1
|
Geng Y, Chen Z, Luo T, Liu Y, Kong S, Yan X, Bai H, Wang Y. Innovative construction and application of bile duct organoids: Unraveling the complexity of bile duct diseases and potential therapeutic strategies. Cancer Lett 2025; 618:217619. [PMID: 40074068 DOI: 10.1016/j.canlet.2025.217619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential. BDOs can accurately simulate the physiological structure and function of bile ducts, making them valuable tools for in-vitro biliary disease research. Here, we review the development of BDO models, focusing on stem cell-derived organoids and tissue-derived organoids. We also illustrate the role of cultivation strategies and extracellular scaffolds in supporting organoid growth and stability, including the influence of cellular components of the microenvironment and physicochemical factors. Furthermore, we discuss the applications of BDOs in biliary development, disease modeling, regenerative medicine, and drug screening. Additionally, we emphasize the transformative potential in BDO biobanks and personalized medicine, which helps to pave the way for innovative therapeutic strategies and personalized medicine. Finally, we summarize the current and prospective advancements in BDO technologies, highlighting the integration of emerging technologies such as artificial intelligence, 3D bioprinting, and organoid-on-chip systems. These technologies hold great promise for significantly enhancing both clinical and research applications in the field of biliary diseases.
Collapse
Affiliation(s)
- Yadi Geng
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China; School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ziye Chen
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Tianzi Luo
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Yakun Liu
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Siming Kong
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Hui Bai
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Ware AP, Satyamoorthy K, Paul B. CmirC update 2024: a multi-omics database for clustered miRNAs. Funct Integr Genomics 2024; 24:133. [PMID: 39085735 PMCID: PMC11291601 DOI: 10.1007/s10142-024-01410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Clustered miRNAs consist of two or more miRNAs transcribed together and may coordinately regulate gene expression. Differential expression of clustered miRNAs is found to be controlled by crosstalk of genetic or epigenetic mechanisms. It has been demonstrated that clustered miRNA expression patterns greatly impact cancer cell progression. With the CmirC initiative, we initially developed a comprehensive database to identify copy number variation (CNV) driven clustered miRNAs in cancer. Now, we extended the analysis and identified three miRNAs, mir-96, mir-183, and mir-21, were found to be significantly upregulated in 17 cancer types. Further, CmirC is now upgraded to determine the impact of changes in the DNA methylation status at clustered miRNAs by utilizing The Cancer Genomic Atlas (TCGA) cancer datasets. We examined specific methylation datasets from 9,639 samples, pinpointing 215,435 methylation sites and 27,949 CpG islands with miRNA cluster information. The integrated analysis identified 34 clusters exhibiting differentially methylated CpG sites across 14 cancer types. Furthermore, we determined that CpG islands in the promoter region of 20 miRNA clusters could play a regulatory role. Along with ensuring a straightforward and convenient user experience, CmirC has been updated with improved data browsing and analysis functionalities, as well as enabled hyperlinks to literature and miR-cancer databases. The enhanced version of CmirC is anticipated to play an important role in providing information on the regulation of clustered miRNA expression, and their targeted oncogenes and tumor suppressors. The newly updated version of CmirC is available at https://slsdb.manipal.edu/cmirclust/ .
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Institute of Cardiovascular Regeneration, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt Am Main, 60590, Germany
| | - Kapaettu Satyamoorthy
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Patil N, Abdelrahim OG, Leupold JH, Allgayer H. JAK1 Is a Novel Target of Tumor- and Invasion-Suppressive microRNA 494-5p in Colorectal Cancer. Cancers (Basel) 2023; 16:24. [PMID: 38201452 PMCID: PMC10778350 DOI: 10.3390/cancers16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
MiR-494-5p expression has been suggested to be associated with colorectal cancer (CRC) and its metastases in our previous studies. However, functional investigations on the molecule-mediating actions of this miR in CRC are lacking. In silico analysis in the present study revealed a putative binding sequence within the 3'UTR of JAK1. Overexpression of miR-494-5p in cultured CRC significantly reduced the luciferase activity of a reporter plasmid containing the wild-type JAK1-3'UTR, which was abolished by seed sequence mutation. Furthermore, the overexpression of miR-494-5p in CRC cell lines led to a significant reduction in JAK1 expression, proliferation, in vitro migration, and invasion. These effects were abolished by co-transfection with a specific double-stranded RNA that inhibits endogenous miR-494-5p. Moreover, IL-4-induced migration, invasion, and phosphorylation of JAK1, STAT6, and AKT proteins were reduced after an overexpression of this miR, suggesting that this miR affects one of the most essential pathways in CRC. A Kaplan-Meier plotter analysis revealed that patients with high JAK1 expression show reduced survival. Together, these data suggest that miR-494-5p physically inhibits the expression of JAK1 at the translational level as well as in migration and invasion, supporting the hypothesis of miR-494-5p as an early tumor suppressor and inhibitor of early steps of metastasis in CRC.
Collapse
Affiliation(s)
| | | | | | - Heike Allgayer
- Correspondence: ; Tel.: +49-(0)621-383-71630 or +49-(0)621-383-71635; Fax: +49-(0)621-383-71631
| |
Collapse
|
4
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
5
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Khaleel LA, Abdulameer SJ, Hadi AM, Merza MS, Zabibah RS, Ali A. Small but mighty: How microRNAs drive the deadly progression of cholangiocarcinoma. Pathol Res Pract 2023; 247:154565. [PMID: 37267725 DOI: 10.1016/j.prp.2023.154565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Cholangiocarcinoma, also referred to as CCA, is a highly complex epithelial malignancy that can impact various organs and regions of the body, including the perihilar, intrahepatic, and distal organs. This cancer is characterized by the malignant growth of the epithelial lining in the bile ducts, which spans the entire biliary tree and is accountable for disease progression. The current state of affairs concerning CCA is concerning, with poor prognoses, high recurrence rates, and dismal long-term survival rates significantly burden healthcare facilities worldwide. Studies have identified numerous signaling pathways and molecules involved in the development and progression of CCA, including microRNAs, an important class of non-coding RNAs that have the ability to modulate these cellular signaling pathways significantly. In addition, microRNAs may serve as an innovative target for developing novel therapeutic approaches for CCA. In this review, we explore the underlying mechanisms and signaling pathways implicated in the initiation and progression of CCA, focusing on the future direction of utilizing microRNAs as a promising treatment option for this challenging malignancy.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-maarif University College, Al-Anbar, Iraq
| | | | - Luay Ali Khaleel
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Muna S Merza
- Prosthetic dental Techniques Department, Al-Mustaqbal university College, Babylon, 51001, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Ali
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
6
|
Micro-RNA in Cholangiocarcinoma: Implications for Diagnosis, Prognosis, and Therapy. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3020009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile-duct cancers (BDC) are a group of solid tumors arising from the biliary tree. Despite their classification as rare cancers, the incidence of BDC is increasing worldwide. Poor prognosis is a common feature of this type of cancer and is mainly determined by the following factors: late diagnosis, lack of effective therapeutic approaches, and resistance to conventional treatments. In the past few years, next-generation sequencing technologies has allowed us to study the genome, exome, and transcriptome of BDC deeper, revealing a previously underestimated class of RNA: the noncoding RNA (ncRNA). MicroRNAs (miRNAs) are small ncRNAs that play an important regulatory role in gene expression. The aberrant expression of miRNAs and their pivotal role as oncogenes or tumor suppressors in biliary carcinogenesis has been widely described in BDC. Due to their ability to regulate multiple gene networks, miRNAs are involved in all cancer hallmarks, including sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing/accessing vasculature, activating invasion and metastasis, reprogramming cellular metabolism, and avoiding immune destruction. Their use as diagnostic, prognostic, and predictive biomarkers has been widely explored in several human cancers, including BDC. Furthermore, miRNA-based therapeutic strategies are currently the subject of numerous clinical trials that are providing evidence of their efficacy as potent anticancer agents. In this review, we will provide a detailed update of miRNAs affecting BDC, discussing their regulatory function in processes underlying the molecular pathology of BDC. Finally, an overview of their potential use as biomarkers or therapeutic tools in BDC will be further addressed.
Collapse
|
7
|
Ofoeyeno N, Ekpenyong E, Braconi C. Pathogenetic Role and Clinical Implications of Regulatory RNAs in Biliary Tract Cancer. Cancers (Basel) 2020; 13:E12. [PMID: 33375055 PMCID: PMC7792779 DOI: 10.3390/cancers13010012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Biliary tract cancer (BTC) is characterised by poor prognosis and low overall survival in patients. This is generally due to minimal understanding of its pathogenesis, late diagnosis and limited therapeutics in preventing or treating BTC patients. Non-coding RNA (ncRNA) are small RNAs (mRNA) that are not translated to proteins. ncRNAs were considered to be of no importance in the genome, but recent studies have shown they play essential roles in biology and oncology such as transcriptional repression and degradation, thus regulating mRNA transcriptomes. This has led to investigations into the role of ncRNAs in the pathogenesis of BTC, and their clinical implications. In this review, the mechanisms of action of ncRNA are discussed and the role of microRNAs in BTC is summarised. The scope of this review will be limited to miRNA as they have been shown to play the most significant roles in BTC progression. There is huge potential in miRNA-based biomarkers and therapeutics in BTC, but more studies, research and technological advancements are required before it can be translated into clinical practice for patients.
Collapse
Affiliation(s)
- Nduka Ofoeyeno
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | | | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Beatson West of Scotland Cancer Centre, Glasgow G12 Y0N, UK
| |
Collapse
|
8
|
Novel miRNA Predicts Survival and Prognosis of Cholangiocarcinoma Based on RNA-seq Data and In Vitro Experiments. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5976127. [PMID: 33490245 PMCID: PMC7787740 DOI: 10.1155/2020/5976127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has demonstrated that microRNAs (miRNAs or miRs) play an important role in the diagnosis and prognosis of tumors. In the case of cholangiocarcinoma (CCA), miRNAs may serve as potential tumor biomarkers and therapeutic targets. Based on The Cancer Genome Atlas (TCGA) database, fold change >2 was used to screen out miRNAs with differential expression in patients with CCA. Univariate and multivariate Cox regression analyses identified miR-3913-5p as an independent prognostic factor in patients with CCA. Overall survival and progression-free survival of patients with CCA were analyzed based on clinical data from TCGA database. In addition, four datasets were combined to identify 21 possible target genes of miR-3913, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to predict potential pathways and functions of the molecular target genes. Subsequently, the miRNAs associated with survival were selected to build the miRNA-mRNA expression network. Furthermore, the differential expression of miR-3913-5p in CCA cells and normal bile duct epithelial cells was confirmed through in vitro experiments. The possible target genes (RNF24 and SIGLEC) were further screened by reverse transcription-quantitative PCR. In addition, functional experiments showed that miR-3913-5p might be an oncogene that affects the proliferation and migration of CCA cells by inhibiting and mimicking miR-3913-5p. Therefore, miR-3913 may serve as a biomarker for the diagnosis and prognosis of patients with CCA.
Collapse
|
9
|
In Vivo Models for Cholangiocarcinoma-What Can We Learn for Human Disease? Int J Mol Sci 2020; 21:ijms21144993. [PMID: 32679791 PMCID: PMC7404171 DOI: 10.3390/ijms21144993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) comprises a heterogeneous group of primary liver tumors. They emerge from different hepatic (progenitor) cell populations, typically via sporadic mutations. Chronic biliary inflammation, as seen in primary sclerosing cholangitis (PSC), may trigger CCA development. Although several efforts were made in the last decade to better understand the complex processes of biliary carcinogenesis, it was only recently that new therapeutic advances have been achieved. Animal models are a crucial bridge between in vitro findings on molecular or genetic alterations, pathophysiological understanding, and new therapeutic strategies for the clinic. Nevertheless, it is inherently difficult to recapitulate simultaneously the stromal microenvironment (e.g., immune-competent cells, cholestasis, inflammation, PSC-like changes, fibrosis) and the tumor biology (e.g., mutational burden, local growth, and metastatic spread) in an animal model, so that it would reflect the full clinical reality of CCA. In this review, we highlight available data on animal models for CCA. We discuss if and how these models reflect human disease and whether they can serve as a tool for understanding the pathogenesis, or for predicting a treatment response in patients. In addition, open issues for future developments will be discussed.
Collapse
|
10
|
Lv Y, Wang Z, Zhao K, Zhang G, Huang S, Zhao Y. Role of noncoding RNAs in cholangiocarcinoma (Review). Int J Oncol 2020; 57:7-20. [PMID: 32319584 DOI: 10.3892/ijo.2020.5047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/16/2020] [Indexed: 11/06/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour originating from biliary epithelial cells, and is increasing in incidence. Radical surgery is the main treatment. However, the pathogenesis of CCA is unclear. Noncoding RNAs (ncRNAs) are non‑protein‑coding RNAs produced by genomic transcription that include microRNAs (miRNAs), circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs). They play important roles in gene expression, epigenetic modification, cell proliferation, differentiation and reproduction. ncRNAs also serve key roles in cancer development. Numerous studies have been carried out on ncRNAs, and associated publications have shown that ncRNAs are closely associated with the physiological and pathological mechanisms of CCA. The findings of these studies can provide new insights into the diagnosis, treatment and prognosis of CCA. The present review summarizes the pathophysiological mechanisms of different types of ncRNAs, including miRNAs, circRNAs and lncRNAs in CCA, and their applications in the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Zhenzhen Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Kun Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Guokun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Shuai Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| | - Yongfu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 476100, P.R. China
| |
Collapse
|
11
|
Shams R, Asadzadeh Aghdaei H, Behmanesh A, Sadeghi A, Zali M, Salari S, Padrón JM. MicroRNAs Targeting MYC Expression: Trace of Hope for Pancreatic Cancer Therapy. A Systematic Review. Cancer Manag Res 2020; 12:2393-2404. [PMID: 32308478 PMCID: PMC7132265 DOI: 10.2147/cmar.s245872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and a major health problem worldwide. There were no major advances in conventional treatments in inhibiting tumor progression and increasing patient survival time. In order to suppress mechanisms responsible for tumor cell development such as those with oncogenic roles, more advanced therapeutic strategies should be sought. One of the most important oncogenes of pancreatic cancer is the MYC gene. The overexpression of MYC can activate many tumorigenic processes such as cell proliferation and pancreatic cancer cell invasion. MiRNAs are important molecules that are confirmed by targeting mRNA transcripts to regulate the expression of the MYC gene. Therefore, restoring MYC-repressing miRNAs expression tends to be an effective method of treating MYC-driven cancers. Objective The purpose of this study was to identify all validated microRNAs targeting C-MYC expression to inhibit PDAC progression by conducting a systematic review. Methods In this systematic review study, the papers published between 2000 and 2020 in major online scientific databases including PubMed, Scopus, and Web of Science were screened, following inclusion and exclusion criteria. We extracted all the experimental studies that showed miRNAs could target the expression of the MYC gene in PDAC. Results Eight papers were selected from a total of 89 papers. We found that six miRNAs (Let-7a, miR-145, miR-34a, miR-375, miR-494, and miR-148a) among the selected studies were validated for targeting MYC gene and three of them confirmed Let-7a as a direct MYC expression regulator in PC cells. Finally, we summarized the latest shreds of evidence of experimentally validated miRNAs targeting the MYC gene with respect to PDAC’s therapeutic potential. Conclusion Restoring the expression of MYC-repressing miRNAs tends to be an effective way to treat MYC-driven cancers such as PDAC. Several miRNAs have been proposed to target this oncogene via bioinformatics tools, but only a few have been experimentally validated for pancreatic cancer cells and models. Further studies should be conducted to find the interaction network of miRNA-MYC to develop more successful therapeutic strategies for PC, using the synergistic effects of these miRNAs.
Collapse
Affiliation(s)
- Roshanak Shams
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Behmanesh
- Student Research Committee, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadareza Zali
- Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de la Laguna, La Laguna, Spain
| |
Collapse
|
12
|
Jishnu PV, Jayaram P, Shukla V, Varghese VK, Pandey D, Sharan K, Chakrabarty S, Satyamoorthy K, Kabekkodu SP. Prognostic role of 14q32.31 miRNA cluster in various carcinomas: a systematic review and meta-analysis. Clin Exp Metastasis 2020; 37:31-46. [PMID: 31813069 DOI: 10.1007/s10585-019-10013-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022]
Abstract
Deregulated miR-379/miR-656 cluster expression is considered as important for carcinogenesis and can be used as a potential prognostic marker. Hence, the meta-analysis was conducted to test the utility of miR-379/miR-656 cluster as a prognostic marker in various cancers. A literature search was performed using Web of Science, PubMed and Cochrane Library to obtain relevant studies and were subjected to various subgroup and bioinformatics analyses. Selected twenty-three studies contained 13 cancer types comprising of 3294 patients from 7 nations. Univariate and multivariate data showed an association of high expression of miRNAs with the poor prognosis of cancer patients (p < 0.001). The subgroup analysis showed that lung cancer, breast cancer and papillary renal cell carcinoma (p < 0.001) have a negative association with the survival of patients. Our study is the first meta-analysis showing the association of miR-379/miR-656 cluster expression and overall survival, suggesting its potential as a prognostic indicator in multiple cancers.
Collapse
Affiliation(s)
- Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Deeksha Pandey
- Department of Obstetrics, & Gynaecology, Kasturba Medical College, Manipal, MAHE, Manipal, India
| | - Krishna Sharan
- Department of Radiotherapy Oncology, Kasturba Medical College, Manipal, MAHE, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
13
|
Zhao H, Li G, Zhang S, Li F, Wang R, Tao Z, Ma Q, Han Z, Yan F, Fan J, Li L, Ji X, Luo Y. Inhibition of histone deacetylase 3 by MiR-494 alleviates neuronal loss and improves neurological recovery in experimental stroke. J Cereb Blood Flow Metab 2019; 39:2392-2405. [PMID: 31510852 PMCID: PMC6893973 DOI: 10.1177/0271678x19875201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HDAC3 is an essential negative regulator of neuronal plasticity and memory formation. Although a chemical inhibitor has been invented, little is known about its endogenous modulators. We explored whether miR-494 affects HDAC3-mediated neuronal injury following acute ischemic stroke. A substantial increase in plasma miR-494 was detected in AIS patients and was positively associated with the mRS at one year after symptom onset. The miR-494 levels were transiently increased in the infarcted brain tissue of mice. In contrast, miR-494 levels were reduced in neurons but increased in the medium after OGD. Intracerebroventricular injection of miR-494 agomir reduced neuronal apoptosis and infarct volume at the acute stage of MCAO, promoted axonal plasticity and long-term outcomes at the recovery stage, suppressed neuronal ataxin-3 and HDAC3 expression and increased acetyl-H3K9 levels in the ipsilateral hemisphere. In vitro studies confirmed that miR-494 posttranslationally inhibited HDAC3 in neurons and prevented OGD-induced neuronal axonal injury. The HDAC3 inhibitor increased acetyl-H3K9 levels and reversed miR-494 antagomir-aggravated acute cerebral ischemic injury, as well as brain atrophy and long-term functional recovery. These results suggest that miR-494 may serve as a predictive biomarker of functional outcomes in AIS patients and a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Xunming Ji
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Xin Y, He X, Zhao W, Zhan M, Li Y, Xiao J, He K, Lu L. LncRNA PCAT6 increased cholangiocarcinoma cell proliferation and invasion via modulating miR-330-5p. Am J Transl Res 2019; 11:6185-6195. [PMID: 31632586 PMCID: PMC6789233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) act important roles in several tumors including cholangiocarcinoma. However, the expression pattern and function of PCAT6 in intrahepatic cholangiocarcinoma remains unknown. In our research, we showed that the PCAT6 expression level was upregulated in intrahepatic cholangiocarcinoma cell lines. The expression of PCAT6 in intrahepatic cholangiocarcinoma tissues than that in noncancerous samples and the higer expression of PCAT6 was associated with advanced stage. Ectopic expression of PCAT6 induced cell proliferation and invasion in cholangiocarcinoma cell. Moreover, we demonstrated that PCAT6 interacts with miR-330-5p by directly targeting and PCAT6 overexpression inhibited the expression of miR-330-5p in the ICC-9810 cell. We also showed that the expression level of miR-330-5p in intrahepatic cholangiocarcinoma samples was downregulated compared to noncancerous tissues. Interesting, we proved that the miR-330-5p expression was negative correlated with PCAT6 expression in intrahepatic cholangiocarcinoma. Ectopic expression of miR-330-5p suppressed cell proliferation and invasion. Finally, we showed that PCAT6 induced cell proliferation and invasion by decreasing miR-330-5p in cholangiocarcinoma cell. Taken together, these data suggested that lncRNA PCAT6 was an oncogenic player in the development of intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Yongjie Xin
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, P. R. China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Xu He
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, P. R. China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Jing Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Southern Medical UniversityHaizhu District, Guangzhou, Guangdong, P. R. China
- Department of Biochemistry, Zhongshan School of MedicineGuangzhou, Guangdong, P. R. China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen UniversityGuangzhou 510080, Guangdong, P. R. China
| | - Ligong Lu
- Department of Interventional Oncology, Guangdong Provincial Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou, Guangdong, P. R. China
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan UniversityZhuhai 519000, Guangdong, P. R. China
| |
Collapse
|
15
|
Ghorbanhosseini SS, Nourbakhsh M, Zangooei M, Abdolvahabi Z, Bolandghamtpour Z, Hesari Z, Yousefi Z, Panahi G, Meshkani R. MicroRNA-494 induces breast cancer cell apoptosis and reduces cell viability by inhibition of nicotinamide phosphoribosyltransferase expression and activity. EXCLI JOURNAL 2019; 18:838-851. [PMID: 31645844 PMCID: PMC6806255 DOI: 10.17179/excli2018-1748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/22/2019] [Indexed: 01/22/2023]
Abstract
Breast cancer (BC) is the most prevalent cause of cancer-related death in women worldwide. BC is frequently associated with elevated levels of nicotinamide phosphoribosyltransferase (NAMPT) in blood and tumor tissue. MicroRNA-494 (miR-494) has been described to play key anti-tumor roles in human cancers. The aim of the present study was to investigate the inhibitory effect of miR-494 on NAMPT-mediated viability of BC cells. In this experimental study, MCF-7 and MDA-MB-231 cells were cultured and then transfected with miR-494 mimic, miR-494 inhibitor and their negative controls. The mRNA and protein expression of NAMPT were assessed using real-time PCR and Western blotting, respectively. Subsequently, intracellular NAD levels were determined by a colorimetric method. Finally, cell apoptosis was examined by flow cytometry. Bioinformatics evaluations predicted NAMPT as a miR-494 target gene which was confirmed by luciferase reporter assay. Our results showed an inverse relationship between the expression of miR-494 and NAMPT in both MCF-7 and MDA-MB-231 cell lines. miR-494 significantly down-regulated NAMPT mRNA and protein expression and was also able to reduce the cellular NAD content. Cell viability was decreased following miR-494 up-regulation. In addition, apoptosis was induced in MCF-7 and MDA-MB-231 cells by miR-494 mimic. Our findings indicate that miR-494 acts as a tumor suppressor and has an important effect in suppressing the growth of BC cells through NAMPT. Therefore, miR-494 might be considered as a novel therapeutic target for the management of human breast cancer.
Collapse
Affiliation(s)
| | - Mitra Nourbakhsh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Zangooei
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Abdolvahabi
- Department of Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Bolandghamtpour
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, IUMS, Tehran, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zeynab Yousefi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Qin W, Liu L, Wang Y, Wang Z, Yang A, Wang T. Mir-494 inhibits osteoblast differentiation by regulating BMP signaling in simulated microgravity. Endocrine 2019; 65:426-439. [PMID: 31129811 DOI: 10.1007/s12020-019-01952-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/05/2019] [Indexed: 12/24/2022]
Abstract
Although the BMPR-SMAD-RUNX2 signaling pathway plays widely recognized roles in BMP-induced osteogenesis, factors regulating this pathway remain to be defined. In this study, we used simulated microgravity models, which represent mechanical unloading conditions, to detect miRNAs that function in osteoblast differentiation. We found that miR-494 was persistently increased in C2C12 cells subjected to clinorotation conditions and in osteoblasts isolated from tail-suspended rats. Experiments showed that the overexpression of miR-494 correlated with a marked reduction in osteoblast differentiation genes and a decrease in osteogenesis in BMP2-induced osteogenetic differentiation. In contrast, the inhibition of miR-494 promoted BMP2-induced osteogenesis and partially rescued osteoblast differentiation disorder under simulated microgravity conditions. Mechanism studies revealed that miR-494 directly targeted BMPR2 and RUNX2, both of which play vital roles in the BMPR-SMAD-RUNX2 signaling pathway. More importantly, we demonstrated a positive feedback loop between miR-494 and MYOD, a critical transcription factor for myogenesis, indicating that miR-494 may participate in deciding cell fate of the multipotent mesenchymal stem cells (MSCs). Collectively, our study reveals an important role for miR-494 in regulating osteogenesis, the identification of which not only clarifies a regulator of BMP2-induced osteoblast differentiation, but also offers a possible strategy for preventing bone loss under microgravity conditions.
Collapse
Affiliation(s)
- WeiWei Qin
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032, Xi'an, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, 710038, Xi'an, China
| | - YongChun Wang
- Department of Aerospace Biodynamics, School of Aerospace Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Zhe Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - AnGang Yang
- Department of Immunology, Fourth Military Medical University, 710032, Xi'an, China.
| | - Tao Wang
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
17
|
Hu ZG, Zheng CW, Su HZ, Zeng YL, Lin CJ, Guo ZY, Zhong FD, Yuan GD, He SQ. MicroRNA-329-mediated PTTG1 downregulation inactivates the MAPK signaling pathway to suppress cell proliferation and tumor growth in cholangiocarcinoma. J Cell Biochem 2019; 120:9964-9978. [PMID: 30582202 DOI: 10.1002/jcb.28279] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Cholangiocarcinoma (CCA) is a severe malignancy usually producing a poor prognosis and high mortality rate. MicroRNAs (miRNAs) have been reported in association with CCA; however, the role miR-329 plays in the CCA condition still remains unclear. Therefore, this study was conducted to explore the underlying mechanism of which miR-329 is influencing the progression of CCA. This work studied the differential analysis of the expression chips of CCA obtained from the Gene Expression Omnibus database. Next, to determine both the expression and role of pituitary tumor transforming gene-1 (PTTG1) in CCA, the miRNAs regulating PTTG1 were predicted. In the CCA cells that had been intervened with miR-329 upregulation or inhibition, along with PTTG1 silencing, expression of miR-329, PTTG1, p-p38/p38, p-ERK5/ERK5, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bcl-2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and caspase-3 were determined. The effects of both miR-329 and PTTG1 on cell proliferation, cell-cycle distribution, and apoptosis were also assayed. The miR-329 was likely to affect the CCA development through regulation of the PTTG1-mediated mitogen-activated protein kinase (MAPK) signaling pathway. The miR-329 targeted PTTG1, leading to inactivation of the MAPK signaling pathway. Upregulation of miR-329 and silencing of PTTG1 inhibited the CCA cell proliferation, induced cell-cycle arrest, and subsequently promoted apoptosis with elevations in Bax, cleaved caspase-3, and total caspase-3, but showed declines in PCNA, Cyclin D1, and Bcl-2. Moreover, miR-329 was also found to suppress the tumor growth by downregulation of PTTG1. To summarize, miR-329 inhibited the expression of PTTG1 to inactivate the MAPK signaling pathway, thus suppressing the CCA progression, thereby providing a therapeutic basis for the CCA treatment.
Collapse
Affiliation(s)
- Zhi-Gao Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Chao-Wen Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hui-Zhao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yong-Lian Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Cheng-Jie Lin
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhen-Ya Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Fu-Di Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guan-Dou Yuan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Song-Qing He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
18
|
Loeuillard E, Fischbach SR, Gores GJ, Ilyas SI. Animal models of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:982-992. [PMID: 29627364 PMCID: PMC6177316 DOI: 10.1016/j.bbadis.2018.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with a poor overall prognosis. There is a critical need to develop effective targeted therapies for the treatment of this lethal disease. In an effort to address this challenge, preclinical in vivo studies have become paramount in understanding CCA carcinogenesis, progression, and therapy. Various CCA animal models exist including carcinogen-based models in which animals develop CCA after exposure to a carcinogen, genetically engineered mouse models in which genetic changes are induced in mice leading to CCA, murine syngeneic orthotopic models, as well as xenograft tumors derived from xenotransplantation of CCA cells, organoids, and patient-derived tissue. Each type has distinct advantages as well as shortcomings. In the ideal animal model of CCA, the tumor arises from the biliary tract in an immunocompetent host with a species-matched tumor microenvironment. Such a model would also be time-efficient, recapitulate the genetic and histopathological features of human CCA, and predict therapeutic response in humans. Recently developed biliary tract transduction and orthotopic syngeneic transplant mouse models encompass several of these elements. Herein, we review the different animal models of CCA, their advantages and deficiencies, as well as features which mimic human CCA.
Collapse
Affiliation(s)
- Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Samantha R Fischbach
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
19
|
Liu B, Hu Y, Qin L, Peng XB, Huang YX. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma. Dig Liver Dis 2019; 51:397-411. [PMID: 30314946 DOI: 10.1016/j.dld.2018.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) represents a devastating malignancy characterized by high mortality, and notoriously problematic to diagnose. Recently, microRNAs (miRs) have been intensively investigated due to their potential usefulness from a tumor treatment perspective. AIMS The current study was aimed to investigate whether miR-494 influences epithelial-mesenchymal transition (EMT), tumor growth and metastasis of CCA. METHODS The regulatory miRNAs of WDHD1 in CCA expression chip were predicted, followed by determination of the miR-494 and WDHD1 expression in normal cholangiocyte tissues and CCA tissues. The related protein levels were determined. CCA cell migration, invasion, viability, and cell cycle distribution and the dosage-dependent effect of miR-494 on CCA cell growth were subsequently detected. Finally, tumorigenicity and lymph node metastasis (LNM) were measured. RESULTS Initially, miR-194 affected the CCA development via negatively regulating WDHD1 and miR-494 which were downregulated while WDHD1 was upregulated in CCA. In addition, miR-494 overexpression elevated E-cadherin expression while decreased expressions of WDHD1, N-cadherin, Vimentin, Snail, Twist and MMP-9. Finally, overexpressed miR-494 was observed to suppress EMT, cell viability, migration, invasion, arrest cell cycle progression, tumor formation, and LNM while accelerating cell apoptosis in vivo. CONCLUSION This study indicated that miR-494 overexpression suppresses EMT, tumor formation and LNM while promoting CCA cell apoptosis through inhibiting WDHD1 in CCA.
Collapse
Affiliation(s)
- Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Yu Hu
- Center for Experimental Medical Research, Third Xiangya Hospital, Central South University, Changsha, PR China
| | - Lu Qin
- Department of Intestinal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Xu-Bin Peng
- Department of Neurosurgery, The Cancer Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Ya-Xun Huang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, PR China.
| |
Collapse
|
20
|
MiR-494 acts as a tumor promoter by targeting CASP2 in non-small cell lung cancer. Sci Rep 2019; 9:3008. [PMID: 30816202 PMCID: PMC6395740 DOI: 10.1038/s41598-019-39453-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/24/2019] [Indexed: 11/23/2022] Open
Abstract
MiR-494 plays an important role in several types of human cancers, including non-small cell lung cancer (NSCLC). Although the role of miR-494 has been investigated in several studies, the expression profile and underlying mechanism are still poorly understood. In this study, we found that overexpression of miR-494 promoted the proliferation and colony formation of NSCLC cells and reduced their sensitivity to cisplatin-induced apoptosis. By using microarray and Dual luciferase reporter assays, we further showed that caspase-2 (CASP2) is a functional target of miR-494, and the expression of CASP2 is inversely associated with miR-494 in vitro. In addition, miR-494 promoted the proliferation and colony formation of NSCLC cells and reduced their sensitivity to cisplatin-induced apoptosis by targeting CASP2. Therefore, our results suggest that miR-494 plays an oncomiR role in NSCLC cells and may be a candidate biomarker for malignant transformation and a therapeutic target of NSCLC.
Collapse
|
21
|
Liu Z, Ma M, Yan L, Chen S, Li S, Yang D, Wang X, Xiao H, Deng H, Zhu H, Zuo C, Xia M. miR-370 regulates ISG15 expression and influences IFN-α sensitivity in hepatocellular carcinoma cells. Cancer Biomark 2018; 22:453-466. [PMID: 29758929 PMCID: PMC6027951 DOI: 10.3233/cbm-171075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND: Interferon-α (IFN-α) is an adjuvant to chemotherapy and radiotherapy for hepatocellular carcinoma (HCC), but some HCC patients do not respond to treatment with IFN-α. METHODS: We performed loss-of-function and gain-of-function experiments to examine the role of ISG15 in the IFN-α sensitivity of LH86, HLCZ01, SMMC7721, and Huh7 cell lines and tumor samples. RESULTS: The overexpression of ISG15 reduced apoptosis in Huh7 and LH86 cells in the presence of IFN-α, whereas the shRNA-mediated knock down of ISG15 expression increased apoptosis in both Huh7 and LH86 cells. We identified a putative miR-370 target site in the 3’-UTR in the ISG15 mRNA, and the level of miR-370 expression in HCC cell lines reflected the level of IFN-α-induced apoptosis exhibited by each. Both HCC cell lines and tumor samples had significantly lower levels of miR-370 than the control cells and tissues (P< 0.05). The overexpression of miR-370 in IFN-α-treated LH86 and Huh7 cells increased apoptosis and reduced the volume of LH86- and Huh7-derived xenograft tumors in mice treated with IFN-α compared with the control tumors. CONCLUSIONS: Our findings suggest that miR-370 functions as an HCC tumor suppressor and regulator of IFN-α sensitivity and that miR-370 might be a useful prognostic marker for HCC patients.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Lei Yan
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Shilin Chen
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Sha Li
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Darong Yang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Xiaohong Wang
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Hua Xiao
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Man Xia
- Department of Gynaecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
22
|
|
23
|
Novel internal regulators and candidate miRNAs within miR-379/miR-656 miRNA cluster can alter cellular phenotype of human glioblastoma. Sci Rep 2018; 8:7673. [PMID: 29769662 PMCID: PMC5955984 DOI: 10.1038/s41598-018-26000-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/17/2018] [Indexed: 12/26/2022] Open
Abstract
Clustered miRNAs can affect functioning of downstream pathways due to possible coordinated function. We observed 78–88% of the miR-379/miR-656 cluster (C14MC) miRNAs were downregulated in three sub-types of diffuse gliomas, which was also corroborated with analysis from The Cancer Genome Atlas (TCGA) datasets. The miRNA expression levels decreased with increasing tumor grade, indicating this downregulation as an early event in gliomagenesis. Higher expression of the C14MC miRNAs significantly improved glioblastioma prognosis (Pearson’s r = 0.62; p < 3.08e-22). ENCODE meta-data analysis, followed by reporter assays validated existence of two novel internal regulators within C14MC. CRISPR activation of the most efficient internal regulator specifically induced members of the downstream miRNA sub-cluster and apoptosis in glioblastoma cells. Luciferase assays validated novel targets for miR-134 and miR-485-5p, two miRNAs from C14MC with the most number of target genes relevant for glioma. Overexpression of miR-134 and miR-485-5p in human glioblastoma cells suppressed invasion and proliferation, respectively. Furthermore, apoptosis was induced by both miRs, individually and in combination. The results emphasize the tumor suppressive role of C14MC in diffuse gliomas, and identifies two specific miRNAs with potential therapeutic value and towards better disease management and therapy.
Collapse
|
24
|
Olaizola P, Lee-Law PY, Arbelaiz A, Lapitz A, Perugorria MJ, Bujanda L, Banales JM. MicroRNAs and extracellular vesicles in cholangiopathies. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1293-1307. [PMID: 28711597 DOI: 10.1016/j.bbadis.2017.06.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/22/2022]
Abstract
UNLABELLED Cholangiopathies encompass a heterogeneous group of disorders affecting biliary epithelial cells (i.e. cholangiocytes). Early diagnosis, prognosis and treatment still remain clinically challenging for most of these diseases and are critical for adequate patient care. In the past decade, extensive research has emphasized microRNAs (miRs) as potential non-invasive biomarkers and tools to accurately identify, predict and treat cholangiopathies. MiRs can be released extracellularly conjugated with lipoproteins or encapsulated in extracellular vesicles (EVs). Research on EVs is also gaining attention since they are present in multiple biological fluids and may represent a relevant source of novel non-invasive biomarkers and be vehicles for new therapeutic approaches. This review highlights the most promising candidate miRs and EV-related biomarkers in cholangiopathies, as well as their relevant roles in biliary pathophysiology. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen. RESEARCH STRATEGY PubMed search (April 2017) was done with the following terms: "microRNA", "miRNA", "miR", "extracellular vesicles", "EV", "exosomes", "primary biliary cholangitis", "primary biliary cholangitis", "PBC", "primary sclerosing cholangitis", "PSC", "cholangiocarcinoma", "CCA", "biliary atresia", "BA", "polycystic liver diseases", "PLD", "cholangiopathies", "cholestatic liver disease". Most significant articles in full-text English were selected. The reference lists of selected papers were also considered.
Collapse
Affiliation(s)
- P Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - P Y Lee-Law
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - A Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - A Lapitz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - M J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - L Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - J M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
25
|
O'Rourke CJ, Munoz-Garrido P, Aguayo EL, Andersen JB. Epigenome dysregulation in cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 2018. [DOI: 10.1016/j.bbadis.2017.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Pollutri D, Patrizi C, Marinelli S, Giovannini C, Trombetta E, Giannone FA, Baldassarre M, Quarta S, Vandewynckel YP, Vandierendonck A, Van Vlierberghe H, Porretti L, Negrini M, Bolondi L, Gramantieri L, Fornari F. The epigenetically regulated miR-494 associates with stem-cell phenotype and induces sorafenib resistance in hepatocellular carcinoma. Cell Death Dis 2018; 9:4. [PMID: 29305580 PMCID: PMC5849044 DOI: 10.1038/s41419-017-0076-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) represents the second cause of cancer-related mortality worldwide and is associated with poor prognosis, especially in patients not amenable for curative treatments. The multi-kinase inhibitor sorafenib represents the first-line treatment option for advanced HCC; nevertheless, its effectiveness is limited due to tumor heterogeneity as well as innate or acquired drug resistance, raising the need for new therapeutic strategies. MicroRNAs (miRNAs) involvement in treatment response as well as their safety and efficacy in preclinical models and clinical trials have been widely documented in the oncologic field, including HCC. Here, we identified miR-494 upregulation in a subgroup of human and rat HCCs with stem cell-like characteristics, as well as multiple epigenetic mechanisms involved in its aberrant expression in HCC cell lines and patients. Moreover, we identified p27, puma and pten among miR-494 targets, contributing to speed up cell cycle progression, enhance survival potential in stressful conditions and increase invasive and clonogenic capabilities. MiR-494 overexpression increased sorafenib resistance via mTOR pathway activation in HCC cell lines and, in line, high miR-494 levels associated with decreased sorafenib response in two HCC animal models. A sorafenib-combined anti-miR-494-based strategy revealed an enhanced anti-tumor potential with respect to sorafenib-only treatment in our HCC rat model. In conclusion, our findings suggested miR-494 as a possible therapeutic target as well as a candidate biomarker for patient stratification in advanced HCC.
Collapse
Affiliation(s)
- Daniela Pollutri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
| | - Clarissa Patrizi
- Center for Regenerative Medicine, Department of Biomedical Sciences, Modena and Reggio Emilia University, 41125, Modena, Italy
| | - Sara Marinelli
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
| | - Catia Giovannini
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, 40138, Bologna, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Ferdinando A Giannone
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, 40138, Bologna, Italy
| | - Maurizio Baldassarre
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, 40138, Bologna, Italy
| | - Santina Quarta
- Department of Medicine, Padua University, 35128, Padua, Italy
| | - Y P Vandewynckel
- Department of Hepatology and Gastroenterology, Ghent University, 9000, Ghent, Belgium
| | - A Vandierendonck
- Department of Hepatology and Gastroenterology, Ghent University, 9000, Ghent, Belgium
| | - H Van Vlierberghe
- Department of Hepatology and Gastroenterology, Ghent University, 9000, Ghent, Belgium
| | - Laura Porretti
- Flow Cytometry Service, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44100, Ferrara, Italy
| | - Luigi Bolondi
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University, 40138, Bologna, Italy
| | - Laura Gramantieri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy.
| | - Francesca Fornari
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138, Bologna, Italy.
- Department of Medical and Surgical Sciences, Bologna University, 40138, Bologna, Italy.
| |
Collapse
|
27
|
Zhang Y, Guo L, Li Y, Feng GH, Teng F, Li W, Zhou Q. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer 2018; 17:1. [PMID: 29304823 PMCID: PMC5755155 DOI: 10.1186/s12943-017-0753-1] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Background Aberrant activation of the Wnt/β-catenin signaling pathway is frequently observed in colorectal cancer (CRC). β-catenin is the major Wnt signaling pathway effector and inactivation of adenomatous polyposis coli (APC) results in nuclear accumulation of β-catenin. It has been suggested that inactivation of APC plays an important role in activation of the Wnt/β-catenin pathway and in the progression of colorectal tumorigenesis. However, the mechanism through which APC mediates colorectal tumorigenesis is not understood. Increasing evidence suggests that the dysregulation of microRNAs (miRNAs) is involved in colorectal tumorigenesis. Although miR-494 has been reported as being an upregulated miRNA, the interplay between miR-494 and APC-mediated colorectal tumorigenesis progression remains unclear. Methods The expression of miR-494 in tissues from patients diagnosed with CRC was analyzed using a microarray and real-time PCR. The effects of miR-494 on cell proliferation and tumorigenesis in CRC cells were analyzed by flow cytometry, colony formation assays, BrdU incorporation assays, and CCK8 assays. The correlation between miR-494 expression and APC expression, as well as the mechanisms by which miR-494 regulates APC in CRC were also addressed. Results miR-494 was significantly upregulated in CRC tissues, and this increase was negatively associated with APC expression. APC was confirmed to be a direct target of miR-494 in CRC. Furthermore, overexpression of miR-494 induced Wnt/β-catenin signaling by targeting APC, thus promoting CRC cell growth. Conclusions This study provides novel insights into the role of miR-494 in controlling CRC cell proliferation and tumorigenesis, and identifies miR-494 as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gui-Hai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fei Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Wangyang Z, Daolin J, Yi X, Zhenglong L, Lining H, Yunfu C, Xingming J. NcRNAs and Cholangiocarcinoma. J Cancer 2018; 9:100-107. [PMID: 29290774 PMCID: PMC5743716 DOI: 10.7150/jca.21785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the most common primary biliary malignancy with poor prognosis. Less understanding of its etiology and pathogenesis makes the diagnosis and therapy difficult. Recently, accumulating evidences have demonstrated that deregulated expression of non-coding RNAs (ncRNAs) is closely associated with the etiopathogenesis of CCA. NcRNAs which lack open reading frame are a heterogeneous class of transcribed RNA molecules, including microRNAs, long non-coding RNAs and circular RNAs. Several studies have shown ncRNAs dysregulation is a common central event occurring in CCA and has the potential of being therapy targets. Moreover, ncRNAs can be easily detected in cancer tissues and biofluids, representing valuable tools for diagnosis. In this review, we illustrate the role of ncRNA in the CCA and discuss their potential clinical value.
Collapse
Affiliation(s)
- Zheng Wangyang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Ji Daolin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Xu Yi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Li Zhenglong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Huang Lining
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Cui Yunfu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| | - Jiang Xingming
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University
| |
Collapse
|
29
|
Transcriptomic Characterization of the Human Cell Cycle in Individual Unsynchronized Cells. J Mol Biol 2017; 429:3909-3924. [PMID: 29045817 DOI: 10.1016/j.jmb.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022]
Abstract
The highly fine-tuned dynamics of cell cycle gene expression have been intensely studied for several decades. However, some previous observations may be difficult to fully decouple from artifacts induced by traditional cell synchronization procedures. In addition, bulk cell measurements may have disguised intricate details. Here, we address this by sorting and transcriptomic sequencing of single cells progressing through the cell cycle without prior synchronization. Genes and pathways with known cell cycle roles are confirmed, associated regulatory sequence motifs are determined, and we also establish ties between other biological processes and the unsynchronized cell cycle. Importantly, we find the G1 phase to be surprisingly heterogeneous, with transcriptionally distinct early and late time points. We additionally note that mRNAs accumulate to reach maximum total levels at mitosis and find that stable transcripts show reduced cell-to-cell variability, consistent with the transcriptional burst model of gene expression. Our study provides the first detailed transcriptional profiling of an unsynchronized human cell cycle.
Collapse
|
30
|
Yuan W, Wang D, Liu Y, Tian D, Wang Y, Zhang R, Yin L, Deng Z. miR‑494 inhibits cell proliferation and metastasis via targeting of CDK6 in osteosarcoma. Mol Med Rep 2017; 16:8627-8634. [PMID: 28990071 PMCID: PMC5779916 DOI: 10.3892/mmr.2017.7709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
Tumorigenesis is a multistep process involving various cell growth-associated factors. Accumulated evidence indicates that the disordered regulation of microRNAs (miRNAs) contributes to tumorigenesis. However, the detailed mechanism underlying the involvement of miRNAs in oncogenesis remains to be fully elucidated. In the present study, the repressed expression of microRNA (miR)-494 was identified in 18 patients with osteosarcoma (OS) and OS cell lines, compared with corresponding controls. To determine whether deregulated miR-494 exerts tumor-suppressive effects in the development of OS, the effects of miR-494 on cell proliferation and metastasis were evaluated. It was found that the restoration of miR-494 in MG-63 and U2OS cells led to inhibited cell proliferation and attenuated migratory propensity in vitro, determined through analysis using MTT, colony formation and Transwell assays. In addition, overexpression of miR-494 markedly suppressed the tumor volume and weight in vivo. In accordance, the ectopic expression of miR-494 induced cell cycle arrest at the G1/S phase in OS cells. Bioinformatics analysis and luciferase reporter assays were performed to investigate the potential regulatory role of miR-494, the results of which indicated that miR-494 directly targeted cyclin-dependent kinase 6 (CDK6). Of note, the data obtained through reverse transcription-quantitative polymerase chain reaction and western blot analyses suggested that the elevated expression of miR-494 resulted in reduced mRNA and protein expression levels of CDK6. Taken together, these findings indicated that the miR-494/CDK6 axis has a significant tumor-suppressive effect on OS, and maybe a diagnostic and therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Du Wang
- Department of Orthopedics, Wuhan Hospital No. 3 and Tongren Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dongdong Tian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ranxi Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Liangjun Yin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhongliang Deng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
31
|
Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T, Canzonieri V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: clinical and prognostic implications. Oncotarget 2017; 8:14192-14220. [PMID: 28077782 PMCID: PMC5355172 DOI: 10.18632/oncotarget.13929] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
HCC represents the sixth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. Despite the major advances achieved in the diagnostic management of HCC, only one third of the newly diagnosed patients are presently eligible for curative treatments. Advances in technology and an increased understanding of HCC biology have led to the discovery of novel biomarkers. Improving our knowledge about serum and tissutal markers could ultimately lead to an early diagnosis and better and early treatment strategies for this deadly disease. Serum biomarkers are striking potential tools for surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and reproducible assessments they potentially enable. To date, many biomarkers have been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive malignancy, characterized by early lymph node involvement and distant metastasis, with 5-year survival rates of 5%-10%. The identification of new biomarkers with diagnostic, prognostic or predictive value is especially important as resection (by surgery or combined with a liver transplant) has shown promising results and novel therapies are emerging. However, the relatively low incidence of CCA, high frequency of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above all), and difficulties with obtaining adequate samples, despite advances in sampling techniques and in endoscopic visualization of the bile ducts, have complicated the search for accurate biomarkers. In this review, we attempt to analyze the existing literature on this argument.
Collapse
Affiliation(s)
| | - Carla Cavaliere
- Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto Taranto, Italy
| | - Lara Alessandrini
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | - Brigida Stanzione
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Gaetano Facchini
- Department of Medical Oncology, National Cancer Institute, "G. Pascale" Foundation, Naples, Italy
| | - Luca Balestreri
- Department of Radiology, National Cancer Institute, Aviano (PN), Italy
| | - Tiziana Perin
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | | |
Collapse
|
32
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
33
|
Kayhanian H, Smyth EC, Braconi C. Emerging molecular targets and therapy for cholangiocarcinoma. World J Gastrointest Oncol 2017; 9:268-280. [PMID: 28808500 PMCID: PMC5534395 DOI: 10.4251/wjgo.v9.i7.268] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 02/05/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare cancer arising from the biliary tree with a poor prognosis and limited therapeutic options. Recent large scale molecular characterisation studies have identified recurrent genetic alterations in CCA which may be amenable to therapeutic targeting. In this review we explore the genomic landscape of CCA and examine results from trials of molecularly targeted agents and immunotherapy in this disease. Challenges in CCA diagnosis, treatment and trial design are discussed and we reflect on future directions which may lead to improved outcomes for CCA patients.
Collapse
|
34
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|
35
|
Tian C, Zheng G, Zhuang H, Li X, Hu D, Zhu L, Wang T, You MJ, Zhang Y. MicroRNA-494 Activation Suppresses Bone Marrow Stromal Cell-Mediated Drug Resistance in Acute Myeloid Leukemia Cells. J Cell Physiol 2016; 232:1387-1395. [PMID: 27696394 DOI: 10.1002/jcp.25628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Tian
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology; Institute of Hematology and Blood Diseases Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin People's Republic of China
| | - Hongqing Zhuang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Xubin Li
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Dongzhi Hu
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Lei Zhu
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Tengteng Wang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| | - Mingjian James You
- Department of Hematopathology; University of Texas MD Anderson Cancer Center; Houston Texas
| | - Yizhuo Zhang
- Department of Hematology; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital; Tianjin People's Republic of China
| |
Collapse
|
36
|
Li J, Wang L, Liu Z, Zu C, Xing F, Yang P, Yang Y, Dang X, Wang K. MicroRNA-494 inhibits cell proliferation and invasion of chondrosarcoma cells in vivo and in vitro by directly targeting SOX9. Oncotarget 2016; 6:26216-29. [PMID: 26317788 PMCID: PMC4694896 DOI: 10.18632/oncotarget.4460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/19/2015] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that dysregulation of miRNAs could contribute to tumor growth and metastasis of chondrosarcoma by infuencing cell proliferation and invasion. In the current study, we are interested to examine the role of miRNAs in the carcinogenesis and progression of chondrosarcoma. Here, using comparative miRNA profiling of tissues and cells of chondrosarcoma and cartilage, we identified miR-494 as a commonly downregulated miRNA in the tissues of patients with chondrosarcoma and chondrosarcoma cancer cell line, and upregulation of miR-494 could inhibit proliferation and invasion of chondrosarcoma cancer cells in vivo and in vitro. Moreover, our data demonstrated that SOX9, the essential regulator of the process of cartilage differentiation, was the direct target and functional mediator of miR-494 in chondrosarcoma cells. And downregulation of SOX9 could also inhibit migration and invasion of chondrosarcoma cells. In the last, we identified low expression of miR-494 was significantly correlated with poor overall survival and prognosis of chondrosarcoma patients. Thus, miR-494 may be a new common therapeutic target and prognosis biomarker for chondrosarcoma.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China.,Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Lijuan Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, P.R. China
| | - Zongzhi Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Chao Zu
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, Shaanxi Province, P.R. China
| | - Fanfan Xing
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong - Shenzhen Hospital, Shenzhen, 518053, Guangdong Province, P.R. China
| | - Pei Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China
| | - Yongkang Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi Province, P.R. China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China
| | - Kunzheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, P.R. China
| |
Collapse
|
37
|
Elliott DM, Nagarkatti M, Nagarkatti PS. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther 2016; 357:177-87. [PMID: 26818958 PMCID: PMC4809322 DOI: 10.1124/jpet.115.226563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022] Open
Abstract
3,39-Diindolylmethane (DIM), a natural indole found in cruciferous vegetables, has significant anti-cancer and anti-inflammatory properties. In this current study, we investigated the effects of DIM on acute lung injury (ALI) induced by exposure to staphylococcal enterotoxin B (SEB). We found that pretreatment of mice with DIM led to attenuation of SEB-induced inflammation in the lungs, vascular leak, and IFN-g secretion. Additionally, DIM could induce cell-cycle arrest and cell death in SEB-activated T cells in a concentration-dependent manner. Interestingly, microRNA (miRNA) microarray analysis uncovered an altered miRNA profile in lung-infiltrating mononuclear cells after DIM treatment of SEB-exposed mice. Moreover, computational analysis of miRNA gene targets and regulation networks indicated that DIM alters miRNA in the cell death and cell-cycle progression pathways. Specifically, DIM treatment significantly downregulated several miRNA and a correlative increase associated gene targets. Furthermore, overexpression and inhibition studies demonstrated that DIM-induced cell death, at least in part, used miR-222. Collectively, these studies demonstrate for the first time that DIM treatment attenuates SEB-induced ALI and may do so through the induction of microRNAs that promote apoptosis and cell-cycle arrest in SEB-activated T cells.
Collapse
|
38
|
Howell JA, Khan SA. The role of miRNAs in cholangiocarcinoma. Hepat Oncol 2016; 3:167-180. [PMID: 30191036 PMCID: PMC6095304 DOI: 10.2217/hep-2015-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating malignancy with high mortality, in part due to the combination of late presentation, significant diagnostic challenges and limited effective treatment options. Late presentation and diagnosis contribute to the high mortality in CCA and there is an urgent unmet need for diagnostic and prognostic biomarkers to facilitate early diagnosis and treatment stratification to improve clinical outcomes. MiRs are small ncRNA molecules that regulate gene expression and modulate both tumor suppressive and oncogenic pathways. They have a well-defined role in carcinogenesis, including CCA. In this review, we outline the evidence for MiRs in the pathogenesis of CCA and their potential utility as diagnostic and prognostic biomarkers to guide clinical management.
Collapse
Affiliation(s)
- Jessica A Howell
- Department of Hepatology, Level 10 QEQM Building, St Mary's Hospital Campus, Imperial College London, Praed Street, London, W2 1NY, UK
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria Pde, Fitzroy 3065, Victoria, Australia
| | - Shahid A Khan
- Department of Hepatology, Level 10 QEQM Building, St Mary's Hospital Campus, Imperial College London, Praed Street, London, W2 1NY, UK
- *Author for correspondence:
| |
Collapse
|
39
|
Nie GH, Luo L, Duan HF, Li XQ, Yin MJ, Li Z, Zhang W. GALNT7, a target of miR-494, participates in the oncogenesis of nasopharyngeal carcinoma. Tumour Biol 2016; 37:4559-67. [PMID: 26503214 DOI: 10.1007/s13277-015-4281-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/19/2015] [Indexed: 01/05/2023] Open
Abstract
GalNAc-transferase-7 (GALNT7) is essential for the regulation of cell proliferation and has been implicated in tumorigenesis. However, the role of GALNT7 in the development and progression of nasopharyngeal carcinoma (NPC) remains unclear. Our previous study showed that GALNT7 was a putative target of miR-494, which was confirmed by luciferase reporter assay. In the present study, we demonstrated that in vitro knockdown of GALNT7 significantly inhibited the proliferation, colony formation, migration, and invasion of NPC-derived cells. In vivo tumorigenicity assay showed that miR-494 and GALNT7-small interfering RNA (siRNA) reduced tumor growth in nude mice. Taken together, our results provided new evidence for an oncogenic role of GALNT7 in NPC.
Collapse
Affiliation(s)
- Guo-Hui Nie
- Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| | - Liang Luo
- Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Hong-Fang Duan
- Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Xiao-Qing Li
- Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Mei-Jun Yin
- Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Zhao Li
- Department of Otolaryngological, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China.
| |
Collapse
|
40
|
Peng H, Ishida M, Li L, Saito A, Kamiya A, Hamilton JP, Fu R, Olaru AV, An F, Popescu I, Iacob R, Dima S, Alexandrescu ST, Grigorie R, Nastase A, Berindan-Neagoe I, Tomuleasa C, Graur F, Zaharia F, Torbenson MS, Mezey E, Lu M, Selaru FM. Pseudogene INTS6P1 regulates its cognate gene INTS6 through competitive binding of miR-17-5p in hepatocellular carcinoma. Oncotarget 2016; 6:5666-77. [PMID: 25686840 PMCID: PMC4467393 DOI: 10.18632/oncotarget.3290] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/02/2015] [Indexed: 12/13/2022] Open
Abstract
The complex regulation of tumor suppressive gene and its pseudogenes play key roles in the pathogenesis of hepatocellular cancer (HCC). However, the roles played by pseudogenes in the pathogenesis of HCC are still incompletely elucidated. This study identifies the putative tumor suppressor INTS6 and its pseudogene INTS6P1 in HCC through the whole genome microarray expression. Furthermore, the functional studies – include growth curves, cell death, migration assays and in vivo studies – verify the tumor suppressive roles of INTS6 and INTS6P1 in HCC. Finally, the mechanistic experiments indicate that INTS6 and INTS6P1 are reciprocally regulated through competition for oncomiR-17-5p. Taken together, these findings demonstrate INTS6P1 and INTS6 exert the tumor suppressive roles through competing for oncomiR-17-5p. Our investigation of this regulatory circuit reveals novel insights into the underlying mechanisms of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Haoran Peng
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Masaharu Ishida
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - James P Hamilton
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Rongdang Fu
- Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Alexandru V Olaru
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Fangmei An
- Department of Gastroenterology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, P.R. China
| | - Irinel Popescu
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Sorin T Alexandrescu
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Grigorie
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Anca Nastase
- Dan Setlacec Center of General Surgery and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Ioana Berindan-Neagoe
- Department of Immunology, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Functional Genomics, The Oncology Institute Ion Chiricuta, Cluj Napoca, Romania.,The Research Center for Functional Genomics, Biomedicine and Translational Medicine, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, The Oncology Institute Ion Chiricuta, Cluj Napoca, Romania
| | - Florin Graur
- Department of Surgery, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Surgery, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj Napoca, Romania
| | - Florin Zaharia
- Department of Surgery, The Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Surgery, Regional Institute of Gastroenterology and Hepatology "Octavian Fodor", Cluj Napoca, Romania
| | - Michael S Torbenson
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Esteban Mezey
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Minqiang Lu
- Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Yuan J, Wang K, Xi M. MiR-494 Inhibits Epithelial Ovarian Cancer Growth by Targeting c-Myc. Med Sci Monit 2016; 22:617-24. [PMID: 26908019 PMCID: PMC4768945 DOI: 10.12659/msm.897288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the most lethal malignant gynecological cancer. MicroRNAs (miRNAs) play important roles in the pathogenesis of ovarian cancer. The role of miR-494 in EOC has not been fully investigated. MATERIAL AND METHODS MiR-494 levels in ovarian cancer tissues and cells were tested by qRT-PCR. Cells were transfected with miR-494 mimics or miR-494 ASO by Lipofectamine. Bioinformatics algorithms from TargetScanHuman were used to predict the target genes of miR-494. The c-Myc protein level was assayed by Western blot. The interaction between miR-494 and c-Myc was confirmed by dual luciferase assays. RESULTS MiR-494 showed low levels in EOC tissues and cells. Overexpression of miR-494 inhibited cell growth and migration of EOC cells and vice versa. c-Myc is the targeted gene of miR-494. CONCLUSIONS MiR-494 has an anti-tumor role in EOC via c-Myc.
Collapse
|
42
|
Viterbo D, Gausman V, Gonda T. Diagnostic and therapeutic biomarkers in pancreaticobiliary malignancy. World J Gastrointest Endosc 2016; 8:128-142. [PMID: 26862363 PMCID: PMC4734972 DOI: 10.4253/wjge.v8.i3.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/17/2015] [Accepted: 12/08/2015] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) are two malignancies that carry significant morbidity and mortality. The poor prognoses of these cancers are strongly related to lack of effective screening modalities as well as few therapeutic options. In this review, we highlight novel biomarkers that have the potential to be used as diagnostic, prognostic and predictive markers. The focus of this review is biomarkers that can be evaluated on endoscopically-obtained biopsies or brush specimens in the pre-operative setting. We also provide an overview of novel serum based markers in the early diagnosis of both PDAC and CCA. In pancreatic cancer, the emphasis is placed on prognostic and theranostic markers, whereas in CCA the utility of molecular markers in diagnosis and prognosis are highlighted.
Collapse
|
43
|
Esparza-Baquer A, Labiano I, Bujanda L, Perugorria MJ, Banales JM. MicroRNAs in cholangiopathies: Potential diagnostic and therapeutic tools. Clin Res Hepatol Gastroenterol 2016; 40:15-27. [PMID: 26774196 DOI: 10.1016/j.clinre.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023]
Abstract
Cholangiopathies are the group of diseases targeting the bile duct epithelial cells (i.e. cholangiocytes). These disorders arise from different etiologies and represent a current diagnostic, prognostic and therapeutic challenge. Different molecular mechanisms participate in the development and progression of each type of biliary disease. However, microRNA deregulation is a common central event occurring in all of them that plays a key role in their pathogenesis. MicroRNAs are highly stable small non-coding RNAs present in cells, extracellular microvesicles and biofluids, representing valuable diagnostic tools and potential targets for therapy. In the following sections, the most novel and significant discoveries in this field are summarized and their potential clinical value is highlighted.
Collapse
Affiliation(s)
- Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - María J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesús M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
44
|
Tay J, Tiao J, Hughes Q, Gilmore G, Baker R. Therapeutic Potential of miR-494 in Thrombosis and Other Diseases: A Review. Aust J Chem 2016. [DOI: 10.1071/ch16020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional nucleic acids, such as microRNAs (miRNAs), have been implicated in the pathophysiology of many diseases. The miRNA expression profiles of various cancers including haematological malignancies are well defined, but the role of miRNAs in haemostasis and the regulation of coagulation is poorly understood. We identified that miR-494 is oestrogen responsive and directly targets the anticoagulant protein, Protein S, as a mechanism for acquiring Protein S deficiency under high oestrogenic conditions such as during pregnancy and oral contraceptive use. Furthermore, previous studies have also characterised miR-494 to be involved in many biological processes. This paper reviews the current knowledge in the role of miRNAs in regulating haemostatic proteins and the known biological functions of miR-494, highlighting miR-494 as an emerging therapeutic target, with an overview of the strategy we have employed in identifying functional nucleic acids such as miRNAs that target haemostatic factors and the therapeutic potential of miR-494-directed therapy for the treatment of thrombotic disorders.
Collapse
|
45
|
Drahos J, Schwameis K, Orzolek LD, Hao H, Birner P, Taylor PR, Pfeiffer RM, Schoppmann SF, Cook MB. MicroRNA Profiles of Barrett's Esophagus and Esophageal Adenocarcinoma: Differences in Glandular Non-native Epithelium. Cancer Epidemiol Biomarkers Prev 2015; 25:429-37. [PMID: 26604271 DOI: 10.1158/1055-9965.epi-15-0161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tissue specificity and robustness of miRNAs may aid risk prediction in individuals diagnosed with Barrett's esophagus. As an initial step, we assessed whether miRNAs can positively distinguish esophageal adenocarcinoma from the precursor metaplasia Barrett's esophagus. METHODS In a case-control study of 150 esophageal adenocarcinomas frequency matched to 148 Barrett's esophagus cases, we quantitated expression of 800 human miRNAs in formalin-fixed paraffin-embedded tissue RNA using NanoString miRNA v2. We tested differences in detection by case group using the χ(2) test and differences in expression using the Wilcoxon rank-sum test. Bonferroni-corrected statistical significance threshold was set at P < 6.25E-05. Sensitivity and specificity were assessed for the most significant miRNAs using 5-fold cross-validation. RESULTS We observed 46 distinct miRNAs significantly increased in esophageal adenocarcinoma compared with Barrett's esophagus, 35 of which remained when restricted to T1b and T2 malignancies. Three miRNAs (miR-663b, miR-421, and miR-502-5p) were detected in >80% esophageal adenocarcinoma, but <20% of Barrett's esophagus. Seven miRNAs (miR-4286, miR-630, miR-575, miR-494, miR-320e, miR-4488, and miR-4508) exhibited the most extreme differences in expression with >5-fold increases. Using 5-fold cross-validation, we repeated feature (miR) selection and case-control prediction and computed performance criteria. Each of the five folds selected the same top 10 miRNAs, which, together, provided 98% sensitivity and 95% specificity. CONCLUSION This study provides evidence that tissue miRNA profiles can discriminate esophageal adenocarcinoma from Barrett's esophagus. This large analysis has identified miRNAs that merit further investigation in relation to pathogenesis and diagnosis of esophageal adenocarcinoma. IMPACT These candidate miRNAs may provide a means for improved risk stratification and more cost-effective surveillance.
Collapse
Affiliation(s)
- Jennifer Drahos
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland.
| | - Katrin Schwameis
- Department of Surgery, Upper-GI-Service, CCC-GET Unit, Medical University of Vienna, Vienna, Austria
| | - Linda D Orzolek
- Johns Hopkins Medical Institutions Deep Sequencing and Microarray Core, Baltimore, Maryland
| | - Haiping Hao
- Johns Hopkins Medical Institutions Deep Sequencing and Microarray Core, Baltimore, Maryland
| | - Peter Birner
- Department of Surgery, Upper-GI-Service, CCC-GET Unit, Medical University of Vienna, Vienna, Austria
| | - Phillip R Taylor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland
| | - Sebastian F Schoppmann
- Department of Surgery, Upper-GI-Service, CCC-GET Unit, Medical University of Vienna, Vienna, Austria
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DDHS, Bethesda, Maryland
| |
Collapse
|
46
|
Duan HF, Li XQ, Hu HY, Li YC, Cai Z, Mei XS, Yu P, Nie LP, Zhang W, Yu ZD, Nie GH. Functional elucidation of miR-494 in the tumorigenesis of nasopharyngeal carcinoma. Tumour Biol 2015; 36:6679-89. [PMID: 25809707 PMCID: PMC4644213 DOI: 10.1007/s13277-015-3356-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 02/05/2023] Open
Abstract
Nasopharyngeal carcinoma has very high incidence and high mortality worldwide. MiRNA is related to the tumorigenesis and metastasis of a variety of tumors. In the present study, we verify that the expression of miR-494 in NPC tissues and NPC-derived cells was down-regulated, respectively. The proliferation, colony formation, migration, and invasion of NPC-derived cells were suppressed, while the cell apoptosis was promoted, when miR-494 was over-expressed in these cells. GALNT7 and CDK16 were confirmed to be the direct targets of miR-494. These results suggested that miR-494 play an inhibitory role in the tumorigenesis of NPC.
Collapse
Affiliation(s)
- Hong-Fang Duan
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
- Guangzhou Medical University, 510000, Guangzhou, Guangdong Province, China
| | - Xiao-Qing Li
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
- Shantou University Medical College, 515041, Shantou, Guangdong Province, China
| | - Hong-Yi Hu
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Yu-Chi Li
- Shantou University Medical College, 515041, Shantou, Guangdong Province, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Shenzhen PKU-HKUST Medical Center, Institute of Urology, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Zhi Cai
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Xue-Shuang Mei
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Peng Yu
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Li-Ping Nie
- Department of Clinical Laboratory, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, 518036, Shenzhen, Guangdong Province, China.
| | - Zhen-Dong Yu
- Central Laboratory, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China.
| | - Guo-Hui Nie
- Department of Otolaryngological, Peking University Shenzhen Hospital, 518036, Shenzhen, Guangdong Province, China.
| |
Collapse
|
47
|
MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. J Clin Med 2015; 4:1688-712. [PMID: 26343736 PMCID: PMC4600153 DOI: 10.3390/jcm4091688] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 12/23/2022] Open
Abstract
The cholangiopathies are a group of liver diseases resulting from different etiologies but with the cholangiocyte as the primary target. As a group, the cholangiopathies result in significant morbidity and mortality and represent one of the main indications for liver transplant in both children and adults. Contributing to this situation is the absence of a thorough understanding of their pathogenesis and a lack of adequate diagnostic and prognostic biomarkers. MicroRNAs are small non-coding RNAs that modify gene expression post-transcriptionally. They have been implicated in the pathogenesis of many diseases, including the cholangiopathies. Thus, in this review we provide an overview of the literature on miRNAs in the cholangiopathies and discuss future research directions.
Collapse
|
48
|
Dadpay M, Zarea M, Rabati RG, Rezakhaniha B, Barari B, Behnod V, Ziari K. RETRACTED ARTICLE: Upregulation of miR-21 and downregulation of miR-494 may serve as emerging molecular biomarkers for prediagnostic samples of subjects who developed nasopharyngeal carcinoma associates with lymph node metastasis and poor prognosis. Tumour Biol 2015; 37:10.1007/s13277-015-3905-1. [PMID: 26289847 DOI: 10.1007/s13277-015-3905-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Masoomeh Dadpay
- Department of Pathology, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Mojtaba Zarea
- Center for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India
| | | | - Bijan Rezakhaniha
- Department of Urology, Imam Reza Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Babak Barari
- Dr Genetic Medical, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Behnod
- Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Katayoun Ziari
- Department of Pathology, Be'sat Hospital, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Bai Y, Sun Y, Peng J, Liao H, Gao H, Guo Y, Guo L. Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget 2015; 5:7760-75. [PMID: 25226615 PMCID: PMC4202159 DOI: 10.18632/oncotarget.2305] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Secretagogin (SCGN) has recently been identified to play a crucial role in cell apoptosis, receptor signaling and differentiation. However, its clinical significance and functional roles in SCLC chemoresistance remain unknown. Here we examined the expression of SCGN in clinical samples from SCLC patients and evaluated its relation with clinical prognosis. Then up and down-regulation of SCGN were carried out in SCLC cell lines to assess its influence on chemoresistance. Furthermore, luciferase reporter assay was used to evaluate whether SCGN is a novel direct target of miR-494. Our results revealed that elevated expression of SCGN was correlated with the poorer prognosis of SCLC patients and the more significant correlation with chemosensitivity. We also found that knockdown of SCGN expression in H69AR and H446AR cells increased chemosensitivity via increasing cell apoptosis and cell cycle arrest of G0/G1 phase, while over-expression of SCGN reduced chemosensitivity in sensitive H69 and H446 cells. SCGN as a novel target of miR-494 by luciferase reporter assay, up-regulation of miR-494 can sensitize H69AR cells to chemotherapeutic drugs. These results suggest SCGN is involved in the chemoresistance of SCLC under the regulation of miR-494 and may be a potential biomarker for predicting therapeutic response in treatment SCLC.
Collapse
Affiliation(s)
- Yifeng Bai
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China. Contributed equally to this work
| | - Yanqin Sun
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Dongguan, China. Contributed equally to this work
| | - Juan Peng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, the Third Affiliated Hospital Of Guangzhou Medical University, Guangzhou, China
| | - Hongzhan Liao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyi Gao
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Chuang KH, Whitney-Miller CL, Chu CY, Zhou Z, Dokus MK, Schmit S, Barry CT. MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology 2015; 62:466-80. [PMID: 25820676 PMCID: PMC4682466 DOI: 10.1002/hep.27816] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED Vascular invasion provides a direct route for tumor metastasis. The degree to which microRNA (miRNA) expression plays a role in tumor vascular invasion is unclear. Here, we report that miR-494 is up-regulated in human hepatocellular carcinoma (HCC) tumors with vascular invasion and can promote HCC cell invasiveness by gene inactivation of multiple invasion-suppressor miRNAs. Our results show that ten eleven translocation (TET) methylcytosine dioxygenase, predominantly TET1 in HCC cells, is a direct target of miR-494. The reduced 5'-hydroxymethylcytosine levels observed in the proximal cytosine-phosphate-guanine (CpG) regions of multiple invasion-suppressor miRNA genes are strongly associated with their transcriptional repression upon miR-494 overexpression, whereas enforced DNA demethylation can abolish the repression. Furthermore, TET1 knockdown shows a similar effect as miR-494 overexpression. Conversely, miR-494 inhibition or enforced TET1 expression is able to restore invasion-suppressor miRNAs and inhibit miR-494-mediated HCC cell invasion. CONCLUSIONS miR-494 can trigger gene silencing of multiple invasion-suppressor miRNAs by inhibiting genomic DNA demethylation by direct targeting of TET1, thereby leading to tumor vascular invasion.
Collapse
Affiliation(s)
- Kuang-Hsiang Chuang
- The Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY,Department of Surgery Research, University of Rochester Medical CenterRochester, NY,Department of Radiation Oncology, University of Rochester Medical CenterRochester, NY,
Address reprint requests to: Kuang-Hsiang Chuang, Ph.D., Department of Radiation Oncology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642. E-mail: ; fax: +1-585-276-1201 or Christopher T. Barry, M.D., MOHAN Foundation, 267 Kipauk Garden Road, Chennai 600010, India. E-mail: ; fax: +91-044-26263477
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY
| | - Chin-Yi Chu
- Division of Neonatology and Center for Pediatric Biomedical Research, University of Rochester Medical CenterRochester, NY,Pediatric Molecular and Personalized Medicine Program, University of Rochester Medical CenterRochester, NY
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical CenterRochester, NY
| | - M Katherine Dokus
- Department of Surgery Research, University of Rochester Medical CenterRochester, NY
| | - Shannon Schmit
- Department of Surgery Research, University of Rochester Medical CenterRochester, NY
| | - Christopher T Barry
- The Wilmot Cancer Institute, University of Rochester Medical CenterRochester, NY,Department of Surgery Research, University of Rochester Medical CenterRochester, NY
| |
Collapse
|