication on chromosome 17 [NC_000017.10 (hg19): g.4012590_4573014dup], which led to the formation of a novel ZZEF1-ALOX15 fusion gene, which upregulates ALOX15. ALOX15 encodes a lipoxygenase involved in polyunsaturated fatty acid metabolism. Functional studies showed retinal disorganization and photoreceptor and RPE damage following electroporation of the chimera transcript in mouse retina. Photoreceptor damage also occurred following electroporation with a native ALOX15 transcript but not with a near-null ALOX15 transcript. Affected patients' lymphoblasts demonstrated lower levels of ALOX15 substrates and an accumulation of neutral lipids. We implicated the fusion gene as the cause of this family's HMD, due to mislocalization and overexpression of ALOX15, driven by the ZZEF1 promoter. To our knowledge, this is the first reported instance of a fusion gene leading to HMD or inherited retinal dystrophy, highlighting the need to prioritize duplication analysis in unsolved retinal dystrophies.
Collapse
Affiliation(s)
- Rabiat Adele
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Rowaida Hussein
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Erika Tavares
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Kashif Ahmed
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Matteo Di Scipio
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Jason Charish
- Vision Division, Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Minggao Liang
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto (U of T), Toronto, Ontario, Canada
| | - Simon Monis
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto (U of T), Toronto, Ontario, Canada
| | | | - Xiaoyan Chen
- Vision Division, Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Tara A. Paton
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- The Centre for Applied Genomics, HSC, Toronto, Ontario, Canada
| | - Nicole M. Roslin
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Christabel Eileen
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Evgueni Ivakine
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Nishanth E. Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Michael D. Wilson
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Eric Campos
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Raju V.S. Rajala
- Departments of Ophthalmology, Physiology, and Cell Biology and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason T. Maynes
- Molecular Medicine program and
- Department of Anesthesia and Pain Medicine, HSC, Toronto, Ontario, Canada
| | - Philippe P. Monnier
- Vision Division, Krembil Research Institute, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Physiology, Faculty of Medicine, and
| | - Andrew D. Paterson
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
| | - Elise Héon
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences and
- Department of Ophthalmology and Visual Sciences, U of T, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Genetics & Genome Biology program, Hospital for Sick Children (HSC), Toronto, Ontario, Canada
- Department of Ophthalmology and Visual Sciences and
- Department of Ophthalmology and Visual Sciences, U of T, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Yang X, Chen H, Shen W, Chen Y, Lin Z, Zhuo J, Wang S, Yang M, Li H, He C, Zhang X, Hu Z, Lian Z, Yang M, Wang R, Li C, Pan B, Xu L, Chen J, Wei X, Wei Q, Xie H, Zheng S, Lu D, Xu X. FGF21 modulates immunometabolic homeostasis via the ALOX15/15-HETE axis in early liver graft injury. Nat Commun 2024; 15:8578. [PMID: 39362839 PMCID: PMC11449914 DOI: 10.1038/s41467-024-52379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is essential for modulating hepatic homeostasis, but the impact of FGF21 on liver graft injury remains uncertain. Here, we show that high FGF21 levels in liver graft and serum are associated with improved graft function and survival in liver transplantation (LT) recipients. FGF21 deficiency aggravates early graft injury and activates arachidonic acid metabolism and regional inflammation in male mouse models of hepatic ischemia/reperfusion (I/R) injury and orthotopic LT. Mechanistically, FGF21 deficiency results in abnormal activation of the arachidonate 15-lipoxygenase (ALOX15)/15-hydroxy eicosatetraenoic acid (15-HETE) pathway, which triggers a cascade of innate immunity-dominated pro-inflammatory responses in grafts. Notably, the modulating role of FGF21/ALOX15/15-HETE pathway is more significant in steatotic livers. In contrast, pharmacological administration of recombinant FGF21 effectively protects against hepatic I/R injury. Overall, our study reveals the regulatory mechanism of FGF21 and offers insights into its potential clinical application in early liver graft injury after LT.
Collapse
Affiliation(s)
- Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanming Chen
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Modan Yang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huigang Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyu He
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xuanyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihang Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Mengfan Yang
- Department of Organ Transplantation, Qilu Hospital of Shandong University, Jinan, China
| | - Rui Wang
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Changbiao Li
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Binhua Pan
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Chen
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
5
|
Maretti-Mira AC, Salomon MP, Chopra S, Yuan L, Golden-Mason L. Circulating Neutrophil Profiles Undergo a Dynamic Shift during Metabolic Dysfunction-Associated Steatohepatitis (MASH) Progression. Biomedicines 2024; 12:1105. [PMID: 38791066 PMCID: PMC11117983 DOI: 10.3390/biomedicines12051105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophils play a crucial role in host defense against infection. Aberrant neutrophil activation may induce tissue damage via sterile inflammation. Neutrophil accumulation has been identified as a feature of the inflammatory response observed in metabolic dysfunction-associated steatohepatitis (MASH) and has been associated with liver fibrosis and cirrhosis. Here, we performed the transcriptomic analysis of circulating neutrophils from mild and advanced MASH patients to identify the potential mechanism behind neutrophil contribution to MASH progression. Our findings demonstrated that circulating neutrophils from mild and advanced MASH display an increased activated transcriptional program, with the expression of pro-inflammatory factors and an amplified lifespan compared to cells from non-diseased controls. Our results also suggest that MASH progression is associated with a dynamic shift in the profile of circulating neutrophils. In the early stages of MASH, mature neutrophils predominate in the bloodstream. As hepatic inflammation and fibrosis progress, the premature release of immature neutrophils into the circulation occurs. These immature neutrophils exhibit a pro-inflammatory profile that may exacerbate inflammation and promote fibrosis in MASH.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| | - Matthew P. Salomon
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| | - Shefali Chopra
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Liyun Yuan
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| | - Lucy Golden-Mason
- USC Research Center for Liver Diseases, Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (M.P.S.); (L.Y.); (L.G.-M.)
| |
Collapse
|
6
|
Jin S, Chen P, Yang J, Li D, Liu X, Zhang Y, Xia Q, Li Y, Chen G, Li Y, Tong Y, Yu W, Fan X, Lin H. Phocaeicola vulgatus alleviates diet-induced metabolic dysfunction-associated steatotic liver disease progression by downregulating histone acetylation level via 3-HPAA. Gut Microbes 2024; 16:2309683. [PMID: 38312099 PMCID: PMC10854360 DOI: 10.1080/19490976.2024.2309683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Diet-induced metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent metabolic disorder with limited effective interventions available. A novel approach to address this issue is through gut microbiota-based therapy. In our study, we utilized multi-omics analysis to identify Phocaeicola vulgatus (P. vulgatus) as a potential probiotic for the treatment of MASLD. Our findings from murine models clearly illustrate that the supplementation of P. vulgatus mitigates the development of MASLD. This beneficial effect is partly attributed to the metabolite 3-Hydroxyphenylacetic acid (3-HPAA) produced by P. vulgatus, which reduces the acetylation levels of H3K27 and downregulates the transcription of Squalene Epoxidase (SQLE), a rate-limiting enzyme in steroid biosynthesis that promotes lipid accumulation in liver cells. This study underscores the significant role of P. vulgatus in the development of MASLD and the critical importance of its metabolite 3-HPAA in regulating lipid homeostasis. These findings offer a promising avenue for early intervention therapy in the context of MASLD.
Collapse
Affiliation(s)
- Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiling Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixuan Li
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Duan J, Dong W, Wang G, Xiu W, Pu G, Xu J, Ye C, Zhang X, Zhu Y, Wang C. Senescence-associated 13-HODE production promotes age-related liver steatosis by directly inhibiting catalase activity. Nat Commun 2023; 14:8151. [PMID: 38071367 PMCID: PMC10710422 DOI: 10.1038/s41467-023-44026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Aging is a major risk factor for metabolic disorders. Polyunsaturated fatty acid-derived bioactive lipids play critical roles as signaling molecules in metabolic processes. Nonetheless, their effects on age-related liver steatosis remain unknown. Here we show that senescent liver cells induce liver steatosis in a paracrine manner. Linoleic acid-derived 9-hydroxy-octadecadienoic acid (9-HODE) and 13-HODE increase in middle-aged (12-month-old) and aged (20-month-old) male mouse livers and conditioned medium from senescent hepatocytes and macrophages. Arachidonate 15-lipoxygenase, an enzyme for 13-HODE and 9-HODE production, is upregulated in senescent cells. A 9-HODE and 13-HODE mixture induces liver steatosis and activates SREBP1. Furthermore, catalase (CAT) is a direct target of 13-HODE, and its activity is decreased by 13-HODE. CAT overexpression reduces 13-HODE-induced liver steatosis and protects male mice against age-related liver steatosis. Therefore, 13-HODE produced by senescent hepatocytes and macrophages activates SREBP1 by directly inhibiting CAT activity and promotes liver steatosis.
Collapse
Affiliation(s)
- Jinjie Duan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Wenhui Dong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Guangyan Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Wenjing Xiu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Guangyin Pu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jingwen Xu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xu Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Chunjiong Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Han J, Wu P, Wen Y, Liu C, Liu X, Tao H, Zhang F, Zhang X, Ye Q, Shen T, Chen X, Yu H. The zhuyu pill relieves rat cholestasis by regulating the mRNA expression of lipid and bile metabolism associated genes. Front Pharmacol 2023; 14:1280864. [PMID: 37881184 PMCID: PMC10597705 DOI: 10.3389/fphar.2023.1280864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
Background: The Zhuyu pill (ZYP), composed of Coptis chinensis Franch. and Tetradium ruticarpum (A. Jussieu) T. G. Hartley, is an effective traditional Chinese medicine with potential anti-cholestatic effects. However, the underlying mechanisms of ZYP remain unknown. Objective: To investigate the mechanism underlying the interventional effect of ZYP on mRNA-seq analysis in cholestasis rat models. Materials and methods: This study tested the effects of a low-dose (0.6 g/kg) and high-dose (1.2 g/kg) of ZYP on a cholestasis rat model induced by α-naphthyl-isothiocyanate (ANIT, 50 mg/kg). Serum biochemistry and histopathology results were used to evaluate the therapeutic effect of ZYP, and mRNA-Seq analysis was performed and verified using real-time fluorescence quantitative PCR (qRT-PCR). GO, KEGG, and GSEA analyses were integrated to identify the mechanism by which ZYP impacted cholestatic rats. Results: ZYP was shown to significantly improve abnormal changes in the biochemical blood indexes and liver histopathology of cholestasis rats and regulate pathways related to bile and lipid metabolism, including fatty acid metabolism, retinol metabolism, and steroid hormone biosynthesis, to alleviate inflammation, cholestasis, and lipid metabolism disorders. Relative expression of the essential genes Cyp2a1, Ephx2, Acox2, Cyp1a2, Cyp2c11, and Sult2a1 was verified by qRT-PCR and showed the same trend as mRNA-seq analysis. Conclusion: ZYP has a significant anti-cholestatic effect by regulating bile metabolism and lipid metabolism related pathways. These findings indicate that ZYP is a novel and promising prospect for treating cholestasis.
Collapse
Affiliation(s)
- Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, Guang’an Traditional Chinese Medicine Hospital, Guang’an, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinglong Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Tao
- Department of Dermatology, Cangxi Traditional Chinese Medicine Hospital, Guangyuan, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaodan Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofeng Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Araujo LCC, Cruz AG, Camargo FN, Sucupira FG, Moreira GV, Matos SL, Amaral AG, Murata GM, Carvalho CRO, Camporez JP. Estradiol Protects Female ApoE KO Mice against Western-Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2023; 24:9845. [PMID: 37372993 DOI: 10.3390/ijms24129845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.
Collapse
Affiliation(s)
- Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Alessandra G Cruz
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Felipe N Camargo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Felipe G Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Gabriela V Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sandro L Matos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andressa G Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gilson Masahiro Murata
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Carla R O Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Joao Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
10
|
Abstract
Hypertension is a major healthcare issue that afflicts one in every three adults worldwide and contributes to cardiovascular diseases, morbidity and mortality. Bioactive lipids contribute importantly to blood pressure regulation via actions on the vasculature, kidney, and inflammation. Vascular actions of bioactive lipids include blood pressure lowering vasodilation and blood pressure elevating vasoconstriction. Increased renin release by bioactive lipids in the kidney is pro-hypertensive whereas anti-hypertensive bioactive lipid actions result in increased sodium excretion. Bioactive lipids have pro-inflammatory and anti-inflammatory actions that increase or decrease reactive oxygen species and impact vascular and kidney function in hypertension. Human studies provide evidence that fatty acid metabolism and bioactive lipids contribute to sodium and blood pressure regulation in hypertension. Genetic changes identified in humans that impact arachidonic acid metabolism have been associated with hypertension. Arachidonic acid cyclooxygenase, lipoxygenase and cytochrome P450 metabolites have pro-hypertensive and anti-hypertensive actions. Omega-3 fish oil fatty acids eicosapentaenoic acid and docosahexaenoic acid are known to be anti-hypertensive and cardiovascular protective. Lastly, emerging fatty acid research areas include blood pressure regulation by isolevuglandins, nitrated fatty acids, and short chain fatty acids. Taken together, bioactive lipids are key contributors to blood pressure regulation and hypertension and their manipulation could decrease cardiovascular disease and associated morbidity and mortality.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
11
|
DMF-Activated Nrf2 Ameliorates Palmitic Acid Toxicity While Potentiates Ferroptosis Mediated Cell Death: Protective Role of the NO-Donor S-Nitroso-N-Acetylcysteine. Antioxidants (Basel) 2023; 12:antiox12020512. [PMID: 36830070 PMCID: PMC9952671 DOI: 10.3390/antiox12020512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that can develop into an aggressive form called nonalcoholic steatohepatitis (NASH), which ultimately progresses to cirrhosis, hepatocellular carcinoma (HCC), and end-stage liver failure. Currently, the deterioration of NAFLD is attributed to specific lipid toxicity which could be due to lipotoxicity and/or ferroptosis. In the current study, we evaluated the involvement of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2), which is a main activator of phase II metabolism in the two types of lipid-induced toxicity in hepatocytes, lipotoxicity by saturated fatty acids, and in ferroptosis, and the effect of NO donor treatment. AML12 cells were exposed to 600 μM palmitic acid to induce lipotoxicity or treated with 20 μM erastin or 5 μM RSL3 for ferroptosis. In SFA-lipotoxicity, pretreatment with the Nrf2 activator dimethyl fumarate (DMF) managed to ameliorate the cells and the oxidative stress level while aggravating ferroptosis due to emptying the thiol pool. On the other hand, the nitric oxide (NO)-donor, S-nitroso-N-acetylcysteine (NAC-SNO) proved to be effective in the prevention of hepatocytes ferroptosis.
Collapse
|
12
|
Burke ND, Nixon B, Roman SD, Schjenken JE, Walters JLH, Aitken RJ, Bromfield EG. Male infertility and somatic health - insights into lipid damage as a mechanistic link. Nat Rev Urol 2022; 19:727-750. [PMID: 36100661 DOI: 10.1038/s41585-022-00640-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.
Collapse
Affiliation(s)
- Nathan D Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Drug Development, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Research Program, New Lambton Heights, New South Wales, Australia.
- Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
13
|
Wang L, Gao T, Li Y, Xie Y, Zeng S, Tai C, Feng Y, Shen P, Wang B. A long-term anti-inflammation markedly alleviated high-fat diet-induced obesity by repeated administrations of overexpressing IL10 human umbilical cord-derived mesenchymal stromal cells. Stem Cell Res Ther 2022; 13:259. [PMID: 35715850 PMCID: PMC9204983 DOI: 10.1186/s13287-022-02935-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/12/2022] [Indexed: 12/23/2022] Open
Abstract
Objectives Obesity is a chronic process and could activate various inflammatory responses, which in turn aggravates obesity and related metabolic syndrome. Here we explored whether long-term inhibition of inflammation could successfully alleviate high-fat diet (HFD)-induced obesity. Methods We constructed stable overexpressing interleukin 10 (IL10) human umbilical cord-derived mesenchymal stromal cells (HUCMSCs) which repeatedly were applied to obesity mice with HFD feeding to obtain a long-term anti-inflammation based on the prominent anti-inflammation effects of IL10 and immunomodulatery effects of HUCMSCs. Then we monitored the features of obesity including body weight, serum ALT, AST, and lipids. In addition, glucose homeostasis was determined by glucose tolerance and insulin sensitivity tests. The infiltrated macrophages in adipose tissues and hepatic lipid accumulation were detected, and the expressions of adipogenesis and inflammatory genes in adipose tissues were examined by real-time (RT) PCR and western blot analysis. Results Compared with HUCMSCs, IL10-HUCMSCs treatment had much better anti-obesity effects including body weight reduction, less hepatic lipids accumulation, lower amount and size of adipocyte, greater glucose tolerance, less systemic insulin resistance, and less adipose tissue inflammation in HFD feeding mice. Finally, IL10-HUCMSCs could decrease the activation of MAPK JNK of adipose tissue induced by HFD. The inhibition of MAPK JNK signal pathway by a small chemical molecule SP600125 in 3T3-L1 cells, a preadipocyte line, reduced the differentiation of adipocytes and lipid droplet accumulation. Conclusion A lasting anti-inflammation based on gene modified stem cell therapy is an effective strategy in preventing diet-induced obesity and obesity-related metabolic syndrome.
Collapse
Affiliation(s)
- Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yu Li
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Sheng Zeng
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxu Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yirui Feng
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, School of Life Science, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China. .,College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Schebb NH, Kühn H, Kahnt AS, Rund KM, O’Donnell VB, Flamand N, Peters-Golden M, Jakobsson PJ, Weylandt KH, Rohwer N, Murphy RC, Geisslinger G, FitzGerald GA, Hanson J, Dahlgren C, Alnouri MW, Offermanns S, Steinhilber D. Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators-What is the Evidence so far? Front Pharmacol 2022; 13:838782. [PMID: 35308198 PMCID: PMC8924552 DOI: 10.3389/fphar.2022.838782] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Astrid S. Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina M. Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Valerie B. O’Donnell
- School of Medicine, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolas Flamand
- Département de Médecine, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado-Denver, Aurora, CO, United States
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital of Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| |
Collapse
|
15
|
Heinrich L, Booijink R, Khurana A, Weiskirchen R, Bansal R. Lipoxygenases in chronic liver diseases: current insights and future perspectives. Trends Pharmacol Sci 2021; 43:188-205. [PMID: 34961619 DOI: 10.1016/j.tips.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases (CLDs) caused by viral infections, alcohol/drug abuse, or metabolic disorders affect millions of people globally and have increased mortality owing to the lack of approved therapies. Lipoxygenases (LOXs) are a family of multifaceted enzymes that are responsible for the oxidation of polyunsaturated fatty acids (PUFAs) and are implicated in the pathogenesis of multiple disorders including liver diseases. This review describes the three main LOX signaling pathways - 5-, 12-, and 15-LOX - and their involvement in CLDs. We also provide recent insights and future perspectives on LOX-related hepatic pathophysiology, and discuss the potential of LOXs and LOX-derived metabolites as diagnostic biomarkers and therapeutic targets in CLDs.
Collapse
Affiliation(s)
- Lena Heinrich
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Amit Khurana
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
16
|
Govatati S, Pichavaram P, Mani AM, Kumar R, Sharma D, Dienel A, Meena S, Puchowicz MA, Park EA, Rao GN. Novel role of xanthine oxidase-dependent H 2O 2 production in 12/15-lipoxygenase-mediated de novo lipogenesis, triglyceride biosynthesis and weight gain. Redox Biol 2021; 47:102163. [PMID: 34655995 PMCID: PMC8577505 DOI: 10.1016/j.redox.2021.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
12/15-lipoxygenase (12/15-LOX) plays an essential role in oxidative conversion of polyunsaturated fatty acids into various bioactive lipid molecules. Although 12/15-LOX's role in the pathophysiology of various human diseases has been well studied, its role in weight gain is controversial and poorly clarified. Here, we demonstrated the role of 12/15-LOX in high-fat diet (HFD)-induced weight gain in a mouse model. We found that 12/15-LOX mediates HFD-induced de novo lipogenesis (DNL), triglyceride (TG) biosynthesis and the transport of TGs from the liver to adipose tissue leading to white adipose tissue (WAT) expansion and weight gain via xanthine oxidase (XO)-dependent production of H2O2. 12/15-LOX deficiency leads to cullin2-mediated ubiquitination and degradation of XO, thereby suppressing H2O2 production, DNL and TG biosynthesis resulting in reduced WAT expansion and weight gain. These findings infer that manipulation of 12/15-LOX metabolism may manifest a potential therapeutic target for weight gain and obesity. 12/15-LOX-12(S)-HETE axis via activation of CREB-Egr1 enhances TG biosynthesis. 12/15-LOX-12(S)-HETE axis via activation of SREBP1c triggers DNL. H2O2 mediates 12/15-LOX-12(S)-HETE axis-induced DNL and TG biosynthesis. 12/15-LOX via TG biosynthesis leads to WAT expansion and body weight gain. Downstream to 12/15-LOX, H2O2-mediates WAT expansion and body weight gain.
Collapse
Affiliation(s)
- Suresh Govatati
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Prahalathan Pichavaram
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Arul M Mani
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deepti Sharma
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ari Dienel
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sunita Meena
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Edwards A Park
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
17
|
Sabbir MG, Taylor CG, Zahradka P. Antisense overlapping long non-coding RNA regulates coding arachidonate 12-lipoxygenase gene by translational interference. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158987. [PMID: 34174394 DOI: 10.1016/j.bbalip.2021.158987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/13/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
The arachidonate 12-lipoxygenase (ALOX12) enzyme catalyzes polyunsaturated fatty acids and facilitates generation of bioactive lipid mediators associated with various biological processes and disease pathologies. The human genome assembly revealed that the ALOX12 gene overlaps an antisense non-coding gene designated as ALOX12-antisense 1 (ALOX12-AS1). This arrangement indicates that the uncharacterized ALOX12-AS1 long non-coding RNA (lncRNA) may bind to the sense coding ALOX12 mRNA to form an antisense-sense duplex providing the basis of a novel ALOX12 regulatory mechanism. Therefore, this study was designed to determine whether the interaction of ALOX12-AS1 with ALOX12 mRNA functions as an anti-sense/sense duplex-mediated regulatory mechanism controlling the cellular content of ALOX12. Our findings indicate that two major isoforms of ALOX12-AS1 lncRNA are ubiquitously expressed in a variety of primary adult human tissues and different transformed cell types. RNA-FISH revealed cell-type-specific cytosolic as well as nuclear and nucleolar localization of the lncRNA. Interestingly, phorbol ester-induced nucleo-cytoplasmic translocation of the lncRNA in monocytic THP-1 cells resulted in a reduction of ALOX12 protein without a concomitant change in its mRNA level. This indicated ALOX12-AS1 operates via an antisense-sense duplex-mediated translational downregulation mechanism. This deduction was validated by demonstrating sense/antisense duplex formation and an association of the duplex with ribosomal proteins in HEK293 cells. Overall, this study revealed a hitherto unknown mechanism of antisense lncRNA-mediated translational downregulation of ALOX12 that adds to the existing regulatory mechanisms for the modulation of potent bioactive lipid mediators that contribute to both health and disease.
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
18
|
Mori Y, Kawakami Y, Kanzaki K, Otsuki A, Kimura Y, Kanji H, Tanaka R, Tsukayama I, Hojo N, Suzuki-Yamamoto T, Kawakami T, Takahashi Y. Arachidonate 12S-lipoxygenase of platelet-type in hepatic stellate cells of methionine and choline-deficient diet-fed mice. J Biochem 2021; 168:455-463. [PMID: 32492133 DOI: 10.1093/jb/mvaa062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
A role of 12-lipoxygenase in the progression of non-alcoholic steatohepatitis (NASH) is suggested, although the underlying mechanism is not entirely understood. The catalytic activity of 12S-lipoxygenase that was hardly observed in liver cytosol of normal chow-fed mice was clearly detectable in that of NASH model mice prepared by feeding a methionine and choline-deficient (MCD) diet. The product profile, substrate specificity and immunogenicity indicated that the enzyme was the platelet-type isoform. The expression levels of mRNA and protein of platelet-type 12S-lipoxygenase in the liver of MCD diet-fed mice were significantly increased compared with those of normal chow-fed mice. Immunohistochemical analysis showed that platelet-type 12S-lipoxygenase colocalized with α-smooth muscle actin as well as vitamin A in the cells distributing along liver sinusoids. These results indicate that the expression level of platelet-type 12S-lipoxygenase in hepatic stellate cells was increased during the cell activation in MCD diet-fed mice, suggesting a possible role of the enzyme in pathophysiology of liver fibrosis.
Collapse
Affiliation(s)
- Yoshiko Mori
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Keita Kanzaki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan.,Department of Clinical Nutrition, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama 701-0193, Japan
| | - Akemi Otsuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yuka Kimura
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Hibiki Kanji
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Ryoma Tanaka
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Izumi Tsukayama
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Nana Hojo
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Takayo Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| |
Collapse
|
19
|
The functional link between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor γ (PPARγ) in the onset of inflammation. Pharmacol Res 2020; 157:104807. [DOI: 10.1016/j.phrs.2020.104807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
|
20
|
Li X, Wang TX, Huang X, Li Y, Sun T, Zang S, Guan KL, Xiong Y, Liu J, Yuan HX. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 2020; 40:1378-1394. [PMID: 32145145 DOI: 10.1111/liv.14428] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND NASH is one of the fastest growing liver diseases that leads to severe steatosis, inflammation and ultimately liver injury. However, the pathophysiological mechanisms of NASH remain unclear and pharmacological treatment against the disease is unavailable currently. Ferroptosis is a non-apoptotic form of cell death induced by iron-dependent lipid peroxidation. Since NASH progression is accompanied by massive lipid accumulation, which generates lipotoxic species, we investigated the role of ferroptosis in NASH progression. METHOD Mice were fed on MCD-diet to mimic NASH progression and gene expression in liver was analysed by RNA-seq. The occurrence of hepatic ferroptosis was measured by lipid ROS level, electron microscopy and in vivo PI staining. The beneficial effects of ferroptosis inhibitors on NASH was evaluated by liver pathology analysis. The mechanism of lipid ROS induced lipid droplets accumulation was investigated by in vitro cell culture. RESULTS RNA-seq analysis suggested that elevated arachidonic acid metabolism promotes ferroptosis in MCD-diet fed mouse livers, which was further demonstrated by lipid ROS accumulation, morphological change of mitochondria and increased cell death. Iron accumulation was detected in the liver and the serum of MCD-fed mice. Scavenging of ferroptosis-linked lipid peroxides reduced lipid accumulation both in vivo and in vitro. Importantly, ferroptosis inhibitors alleviated MCD-diet induced inflammation, fibrogenesis and liver injury. Finally, lipid ROS promotes liver steatosis by boosting lipid droplets formation. CONCLUSION Our results demonstrate an important role of ferroptosis in the progression of MCD-diet induced NASH and suggest that ferroptosis may serve as a therapeutic target for NASH treatment.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tian-Xiang Wang
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xinmei Huang
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yue Li
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tiange Sun
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shufei Zang
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, CA, La Jolla, USA
| | - Yue Xiong
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jun Liu
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hai-Xin Yuan
- Department of Endocrinology of the Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Bromfield EG, Walters JLH, Cafe SL, Bernstein IR, Stanger SJ, Anderson AL, Aitken RJ, McLaughlin EA, Dun MD, Gadella BM, Nixon B. Differential cell death decisions in the testis: evidence for an exclusive window of ferroptosis in round spermatids. Mol Hum Reprod 2020; 25:241-256. [PMID: 30865280 DOI: 10.1093/molehr/gaz015] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress is a major aetiology in many pathologies, including that of male infertility. Recent evidence in somatic cells has linked oxidative stress to the induction of a novel cell death modality termed ferroptosis. However, the induction of this iron-regulated, caspase-independent cell death pathway has never been explored outside of the soma. Ferroptosis is initiated through the inactivation of the lipid repair enzyme glutathione peroxidase 4 (GPX4) and is exacerbated by the activity of arachidonate 15-lipoxygenase (ALOX15), a lipoxygenase enzyme that facilitates lipid degradation. Here, we demonstrate that male germ cells of the mouse exhibit hallmarks of ferroptosis including; a caspase-independent decline in viability following exposure to oxidative stress conditions induced by the electrophile 4-hydroxynonenal or the ferroptosis activators (erastin and RSL3), as well as a reciprocal upregulation of ALOX15 and down regulation of GPX4 protein expression. Moreover, the round spermatid developmental stage may be sensitized to ferroptosis via the action of acyl-CoA synthetase long-chain family member 4 (ACSL4), which modifies membrane lipid composition in a manner favourable to lipid peroxidation. This work provides a clear impetus to explore the contribution of ferroptosis to the demise of germline cells during periods of acute stress in in vivo models.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessica L H Walters
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Shenae L Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | | | - Matthew D Dun
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Barend M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM, Utrecht, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM, Utrecht, The Netherlands
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| |
Collapse
|
22
|
Qi J, Kim JW, Zhou Z, Lim CW, Kim B. Ferroptosis Affects the Progression of Nonalcoholic Steatohepatitis via the Modulation of Lipid Peroxidation-Mediated Cell Death in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:68-81. [PMID: 31610178 DOI: 10.1016/j.ajpath.2019.09.011] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023]
Abstract
Oxidative stress and its associated lipid peroxidation play a key role in nonalcoholic steatohepatitis (NASH). Ferroptosis is a recently recognized type of cell death characterized by an iron-dependent and lipid peroxidation-mediated nonapoptotic cell death. We demonstrate the impact of ferroptosis on the progression of NASH induced by methionine/choline-deficient diet (MCD) feeding for 10 days. RSL-3 (a ferroptosis inducer) treatment showed decreased hepatic expression of glutathione peroxidase 4 (GPX4) and conversely increased 12/15-lipoxygenase, and apoptosis-inducing factor, indicating that ferroptosis plays a key role in NASH-related lipid peroxidation and its associated cell death. Consistently, levels of serum biochemical, hepatic steatosis, inflammation, and apoptosis in MCD-fed mice were exacerbated with RSL-3 treatment. However, MCD-fed mice treated with sodium selenite (a GPX4 activator) showed increase of hepatic GPX4, accompanied by reduced NASH severity. To chelate iron, deferoxamine mesylate salt was used. Administration of deferoxamine mesylate salt significantly reduced NASH severity and abolished the harmful effects of RSL-3 in MCD-fed mice. Finally, treatment with liproxstatin-1 (a ferroptosis inhibitor) repressed hepatic lipid peroxidation and its associated cell death, resulting in decreased NASH severity. Consistent with the in vivo findings, modulation of ferroptosis/GPX4 affected hepatocellular death in palmitic acid-induced in vitro NASH milieu. We conclude that GPX4 and its related ferroptosis might play a major role in the development of NASH.
Collapse
Affiliation(s)
- Jing Qi
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Jeonbuk National University, Iksan, South Korea
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Jeonbuk National University, Iksan, South Korea
| | - Zixiong Zhou
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Jeonbuk National University, Iksan, South Korea
| | - Chae-Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Jeonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine (BK21 Plus Program), Jeonbuk National University, Iksan, South Korea.
| |
Collapse
|
23
|
Han YH, Shin KO, Kim JY, Khadka DB, Kim HJ, Lee YM, Cho WJ, Cha JY, Lee BJ, Lee MO. A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. J Clin Invest 2019; 129:1684-1698. [PMID: 30855276 DOI: 10.1172/jci124219] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Retinoic acid-related orphan receptor α (RORα) is considered a key regulator of polarization in liver macrophages that is closely related to nonalcoholic steatohepatitis (NASH) pathogenesis. However, hepatic microenvironments that support the function of RORα as a polarity regulator were largely unknown. Here, we identified maresin 1 (MaR1), a docosahexaenoic acid (DHA) metabolite with a function of specialized proresolving mediator, as an endogenous ligand of RORα. MaR1 enhanced the expression and transcriptional activity of RORα and thereby increased the M2 polarity of liver macrophages. Administration of MaR1 protected mice from high-fat diet-induced NASH in a RORα-dependent manner. Surprisingly, RORα increased the level of MaR1 through transcriptional induction of 12-lipoxygenase (12-LOX), a key enzyme in MaR1 biosynthesis. Furthermore, we demonstrated that modulation of 12-LOX activity enhanced the protective function of DHA against NASH. Together, these results suggest that the MaR1/RORα/12-LOX autoregulatory circuit could offer potential therapeutic strategies for curing NASH.
Collapse
Affiliation(s)
- Yong-Hyun Han
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Ju-Yeon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Daulat B Khadka
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Ji-Young Cha
- Laboratory of Cell Metabolism and Gene Regulation, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Bong-Jin Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Bio-MAX Institute and.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Wan JJ, Lin CH, Ren ED, Su Y, Zhu WY. Effects of Early Intervention With Maternal Fecal Bacteria and Antibiotics on Liver Metabolome and Transcription in Neonatal Pigs. Front Physiol 2019; 10:171. [PMID: 30890952 PMCID: PMC6413716 DOI: 10.3389/fphys.2019.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/12/2019] [Indexed: 01/20/2023] Open
Abstract
The establishment of a stable bacterial flora in early life is associated with host metabolism. Studies of fecal microbiota transplantation (FMT) and antibiotics on neonatal pig mainly focused on intestinal development and mucosal immunity, but the information on metabolism is lacking. The objective of this study was to investigate the responses of metabolome and transcriptome in the livers of neonatal piglets that were orally inoculated with maternal fecal bacteria suspension and amoxicillin (AM) solution. Five litters of Duroc × Landrace × Yorkshire neonatal piglets were used as five replicates and nine piglets in each litter were randomly assigned to the control (CO), AM or FMT groups. Neonatal piglets in three groups were fed with 3 mL saline (0.9%), AM solution (6.94 mg/mL) or fecal bacteria suspension (>109/mL), respectively, on days 1-6. At the age of 7 and 21 days, one piglet from each group in each litter was sacrificed, and the serum and liver were collected for analysis. The RNA sequencing analysis showed that the mRNA expressions of arachidonate 12-lipoxygenase (ALOX12), acetyl-CoA acyltransferase 2 (ACAA2), cytochrome P450 family 1 subfamily A member 2 (CYP1A2), glutamic-pyruvic transaminase 2 (GPT2) and argininosuccinate synthase 1 (ASS1) were downregulated (P < 0.05) by AM on day 7, and that the mRNA expressions of arachidonate 15-lipoxygenase (ALOX15), CYP1A2 and GPT2 were downregulated (P < 0.05) by FMT on day 7. GC-MS analysis showed that AM and FMT treatments mainly affected fatty acid metabolism and amino acid metabolism on days 7 and 21. AM and FMT both reduced (P < 0.05) the blood levels of triglycerides and low density lipoprotein cholesterol (LDL-C) on day 7. AM reduced (P < 0.05) the blood level of cholesterol on day 21, and FMT reduced the blood levels of cholesterol, triglycerides and LDL-C on day 21. These results indicate that early intervention with FMT or AM can reduce fatty acid oxidative catabolism and amino acid biosynthesis of neonatal piglets, which provides a reference for regulation host metabolism through early intervention in animal production and even human health.
Collapse
Affiliation(s)
- Jia-Jia Wan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Chun-Hui Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Er-Du Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Wei-Yun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
25
|
Sfyri PP, Yuldasheva NY, Tzimou A, Giallourou N, Crispi V, Aburima A, Beltran-Alvarez P, Patel K, Mougios V, Swann JR, Kearney MT, Matsakas A. Attenuation of oxidative stress-induced lesions in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia and atherosclerosis through the inhibition of Nox2 activity. Free Radic Biol Med 2018; 129:504-519. [PMID: 30342191 DOI: 10.1016/j.freeradbiomed.2018.10.422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/12/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023]
Abstract
Obesity leading to hyperlipidaemia and atherosclerosis is recognised to induce morphological and metabolic changes in many tissues. However, hyperlipidaemia can occur in the absence of obesity. The impact of the latter scenario on skeletal muscle and liver is not understood sufficiently. In this regard, we used the Apolipoprotein E-deficient (ApoE-/-) mouse model, an established model of hyperlipidaemia and atherosclerosis, that does not become obese when subjected to a high-fat diet, to determine the impact of Western-type diet (WD) and ApoE deficiency on skeletal muscle morphological, metabolic and biochemical properties. To establish the potential of therapeutic targets, we further examined the impact of Nox2 pharmacological inhibition on skeletal muscle redox biology. We found ectopic lipid accumulation in skeletal muscle and the liver, and altered skeletal muscle morphology and intramuscular triacylglycerol fatty acid composition. WD and ApoE deficiency had a detrimental impact in muscle metabolome, followed by perturbed gene expression for fatty acid uptake and oxidation. Importantly, there was enhanced oxidative stress in the skeletal muscle and development of liver steatosis, inflammation and oxidative protein modifications. Pharmacological inhibition of Nox2 decreased reactive oxygen species production and protein oxidative modifications in the muscle of ApoE-/- mice subjected to a Western-type diet. This study provides key evidence to better understand the pathophysiology of skeletal muscle in the context of hyperlipidaemia and atherosclerosis and identifies Nox2 as a potential target for attenuating oxidative stress in skeletal muscle in a mouse model of obesity-independent hyperlipidaemia.
Collapse
Affiliation(s)
- Pagona Panagiota Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Anastasia Tzimou
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Natasa Giallourou
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Vassili Crispi
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | - Ahmed Aburima
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, United Kingdom
| | - Vassilis Mougios
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science at Thessaloniki, Aristotle University of Thessaloniki, Greece
| | - Jonathan R Swann
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Imperial College London, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, United Kingdom.
| |
Collapse
|
26
|
Sonnweber T, Pizzini A, Nairz M, Weiss G, Tancevski I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2018; 19:ijms19113285. [PMID: 30360467 PMCID: PMC6274989 DOI: 10.3390/ijms19113285] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022] Open
Abstract
Lipid and immune pathways are crucial in the pathophysiology of metabolic and cardiovascular disease. Arachidonic acid (AA) and its derivatives link nutrient metabolism to immunity and inflammation, thus holding a key role in the emergence and progression of frequent diseases such as obesity, diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. We herein present a synopsis of AA metabolism in human health, tissue homeostasis, and immunity, and explore the role of the AA metabolome in diverse pathophysiological conditions and diseases.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Günter Weiss
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
27
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
28
|
Higgins CB, Zhang Y, Mayer AL, Fujiwara H, Stothard AI, Graham MJ, Swarts BM, DeBosch BJ. Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPARγ. JCI Insight 2018; 3:120794. [PMID: 30135298 PMCID: PMC6141168 DOI: 10.1172/jci.insight.120794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
The hepatic glucose fasting response is gaining traction as a therapeutic pathway to enhance hepatic and whole-host metabolism. However, the mechanisms underlying these metabolic effects remain unclear. Here, we demonstrate the epidermal-type lipoxygenase, eLOX3 (encoded by its gene, Aloxe3), is a potentially novel effector of the therapeutic fasting response. We show that Aloxe3 is activated during fasting, glucose withdrawal, or trehalose/trehalose analogue treatment. Hepatocyte-specific Aloxe3 expression reduced weight gain and hepatic steatosis in diet-induced and genetically obese (db/db) mouse models. Aloxe3 expression, moreover, enhanced basal thermogenesis and abrogated insulin resistance in db/db diabetic mice. Targeted metabolomics demonstrated accumulation of the PPARγ ligand 12-KETE in hepatocytes overexpressing Aloxe3. Strikingly, PPARγ inhibition reversed hepatic Aloxe3–mediated insulin sensitization, suppression of hepatocellular ATP production and oxygen consumption, and gene induction of PPARγ coactivator-1α (PGC1α) expression. Moreover, hepatocyte-specific PPARγ deletion reversed the therapeutic effect of hepatic Aloxe3 expression on diet-induced insulin intolerance. Aloxe3 is, therefore, a potentially novel effector of the hepatocellular fasting response that leverages both PPARγ-mediated and pleiotropic effects to augment hepatic and whole-host metabolism, and it is, thus, a promising target to ameliorate metabolic disease. The lipoxygenase ALOXE3 is an effector of the hepatic fasting response that improves insulin sensitivity by activating hepatic PPARγ.
Collapse
Affiliation(s)
| | | | | | - Hideji Fujiwara
- Department of Medicine, Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alicyn I Stothard
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, Michigan, USA
| | | | - Benjamin M Swarts
- Department of Chemistry & Biochemistry, Central Michigan University, Mt. Pleasant, Michigan, USA
| | - Brian J DeBosch
- Department of Pediatrics and.,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
30
|
Warner DR, Liu H, Miller ME, Ramsden CE, Gao B, Feldstein AE, Schuster S, McClain CJ, Kirpich IA. Dietary Linoleic Acid and Its Oxidized Metabolites Exacerbate Liver Injury Caused by Ethanol via Induction of Hepatic Proinflammatory Response in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2232-2245. [PMID: 28923202 DOI: 10.1016/j.ajpath.2017.06.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 01/22/2023]
Abstract
Alcoholic liver disease is a major human health problem leading to significant morbidity and mortality in the United States and worldwide. Dietary fat plays an important role in alcoholic liver disease pathogenesis. Herein, we tested the hypothesis that a combination of ethanol and a diet rich in linoleic acid (LA) leads to the increased production of oxidized LA metabolites (OXLAMs), specifically 9- and 13-hydroxyoctadecadienoic acids (HODEs), which contribute to a hepatic proinflammatory response exacerbating liver injury. Mice were fed unsaturated (with a high LA content) or saturated fat diets (USF and SF, respectively) with or without ethanol for 10 days, followed by a single binge of ethanol. Compared to SF+ethanol, mice fed USF+ethanol had elevated plasma alanine transaminase levels, enhanced hepatic steatosis, oxidative stress, and inflammation. Plasma and liver levels of 9- and 13-HODEs were increased in response to USF+ethanol feeding. We demonstrated that primarily 9-HODE, but not 13-HODE, induced the expression of several proinflammatory cytokines in vitro in RAW264.7 macrophages. Finally, deficiency of arachidonate 15-lipoxygenase, a major enzyme involved in LA oxidation and OXLAM production, attenuated liver injury and inflammation caused by USF+ethanol feeding but had no effect on hepatic steatosis. This study demonstrates that OXLAM-mediated induction of a proinflammatory response in macrophages is one of the potential mechanisms underlying the progression from alcohol-induced steatosis to alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Dennis R Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Huilin Liu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; College of Life Science, Jilin University, Changchun, China
| | - Matthew E Miller
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Christopher E Ramsden
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; National Institute on Aging, Baltimore, Maryland
| | - Bin Gao
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Ariel E Feldstein
- Division of Gastroenterology, Department of Pediatrics, University of California San Diego, San Diego, California
| | - Susanne Schuster
- Division of Gastroenterology, Department of Pediatrics, University of California San Diego, San Diego, California
| | - Craig J McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky; Robley Rex Veterans Medical Center, Louisville, Kentucky; Hepatobiology and Toxicology Program, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina A Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky; Hepatobiology and Toxicology Program, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
31
|
Semeraro ML, Glenn LM, Morris MA. The Four-Way Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer Cells in Type 1 Diabetes Progression. Front Endocrinol (Lausanne) 2017; 8:246. [PMID: 28993759 PMCID: PMC5622285 DOI: 10.3389/fendo.2017.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D) in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD) mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO), and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO), related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which contributes to increased interferon-gamma production and an imbalance in activating and inhibitory NK cell receptors, and may contribute to downstream autoimmune T cell responses. The work presented here outlines evidence from our lab, as well as published literature, supporting our hypothesis, including novel data.
Collapse
Affiliation(s)
- Michele L. Semeraro
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lindsey M. Glenn
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Margaret A. Morris
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
32
|
Shi H, Wang Q, Yang L, Xie S, Zhu H. IMM-H007, a new therapeutic candidate for nonalcoholic fatty liver disease, improves hepatic steatosis in hamsters fed a high-fat diet. FEBS Open Bio 2017; 7:1379-1391. [PMID: 28904866 PMCID: PMC5586352 DOI: 10.1002/2211-5463.12272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease in humans, is characterized by the accumulation of triacylglycerols (TGs) in hepatocytes. We tested whether 2′,3′,5′‐tri‐acetyl‐N6‐(3‐hydroxylaniline) adenosine (IMM‐H007) can eliminate hepatic steatosis in hamsters fed a high‐fat diet (HFD), as a model of NAFLD. Compared with HFD‐only controls, IMM‐H007 treatment significantly lowered serum levels of TG, total cholesterol, and free fatty acids (FFAs) in hamsters fed the HFD, with a prominent decrease in levels of serum transaminases and fasting insulin, without affecting fasting glucose levels. Moreover, 1H‐MRI and histopathological analyses revealed that hepatic lipid accumulation and fibrosis were improved by IMM‐H007 treatment. These changes were accompanied by improvement of insulin resistance and oxidative stress, and attenuation of inflammation. IMM‐H007 reduced expression of proteins involved in uptake of hepatic fatty acids and lipogenesis, and increased very low density lipoprotein secretion and expression of proteins responsible for fatty acid oxidation and autophagy. In studies in vivo, IMM‐H007 inhibited fatty acid import into hepatocytes and liver lipogenesis, and concomitantly stimulated fatty acid oxidation, autophagy, and export of hepatic lipids. These data suggest that IMM‐H007 resolves hepatic steatosis in HFD‐fed hamsters by the regulation of lipid metabolism. Thus, IMM‐H007 has therapeutic potential for NAFLD.
Collapse
Affiliation(s)
- Huijie Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study Institute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China.,Department of Pharmacology Shenzhen People's Hospital Second Clinical College Jinan University Shenzhen China
| | - Qingchun Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study Institute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Liu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study Institute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Shouxia Xie
- Department of Pharmacology Shenzhen People's Hospital Second Clinical College Jinan University Shenzhen China
| | - Haibo Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study Institute of Materia Medica Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| |
Collapse
|
33
|
Hepatic overproduction of 13-HODE due to ALOX15 upregulation contributes to alcohol-induced liver injury in mice. Sci Rep 2017; 7:8976. [PMID: 28827690 PMCID: PMC5567196 DOI: 10.1038/s41598-017-02759-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
Chronic alcohol feeding causes lipid accumulation and apoptosis in the liver. This study investigated the role of bioactive lipid metabolites in alcohol-induced liver damage and tested the potential of targeting arachidonate 15-lipoxygenase (ALOX15) in treating alcoholic liver disease (ALD). Results showed that chronic alcohol exposure induced hepatocyte apoptosis in association with increased hepatic 13-HODE. Exposure of 13-HODE to Hepa-1c1c7 cells induced oxidative stress, ER stress and apoptosis. 13-HODE also perturbed proteins related to lipid metabolism. HODE-generating ALOX15 was up-regulated by chronic alcohol exposure. Linoleic acid, but not ethanol or acetaldehyde, induced ALOX15 expression in Hepa-1c1c7 cells. ALOX15 knockout prevented alcohol-induced liver damage via attenuation of oxidative stress, ER stress, lipid metabolic disorder, and cell death signaling. ALOX15 inhibitor (PD146176) treatment also significantly alleviated alcohol-induced oxidative stress, lipid accumulation and liver damage. These results demonstrated that activation of ALOX15/13-HODE circuit critically mediates the pathogenesis of ALD. This study suggests that ALOX15 is a potential molecular target for treatment of ALD.
Collapse
|
34
|
Kwak HJ, Choi HE, Cheon HG. 5-LO inhibition ameliorates palmitic acid-induced ER stress, oxidative stress and insulin resistance via AMPK activation in murine myotubes. Sci Rep 2017; 7:5025. [PMID: 28694473 PMCID: PMC5504062 DOI: 10.1038/s41598-017-05346-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/02/2017] [Indexed: 01/10/2023] Open
Abstract
Leukotriene B4 (LTB4) production via the 5-lipoxygenase (5-LO) pathway contributes to the development of insulin resistance in adipose and hepatic tissues, but the role of LTB4 in skeletal muscle is relatively unknown. Here, the authors investigated the role of LTB4 in C2C12 myotubes in palmitic acid (PA)-induced ER stress, inflammation and insulin resistance. PA (750 μM) evoked lipotoxicity (ER stress, oxidative stress, inflammation and insulin resistance) in association with LTB4 production. 5-LO inhibition reduced all the lipotoxic effects induced by PA. On the other hand, PA did not induce cysteinyl leukotrienes (CysLTs), which themselves had no effect on ER stress and inflammation. The beneficial effects of 5-LO suppression from PA-induced lipotoxicity were related with AMPK activation. In ob/ob mice, once daily oral administration of zileuton (50, 100 mg/kg) for 5 weeks improved insulin resistance, increased AMPK phosphorylation, and reduced LTB4 and ER stress marker expression in skeletal muscle. These results show that 5-LO inhibition by either zileuton or 5-LO siRNA protects C2C12 myotubes from PA-induced lipotoxicity, at least partly via AMPK activation, and suggest that the in vivo insulin-sensitizing effects of zileuton are in part attributable to its direct action on skeletal muscle via LTB4 downregulation followed by AMPK activation.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- Department of Pharmacology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmacology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University College of Medicine, Incheon, 21999, Republic of Korea. .,Gachon Medical Research Institute, Gil Medical Center, Incheon, 21565, Republic of Korea.
| |
Collapse
|
35
|
Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z, Wang X, Murray AJ, Bellafante E, Virtue S, Vidal‐Puig A, Allison M, Davies SE, Koulman A, Vacca M, Griffin JL. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 2017; 65:1165-1180. [PMID: 27863448 PMCID: PMC5396354 DOI: 10.1002/hep.28953] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can progress from simple steatosis (i.e., nonalcoholic fatty liver [NAFL]) to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Currently, the driver for this progression is not fully understood; in particular, it is not known how NAFLD and its early progression affects the distribution of lipids in the liver, producing lipotoxicity and inflammation. In this study, we used dietary and genetic mouse models of NAFL and NASH and translated the results to humans by correlating the spatial distribution of lipids in liver tissue with disease progression using advanced mass spectrometry imaging technology. We identified several lipids with distinct zonal distributions in control and NAFL samples and observed partial to complete loss of lipid zonation in NASH. In addition, we found increased hepatic expression of genes associated with remodeling the phospholipid membrane, release of arachidonic acid (AA) from the membrane, and production of eicosanoid species that promote inflammation and cell injury. The results of our immunohistochemistry analyses suggest that the zonal location of remodeling enzyme LPCAT2 plays a role in the change in spatial distribution for AA-containing lipids. This results in a cycle of AA-enrichment in pericentral hepatocytes, membrane release of AA, and generation of proinflammatory eicosanoids and may account for increased oxidative damage in pericentral regions in NASH. CONCLUSION NAFLD is associated not only with lipid enrichment, but also with zonal changes of specific lipids and their associated metabolic pathways. This may play a role in the heterogeneous development of NAFLD. (Hepatology 2017;65:1165-1180).
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- MRC Human Nutrition ResearchCambridgeUnited Kingdom
| | | | - Tom Ashmore
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | | | | | - Xinzhu Wang
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Andrew J. Murray
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | | | - Sam Virtue
- Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of CambridgeCambridgeUnited Kingdom
| | - Antonio Vidal‐Puig
- Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael Allison
- Liver Unit, Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | - Susan E. Davies
- Department of HistopathologyCambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | | | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- MRC Human Nutrition ResearchCambridgeUnited Kingdom
- Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke's HospitalUniversity of CambridgeCambridgeUnited Kingdom
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- MRC Human Nutrition ResearchCambridgeUnited Kingdom
| |
Collapse
|
36
|
Altered DNA methylation associated with an abnormal liver phenotype in a cattle model with a high incidence of perinatal pathologies. Sci Rep 2016; 6:38869. [PMID: 27958319 PMCID: PMC5153653 DOI: 10.1038/srep38869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals.
Collapse
|
37
|
Anders LC, Yeo H, Kaelin BR, Lang AL, Bushau AM, Douglas AN, Cave M, Arteel GE, McClain CJ, Beier JI. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice. Toxicol Appl Pharmacol 2016; 311:34-41. [PMID: 27693805 PMCID: PMC5079761 DOI: 10.1016/j.taap.2016.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 02/09/2023]
Abstract
BACKGROUND Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. METHODS Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). RESULTS In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. CONCLUSIONS Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH.
Collapse
Affiliation(s)
- Lisanne C Anders
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Heegook Yeo
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Brenna R Kaelin
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Anna L Lang
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Adrienne M Bushau
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Amanda N Douglas
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Matt Cave
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Gavin E Arteel
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292, USA
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Juliane I Beier
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
| |
Collapse
|
38
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
39
|
Ivanov I, Kuhn H, Heydeck D. Structural and functional biology of arachidonic acid 15-lipoxygenase-1 (ALOX15). Gene 2015; 573:1-32. [PMID: 26216303 PMCID: PMC6728142 DOI: 10.1016/j.gene.2015.07.073] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, eucarya) and the human genome involves six functional LOX genes, which encode for six different LOX isoforms. One of these isoforms is ALOX15, which has first been described in rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 has extensively been characterized and its biological functions have been studied in a number of cellular in vitro systems as well as in various whole animal disease models. This review is aimed at summarizing the current knowledge on the protein-chemical, molecular biological and enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its implication in cellular physiology and in the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Charitéplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| |
Collapse
|
40
|
Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Sci Rep 2015; 5:12931. [PMID: 26263022 PMCID: PMC4531783 DOI: 10.1038/srep12931] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation and fibrosis, which might progress to cirrhosis. Human NASH is associated with metabolic syndrome (MS). Currently, rodent NASH models either lack significant fibrosis or MS. ApoE−/− mice are a MS model used in cardiovascular research. The aim of this work was to establish and characterise a novel mouse NASH model with significant fibrosis and MS. ApoE−/− and wild-type mice (wt) were fed either a western-diet (WD), methionine-choline-deficient-diet (MCD) or normal chow. Liver histology, RT-PCR, hepatic hydroxyproline content, triglycerides and cholesterol levels, and fasting glucose levels assessed hepatic steatosis, inflammation and fibrosis. Further, portal pressure was measured invasively, and kidney pathology was assessed by histology. ApoE−/− mice receiving WD showed abnormal glucose tolerance, hepatomegaly, weight gain and full spectrum of NASH including hepatic steatosis, fibrosis and inflammation, with no sign of renal damage. MCD-animals showed less severe liver fibrosis, but detectable renal pathological changes, besides weight loss and unchanged glucose tolerance. This study describes a murine NASH model with distinct hepatic steatosis, inflammation and fibrosis, without renal pathology. ApoE−/− mice receiving WD represent a novel and fast model with all characteristic features of NASH and MS well suitable for NASH research.
Collapse
|
41
|
Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 2015; 6:297-310. [PMID: 26298204 PMCID: PMC4556770 DOI: 10.1016/j.redox.2015.08.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022] Open
Abstract
Lipoxygenases (LOXs) are dioxygenases that catalyze the formation of corresponding hydroperoxides from polyunsaturated fatty acids such as linoleic acid and arachidonic acid. LOX enzymes are expressed in immune, epithelial, and tumor cells that display a variety of physiological functions, including inflammation, skin disorder, and tumorigenesis. In the humans and mice, six LOX isoforms have been known. 15-LOX, a prototypical enzyme originally found in reticulocytes shares the similarity of amino acid sequence as well as the biochemical property to plant LOX enzymes. 15-LOX-2, which is expressed in epithelial cells and leukocytes, has different substrate specificity in the humans and mice, therefore, the role of them in mammals has not been established. 12-LOX is an isoform expressed in epithelial cells and myeloid cells including platelets. Many mutations in this isoform are found in epithelial cancers, suggesting a potential link between 12-LOX and tumorigenesis. 12R-LOX can be found in the epithelial cells of the skin. Defects in this gene result in ichthyosis, a cutaneous disorder characterized by pathophysiologically dried skin due to abnormal loss of water from its epithelial cell layer. Similarly, eLOX-3, which is also expressed in the skin epithelial cells acting downstream 12R-LOX, is another causative factor for ichthyosis. 5-LOX is a distinct isoform playing an important role in asthma and inflammation. This isoform causes the constriction of bronchioles in response to cysteinyl leukotrienes such as LTC4, thus leading to asthma. It also induces neutrophilic inflammation by its recruitment in response to LTB4. Importantly, 5-LOX activity is strictly regulated by 5-LOX activating protein (FLAP) though the distribution of 5-LOX in the nucleus. Currently, pharmacological drugs targeting FLAP are actively developing. This review summarized these functions of LOX enzymes under pathophysiological conditions in mammals.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Ohkura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
42
|
Tersey SA, Bolanis E, Holman TR, Maloney DJ, Nadler JL, Mirmira RG. Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes. Mol Endocrinol 2015; 29:791-800. [PMID: 25803446 DOI: 10.1210/me.2015-1041] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The insulin producing islet β-cells have increasingly gained attention for their role in the pathogeneses of virtually all forms of diabetes. Dysfunction, de-differentiation, and/or death of β-cells are pivotal features in the transition from normoglycemia to hyperglycemia in both animal models of metabolic disease and humans. In both type 1 and type 2 diabetes, inflammation appears to be a central cause of β-cell derangements, and molecular pathways that modulate inflammation or the inflammatory response are felt to be prime targets of future diabetes therapy. The lipoxygenases (LOs) represent a class of enzymes that oxygenate cellular polyunsaturated fatty acids to produce inflammatory lipid intermediates that directly and indirectly affect cellular function and survival. The enzyme 12-LO is expressed in all metabolically active tissues, including pancreatic islets, and has received increasing attention for its role in promoting cellular inflammation in the setting of diabetes. Genetic deletion models of 12-LO in mice reveal striking protection from metabolic disease and its complications and an emerging body of literature has implicated its role in human disease. This review focuses on the evidence supporting the proinflammatory role of 12-LO as it relates to islet β-cells, and the potential for 12-LO inhibition as a future avenue for the prevention and treatment of metabolic disease.
Collapse
Affiliation(s)
- Sarah A Tersey
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Esther Bolanis
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Theodore R Holman
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - David J Maloney
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jerry L Nadler
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Raghavendra G Mirmira
- Departments of Pediatrics and the Center for Diabetes and Metabolic Diseases (S.A.T., R.G.M.), Biochemistry and Molecular Biology (E.B., R.G.M.), Medicine (R.G.M.), and Cellular and Integrative Physiology (R.G.M.), Indiana University School of Medicine, Indianapolis, Indiana 46202; Department of Chemistry and Biochemistry (T.R.H.), University of California, Santa Cruz, Santa Cruz, California 95064; National Center for Advancing Translational Sciences (D.J.M.), National Institutes of Health, Rockville, Maryland 20850; and Department of Medicine and the Strelitz Diabetes Center (J.L.N.), Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
43
|
Stöhr R, Mavilio M, Marino A, Casagrande V, Kappel B, Möllmann J, Menghini R, Melino G, Federici M. ITCH modulates SIRT6 and SREBP2 to influence lipid metabolism and atherosclerosis in ApoE null mice. Sci Rep 2015; 5:9023. [PMID: 25777360 DOI: 10.1038/srep09023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/04/2015] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the infiltration of pro-inflammatory macrophages into a lipid-laden plaque. ITCH is an E3 ubiquitin ligase that has been shown to polarize macrophages to an anti-inflammatory phenotype. We therefore investigated the effect of ITCH deficiency on the development of atherosclerosis. ApoE-/-ITCH-/- mice fed a western diet for 12 weeks showed increased circulating M2 macrophages together with a reduction in plaque formation. Bone marrow transplantation recreated the haemopoietic phenotype of increased circulating M2 macrophages but failed to affect plaque development. Intriguingly, the loss of ITCH lead to a reduction in circulating cholesterol levels through interference with nuclear SREBP2 clearance. This resulted in increased LDL reuptake through upregulation of LDL receptor expression. Furthermore, ApoE-/-ITCH-/- mice exhibit reduced hepatic steatosis, increased mitochondrial oxidative capacity and an increased reliance on fatty acids as energy source. We found that ITCH ubiquitinates SIRT6, leading to its breakdown, and thus promoting hepatic lipid infiltration through reduced fatty acid oxidation. The E3 Ubiquitin Ligase ITCH modulates lipid metabolism impacting on atherosclerosis progression independently from effects on myeloid cells polarization through control of SIRT6 and SREBP2 ubiquitination. Thus, modulation of ITCH may provide a target for the treatment of hypercholesterolemia and hyperlipidemia.
Collapse
Affiliation(s)
- R Stöhr
- Department of Systems Medicine University of Rome "Tor Vergata"
| | - M Mavilio
- Department of Systems Medicine University of Rome "Tor Vergata"
| | - A Marino
- Department of Systems Medicine University of Rome "Tor Vergata"
| | - V Casagrande
- Department of Systems Medicine University of Rome "Tor Vergata"
| | - B Kappel
- Department of Systems Medicine University of Rome "Tor Vergata"
| | - J Möllmann
- Medizinische Klinik I, University Hospital Aachen
| | - R Menghini
- Department of Systems Medicine University of Rome "Tor Vergata"
| | - G Melino
- 1] Department of Experimental Medicine and Surgery University of Rome "Tor Vergata" [2] Medical Research Council, Toxicology Unit, Leicester LE1 9HN UK
| | - M Federici
- 1] Department of Systems Medicine University of Rome "Tor Vergata" [2] Center for Atherosclerosis, University Hospital "Policlinico Tor Vergata", Rome
| |
Collapse
|
44
|
Pathophysiology of Portal Hypertension. PANVASCULAR MEDICINE 2015. [PMCID: PMC7153457 DOI: 10.1007/978-3-642-37078-6_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bases of our current knowledge on the physiology of the hepatic portal system are largely owed to the work of three pioneering vascular researchers from the sixteenth and the seventeenth centuries: A. Vesalius, W. Harvey, and F. Glisson. Vesalius is referred to as the founder of modern human anatomy, and in his influential book, De humani corporis fabrica libri septem, he elaborated the first anatomical atlas of the hepatic portal venous system (Vesalius 2013). Sir William Harvey laid the foundations of modern cardiovascular research with his Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus (Harvey 1931) in which he established the nature of blood circulation. Finally, F. Glisson characterized the gastrointestinal-hepatic vascular system (Child 1955). These physiological descriptions were later complemented with clinical observations. In the eighteenth and nineteenth centuries, Morgagni, Puckelt, Cruveilhier, and Osler were the first to make the connection between common hepatic complications – ascites, splenomegaly, and gastrointestinal bleeding – and obstruction of the portal system (Sandblom 1993). These were the foundations that allowed Gilbert, Villaret, and Thompson to establish an early definition of portal hypertension at the beginning of the twentieth century. In this period, Thompson performed the first direct measurement of portal pressure by laparotomy in some patients (Gilbert and Villaret 1906; Thompson et al. 1937). Considering all these milestones, and paraphrasing Sir Isaac Newton, if hepatologists have seen further, it is by standing on the shoulders of giants. Nowadays, our understanding of the pathogenesis of portal hypertension has largely improved thanks to the progress in preclinical and clinical research. However, this field is ever-changing and hepatologists are continually identifying novel pathological mechanisms and developing new therapeutic strategies for this clinical condition. Hence, the aim of this chapter is to summarize the current knowledge about this clinical condition.
Collapse
|
45
|
Lazic M, Inzaugarat ME, Povero D, Zhao IC, Chen M, Nalbandian M, Miller YI, Cherñavsky AC, Feldstein AE, Sears DD. Reduced dietary omega-6 to omega-3 fatty acid ratio and 12/15-lipoxygenase deficiency are protective against chronic high fat diet-induced steatohepatitis. PLoS One 2014; 9:e107658. [PMID: 25251155 PMCID: PMC4175074 DOI: 10.1371/journal.pone.0107658] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/13/2014] [Indexed: 02/07/2023] Open
Abstract
Obesity is associated with metabolic perturbations including liver and adipose tissue inflammation, insulin resistance, and type 2 diabetes. Omega-6 fatty acids (ω6) promote and omega-3 fatty acids (ω3) reduce inflammation as they can be metabolized to pro- and anti-inflammatory eicosanoids, respectively. 12/15-lipoxygenase (12/15-LO) enzymatically produces some of these metabolites and is induced by high fat (HF) diet. We investigated the effects of altering dietary ω6/ω3 ratio and 12/15-LO deficiency on HF diet-induced tissue inflammation and insulin resistance. We examined how these conditions affect circulating concentrations of oxidized metabolites of ω6 arachidonic and linoleic acids and innate and adaptive immune system activity in the liver. For 15 weeks, wild-type (WT) mice were fed either a soybean oil-enriched HF diet with high dietary ω6/ω3 ratio (11∶1, HFH), similar to Western-style diet, or a fat Kcal-matched, fish oil-enriched HF diet with a low dietary ω6/ω3 ratio of 2.7∶1 (HFL). Importantly, the total saturated, monounsaturated and polyunsaturated fat content was matched in the two HF diets, which is unlike most published fish oil studies in mice. Despite modestly increased food intake, WT mice fed HFL were protected from HFH-diet induced steatohepatitis, evidenced by decreased hepatic mRNA expression of pro-inflammatory genes and genes involved in lymphocyte homing, and reduced deposition of hepatic triglyceride. Furthermore, oxidized metabolites of ω6 arachidonic acid were decreased in the plasma of WT HFL compared to WT HFH-fed mice. 12/15-LO knockout (KO) mice were also protected from HFH-induced fatty liver and elevated mRNA markers of inflammation and lymphocyte homing. 12/15-LOKO mice were protected from HFH-induced insulin resistance but reducing dietary ω6/ω3 ratio in WT mice did not ameliorate insulin resistance or adipose tissue inflammation. In conclusion, lowering dietary ω6/ω3 ratio in HF diet significantly reduces steatohepatitis.
Collapse
Affiliation(s)
- Milos Lazic
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | | | - Davide Povero
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Iris C. Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Mark Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Madlena Nalbandian
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yury I. Miller
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | | | - Ariel E. Feldstein
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Dorothy D. Sears
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Bhattacharya A, Hamilton R, Jernigan A, Zhang Y, Sabia M, Rahman MM, Li Y, Wei R, Chaudhuri A, Van Remmen H. Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy. Free Radic Biol Med 2014; 67:30-40. [PMID: 24121057 DOI: 10.1016/j.freeradbiomed.2013.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
Abstract
Skeletal muscle atrophy is a debilitating outcome of a number of chronic diseases and conditions associated with loss of muscle innervation by motor neurons, such as aging and neurodegenerative diseases. We previously reported that denervation-induced loss of muscle mass is associated with activation of cytosolic phospholipase A2 (cPLA2), the rate-limiting step for the release of arachidonic acid from membrane phospholipids, which then acts as a substrate for metabolic pathways that generate bioactive lipid mediators. In this study, we asked whether 5- and 12/15-lipoxygenase (LO) lipid metabolic pathways downstream of cPLA2 mediate denervation-induced muscle atrophy in mice. Both 5- and 12/15-LO were activated in response to surgical denervation; however, 12/15-LO activity was increased ~2.5-fold versus an ~1.5-fold increase in activity of 5-LO. Genetic and pharmacological inhibition of 12/15-LO (but not 5-LO) significantly protected against denervation-induced muscle atrophy, suggesting a selective role for the 12/15-LO pathway in neurogenic muscle atrophy. The activation of the 12/15-LO pathway (but not 5-LO) during muscle atrophy increased NADPH oxidase activity, protein ubiquitination, and ubiquitin-proteasome-mediated proteolytic degradation. In conclusion, this study reveals a novel pathway for neurogenic muscle atrophy and suggests that 12/15-LO may be a potential therapeutic target in diseases associated with loss of innervation and muscle atrophy.
Collapse
Affiliation(s)
- Arunabh Bhattacharya
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA.
| | - Ryan Hamilton
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Amanda Jernigan
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Yiqiang Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marian Sabia
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Md M Rahman
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yan Li
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Rochelle Wei
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | - Asish Chaudhuri
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
47
|
Hoffman P, Rauová D, Bezáková L, Obložinský M, Mikuš P. HPLC method for determination of lipoxygenase positional specific products. J Pharm Biomed Anal 2013; 84:53-8. [DOI: 10.1016/j.jpba.2013.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
|
48
|
Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94. [PMID: 23567086 DOI: 10.1016/j.jhep.2013.03.033] [Citation(s) in RCA: 758] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/20/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes.
Collapse
|
49
|
Cole BK, Lieb DC, Dobrian AD, Nadler JL. 12- and 15-lipoxygenases in adipose tissue inflammation. Prostaglandins Other Lipid Mediat 2013; 104-105:84-92. [PMID: 22951339 PMCID: PMC3526691 DOI: 10.1016/j.prostaglandins.2012.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 02/06/2023]
Abstract
The lipoxygenases (LOs) are principal enzymes involved in the oxidative metabolism of polyunsaturated fatty acids, including arachidonic acid. 12- and 15-LO and their lipid metabolites have been implicated in the development of insulin resistance and diabetes. Adipose tissue, and in particular visceral adipose tissue, plays a primary role in the development of the inflammation seen in these conditions. 12- and 15-LO and their lipid metabolites act as upstream regulators of many of the cytokines involved in the inflammatory response in adipose tissue. While the role that 12- and 15-LO play in chronically inflamed adipose tissue is becoming clearer, there are still many questions that remain unanswered regarding their activation, signaling pathways, and roles in healthy fat. 12- and 15-LO also generate products with anti-inflammatory properties that are under investigation. Therefore, 12- and 15-LO have the potential to be very important targets for therapeutics aimed at reducing insulin resistance and the comorbid conditions associated with obesity.
Collapse
Affiliation(s)
- Banumathi K. Cole
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - David C. Lieb
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| | - Anca D. Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA
| | - Jerry L. Nadler
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA
| |
Collapse
|
50
|
Hardwick JP, Eckman K, Lee YK, Abdelmegeed MA, Esterle A, Chilian WM, Chiang JY, Song BJ. Eicosanoids in metabolic syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:157-266. [PMID: 23433458 DOI: 10.1016/b978-0-12-404717-4.00005-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism. The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|