1
|
Wang B, Zhou A, Pan Q, Li Y, Xi Z, He K, Li D, Li B, Liu Y, Liu Y, Xia Q. Adenosinergic metabolism pathway: an emerging target for improving outcomes of solid organ transplantation. Transl Res 2024; 263:93-101. [PMID: 37678756 DOI: 10.1016/j.trsl.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Extracellular nucleotides are widely recognized as crucial modulators of immune responses in peripheral tissues. Adenosine triphosphate (ATP) and adenosine are key components of extracellular nucleotides, the balance of which contributes to immune homeostasis. Under tissue injury, ATP exerts its pro-inflammatory function, while the adenosinergic pathway rapidly degrades ATP to immunosuppressive adenosine, thus inhibiting excessive and uncontrolled inflammatory responses. Previous reviews have explored the immunoregulatory role of extracellular adenosine in various pathological conditions, especially inflammation and malignancy. However, current knowledge regarding adenosine and adenosinergic metabolism in the context of solid organ transplantation remains fragmented. In this review, we summarize the latest information on adenosine metabolism and the mechanisms by which it suppresses the effector function of immune cells, as well as highlight the protective role of adenosine in all stages of solid organ transplantation, including reducing ischemia reperfusion injury during organ procurement, alleviating rejection, and promoting graft regeneration after transplantation. Finally, we discuss the potential for future clinical translation of adenosinergic pathway in solid organ transplantation.
Collapse
Affiliation(s)
- Bingran Wang
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Aiwei Zhou
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Qi Pan
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yanran Li
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Zhifeng Xi
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Kang He
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Dan Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| | - Yuan Liu
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China.
| | - Qiang Xia
- Department of liver surgery, Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, China; Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
2
|
Rani R, Gandhi CR. Stellate cell in hepatic inflammation and acute injury. J Cell Physiol 2023; 238:1226-1236. [PMID: 37120832 DOI: 10.1002/jcp.31029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
The perisinusoidal hepatic stellate cells (HSCs) have been investigated extensively for their role as the major fibrogenic cells during chronic liver injury. HSCs also produce numerous cytokines, chemokines, and growth mediators, and express cell adhesion molecules constitutively and in response to stimulants such as endotoxin (lipopolysaccharide). With this property and by interacting with resident and recruited immune and inflammatory cells, HSCs regulate hepatic immune homeostasis, inflammation, and acute injury. Indeed, experiments with HSC-depleted animal models and cocultures have provided evidence for the prominent role of HSCs in the initiation and progression of inflammation and acute liver damage due to various toxic agents. Thus HSCs and/or mediators derived thereof during acute liver damage may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Richa Rani
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
| | - Chandrashekhar R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Research & Development, Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Rahim MK, Okholm TLH, Jones KB, McCarthy EE, Liu CC, Yee JL, Tamaki SJ, Marquez DM, Tenvooren I, Wai K, Cheung A, Davidson BR, Johri V, Samad B, O'Gorman WE, Krummel MF, van Zante A, Combes AJ, Angelo M, Fong L, Algazi AP, Ha P, Spitzer MH. Dynamic CD8 + T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 2023; 186:1127-1143.e18. [PMID: 36931243 PMCID: PMC10348701 DOI: 10.1016/j.cell.2023.02.021] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.
Collapse
Affiliation(s)
- Maha K Rahim
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trine Line H Okholm
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyle B Jones
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Pharma Technical Cell and Gene Therapy, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Elizabeth E McCarthy
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Candace C Liu
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Jacqueline L Yee
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stanley J Tamaki
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Cheung
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brittany R Davidson
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vrinda Johri
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William E O'Gorman
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Matthew F Krummel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Annemieke van Zante
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Alain P Algazi
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Rezq S, Hassan R, Mahmoud MF. Rimonabant ameliorates hepatic ischemia/reperfusion injury in rats: Involvement of autophagy via modulating ERK- and PI3K/AKT-mTOR pathways. Int Immunopharmacol 2021; 100:108140. [PMID: 34536742 DOI: 10.1016/j.intimp.2021.108140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
Hepatic ischemia/reperfusion (HIR), which can result in severe liver injury and dysfunction, is usually associated with autophagy and endocannabinoid system derangements. Whether or not the modulation of the autophagic response following HIR injury is involved in the hepatoprotective effect of the cannabinoid receptor 1(CB1R) antagonist rimonabant remains elusive and is the aim of the current study. Rats pre-treated with rimonabant (3 mg/kg) or vehicle underwent 30 min hepatic ischemia followed by 6 hrs. reperfusion. Liver injury was evaluated by serum ALT, AST, bilirubin (total and direct levels) and histopathological examination. The inflammatory, profibrotic and oxidative responses were investigated by assessing hepatic tumor necrosis factor α (TNFα), nuclear factor kappa B (NF-κB), transforming growth factor (TGF-β), lipid peroxidation and reduced glutathione. The hepatic levels of CB1R and autophagic markers p62, Beclin-1, and LC3 as well as the autophagic signaling inhibitors ERK1/2, PI3K, Akt and mTOR were also determined. Rimonabant significantly attenuated HIR-induced increases in hepatic injury, inflammation, profibrotic responses and oxidative stress and improved the associated pathological features. Rimonabant modulated the expression of p62, Beclin-1, and LC3, down-regulated CB1R, and dcreased pERK1/2, PI3K, Akt, and mTOR activities. The current study suggests that rimonabant can protect the liver from IR injury at least in part by inducing autophagy, probably by modulating ERK- and/or PI3K/AKT-mTOR signaling.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt.
| | - Reham Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
6
|
Allard D, Allard B, Stagg J. On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer 2021; 8:jitc-2019-000186. [PMID: 32098829 PMCID: PMC7057429 DOI: 10.1136/jitc-2019-000186] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2019] [Indexed: 12/26/2022] Open
Abstract
With the coming of age of cancer immunotherapy, the search for new therapeutic targets has led to the identification of immunosuppressive adenosine as an important regulator of antitumor immunity. This resulted in the development of selective inhibitors targeting various components of the adenosinergic pathway, including small molecules antagonists targeting the high affinity A2A adenosine receptor and low affinity A2B receptor, therapeutic monoclonal antibodies (mAbs) and small molecules targeting CD73 and therapeutic mAbs targeting CD39. As each regulator of the adenosinergic pathway present non-overlapping biologic functions, a better understanding of the mechanisms of action of each targeted approach should accelerate clinical translation and improve rational design of combination treatments. In this review, we discuss the potential mechanisms-of-action of anti-CD39 cancer therapy and potential toxicities that may emerge from sustained CD39 inhibition. Caution should be taken, however, in extrapolating data from gene-targeted mice to patients treated with blocking anti-CD39 agents. As phase I clinical trials are now underway, further insights into the mechanism of action and potential adverse events associated with anti-CD39 therapy are anticipated in coming years.
Collapse
Affiliation(s)
- David Allard
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - Bertrand Allard
- Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| | - John Stagg
- Faculty of Pharmacy, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada .,Institut du Cancer de Montreal, Centre Hospitalier de L'Universite de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Nakano R, Tran LM, Geller DA, Macedo C, Metes DM, Thomson AW. Dendritic Cell-Mediated Regulation of Liver Ischemia-Reperfusion Injury and Liver Transplant Rejection. Front Immunol 2021; 12:705465. [PMID: 34262574 PMCID: PMC8273384 DOI: 10.3389/fimmu.2021.705465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Liver allograft recipients are more likely to develop transplantation tolerance than those that receive other types of organ graft. Experimental studies suggest that immune cells and other non-parenchymal cells in the unique liver microenvironment play critical roles in promoting liver tolerogenicity. Of these, liver interstitial dendritic cells (DCs) are heterogeneous, innate immune cells that appear to play pivotal roles in the instigation, integration and regulation of inflammatory responses after liver transplantation. Interstitial liver DCs (recruited in situ or derived from circulating precursors) have been implicated in regulation of both ischemia/reperfusion injury (IRI) and anti-donor immunity. Thus, livers transplanted from mice constitutively lacking DCs into syngeneic, wild-type recipients, display increased tissue injury, indicating a protective role of liver-resident donor DCs against transplant IRI. Also, donor DC depletion before transplant prevents mouse spontaneous liver allograft tolerance across major histocompatibility complex (MHC) barriers. On the other hand, mouse liver graft-infiltrating host DCs that acquire donor MHC antigen via "cross-dressing", regulate anti-donor T cell reactivity in association with exhaustion of graft-infiltrating T cells and promote allograft tolerance. In an early phase clinical trial, infusion of donor-derived regulatory DCs (DCreg) before living donor liver transplantation can induce alterations in host T cell populations that may be conducive to attenuation of anti-donor immune reactivity. We discuss the role of DCs in regulation of warm and liver transplant IRI and the induction of liver allograft tolerance. We also address design of cell therapies using DCreg to reduce the immunosuppressive drug burden and promote clinical liver allograft tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lillian M. Tran
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Camila Macedo
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Diana M. Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Méndez-Sánchez N, Córdova-Gallardo J, Barranco-Fragoso B, Eslam M. Hepatic Dendritic Cells in the Development and Progression of Metabolic Steatohepatitis. Front Immunol 2021; 12:641240. [PMID: 33833761 PMCID: PMC8021782 DOI: 10.3389/fimmu.2021.641240] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic Associated Fatty liver disease (MAFLD) is a global health problem and represents the most common cause of chronic liver disease in the world. MAFLD spectrum goes from simple steatosis to cirrhosis, in between metabolic steatohepatitis with progressive fibrosis, which pathogenesis is not completely understood. Hence, the role of the immune system has become an important fact in the trigger of inflammatory cascades in metabolic steatohepatitis and in the activation of hepatic stellate cells (HSCs). Among, the more studied immune cells in the pathogenesis of MAFLD are macrophages, T cells, natural killer and dendritic cells. In particular, hepatic dendritic cells had recently attracted a special attention, with a dual role in the pathogenesis of MAFLD. These cells have the capacity to switch from a tolerant state to active state inducing an inflammatory cascade. Furthermore, these cells play a role in the lipid storage within the liver, having, thus providing a crucial nexus between inflammation and lipid metabolism. In this review, we will discuss the current knowledge on the dual role of dendritic cells in lipid accumulation, as wells as in the triggering of hepatic inflammation and hepatocytes cell death in metabolic steatohepatitis.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Jacqueline Córdova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery and Obesity Clinic, General Hospital “Dr. Manuel Gea González”, Mexico City, Mexico
| | | | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Naranjo-Gomez M, Cahen M, Lambour J, Boyer-Clavel M, Pelegrin M. Immunomodulatory Role of NK Cells during Antiviral Antibody Therapy. Vaccines (Basel) 2021; 9:137. [PMID: 33567792 PMCID: PMC7914599 DOI: 10.3390/vaccines9020137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Monoclonal antibodies (mAbs) are now considered as a therapeutic approach to prevent and treat severe viral infections. Using a mouse retroviral model, we showed that mAbs induce protective immunity (vaccinal effects). Here, we investigated the role of natural killer (NK) cells on this effect. NK cells are effector cells that are crucial to control viral propagation upon mAb treatment. However, their immunomodulatory activity during antiviral mAb immunotherapies has been little studied. Our data reveal that the mAb treatment of infected mice preserves the functional activation of NK cells. Importantly, functional NK cells play an essential role in preventing immune dysfunction and inducing antiviral protective immunity upon mAb therapy. Thus, NK cell depletion in mAb-treated, viral-infected mice leads to the upregulation of molecules involved in immunosuppressive pathways (i.e., PD-1, PD-L1 and CD39) on dendritic cells and T cells. NK cell depletion also abrogates the vaccinal effects induced by mAb therapy. Our data also reveal a role for IFNγ-producing NK cells in the enhancement of the B-cell responses through the potentiation of the B-cell helper properties of neutrophils. These findings suggest that preserved NK cell functions and counts might be required for achieving mAb-induced protective immunity. They open new prospects for improving antiviral immunotherapies.
Collapse
Affiliation(s)
- Mar Naranjo-Gomez
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| | - Marine Cahen
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| | - Jennifer Lambour
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| | - Myriam Boyer-Clavel
- Montpellier Ressources Imagerie, Biocampus, Univ Montpellier, CNRS, Montpellier, France;
| | - Mireia Pelegrin
- IGMM, Univ Montpellier, CNRS, Montpellier, France; (M.N.-G.); (M.C.); (J.L.)
| |
Collapse
|
10
|
Wang Y, Wang Q, Wang B, Gu Y, Yu H, Yang W, Ren X, Qian F, Zhao X, Xiao Y, Zhang Y, Jin M, Zhu M. Inhibition of EZH2 ameliorates bacteria-induced liver injury by repressing RUNX1 in dendritic cells. Cell Death Dis 2020; 11:1024. [PMID: 33262329 PMCID: PMC7708645 DOI: 10.1038/s41419-020-03219-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Fulminant hepatic failure (FHF) is a clinical syndrome characterized by a sudden and severe impairment in liver function. However, the precise mechanism of immune dysregulation that is significant to FHF pathogenesis remains unclear. Enhancer of zeste homolog 2 (EZH2) has been implicated in inflammation as a regulator of immune cell function. In this study, we investigated the role of EZH2 in an animal model of human FHF induced by Propionibacterium acnes (P. acnes) and lipopolysaccharide (LPS). We demonstrated that EZH2 depletion in dendritic cells (DCs) and pharmacological inhibition of EZH2 using GSK126 both significantly ameliorated liver injury and improved the survival rates of mice with P. acnes plus LPS-induced FHF, which could be attributed to the decreased infiltration and activation of CD4+ T cells in the liver, inhibition of T helper 1 cells and induction of regulatory T cells. The expression of EZH2 in DCs was increased after P. acnes administration, and EZH2 deficiency in DCs suppressed DC maturation and prevented DCs from efficiently stimulating CD4+ T-cell proliferation. Further mechanistic analyses indicated that EZH2 deficiency directly increased the expression of the transcription factor RUNX1 and thereby suppressed the immune functions of DCs. The functional dependence of EZH2 on RUNX1 was further illustrated in DC-specific Ezh2-deficient mice. Taken together, our findings establish that EZH2 exhibits anti-inflammatory effects through inhibition of RUNX1 to regulate DC functions and that inhibition of EZH2 alleviates P. acnes plus LPS-induced FHF, probably by inhibiting DC-induced adaptive immune responses. These results highlight the effect of EZH2 on DCs, serving as a guide for the development of a promising immunotherapeutic strategy for FHF.
Collapse
Affiliation(s)
- Yanan Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Gu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongshuang Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wanlin Yang
- Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Xiaohui Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaonan Zhao
- Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China. .,Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Min Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China. .,Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Thomson AW, Vionnet J, Sanchez-Fueyo A. Understanding, predicting and achieving liver transplant tolerance: from bench to bedside. Nat Rev Gastroenterol Hepatol 2020; 17:719-739. [PMID: 32759983 DOI: 10.1038/s41575-020-0334-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
In the past 40 years, liver transplantation has evolved from a high-risk procedure to one that offers high success rates for reversal of liver dysfunction and excellent patient and graft survival. The liver is the most tolerogenic of transplanted organs; indeed, immunosuppressive therapy can be completely withdrawn without rejection of the graft in carefully selected, stable long-term liver recipients. However, in other recipients, chronic allograft injury, late graft failure and the adverse effects of anti-rejection therapy remain important obstacles to improved success. The liver has a unique composition of parenchymal and immune cells that regulate innate and adaptive immunity and that can promote antigen-specific tolerance. Although the mechanisms underlying liver transplant tolerance are not well understood, important insights have been gained into how the local microenvironment, hepatic immune cells and specific molecular pathways can promote donor-specific tolerance. These insights provide a basis for the identification of potential clinical biomarkers that might correlate with tolerance or rejection and for the development of novel therapeutic targets. Innovative approaches aimed at promoting immunosuppressive drug minimization or withdrawal include the adoptive transfer of donor-derived or recipient-derived regulatory immune cells to promote liver transplant tolerance. In this Review, we summarize and discuss these developments and their implications for liver transplantation.
Collapse
Affiliation(s)
- Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Julien Vionnet
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK.,Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, Medical Research Council (MRC) Centre for Transplantation, School of Immunology and Infectious Diseases, King's College London University, King's College Hospital, London, UK
| |
Collapse
|
12
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
13
|
Ecto-Nucleotide Triphosphate Diphosphohydrolase-2 (NTPDase2) Deletion Increases Acetaminophen-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21175998. [PMID: 32825435 PMCID: PMC7504458 DOI: 10.3390/ijms21175998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Ecto-nucleotidase triphosphate diphosphohydrolase-2 (NTPDase2) is an ecto-enzyme that is expressed on portal fibroblasts in the liver that modulates P2 receptor signaling by regulating local concentrations of extracellular ATP and ADP. NTPDase2 has protective properties in liver fibrosis and may impact bile duct epithelial turnover. Here, we study the role of NTPDase2 in acute liver injury using an experimental model of acetaminophen (APAP) intoxication in mice with global deletion of NTPDase2. Acute liver toxicity was caused by administration of acetaminophen in wild type (WT) and NTPDase2-deficient (Entpd2 null) mice. The extent of liver injury was compared by histology and serum alanine transaminase (ALT). Markers of inflammation, regeneration and fibrosis were determined by qPCR). We found that Entpd2 expression is significantly upregulated after acetaminophen-induced hepatotoxicity. Entpd2 null mice showed significantly more necrosis and higher serum ALT compared to WT. Hepatic expression of IL-6 and PDGF-B are higher in Entpd2 null mice. Our data suggest inducible and protective roles of portal fibroblast-expressed NTPDase2 in acute necrotizing liver injury. Further studies should investigate the relevance of these purinergic pathways in hepatic periportal and sinusoidal biology as such advances in understanding might provide possible therapeutic targets.
Collapse
|
14
|
Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases: Pathological functions and therapeutic opportunities. JHEP Rep 2020; 2:100165. [PMID: 33103092 PMCID: PMC7575885 DOI: 10.1016/j.jhepr.2020.100165] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides, including ATP, are essential regulators of liver function and serve as danger signals that trigger inflammation upon injury. Ectonucleotidases, which are expressed by liver-resident cells and recruited immune cells sequentially hydrolyse nucleotides to adenosine. The nucleotide/nucleoside balance orchestrates liver homeostasis, tissue repair, and functional restoration by regulating the crosstalk between liver-resident cells and recruited immune cells. In this review, we discuss our current knowledge on the role of purinergic signals in liver homeostasis, restriction of inflammation, stimulation of liver regeneration, modulation of fibrogenesis, and regulation of carcinogenesis. Moreover, we discuss potential targeted therapeutic strategies for liver diseases based on purinergic signals involving blockade of nucleotide receptors, enhancement of ectonucleoside triphosphate diphosphohydrolase activity, and activation of adenosine receptors.
Collapse
Key Words
- A1, adenosine receptor A1
- A2A, adenosine receptor A2A
- A2B, adenosine receptor A2B
- A3, adenosine receptor A3
- AIH, autoimmune hepatitis
- ALT, alanine aminotransferase
- APAP, acetaminophen
- APCP, α,β-methylene ADP
- Adenosine receptors
- BDL, bile duct ligation
- CCl4, carbon tetrachloride
- CD73, ecto-5ʹ-nucleotidase
- ConA, concanavalin A
- DCs, dendritic cells
- DMN, dimethylnitrosamine
- Ecto-5ʹ-nucleotidase
- Ectonucleoside triphosphate diphosphohydrolases 1
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HGF, hepatocyte growth factor
- HSCs, hepatic stellate cells
- IFN, interferon
- IL-, interleukin-
- IPC, ischaemic preconditioning
- IR, ischaemia-reperfusion
- Liver
- MAPK, mitogen-activating protein kinase
- MCDD, methionine- and choline-deficient diet
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK, natural killer
- NKT, natural killer T
- NTPDases, ectonucleoside triphosphate diphosphohydrolases
- Nucleotide receptors
- P1, purinergic type 1
- P2, purinergic type 2
- PBC, primary biliary cholangitis
- PH, partial hepatectomy
- PKA, protein kinase A
- PPADS, pyridoxal-phosphate-6-azophenyl-2′,4′-disulphonate
- Purinergic signals
- ROS, reactive oxygen species
- TAA, thioacetamide
- TNF, tumour necrosis factor
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation & National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
15
|
|
16
|
Wang S, Gao S, Zhou D, Qian X, Luan J, Lv X. The role of the CD39-CD73-adenosine pathway in liver disease. J Cell Physiol 2020; 236:851-862. [PMID: 32648591 DOI: 10.1002/jcp.29932] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Extracellular adenosine triphosphate (ATP) is a danger signal released by dying and damaged cells, and it functions as an immunostimulatory signal that promotes inflammation. The ectonucleotidases CD39/ectonucleoside triphosphate diphosphohydrolase-1 and CD73/ecto-5'-nucleotidase are cell-surface enzymes that breakdown extracellular ATP into adenosine. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39-CD73-adenosine pathway changes dynamically with the pathophysiological context in which it is embedded. Accumulating evidence suggests that CD39 and CD73 play important roles in liver disease as critical components of the extracellular adenosinergic pathway. Recent studies have shown that the modification of the CD39-CD73-adenosine pathway alters the liver's response to injury. Moreover, adenosine exerts different effects on the pathophysiology of the liver through different receptors. In this review, we aim to describe the role of the CD39-CD73-adenosine pathway and adenosine receptors in liver disease, highlighting potential therapeutic targets in this pathway, which will facilitate the development of therapeutic strategies for the treatment of liver disease.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
17
|
El-Bendary M, Naemattalah M, Yassen A, Mousa N, Elhammady D, Sultan AM, Abdel-Wahab M. Interrelationship between Toll-like receptors and infection after orthotopic liver transplantation. World J Transplant 2020; 10:162-172. [PMID: 32742949 PMCID: PMC7360527 DOI: 10.5500/wjt.v10.i6.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Early microbial recognition by the innate immune system is accomplished by Toll-like receptors (TLRs), with resultant initiation of a pro-inflammatory response against infecting organisms. In spite of presence of an abundance of Toll-like receptors on the surface of the liver, gut bacteria does not elicit an inflammatory reaction in healthy individuals due to tolerance to these TLRs, suggesting that the inflammatory responses seen in the liver are the result of breakdown of this tolerance. While orthotopic liver transplantation is often life saving in many instances, death following this procedure is most commonly due to infection that occurs in up to 80% of transplant recipients, most commonly due to microbial causes in up to 70% of cases and viral infections in 20%, while fungal infections affect only 8% of cases. The probability of acquiring infection following hepatic transplantation is heightened due to affection of the innate immune defense mechanisms of the host following this procedure. Single nucleotide polymorphisms of TLRs have been associated with increased likelihood of either development of post-transplant infection or eradication of infecting organism. However, conflicting reports from other studies reveal that prevalence of this single nucleotide polymorphism is not increased in infected patients.
Collapse
Affiliation(s)
- Mahmoud El-Bendary
- Department of Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Mustafa Naemattalah
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Ahmed Yassen
- Department of Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Naser Mousa
- Department of Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Dina Elhammady
- Department of Tropical Medicine and Hepatology, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Ahmed M Sultan
- Gastroenterology Surgical Centre, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| | - Mohamed Abdel-Wahab
- Gastroenterology Surgical Centre, Faculty of Medicine, Mansoura University, Mansoura 35111, Egypt
| |
Collapse
|
18
|
Guo W, Fang H, Cao S, Chen S, Li J, Shi J, Tang H, Zhang Y, Wen P, Zhang J, Wang Z, Shi X, Pang C, Yang H, Hu B, Zhang S. Six-Transmembrane Epithelial Antigen of the Prostate 3 Deficiency in Hepatocytes Protects the Liver Against Ischemia-Reperfusion Injury by Suppressing Transforming Growth Factor-β-Activated Kinase 1. Hepatology 2020; 71:1037-1054. [PMID: 31393024 PMCID: PMC7155030 DOI: 10.1002/hep.30882] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion (I/R) injury remains a major challenge affecting the morbidity and mortality of liver transplantation. Effective strategies to improve liver function after hepatic I/R injury are limited. Six-transmembrane epithelial antigen of the prostate 3 (Steap3), a key regulator of iron uptake, was reported to be involved in immunity and apoptotic processes in various cell types. However, the role of Steap3 in hepatic I/R-induced liver damage remains largely unclear. APPROACH AND RESULTS In the present study, we found that Steap3 expression was significantly up-regulated in liver tissue from mice subjected to hepatic I/R surgery and primary hepatocytes challenged with hypoxia/reoxygenation insult. Subsequently, global Steap3 knockout (Steap3-KO) mice, hepatocyte-specific Steap3 transgenic (Steap3-HTG) mice, and their corresponding controls were subjected to partial hepatic warm I/R injury. Hepatic histology, the inflammatory response, and apoptosis were monitored to assess liver damage. The molecular mechanisms of Steap3 function were explored in vivo and in vitro. The results demonstrated that, compared with control mice, Steap3-KO mice exhibited alleviated liver damage after hepatic I/R injury, as shown by smaller necrotic areas, lower serum transaminase levels, decreased apoptosis rates, and reduced inflammatory cell infiltration, whereas Steap3-HTG mice had the opposite phenotype. Further molecular experiments showed that Steap3 deficiency could inhibit transforming growth factor-β-activated kinase 1 (TAK1) activation and downstream c-Jun N-terminal kinase (JNK) and p38 signaling during hepatic I/R injury. CONCLUSIONS Steap3 is a mediator of hepatic I/R injury that functions by regulating inflammatory responses as well as apoptosis through TAK1-dependent activation of the JNK/p38 pathways. Targeting hepatocytes, Steap3 may be a promising approach to protect the liver against I/R injury.
Collapse
Affiliation(s)
- Wen‐Zhi Guo
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Bo Fang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Sheng‐Li Cao
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - San‐Yang Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jie Li
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Ji‐Hua Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Hong‐Wei Tang
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Yi Zhang
- Department of SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Pei‐Hao Wen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Jia‐Kai Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Zhi‐Hui Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Xiao‐Yi Shi
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Chun Pang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Han Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Bo‐Wen Hu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| | - Shui‐Jun Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina,Henan Key Laboratory of Digestive Organ TransplantationZhengzhouHenan ProvinceChina,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhouHenan ProvinceChina
| |
Collapse
|
19
|
Why some organ allografts are tolerated better than others: new insights for an old question. Curr Opin Organ Transplant 2020; 24:49-57. [PMID: 30516578 DOI: 10.1097/mot.0000000000000594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW There is great variability in how different organ allografts respond to the same tolerance induction protocol. Well known examples of this phenomenon include the protolerogenic nature of kidney and liver allografts as opposed to the tolerance-resistance of heart and lung allografts. This suggests there are organ-specific factors which differentially drive the immune response following transplantation. RECENT FINDINGS The specific cells or cell products that make one organ allograft more likely to be accepted off immunosuppression than another are largely unknown. However, new insights have been made in this area recently. SUMMARY The current review will focus on the organ-intrinsic factors that contribute to the organ-specific differences observed in tolerance induction with a view to developing therapeutic strategies to better prevent organ rejection and promote tolerance induction of all organs.
Collapse
|
20
|
Anyanwu AC, Kanthi Y, Fukase K, Liao H, Mimura T, Desch KC, Gruca M, Kaskar S, Sheikh-Aden H, Chi L, Zhao R, Yadav V, Wakefield TW, Hyman MC, Pinsky DJ. Tuning the Thromboinflammatory Response to Venous Flow Interruption by the Ectonucleotidase CD39. Arterioscler Thromb Vasc Biol 2020; 39:e118-e129. [PMID: 30816804 DOI: 10.1161/atvbaha.119.312407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective- Leukocyte flux contributes to thrombus formation in deep veins under pathological conditions, but mechanisms that inhibit venous thrombosis are incompletely understood. Ectonucleotide di(tri)phosphohydrolase 1 ( ENTPD1 or Cd39), an ectoenzyme that catabolizes extracellular adenine nucleotides, is embedded on the surface of endothelial cells and leukocytes. We hypothesized that under venous stasis conditions, CD39 regulates inflammation at the vein:blood interface in a murine model of deep vein thrombosis. Approach and Results- CD39-null mice developed significantly larger venous thrombi under venous stasis, with more leukocyte recruitment compared with wild-type mice. Gene expression profiling of wild-type and Cd39-null mice revealed 76 differentially expressed inflammatory genes that were significantly upregulated in Cd39-deleted mice after venous thrombosis, and validation experiments confirmed high expression of several key inflammatory mediators. P-selectin, known to have proximal involvement in venous inflammatory and thrombotic events, was upregulated in Cd39-null mice. Inferior vena caval ligation resulted in thrombosis and a corresponding increase in both P-selectin and VWF (von Willebrand Factor) levels which were strikingly higher in mice lacking the Cd39 gene. These mice also manifest an increase in circulating platelet-leukocyte heteroaggregates suggesting heterotypic crosstalk between coagulation and inflammatory systems, which is amplified in the absence of CD39. Conclusions- These data suggest that CD39 mitigates the venous thromboinflammatory response to flow interruption.
Collapse
Affiliation(s)
- Anuli C Anyanwu
- From the Department of Molecular and Integrative Physiology (A.C.A., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor.,Section of Cardiology, Ann Arbor Veterans Health System, Michigan (Y.K.)
| | - Keigo Fukase
- Department of Cardiovascular Surgery, Awaji Medical Center, Hyogo, Japan (K.F.)
| | - Hui Liao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Tekashi Mimura
- Department of Surgical Oncology, Hiroshima University, Japan (T.M.)
| | - Karl C Desch
- Department of Pediatrics (K.C.D.), University of Michigan Medical Center, Ann Arbor
| | - Martin Gruca
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Saabir Kaskar
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Hussein Sheikh-Aden
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Liguo Chi
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Raymond Zhao
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Vinita Yadav
- Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| | - Thomas W Wakefield
- Section of Vascular Surgery, Department of Surgery, Conrad Jobst Vascular Research Laboratories Ann Arbor, MI (T.W.W.)
| | - Matthew C Hyman
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia (M.C.H.)
| | - David J Pinsky
- From the Department of Molecular and Integrative Physiology (A.C.A., D.J.P.), University of Michigan Medical Center, Ann Arbor.,Division of Cardiovascular Medicine, Frankel Cardiovascular Center (Y.K., H.L., M.G., S.K., H.S.-A., L.C., R.Z., V.Y., D.J.P.), University of Michigan Medical Center, Ann Arbor
| |
Collapse
|
21
|
Zhao R, Qiao J, Zhang X, Zhao Y, Meng X, Sun D, Peng X. Toll-Like Receptor-Mediated Activation of CD39 Internalization in BMDCs Leads to Extracellular ATP Accumulation and Facilitates P2X7 Receptor Activation. Front Immunol 2019; 10:2524. [PMID: 31736956 PMCID: PMC6834529 DOI: 10.3389/fimmu.2019.02524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) trigger innate immune responses through their recognition of conserved molecular ligands of either endogenous or microbial origin. Although activation, function, and signaling pathways of TLRs were already well-studied, their precise function in specific cell types, especially innate immune cells, needs to be further clarified. In this study, we showed that when significantly decreased amounts of membrane CD39, an adenosine triphosphate (ATP)-degrading enzyme, were detected in lipopolysaccharide (LPS)-treated bone marrow-derived dendritic cells (BMDCs), Cd39 mRNA expression, and whole-cell CD39 expression were at the same levels as those in untreated BMDCs. Further experiments demonstrated that the downregulation of membrane CD39 expression in LPS-treated BMDCs was mediated by endocytosis, leading to membrane-exposed CD39 downregulation, which was positively associated with decreased enzymatic activity in ATP metabolism and increased extracellular ATP accumulation. The accumulated ATP promoted intracellular calcium accumulation and IL-1β production in BMDCs through P2X7 signaling activation. Further research revealed that not only LPS but also other TLR ligands, excluding polyI:C, induced CD39 internalization in BMDCs and that the MyD88 pathway was critical in this process. The results suggested that the activation of CD39 internalization in DCs induced by a TLR ligand caused increased ATP accumulation, leading to P2X7 receptor activation that mediated a proinflammatory effect. Considering the strong modulatory effect of extracellular ATP accumulation on the immune response and inflammation, the manipulation of membrane CD39 expression on DCs may have implications on the regulation and treatment of inflammatory responses.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Institute, Los Angeles, CA, United States
| | - Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Dai H, Thomson AW, Rogers NM. Dendritic Cells as Sensors, Mediators, and Regulators of Ischemic Injury. Front Immunol 2019; 10:2418. [PMID: 31681306 PMCID: PMC6803430 DOI: 10.3389/fimmu.2019.02418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized, bone marrow (BM)-derived antigen-processing and -presenting cells crucial to the induction, integration and regulation of innate, and adaptive immunity. They are stimulated by damage-associated molecular patterns (DAMPS) via pattern recognition receptors to promote inflammation and initiate immune responses. In addition to residing within the parenchyma of all organs as part of the heterogeneous mononuclear phagocyte system, DCs are an abundant component of the inflammatory cell infiltrate that appears in response to ischemia reperfusion injury (IRI). They can play disparate roles in the pathogenesis of IRI since their selective depletion has been found to be protective, deleterious, or of no benefit in mouse models of IRI. In addition, administration of DC generated and manipulated ex vivo can protect organs from IRI by suppressing inflammatory cytokine production, limiting the capacity of DCs to activate NKT cells, or enhancing regulatory T cell function. Few studies however have investigated specific signal transduction mechanisms underlying DC function and how these affect IRI. Here, we address current knowledge of the role of DCs in regulation of IRI, current gaps in understanding and prospects for innovative therapeutic intervention at the biological and pharmacological levels.
Collapse
Affiliation(s)
- Helong Dai
- Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation of Hunan Province, Changsha, China
| | - Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Natasha M. Rogers
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
- Renal Division, Westmead Hospital, Westmead, NSW, Australia
- Westmead Clinical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
23
|
Nakao T, Ono Y, Dai H, Nakano R, Perez-Gutierrez A, Camirand G, Huang H, Geller DA, Thomson AW. DNAX Activating Protein of 12 kDa/Triggering Receptor Expressed on Myeloid Cells 2 Expression by Mouse and Human Liver Dendritic Cells: Functional Implications and Regulation of Liver Ischemia-Reperfusion Injury. Hepatology 2019; 70:696-710. [PMID: 30372546 PMCID: PMC6488456 DOI: 10.1002/hep.30334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022]
Abstract
Liver interstitial dendritic cells (DCs) have been implicated in the control of ischemia-reperfusion injury (IRI) and host immune responses following liver transplantation. Mechanisms underlying these regulatory functions of hepatic DCs remain unclear. We have shown recently that the transmembrane immunoadaptor DNAX-activating protein of 12 kDa (DAP12) negatively regulates mouse liver DC maturation and proinflammatory and immune stimulatory functions. Here, we used PCR analysis and flow cytometry to characterize expression of DAP12 and its associated triggering receptor, triggering receptor expressed on myeloid cells 2 (TREM2), by mouse and human liver DCs and other immune cells compared with DCs in other tissues. We also examined the roles of DAP12 and TREM2 and their expression by liver DCs in the regulation of liver IRI. Injury was induced in DAP12-/- , TREM2-/- , or wild-type (WT) mice by 1 hour of 70% clamping and quantified following 6 hours of reperfusion. Both DAP12 and TREM2 were coexpressed at comparatively high levels by liver DCs. Mouse liver DCs lacking DAP12 or TREM2 displayed enhanced levels of nuclear factor κB and costimulatory molecule expression. Unlike normal WT liver DCs, DAP12-/- liver DC failed to inhibit proliferative responses of activated T cells. In vivo, DAP12-/- and TREM2-/- mice exhibited enhanced IRI accompanied by augmented liver DC activation. Elevated alanine aminotransferase levels and tissue injury were markedly reduced by infusion of WT but not DAP12-/- DC. Conclusion: Our data reveal a close association between DAP12 and TREM2 expression by liver DC and suggest that, by negatively regulating liver DC stimulatory function, DAP12 promotes their control of hepatic inflammatory responses; the DAP12/TREM2 signaling complex may represent a therapeutic target for control of acute liver injury/liver inflammatory disorders.
Collapse
Affiliation(s)
- Toshimasa Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoshihiro Ono
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helong Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, P.R. China
| | - Ryosuke Nakano
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angelica Perez-Gutierrez
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hai Huang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author: Angus W. Thomson, PhD DSc, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392, Fax: (412)-624-1172,
| |
Collapse
|
24
|
Li S, Chen X, Wang N, Li J, Feng Y, Sun J. Identification and characterization of ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) involved in regulating extracellular ATP-mediated innate immune responses in Japanese flounder (Paralichthys olivaceus). Mol Immunol 2019; 112:10-21. [PMID: 31075558 DOI: 10.1016/j.molimm.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022]
Abstract
Extracellular adenosine triphosphate (eATP), released following inflammatory stimulation or infection, is a potent signaling molecule in activating innate immune responses in fish. However, the regulation of eATP-mediated innate immunity in fish remains unknown. Ecto-nucleoside triphosphate diphosphohydrolase 1 (CD39) is a critical molecular switch for controlling the ATP levels in the extracellular space. CD39 plays a key role in regulating eATP-activated innate immune responses through the phosphohydrolysis of pro-inflammatory eATP to inactive AMP. Here, we identified and characterized a CD39 homolog (namely, poCD39) in the Japanese flounder Paralichthys olivaceus and analyzed its regulatory role in eATP-mediated innate immunity. Real-time quantitative PCR analysis revealed that poCD39 is ubiquitously present in all tested normal tissues with dominant expression in enriched Japanese flounder head kidney macrophages (HKMs). Immune challenge experiments demonstrated that poCD39 expression was upregulated by inflammatory stimulation and Edwardsiella tarda infection. Biochemical and immunofluorescence analysis revealed that poCD39 is a functional glycosylated membrane protein for the hydrolysis of eATP. Inhibition of poCD939 activity with the ecto-NTPDase inhibitor ARL 67156 resulted in increased IL-1beta gene expression and ROS production in Japanese flounder HKMs. In contrast, overexpression of poCD39 in Japanese flounder FG-9307 cells reduced eATP-induced pro-inflammatory cytokine IL-1beta gene expression. Finally, poCD39 expression was significantly induced by eATP stimulation in the HKMs, suggesting that eATP may provide a feedback mechanism for transcriptional regulation of fish CD39. Taken together, we identified and characterized a functional fish CD39 protein involved in regulating eATP-mediated innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Nan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Yu Feng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
25
|
Vuerich M, Robson SC, Longhi MS. Ectonucleotidases in Intestinal and Hepatic Inflammation. Front Immunol 2019; 10:507. [PMID: 30941139 PMCID: PMC6433995 DOI: 10.3389/fimmu.2019.00507] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Simon C Robson
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Maria Serena Longhi
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Purine nucleosides and nucleotides are released in the extracellular space following cell injury and act as paracrine mediators through a number of dedicated membrane receptors. In particular, extracellular ATP (eATP) significantly influences T-lymphocyte activation and phenotype. The purpose of this review is to discuss the role of ATP signaling in the T-cell-mediated alloimmune response. RECENT FINDINGS In various animal models of solid transplantation, the purinergic axis has been targeted to prevent acute rejection and to promote long-term graft tolerance. The inhibition of ATP-gated P2X receptors has been shown to halt lymphocyte activation, to downregulate both Th1 and Th17 responses and to promote T-regulatory (Treg) cell differentiation. Similarly, the inhibition of ATP signaling attenuated graft-versus-host disease in mice undergoing hematopoietic cell transplantation. Significantly, different drugs targeting the purinergic system have been recently approved for human use and may be a viable therapeutic option for transplant patients. SUMMARY The inhibition of eATP signaling downregulates the alloimmune response, expands Treg cells and promotes graft survival. This robust preclinical evidence and the recent advances in pharmacological research may lead to intriguing clinical applications.
Collapse
|
27
|
Robinson KA, Orent W, Madsen JC, Benichou G. Maintaining T cell tolerance of alloantigens: Lessons from animal studies. Am J Transplant 2018; 18:1843-1856. [PMID: 29939471 PMCID: PMC6352985 DOI: 10.1111/ajt.14984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/25/2023]
Abstract
Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.
Collapse
Affiliation(s)
- Kortney A. Robinson
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - William Orent
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA.,Division of Cardiac Surgery, Department of Surgery,
Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gilles Benichou
- Center for Transplant Sciences, Massachusetts General
Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Ono Y, Perez-Gutierrez A, Nakao T, Dai H, Camirand G, Yoshida O, Yokota S, Stolz DB, Ross MA, Morelli AE, Geller DA, Thomson AW. Graft-infiltrating PD-L1 hi cross-dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance. Hepatology 2018; 67:1499-1515. [PMID: 28921638 PMCID: PMC5856603 DOI: 10.1002/hep.29529] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/17/2017] [Accepted: 09/12/2017] [Indexed: 01/07/2023]
Abstract
UNLABELLED Although a key role of cross-dressing has been established in immunity to viral infection and more recently in the instigation of transplant rejection, its role in tolerance is unclear. We investigated the role of intragraft dendritic cells (DCs) and cross-dressing in mouse major histocompatibility complex (MHC)-mismatched liver transplant tolerance that occurs without therapeutic immunosuppression. Although donor interstitial DCs diminished rapidly after transplantation, they were replaced in the liver by host DCs that peaked on postoperative day (POD) 7 and persisted indefinitely. Approximately 60% of these recipient DCs displayed donor MHC class I, indicating cross-dressing. By contrast, only a very minor fraction (0%-2%) of cross-dressed DCs (CD-DCs) was evident in the spleen. CD-DCs sorted from liver grafts expressed much higher levels of T cell inhibitory programed death ligand 1 (PD-L1) and high levels of interleukin-10 compared with non-CD-DCs (nCD-DCs) isolated from the graft. Concomitantly, high incidences of programed death protein 1 (PD-1)hi T cell immunoglobulin and mucin domain containing 3 (TIM-3)+ exhausted graft-infiltrating CD8+ T cells were observed. Unlike nCD-DCs, the CD-DCs failed to stimulate proliferation of allogeneic T cells but markedly suppressed antidonor host T cell proliferation. CD-DCs were much less evident in allografts from DNAX-activating protein of 12 kDa (DAP12)-/- donors that were rejected acutely. CONCLUSION These findings suggest that graft-infiltrating PD-L1hi CD-DCs may play a key role in the regulation of alloimmunity and in the induction of liver transplant tolerance. (Hepatology 2018;67:1499-1515).
Collapse
Affiliation(s)
- Yoshihiro Ono
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angelica Perez-Gutierrez
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Toshimasa Nakao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Helong Dai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Geoffrey Camirand
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Osamu Yoshida
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna Beer Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark A. Ross
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adrian E. Morelli
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Corresponding author: Angus W. Thomson, PhD DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392, Fax: (412)-624-1172,
| |
Collapse
|
29
|
Soysa R, Wu X, Crispe IN. Dendritic cells in hepatitis and liver transplantation. Liver Transpl 2017; 23:1433-1439. [PMID: 28752938 DOI: 10.1002/lt.24833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) play a key role in innate immune responses and are also the most effective cells for the activation of T cell immunity. They acquire antigen and process it; then they display it on the cell surface bound in a noncovalent complex with human leukocyte antigen molecules of class I (human leukocyte antigens A, B, and C) and class II (human leukocyte antigen DR). These cells are subdivided into 3 main subsets: 2 called myeloid dendritic cells (mDC) or classical DCs of types 1 and 2, and 1 called plasmacytoid dendritic cells (pDCs). The mDCs process and present antigen while the pDCs also strongly respond to viral signals by secreting type 1 interferon. In the liver, all of these subsets are present. However, their relative abundance is different from the peripheral blood, and it is further modified by liver disease. It appears that in relation to T cell tolerance, both mDCs and pDCs are influenced by the liver milieu and promote T cell inactivation. However, in antiviral responses and in ischemia/reperfusion injury, where innate immune functions are more important, mDCs and pDCs have distinct roles. Liver Transplantation 23 1433-1439 2017 AASLD.
Collapse
Affiliation(s)
- Radika Soysa
- Global Health, University of Washington, Seattle, WA
| | | | | |
Collapse
|
30
|
Abstract
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver ischemia-reperfusion injury involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver ischemia-reperfusion injury in patients.
Collapse
|
31
|
Territo PR, Meyer JA, Peters JS, Riley AA, McCarthy BP, Gao M, Wang M, Green MA, Zheng QH, Hutchins GD. Characterization of 11C-GSK1482160 for Targeting the P2X7 Receptor as a Biomarker for Neuroinflammation. J Nucl Med 2016; 58:458-465. [PMID: 27765863 DOI: 10.2967/jnumed.116.181354] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
The purinergic receptor subtype 7 (P2X7R) represents a novel molecular target for imaging neuroinflammation via PET. GSK1482160, a potent P2X7R antagonist, has high receptor affinity, high blood-brain barrier penetration, and the ability to be radiolabeled with 11C. We report the initial physical and biologic characterization of this novel ligand. Methods:11C-GSK1482160 was synthesized according to published methods. Cell density studies were performed on human embryonic kidney cell lines expressing human P2X7R (HEK293-hP2X7R) and underwent Western blotting, an immunofluorescence assay, and radioimmunohistochemistry analysis using P2X7R polyclonal antibodies. Receptor density and binding potential were determined by saturation and association-disassociation kinetics, respectively. Peak immune response to lipopolysaccharide treatment in mice was determined in time course studies and analyzed via Iba1 and P2X7R Western blotting and Iba1 immunohistochemistry. Whole-animal biodistribution studies were performed on saline- or lipopolysaccharide-treated mice at 15, 30, and 60 min after radiotracer administration. Dynamic in vivo PET/CT was performed on the mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking, and 2-compartment, 5-parameter tracer kinetic modeling of brain regions was performed. Results: P2X7R changed linearly with concentrations or cell numbers. For high-specific-activity 11C-GSK1482160, receptor density and Kd were 1.15 ± 0.12 nM and 3.03 ± 0.10 pmol/mg, respectively, in HEK293-hP2X7R membranes. Association constant kon, dissociation constant koff, and binding potential (kon/koff) in HEK293-hP2X7R cells were 0.2312 ± 0.01542 min-1⋅nM-1, 0.2547 ± 0.0155 min-1, and 1.0277 ± 0.207, respectively. Whole-brain Iba1 expression in lipopolysaccharide-treated mice peaked by 72 h on immunohistochemistry, and Western blot analysis of P2X7R for saline- and lipopolysaccharide-treated brain sections showed a respective 1.8- and 1.7-fold increase in signal enhancement at 72 h. Biodistribution of 11C-GSK1482160 in saline- and lipopolysaccharide-treated mice at 72 h was statistically significant across all tissues studied. In vivo dynamic 11C-GSK1482160 PET/CT of mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking showed a 3.2-fold increase and 97% blocking by 30 min. The total distribution volumes for multiple cortical regions and the hippocampus showed statistically significant increases and were blocked by an excess of authentic standard GSK1482160. Conclusion: The current study provides compelling data that support the suitability of 11C-GSK1482160 as a radioligand targeting P2X7R, a biomarker of neuroinflammation.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jill A Meyer
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan S Peters
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amanda A Riley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brian P McCarthy
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mingzhang Gao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Min Wang
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark A Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Qi-Huang Zheng
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gary D Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
32
|
Orthotopic mouse liver transplantation to study liver biology and allograft tolerance. Nat Protoc 2016; 11:1163-74. [PMID: 27254462 DOI: 10.1038/nprot.2016.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Orthotopic liver transplantation in the mouse is a powerful research tool that has led to important mechanistic insights into the regulation of hepatic injury, liver immunopathology, and transplant tolerance. However, it is a technically demanding surgical procedure. Setup of the orthotopic liver transplantation model comprises three main stages: surgery on the donor mouse; back-table preparation of the liver graft; and transplant of the liver into the recipient mouse. In this protocol, we describe our procedure in stepwise detail to allow efficient completion of both the donor and recipient operations. The protocol can result in consistently high technical success rates when performed by personnel experienced in the protocol. The technique can be completed in ∼2-3 h when performed by an individual who is well practiced in performing mouse transplantation in accordance with this protocol. We have achieved a perioperative survival rate close to 100%.
Collapse
|
33
|
Tian Y, Lesurtel M, Ungethuem U, Song Z, Maurizio E, Clavien PA. A novel technique in mouse liver transplantation. Transpl Int 2016; 29:742-3. [PMID: 27037719 DOI: 10.1111/tri.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yinghua Tian
- Department of Surgery and Transplantation, University Hospital of Zurich, Zurich, Switzerland.
| | - Mickael Lesurtel
- Department of Surgery and Transplantation, University Hospital of Zurich, Zurich, Switzerland
| | - Udo Ungethuem
- Department of Surgery and Transplantation, University Hospital of Zurich, Zurich, Switzerland
| | - Zhuolun Song
- Department of Surgery and Transplantation, University Hospital of Zurich, Zurich, Switzerland
| | - Eleonora Maurizio
- Department of Surgery and Transplantation, University Hospital of Zurich, Zurich, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Yokota S, Yoshida O, Ono Y, Geller DA, Thomson AW. Liver transplantation in the mouse: Insights into liver immunobiology, tissue injury, and allograft tolerance. Liver Transpl 2016; 22:536-46. [PMID: 26709949 PMCID: PMC4811737 DOI: 10.1002/lt.24394] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
The surgically demanding mouse orthotopic liver transplant model was first described in 1991. It has proved to be a powerful research tool for the investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction, and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, because the mouse genome is well characterized and there is much greater availability of both genetically modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice have provided valuable mechanistic insights into the immunobiology and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in the regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/immune-mediated events in the hepatic environment and systemically. In conclusion, orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology, and allograft tolerance that may result in therapeutic innovation in the liver and in the treatment of other diseases.
Collapse
Affiliation(s)
- Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, Address correspondence to: Angus W. Thomson, PhD DSc, FRCPath, FAST, University of Pittsburgh, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15235; ; (412) 624-6392
| | - Osamu Yoshida
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | | | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261,Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
35
|
Knolle PA. Staying local-antigen presentation in the liver. Curr Opin Immunol 2016; 40:36-42. [PMID: 26974478 DOI: 10.1016/j.coi.2016.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/26/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
The liver is known as organ with unique immune competence. Besides its unique microenvironment that is determined by gut-derived portal venous blood constituents and the presence of enzymes with immune regulatory properties, liver antigen presenting cell populations regulate antigen-specific immunity in a local fashion. In addition to bone marrow-derived dendritic cells and myeloid cells such as macrophages and monocytes, also truly liver-resident cell populations function as antigen presenting cells such as liver sinusoidal endothelial cells and hepatocytes. The functional outcome of antigen-presentation by these cell populations is diverse and ranges from generation of regulatory CD4 cells, to induction of memory CD8 T cells or deletional tolerance, which generates a complex network of antigen-presenting cells that determines hepatic immune regulation and local immune surveillance against viral infection.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology Technische Universität München, Germany.
| |
Collapse
|
36
|
Medeiros MS, Schumacher-Schuh A, Cardoso AM, Bochi GV, Baldissarelli J, Kegler A, Santana D, Chaves CMMBS, Schetinger MRC, Moresco RN, Rieder CRM, Fighera MR. Iron and Oxidative Stress in Parkinson's Disease: An Observational Study of Injury Biomarkers. PLoS One 2016; 11:e0146129. [PMID: 26751079 PMCID: PMC4709097 DOI: 10.1371/journal.pone.0146129] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive motor impairment attributed to progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta. In addition to an accumulation of iron, there is also an increased production of reactive oxygen/nitrogen species (ROS/RNS) and inflammatory markers. These observations suggest that iron dyshomeostasis may be playing a key role in neurodegeneration. However, the mechanisms underlying this metal-associated oxidative stress and neuronal damage have not been fully elucidated. To determine peripheral levels of iron, ferritin, and transferrin in PD patients and its possible relation with oxidative/nitrosative parameters, whilst attempting to identify a profile of peripheral biomarkers in this neurological condition. Forty PD patients and 46 controls were recruited to compare serum levels of iron, ferritin, transferrin, oxidative stress markers (superoxide dismutase (SOD), catalase (CAT), nitrosative stress marker (NOx), thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH), advanced oxidation protein products (AOPP), ferric reducing ability of plasma (FRAP) and vitamin C) as well as inflammatory markers (NTPDases, ecto-5’-nucleotidase, adenosine deaminase (ADA), ischemic-modified albumin (IMA) and myeloperoxidase). Iron levels were lower in PD patients, whereas there was no difference in ferritin and transferrin. Oxidative stress (TBARS and AOPP) and inflammatory markers (NTPDases, IMA, and myeloperoxidase) were significantly higher in PD, while antioxidants FRAP, vitamin C, and non-protein thiols were significantly lower in PD. The enzymes SOD, CAT, and ecto-5’-nucleotidase were not different among the groups, although NOx and ADA levels were significantly higher in the controls. Our data corroborate the idea that ROS/RNS production and neuroinflammation may dysregulate iron homeostasis and collaborate to reduce the periphery levels of this ion, contributing to alterations observed in the pathophysiology of PD.
Collapse
Affiliation(s)
- Marcio S. Medeiros
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arthur Schumacher-Schuh
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andreia Machado Cardoso
- Natural and Exact Sciences Center, Graduate Program in Life Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme Vargas Bochi
- Department of Clinical and Toxicological Analyses, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
| | - Jucimara Baldissarelli
- Natural and Exact Sciences Center, Graduate Program in Life Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aline Kegler
- Natural and Exact Sciences Center, Graduate Program in Life Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Neuropsychiatry Department, University Hospital, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniel Santana
- Neuropsychiatry Department, University Hospital, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Maria Rosa Chitolina Schetinger
- Natural and Exact Sciences Center, Graduate Program in Life Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Noal Moresco
- Department of Clinical and Toxicological Analyses, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos R. M. Rieder
- Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Michele Rechia Fighera
- Natural and Exact Sciences Center, Graduate Program in Life Sciences: Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Neuropsychiatry Department, University Hospital, Universidade Federal de Santa Maria, Health Sciences Center, Santa Maria, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
37
|
Boghal RH, Stephenson B, Afford SC. Immune cell communication in liver disease and liver regeneration. SIGNALING PATHWAYS IN LIVER DISEASES 2015:110-129. [DOI: 10.1002/9781118663387.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Hohmann JD, Peter K. Activated-platelet targeting of CD39 as a potential way forward. The quest for efficient antithrombotic therapy without associated bleeding complications. Hamostaseologie 2015; 36:17-25. [PMID: 26328528 DOI: 10.5482/hamo-14-12-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/27/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Antiplatelet therapy is given to millions of patients and has saved numerous lives. However, it is also associated with complications including fatal bleedings. Clinically used antiplatelet drugs seem to follow the rule of an inherent link of improved anti-thrombotic potency with increased risk of bleeding complications. Therefore, there is an ongoing quest to develop drugs that are able to break this link that has prevented many patients from receiving antiplatelet protection and has resulted in substantial mortality and morbidity. We describe a new antiplatelet approach that is based on an recombinant antibody protein, a drug format that has recently attracted major interest. Two unique components are genetically combined in this molecule: 1) The ecto-nucleoside triphosphate diphosphohydrolase NTPDase CD39, which enzymatically degrades ATP and ADP to AMP, which is then further degraded to adenosine by the endothelially expressed CD73. Thereby, the platelet activating ADP is reduced and replaced by the platelet inhibiting adenosine resulting in a strong antiplatelet effect. 2) A single-chain antibody (scFv) that specifically binds to the activated GPIIb/IIIa receptor and thus allows targeting to activated platelets. The described fusion protein results in strong enrichment of CD39's antiplatelet effect, resulting in potent inhibition of platelet adhesion and aggregation and thrombosis in mice. The activated platelet targeting allows using a low systemic concentration that does not interfere with normal haemostasis and thus does not cause bleeding time prolongation in mice. CONCLUSION We describe a new antiplatelet approach that promises to deliver strong localized antithrombotic effects without associated bleeding problems.
Collapse
Affiliation(s)
| | - K Peter
- Prof. Karlheinz Peter, Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia,
| |
Collapse
|
39
|
Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Molecular pathways in protecting the liver from ischaemia/reperfusion injury: a 2015 update. Clin Sci (Lond) 2015; 129:345-362. [PMID: 26014222 DOI: 10.1042/cs20150223] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischaemia/reperfusion injury is an important cause of liver damage during surgical procedures such as hepatic resection and liver transplantation, and represents the main cause of graft dysfunction post-transplantation. Molecular processes occurring during hepatic ischaemia/reperfusion are diverse, and continuously include new and complex mechanisms. The present review aims to summarize the newest concepts and hypotheses regarding the pathophysiology of liver ischaemia/reperfusion, making clear distinction between situations of cold and warm ischaemia. Moreover, the most updated therapeutic strategies including pharmacological, genetic and surgical interventions, as well as some of the scientific controversies in the field are described.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- *Barcelona Hepatic Hemodynamic Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Araní Casillas-Ramírez
- †Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carmen Peralta
- †Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
40
|
Li J, Zhao X, Liu X, Liu H. Disruption of TIM-4 in dendritic cell ameliorates hepatic warm IR injury through the induction of regulatory T cells. Mol Immunol 2015; 66:117-25. [DOI: 10.1016/j.molimm.2015.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/02/2015] [Accepted: 02/05/2015] [Indexed: 12/30/2022]
|
41
|
Yokota S, Yoshida O, Dou L, Spadaro AV, Isse K, Ross MA, Stolz DB, Kimura S, Du Q, Demetris AJ, Thomson AW, Geller DA. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Rα production. THE JOURNAL OF IMMUNOLOGY 2015; 194:6045-56. [PMID: 25964490 DOI: 10.4049/jimmunol.1402505] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/15/2015] [Indexed: 01/08/2023]
Abstract
Ischemia and reperfusion (I/R) injury following liver transplantation (LTx) is an important problem that significantly impacts clinical outcomes. IFN regulatory factor-1 (IRF-1) is a nuclear transcription factor that plays a critical role in liver injury. Our objective was to determine the immunomodulatory role of IRF-1 during I/R injury following allogeneic LTx. IRF-1 was induced in liver grafts immediately after reperfusion in both human and mouse LTx. IRF-1 contributed significantly to I/R injury because IRF-1-knockout (KO) grafts displayed much less damage as assessed by serum alanine aminotransferase and histology. In vitro, IRF-1 regulated both constitutive and induced expression of IL-15, as well as IL-15Rα mRNA expression in murine hepatocytes and liver dendritic cells. Specific knockdown of IRF-1 in human primary hepatocytes gave similar results. In addition, we identified hepatocytes as the major producer of soluble IL-15/IL-15Rα complexes in the liver. IRF-1-KO livers had significantly reduced NK, NKT, and CD8(+) T cell numbers, whereas rIL-15/IL-15Rα restored these immune cells, augmented cytotoxic effector molecules, promoted systemic inflammatory responses, and exacerbated liver injury in IRF-1-KO graft recipients. These results indicate that IRF-1 promotes LTx I/R injury via hepatocyte IL-15/IL-15Rα production and suggest that targeting IRF-1 and IL-15/IL-15Rα may be effective in reducing I/R injury associated with LTx.
Collapse
Affiliation(s)
- Shinichiro Yokota
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Osamu Yoshida
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lei Dou
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Anthony V Spadaro
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Kumiko Isse
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark A Ross
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Shoko Kimura
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Qiang Du
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Anthony J Demetris
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - David A Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15261
| |
Collapse
|
42
|
Herpes simplex viral-vector design for efficient transduction of nonneuronal cells without cytotoxicity. Proc Natl Acad Sci U S A 2015; 112:E1632-41. [PMID: 25775541 DOI: 10.1073/pnas.1423556112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The design of highly defective herpes simplex virus (HSV) vectors for transgene expression in nonneuronal cells in the absence of toxic viral-gene activity has been elusive. Here, we report that elements of the latency locus protect a nonviral promoter against silencing in primary human cells in the absence of any viral-gene expression. We identified a CTCF motif cluster 5' to the latency promoter and a known long-term regulatory region as important elements for vigorous transgene expression from a vector that is functionally deleted for all five immediate-early genes and the 15-kb internal repeat region. We inserted a 16.5-kb expression cassette for full-length mouse dystrophin and report robust and durable expression in dystrophin-deficient muscle cells in vitro. Given the broad cell tropism of HSV, our design provides a nontoxic vector that can accommodate large transgene constructs for transduction of a wide variety of cells without vector integration, thereby filling an important void in the current arsenal of gene-therapy vectors.
Collapse
|
43
|
Yoshida O, Dou L, Kimura S, Yokota S, Isse K, Robson SC, Geller DA, Thomson AW. CD39 deficiency in murine liver allografts promotes inflammatory injury and immune-mediated rejection. Transpl Immunol 2015; 32:76-83. [PMID: 25661084 PMCID: PMC4368493 DOI: 10.1016/j.trim.2015.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/06/2023]
Abstract
Adenosine triphosphate (ATP), an essential metabolic energy source, is released following cell apoptosis or necrosis. It acts as a damage-associated molecule pattern to stimulate innate immune cells. The ectonucleotidase CD39 regulates immune activation by hydrolysis of extracellular ATP. We have shown previously that CD39 expression by donor livers helps protect syngeneic grafts with extended (24 hr) cold preservation time from ischemia reperfusion injury. Given its immune regulatory properties, we hypothesized that CD39 expression in donor livers might modulate transplant tolerance that occurs following mouse allogeneic liver transplantation (LTx). Livers from C57BL/6 (B6) wild-type (WT) or CD39 KO mice were transplanted into normal C3H recipients with minimal (approximately 1 hr) cold ischemia. Serum alanine aminotransferase levels at day 4 post LTx were significantly higher in animals given CD39KO compared with WT livers. Moreover, IFN-γ production by liver-infiltrating CD8+ T cells at day 4 was significantly higher in CD39KO than in WT grafts. Furthermore, splenic T cells from CD39KO liver recipients exhibited greater proliferative responses to donor alloantigens than those from mice given WT grafts. By contrast, there was a concomitant significant reduction in the frequency of regulatory T cells (Treg) in CD39KO than in WT livers. Whereas WT liver allografts survived > 100 days, no CD39KO grafts survived beyond 40 days (median survival time [MST]: WT: >100 days vs CD39KO: 8 days; p<0.01). In addition, soluble CD39 administration significantly prolonged CD39KO liver allograft survival (MST: 27.5 days). These novel data suggest that CD39 expression in liver allografts modulates tissue injury, inflammation, anti-donor effector T cell responses and Treg infiltration and can suppress transplant rejection.
Collapse
Affiliation(s)
- Osamu Yoshida
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Lei Dou
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Shoko Kimura
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Shinichiro Yokota
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Kumiko Isse
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Simon C Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - David A Geller
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Medical Center, Liver Cancer Center, Pittsburgh, PA, USA.
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
44
|
Abstract
Extracellular nucleotides play a critical role in vascular thrombosis and inflammation. Alterations in purinergic extracellular nucleotide concentrations activate pathways that result in platelet degranulation and aggregation, and endothelial and leukocyte activation and recruitment. CD39, the dominant vascular nucleotidase, hydrolyzes ATP and ADP to provide the substrate for generation of the anti-inflammatory and antithrombotic mediator adenosine. The purinergic signaling system, with CD39 at its center, plays an important role in modulating vascular homeostasis and the response to vascular injury, as seen in clinically relevant diseases such as stroke, ischemia-reperfusion injury, and pulmonary hypertension. A growing body of knowledge of the purinergic signaling pathway implicates CD39 as a critical modulator of vascular thrombosis and inflammation. Therapeutic strategies targeting CD39 offer promising opportunities in the management of vascular thromboinflammatory diseases.
Collapse
|
45
|
Knolle PA, Böttcher J, Huang LR. The role of hepatic immune regulation in systemic immunity to viral infection. Med Microbiol Immunol 2014; 204:21-7. [PMID: 25523194 DOI: 10.1007/s00430-014-0371-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/27/2014] [Indexed: 12/19/2022]
Abstract
The liver has particular immune functions attributed by its unique microenvironment and its liver-resident cell populations. During autoimmunity and viral hepatitis, the liver serves as target for effector responses of immune cells. However, skewing of effector T cell functions through tolerogenic liver-resident antigen-presenting cells and through the immune regulatory hepatic microenvironment. Importantly, the liver also participates in shaping systemic antigen-specific immunity. Local antigen-presenting cell populations, in particular liver sinusoidal endothelial cells (LSECs), cross-present soluble, circulating or hepatocyte-derived antigens to naïve CD8 T cells. Upon priming by cross-presenting LSECs, naïve CD8 T cells develop into a unique population of antigen-experienced memory-like T cell population that can be reactivated in an inflammatory context to protect against infection with viruses or bacteria. Furthermore, upon prolonged inflammatory TNF-dependent signaling, the induction of intrahepatic myeloid cell aggregates for T cell population expansion (iMATEs) is observed in liver tissue. iMATEs are formed by inflammatory monocytes developing into dendritic cells and function to attract recently activated CD8 T cells. Those CD8 T cells located within the cocoon-like iMATE structure show strong proliferation initiated by co-stimulatory signaling. Locally expanded CD8 T cells are key to control acute and chronic viral infections. The mechanistic understanding of local hepatic T cell priming and local expansion of effector CD8 T cells will help to develop novel therapeutic vaccination strategies.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany,
| | | | | |
Collapse
|
46
|
Yoshida O, Kimura S, Dou L, Matta B, Yokota S, Stolz D, Geller D, Thomson AW. DAP12 deficiency in liver allografts results in enhanced donor DC migration, augmented effector T cell responses and abrogation of transplant tolerance. Am J Transplant 2014; 14:1791-805. [PMID: 24935196 PMCID: PMC4107008 DOI: 10.1111/ajt.12757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/28/2014] [Accepted: 03/19/2014] [Indexed: 01/25/2023]
Abstract
Liver interstitial dendritic cells (DC) have been implicated in immune regulation and tolerance induction. We found that the transmembrane immuno-adaptor DNAX-activating protein of 12 kDa (DAP12) negatively regulated conventional liver myeloid (m) DC maturation and their in vivo migratory and T cell allostimulatory ability. Livers were transplanted from C57BL/6(H2(b) ) (B6) WT or DAP12(-/-) mice into WT C3H (H2(k) ) recipients. Donor mDC (H2-K(b+) CD11c(+) ) were quantified in spleens by flow cytometry. Anti-donor T cell reactivity was evaluated by ex vivo carboxyfluorescein diacetate succinimidyl ester-mixed leukocyte reaction and delayed-type hypersensitivity responses, while T effector and regulatory T cells were determined by flow analysis. A threefold to fourfold increase in donor-derived DC was detected in spleens of DAP12(-/-) liver recipients compared with those given WT grafts. Moreover, pro-inflammatory cytokine gene expression in the graft, interferon gamma (IFNγ) production by graft-infiltrating CD8(+) T cells and systemic levels of IFNγ were all elevated significantly in DAP12(-/-) liver recipients. DAP12(-/-) grafts also exhibited reduced incidences of CD4(+) Foxp3(+) cells and enhanced CD8(+) T cell IFNγ secretion in response to donor antigen challenge. Unlike WT grafts, DAP12(-/-) livers failed to induce tolerance and were rejected acutely. Thus, DAP12 expression in liver grafts regulates donor mDC migration to host lymphoid tissue, alloreactive T cell responses and transplant tolerance.
Collapse
Affiliation(s)
- O. Yoshida
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - S. Kimura
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - L. Dou
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Hepatic Surgery Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - B.M. Matta
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - S. Yokota
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D.B. Stolz
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D.A. Geller
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA,Corresponding author: Angus W. Thomson PhD DSc Starzl Transplantation Institute University of Pittsburgh School of Medicine 200 Lothrop Street, W1540 BST Pittsburgh, PA 15261
| |
Collapse
|
47
|
Wang Y, Begum-Haque S, Telesford KM, Ochoa-Repáraz J, Christy M, Kasper EJ, Kasper DL, Robson SC, Kasper LH. A commensal bacterial product elicits and modulates migratory capacity of CD39(+) CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes 2014; 5:552-61. [PMID: 25006655 DOI: 10.4161/gmic.29797] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tolerance established by host-commensal interactions regulates host immunity at both local mucosal and systemic levels. The intestinal commensal strain Bacteroides fragilis elicits immune tolerance, at least in part, via the expression capsular polysaccharide A (PSA). How such niche-specific commensal microbial elements regulate extra-intestinal immune responses, as in the brain, remains largely unknown. We have recently shown that oral treatment with PSA suppresses neuro-inflammation elicited during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. This protection is dependent upon the expansion of immune-regulatory CD4 T cells (Treg) expressing CD39, an ectonucleotidase. Here, we further show that CD39 modulation of purinergic signals enhances migratory phenotypes of both total CD4 T cells and Foxp3(+) CD4 Tregs at central nervous system (CNS) lymphoid-draining sites in EAE in vivo and promotes their migration in vitro. These changes are noted during PSA treatment, which leads to heightened accumulation of CD39(+) CD4 Tregs in the CNS. Deficiency of CD39 abrogates accumulation of Treg during EAE, and is accompanied by elevated Th1/Th17 signals in the CNS and in gut-associated lymphoid tissues. Our results demonstrate that immune-modulatory commensal bacterial products impact the migratory patterns of CD4 Treg during CNS autoimmunity via the regulation of CD39. These observations provide clues as to how intestinal commensal microbiome is able to modulate Treg functions and impact host immunity in the distal site.
Collapse
Affiliation(s)
- Yan Wang
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Sakhina Begum-Haque
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Kiel M Telesford
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Javier Ochoa-Repáraz
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Marc Christy
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Eli J Kasper
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| | - Dennis L Kasper
- Department of Microbiology and Immunobiology; Harvard Medical School; Boston, MA USA
| | - Simon C Robson
- Division of Gastroenterology; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Lloyd H Kasper
- Department of Microbiology and Immunology; Geisel School of Medicine; Dartmouth College; Hanover, NH USA
| |
Collapse
|
48
|
Ebner S, Fabritius C, Ritschl P, Oberhuber R, Günther J, Kotsch K. Report of the joint ESOT and TTS basic science meeting 2013: current concepts and discoveries in translational transplantation. Transpl Int 2014; 27:987-93. [PMID: 24890468 DOI: 10.1111/tri.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 11/30/2022]
Abstract
A joint meeting organized by the European (ESOT) and The Transplantation (TTS) Societies for basic science research was organized in Paris, France, on November 7-9, 2013. Focused on new ideas and concepts in translational transplantation, the meeting served as a venue for state-of-the-art developments in basic transplantation immunology, such as the potential for tolerance induction through regulation of T-cell signaling. This meeting report summarizes important insights which were presented in Paris. It not only offers an overview of established aspects, such as the role of Tregs in transplantation, presented by Nobel laureate Rolf Zinkernagel, but also highlights novel facets in the field of transplantation, that is cell-therapy-based immunosuppression or composite tissue transplantation as presented by the emotional story given by Vasyly Rohovyy, who received two hand transplants. The ESOT/TTS joint meeting was an overall productive and enjoyable platform for basic science research in translational transplantation and fulfilled all expectations by giving a promising outlook for the future of research in the field of immunological transplantation research.
Collapse
Affiliation(s)
- Susanne Ebner
- Department of Visceral, Transplantation and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
49
|
Targeting toll-like receptors 4 intracellular domain to prevent ischemic liver disease: an innovative approach or just a futuristic dream? Crit Care Med 2014; 42:487-8. [PMID: 24434465 DOI: 10.1097/ccm.0000000000000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Adamson SE, Leitinger N. The role of pannexin1 in the induction and resolution of inflammation. FEBS Lett 2014; 588:1416-22. [PMID: 24642372 DOI: 10.1016/j.febslet.2014.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Abstract
Extracellular ATP is an important signaling molecule throughout the inflammatory cascade, serving as a danger signal that causes activation of the inflammasome, enhancement of immune cell infiltration, and fine-tuning of several signaling cascades including those important for the resolution of inflammation. Recent studies demonstrated that ATP can be released from cells in a controlled manner through pannexin (Panx) channels. Panx1-mediated ATP release is involved in inflammasome activation and neutrophil/macrophage chemotaxis, activation of T cells, and a role for Panx1 in inducing and propagating inflammation has been demonstrated in various organs, including lung and the central and peripheral nervous system. The recognition and clearance of dying cells and debris from focal points of inflammation is critical in the resolution of inflammation, and Panx1-mediated ATP release from dying cells has been shown to recruit phagocytes. Moreover, extracellular ATP can be broken down by ectonucleotidases into ADP, AMP, and adenosine, which is critical in the resolution of inflammation. Together, Panx1, ATP, purinergic receptors, and ectonucleotidases contribute to important feedback loops during the inflammatory response, and thus represent promising candidates for new therapies.
Collapse
|