1
|
Alcaraz A, Nieva JL. Viroporins: discovery, methods of study, and mechanisms of host-membrane permeabilization. Q Rev Biophys 2025; 58:e1. [PMID: 39806799 DOI: 10.1017/s0033583524000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites. Through mechanisms not fully understood, expression of viroporins facilitates virion assembly/release from infected cells, and subverts the cell physiology, contributing to cytopathogenicity. Compounds that interact with viroporins and interfere with their membrane-permeabilizing activity in vitro, are known to inhibit virus production. Moreover, viroporin-defective viruses comprise a source of live attenuated vaccines that prevent infection by notorious human and livestock pathogens. This review dives into the origin and evolution of the viroporin concept, summarizes some of the methodologies used to characterize the structure-function relationships of these important virulence factors, and attempts to classify them on biophysical grounds attending to their mechanisms of ion/solute transport across membranes.
Collapse
Affiliation(s)
- Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, Castellón, Spain
| | - José L Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
2
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Brown E, Swinscoe G, Lefteri DA, Singh R, Moran A, Thompson RF, Maskell D, Beaumont H, Bentham MJ, Donald C, Kohl A, Macdonald A, Ranson N, Foster R, McKimmie CS, Kalli AC, Griffin S. Inhibitors of the small membrane (M) protein viroporin prevent Zika virus infection. eLife 2024; 13:e68404. [PMID: 39177307 PMCID: PMC11449487 DOI: 10.7554/elife.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2024] [Indexed: 08/24/2024] Open
Abstract
Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.
Collapse
Affiliation(s)
- Emma Brown
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Gemma Swinscoe
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniella A Lefteri
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Ravi Singh
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Amy Moran
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Rebecca F Thompson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniel Maskell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hannah Beaumont
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Matthew J Bentham
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Claire Donald
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Alain Kohl
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Neil Ranson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Clive S McKimmie
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Antreas C Kalli
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Stephen Griffin
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| |
Collapse
|
4
|
Campbell O, Monje-Galvan V. Protein-driven membrane remodeling: Molecular perspectives from Flaviviridae infections. Biophys J 2023; 122:1890-1899. [PMID: 36369756 PMCID: PMC10257083 DOI: 10.1016/j.bpj.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cell membrane consists of thousands of different lipid species, and this variety is critical for biological function. Alterations to this balance can be dangerous as they can lead to permanent disruption of lipid metabolism, a hallmark in several viral diseases. The Flaviviridae family is made up of positive single-stranded RNA viruses that assemble at or near the location of lipid droplet formation in the endoplasmic reticulum. These viruses are known to interfere with lipid metabolism during the onset of liver disease, albeit to different extents. Pathogenesis of these infections involves specific protein-lipid interactions that alter lipid sorting and metabolism to sustain propagation of the viral infection. Recent experimental studies identify a correlation between viral proteins and lipid content or location in the cell, but these do not assess membrane-embedded interactions. Molecular modeling, specifically molecular dynamics simulations, can provide molecular-level spatial and temporal resolution for characterization of biomolecular interactions. This review focuses on recent advancements and current knowledge gaps in the molecular mechanisms of lipid-mediated liver disease preceded by viral infection. We discuss three viruses from the Flaviviridae family: dengue, zika, and hepatitis C, with a particular focus on lipid interactions with their respective ion channels, known as viroporins.
Collapse
Affiliation(s)
- Oluwatoyin Campbell
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Viviana Monje-Galvan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.
| |
Collapse
|
5
|
Alzahrani N, Wu MJ, Sousa CF, Kalinina OV, Welsch C, Yi M. SPCS1-Dependent E2-p7 processing determines HCV Assembly efficiency. PLoS Pathog 2022; 18:e1010310. [PMID: 35130329 PMCID: PMC8853643 DOI: 10.1371/journal.ppat.1010310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/17/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies identified signal peptidase complex subunit 1 (SPCS1) as a proviral host factor for Flaviviridae viruses, including HCV. One of the SPCS1’s roles in flavivirus propagation was attributed to its regulation of signal peptidase complex (SPC)-mediated processing of flavivirus polyprotein, especially C-prM junction. However, whether SPCS1 also regulates any SPC-mediated processing sites within HCV polyprotein remains unclear. In this study, we determined that loss of SPCS1 specifically impairs the HCV E2-p7 processing by the SPC. We also determined that efficient separation of E2 and p7, regardless of its dependence on SPC-mediated processing, leads to SPCS1 dispensable for HCV assembly These results suggest that SPCS1 regulates HCV assembly by facilitating the SPC-mediated processing of E2-p7 precursor. Structural modeling suggests that intrinsically delayed processing of the E2-p7 is likely caused by the structural rigidity of p7 N-terminal transmembrane helix-1 (p7/TM1/helix-1), which has mostly maintained membrane-embedded conformations during molecular dynamics (MD) simulations. E2-p7-processing-impairing p7 mutations narrowed the p7/TM1/helix-1 bending angle against the membrane, resulting in closer membrane embedment of the p7/TM1/helix-1 and less access of E2-p7 junction substrate to the catalytic site of the SPC, located well above the membrane in the ER lumen. Based on these results we propose that the key mechanism of action of SPCS1 in HCV assembly is to facilitate the E2-p7 processing by enhancing the E2-p7 junction site presentation to the SPC active site. By providing evidence that SPCS1 facilitates HCV assembly by regulating SPC-mediated cleavage of E2-p7 junction, equivalent to the previously established role of this protein in C-prM junction processing in flavivirus, this study establishes the common role of SPCS1 in Flaviviridae family virus propagation as to exquisitely regulate the SPC-mediated processing of specific, suboptimal target sites.
Collapse
Affiliation(s)
- Nabeel Alzahrani
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ming-Jhan Wu
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Carla F. Sousa
- Drug Bioinformatics Group, HIPS, HZI, Saarbrücken, Germany
| | - Olga V. Kalinina
- Drug Bioinformatics Group, HIPS, HZI, Saarbrücken, Germany
- Medical Faculty, Saarland University, Homburg, Germany
| | - Christoph Welsch
- Department of Internal Medicine 1, Goethe University Hospital, Frankfurt am Main, Germany
| | - MinKyung Yi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dwivedi V, Gupta RK, Gupta A, Chaudhary VK, Gupta S, Gupta V. Repurposing Novel Antagonists to p7 Viroporin of HCV Using in silico Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220124112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Background: P7 viroporin in HCV is a cation-selective ion channel-forming protein, functional in the oligomeric form. It is considered to be a potential target for anti-HCV compounds due to its crucial role in viral entry, assembly and release.
Method:
Conserved crucial residues present in HCV p7 protein were delineated with a specific focus on the genotypes 3a &1b prevalent in India from the available literature. Using the Flex-X docking tool, a library of FDA-approved drugs was docked on the receptor sites prepared around crucial residues. In the present study, we propose drug repurposing to target viroporin p7, which may help in the rapid development of effective anti-HCV therapies.
Results:
With our approach of poly-pharmacology, a variety of drugs currently identified classified as antibiotics, anti-parasitic, antiemetic, anti-retroviral, and anti-neoplastic were found to dock successfully with the p7 viroporin. Noteworthy among these are general-purpose cephalosporin antibiotics, leucal, phthalylsulfathiazole, and granisetron, which may be useful in acute HCV infection and anti-neoplastic sorafenib and nilotinib, which may be valuable in advanced HCV-HCC cases.
Conclusion:
This study could pave the way for quick repurposing of these compounds as anti-HCV therapeutics.
Collapse
Affiliation(s)
- Varsha Dwivedi
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Rakesh Kumar Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| | - Amita Gupta
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Vijay K Chaudhary
- Department of Biochemistry and Centre for Innovation in Infectious Disease Research, Education and Training, University of Delhi South Campus, Benito Juarez Marg, New Delhi, India
| | - Sanjay Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, Delhi University, Benito Juarez Road, New Delhi, India
| |
Collapse
|
7
|
Abstract
The COVID-19 pandemic has horrified the human race and every government of the world, not only in the healthcare sector but also in terms of the economy, social disturbances, and large-scale growth of all nations. SARS-CoV-2, responsible for this pandemic, is a single member of a huge family of pathogenic viruses. Previous encounters with these viruses have taught the whole world that they can transform into more resistant and more harmful forms in a very short time. Antiviral medicines with characteristics of excellent potency, less resistance, and low toxicity are still challenging, and obtaining such drugs is a demanding arena in the field of pharmaceutical development. Antiviral medicines contain heterocyclic moieties with diverse substitutions and fusion. Among the potent heterocycles, imidazoles serve as one of the most crucial moieties in the field of drug discovery due to their ability to interact with the active target sites of living systems which provide enormous opportunities to discover new drugs with several modes of action. This chapter gives a systemic representation of design, discovery, and structure–activity relationship studies of the imidazole analogs as antiviral drugs in comparison to standard treatment used in the present-day scenario.
Collapse
|
8
|
Breitinger U, Farag NS, Ali NKM, Ahmed M, El-Azizi MA, Breitinger HG. Cell viability assay as a tool to study activity and inhibition of hepatitis C p7 channels. J Gen Virol 2021; 102. [PMID: 33709903 DOI: 10.1099/jgv.0.001571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved. Here, we investigated the effect of several inhibitors on recombinant HCV p7 channels corresponding to genotypes 1a-b, 2a-b, 3a and 4a using patch-clamp electrophysiology and cell-based assays. We established a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based cell viability assay for recombinant p7 expressed in HEK293 cells to assess channel activity and its sensitivity to inhibitors. The results from the cell viability assay were consistent with control measurements using established assays of haemadsorption and intracellular pH, and agreed with data from patch-clamp electrophysiology. Hexamethylene amiloride (HMA) was the most potent inhibitor of p7 activity, but possessed cytotoxic activity at higher concentrations. Rimantadine was active against p7 of all genotypes, while amantadine activity was genotype-dependent. The alkyl-chain iminosugars NB-DNJ, NN-DNJ and NN-DGJ were tested and their activity was found to be genotype-specific. In the current study, we introduce cell viability assays as a rapid and cost-efficient technique to assess viroporin activity and identify channel inhibitors as potential novel antiviral drugs.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Nourhan K M Ali
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Marwa Ahmed
- Present address: Institute of Biochemistry and Biophysics Friedrich-Schiller-University Jena, Hans-Knöll-Str. 2, D-07745, Jena, Germany.,Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Mohamed A El-Azizi
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | | |
Collapse
|
9
|
Shaw J, Gosain R, Kalita MM, Foster TL, Kankanala J, Mahato DR, Abas S, King BJ, Scott C, Brown E, Bentham MJ, Wetherill L, Bloy A, Samson A, Harris M, Mankouri J, Rowlands DJ, Macdonald A, Tarr AW, Fischer WB, Foster R, Griffin S. Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy. eLife 2020; 9:e52555. [PMID: 33169665 PMCID: PMC7714397 DOI: 10.7554/elife.52555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.
Collapse
Affiliation(s)
- Joseph Shaw
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Rajendra Gosain
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Monoj Mon Kalita
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Toshana L Foster
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jayakanth Kankanala
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - D Ram Mahato
- Institute of Biophotonics, National Yang-Ming UniversityTaipeiTaiwan
| | - Sonia Abas
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Barnabas J King
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | - Claire Scott
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Emma Brown
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Matthew J Bentham
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Laura Wetherill
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Abigail Bloy
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Adel Samson
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
| | - Mark Harris
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Jamel Mankouri
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - David J Rowlands
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
| | | | - Richard Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
- School of Chemistry, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| | - Stephen Griffin
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University HospitalLeedsUnited Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse LaneLeedsUnited Kingdom
| |
Collapse
|
10
|
Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathog 2020; 16:e1008716. [PMID: 32780760 PMCID: PMC7418971 DOI: 10.1371/journal.ppat.1008716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/19/2020] [Indexed: 12/05/2022] Open
Abstract
Pandemic influenza A virus (IAV) remains a significant threat to global health. Preparedness relies primarily upon a single class of neuraminidase (NA) targeted antivirals, against which resistance is steadily growing. The M2 proton channel is an alternative clinically proven antiviral target, yet a near-ubiquitous S31N polymorphism in M2 evokes resistance to licensed adamantane drugs. Hence, inhibitors capable of targeting N31 containing M2 (M2-N31) are highly desirable. Rational in silico design and in vitro screens delineated compounds favouring either lumenal or peripheral M2 binding, yielding effective M2-N31 inhibitors in both cases. Hits included adamantanes as well as novel compounds, with some showing low micromolar potency versus pandemic “swine” H1N1 influenza (Eng195) in culture. Interestingly, a published adamantane-based M2-N31 inhibitor rapidly selected a resistant V27A polymorphism (M2-A27/N31), whereas this was not the case for non-adamantane compounds. Nevertheless, combinations of adamantanes and novel compounds achieved synergistic antiviral effects, and the latter synergised with the neuraminidase inhibitor (NAi), Zanamivir. Thus, site-directed drug combinations show potential to rejuvenate M2 as an antiviral target whilst reducing the risk of drug resistance. "Swine flu" illustrated that the spread of influenza pandemics in the modern era is rapid, making antiviral drugs the best way of limiting disease. One proven influenza drug target is the M2 proton channel, which plays an essential role during virus entry. However, resistance against licensed drugs targeting this protein is now ubiquitous, largely due to an S31N change in the M2 sequence. Understandably, considerable effort has focused on developing M2-N31 inhibitors, yet this has been hampered by controversy surrounding two potential drug binding sites. Here, we show that both sites can in fact be targeted by new M2-N31 inhibitors, generating synergistic antiviral effects. Developing such drug combinations should improve patient outcomes and minimise the emergence of future drug resistance.
Collapse
|
11
|
Oestringer BP, Bolivar JH, Claridge JK, Almanea L, Chipot C, Dehez F, Holzmann N, Schnell JR, Zitzmann N. Hepatitis C virus sequence divergence preserves p7 viroporin structural and dynamic features. Sci Rep 2019; 9:8383. [PMID: 31182749 PMCID: PMC6557816 DOI: 10.1038/s41598-019-44413-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
The hepatitis C virus (HCV) viroporin p7 oligomerizes to form ion channels, which are required for the assembly and secretion of infectious viruses. The 63-amino acid p7 monomer has two putative transmembrane domains connected by a cytosolic loop, and has both N- and C- termini exposed to the endoplasmic reticulum (ER) lumen. NMR studies have indicated differences between p7 structures of distantly related HCV genotypes. A critical question is whether these differences arise from the high sequence variation between the different isolates and if so, how the divergent structures can support similar biological functions. Here, we present a side-by-side characterization of p7 derived from genotype 1b (isolate J4) in the detergent 6-cyclohexyl-1-hexylphosphocholine (Cyclofos-6) and p7 derived from genotype 5a (isolate EUH1480) in n-dodecylphosphocholine (DPC). The 5a isolate p7 in conditions previously associated with a disputed oligomeric form exhibits secondary structure, dynamics, and solvent accessibility broadly like those of the monomeric 1b isolate p7. The largest differences occur at the start of the second transmembrane domain, which is destabilized in the 5a isolate. The results show a broad consensus among the p7 variants that have been studied under a range of different conditions and indicate that distantly related HCVs preserve key features of structure and dynamics.
Collapse
Affiliation(s)
- Benjamin P Oestringer
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Immunocore Limited, 101 Park Drive, Milton Park, Abingdon, Oxon, OX14 4RY, United Kingdom
| | - Juan H Bolivar
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Jolyon K Claridge
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.,Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Latifah Almanea
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | - Chris Chipot
- Laboratoire International Associé CNRS-University of Illinois at Urbana Champaign, Université de Lorraine, BP 70239, 54506, Vandœuvre-lès-Nancy, France.,Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois, 61801, United States
| | - François Dehez
- Laboratoire International Associé CNRS-University of Illinois at Urbana Champaign, Université de Lorraine, BP 70239, 54506, Vandœuvre-lès-Nancy, France
| | - Nicole Holzmann
- Laboratoire International Associé CNRS-University of Illinois at Urbana Champaign, Université de Lorraine, BP 70239, 54506, Vandœuvre-lès-Nancy, France
| | - Jason R Schnell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
12
|
Li Z, Zou Z, Jiang Z, Huang X, Liu Q. Biological Function and Application of Picornaviral 2B Protein: A New Target for Antiviral Drug Development. Viruses 2019; 11:v11060510. [PMID: 31167361 PMCID: PMC6630369 DOI: 10.3390/v11060510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Picornaviruses are associated with acute and chronic diseases. The clinical manifestations of infections are often mild, but infections may also lead to respiratory symptoms, gastroenteritis, myocarditis, meningitis, hepatitis, and poliomyelitis, with serious impacts on human health and economic losses in animal husbandry. Thus far, research on picornaviruses has mainly focused on structural proteins such as VP1, whereas the non-structural protein 2B, which plays vital roles in the life cycle of the viruses and exhibits a viroporin or viroporin-like activity, has been overlooked. Viroporins are viral proteins containing at least one amphipathic α-helical structure, which oligomerizes to form transmembrane hydrophilic pores. In this review, we mainly summarize recent research data on the viroporin or viroporin-like activity of 2B proteins, which affects the biological function of the membrane, regulates cell death, and affects the host immune response. Considering these mechanisms, the potential application of the 2B protein as a candidate target for antiviral drug development is discussed, along with research challenges and prospects toward realizing a novel treatment strategy for picornavirus infections.
Collapse
Affiliation(s)
- Zengbin Li
- School of Public Health, Nanchang University, Nanchang 330006, China.
| | - Zixiao Zou
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
| | - Zeju Jiang
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
13
|
Negash AA, Olson RM, Griffin S, Gale M. Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathog 2019; 15:e1007593. [PMID: 30811485 PMCID: PMC6392285 DOI: 10.1371/journal.ppat.1007593] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major cause of hepatic inflammation and liver disease. HCV triggers NLRP3 inflammasome activation and interleukin-1β (IL-1β) production from hepatic macrophages, or Kupffer cells, to drive the hepatic inflammatory response. Here we examined HCV activation of the NLRP3 inflammasome signaling cascade in primary human monocyte derived macrophages and THP-1 cell models of hepatic macrophages to define the HCV-specific agonist and cellular processes of inflammasome activation. We identified the HCV core protein as a virion-specific factor of inflammasome activation. The core protein was both necessary and sufficient for IL-1β production from macrophages exposed to HCV or soluble core protein alone. NLRP3 inflammasome activation by the HCV core protein required calcium mobilization linked with phospholipase-C activation. Our findings reveal a molecular basis of hepatic inflammasome activation and IL-1β release triggered by HCV core protein. This study deciphers the molecular mechanism of Hepatitis C virus (HCV)-induced hepatic inflammation. HCV triggers NLRP3 inflammasome activation and IL-1β release from hepatic macrophages, thus driving liver inflammation. Using biochemical, virological, and genetic approaches we identified the HCV core protein as the specific viral stimulus that triggers intracellular calcium signaling linked with phospholipase-C activation to drive NLRP3 inflammasome activation and IL-1β release in macrophages.
Collapse
Affiliation(s)
- Amina A. Negash
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Rebecca M. Olson
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephen Griffin
- School of Medicine, Faculty of Medicine and Health, University of Leeds, St James’ University Hospital, Leeds, United Kingdom
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Park SB, Boyer A, Hu Z, Le D, Liang TJ. Discovery and characterization of a novel HCV inhibitor targeting the late stage of HCV life cycle. Antivir Ther 2019; 24:371-381. [PMID: 30880685 PMCID: PMC11542171 DOI: 10.3851/imp3303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Currently approved anti-HCV drugs, the direct-acting antivirals (DAAs), are highly effective and target the viral RNA replication stage of the HCV life cycle. Due to high mutation rate of HCV, drug resistant variants can arise during DAA monotherapy. Thus, a combination of DAAs is necessary to achieve a high response rate. Novel HCV inhibitors targeting the HCV late stage such as assembly and release may further improve combination therapy with the DAAs. Here we characterize one late stage-targeting candidate compound, 6-(4-chloro-3-methylphenoxy)-pyridin-3-amine (MLS000833705). METHODS We treated HCV-infected cells with MLS000833705 and other HCV inhibitors and examined HCV RNA and infectious titres. We evaluated the colocalization of HCV core and lipid droplets by confocal microscopy. We performed HCV core-proteinase K digestion assay and several lipid assays to study the mechanism of MLS000833705. RESULTS We showed that MLS000833705 decreased extracellular HCV RNA levels more than intracellular HCV RNA levels in HCV infectious cell culture. Similarly, MLS000833705 reduced infectious HCV titres substantially more in the culture supernatant than intracellularly. Confocal microscopy showed that MLS000833705 did not affect the colocalization of HCV core protein with cellular lipid droplets where HCV assembles. HCV core-proteinase K digestion assay showed that MLS000833705 inhibited the envelopment of HCV capsid. CONCLUSIONS Our study demonstrates that MLS000833705 is a late-stage HCV inhibitor targeting HCV morphogenesis and maturation. Therefore, MLS000833705 can be used as a molecular probe to study HCV maturation and secretion and possibly guide development of a new class of HCV antivirals.
Collapse
Affiliation(s)
- Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audrey Boyer
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Derek Le
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Shiryaev VA, Radchenko EV, Palyulin VA, Zefirov NS, Bormotov NI, Serova OA, Shishkina LN, Baimuratov MR, Bormasheva KM, Gruzd YA, Ivleva EA, Leonova MV, Lukashenko AV, Osipov DV, Osyanin VA, Reznikov AN, Shadrikova VA, Sibiryakova AE, Tkachenko IM, Klimochkin YN. Molecular design, synthesis and biological evaluation of cage compound-based inhibitors of hepatitis C virus p7 ion channels. Eur J Med Chem 2018; 158:214-235. [PMID: 30218908 DOI: 10.1016/j.ejmech.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
The hepatitis C caused by the hepatitis C virus (HCV) is an acute and/or chronic liver disease ranging in severity from a mild brief ailment to a serious lifelong illness that affects up to 3% of the world population and imposes significant and increasing social, economic, and humanistic burden. Over the past decade, its treatment was revolutionized by the development and introduction into clinical practice of the direct acting antiviral (DAA) agents targeting the non-structural viral proteins NS3/4A, NS5A, and NS5B. However, the current treatment options still have important limitations, thus, the development of new classes of DAAs acting on different viral targets and having better pharmacological profile is highly desirable. The hepatitis C virus p7 viroporin is a relatively small hydrophobic oligomeric viral ion channel that plays a critical role during virus assembly and maturation, making it an attractive and validated target for the development of the cage compound-based inhibitors. Using the homology modeling, molecular dynamics, and molecular docking techniques, we have built a representative set of models of the hepatitis C virus p7 ion channels (Gt1a, Gt1b, Gt1b_L20F, Gt2a, and Gt2b), analyzed the inhibitor binding sites, and identified a number of potential broad-spectrum inhibitor structures targeting them. For one promising compound, the binding to these targets was additionally confirmed and the binding modes and probable mechanisms of action were clarified by the molecular dynamics simulations. A number of compounds were synthesized, and the tests of their antiviral activity (using the BVDV model) and cytotoxicity demonstrate their potential therapeutic usefulness and encourage further more detailed studies. The proposed approach is also suitable for the design of broad-spectrum ligands interacting with other multiple labile targets including various viroporins.
Collapse
Affiliation(s)
- Vadim A Shiryaev
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia.
| | - Eugene V Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Nikolay S Zefirov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Olga A Serova
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology 'Vector', Koltsovo, Novosibirsk Region, 630559, Russia
| | - Marat R Baimuratov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Kseniya M Bormasheva
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Yulia A Gruzd
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Elena A Ivleva
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Marina V Leonova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Anton V Lukashenko
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Dmitry V Osipov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Vitaliy A Osyanin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Alexander N Reznikov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Vera A Shadrikova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Anastasia E Sibiryakova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Ilya M Tkachenko
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya 244, Samara, 443100, Russia
| |
Collapse
|
16
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Mandour YM, Breitinger U, Ma C, Wang J, Boeckler FM, Breitinger HG, Zlotos DP. Symmetric dimeric adamantanes for exploring the structure of two viroporins: influenza virus M2 and hepatitis C virus p7. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1019-1031. [PMID: 29750015 PMCID: PMC5933338 DOI: 10.2147/dddt.s157104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Adamantane-based compounds have been identified to interfere with the ion-channel activity of viroporins and thereby inhibit viral infection. To better understand the difference in the inhibition mechanism of viroporins, we synthesized symmetric dimeric adamantane analogs of various alkyl-spacer lengths. Methods Symmetric dimeric adamantane derivatives were synthesized where two amantadine or rimantadine molecules were linked by various alkyl-spacers. The inhibitory activity of the compounds was studied on two viroporins: the influenza virus M2 protein, expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique, and the hepatitis C virus (HCV) p7 channels for five different genotypes (1a, 1b, 2a, 3a, and 4a) expressed in HEK293 cells using whole-cell patch-clamp recording techniques. Results Upon testing on M2 protein, dimeric compounds showed significantly lower inhibitory activity relative to the monomeric amantadine. The lack of channel blockage of the dimeric amantadine and rimantadine analogs against M2 wild type and M2-S31N mutant was consistent with previously proposed drug-binding mechanisms and further confirmed that the pore-binding model is the pharmacologically relevant drug-binding model. On the other hand, these dimers showed similar potency to their respective monomeric analogs when tested on p7 protein in HCV genotypes 1a, 1b, and 4a while being 700-fold and 150-fold more potent than amantadine in genotypes 2a and 3a, respectively. An amino group appears to be important for inhibiting the ion-channel activity of p7 protein in genotype 2a, while its importance was minimal in all other genotypes. Conclusion Symmetric dimeric adamantanes can be considered a prospective class of p7 inhibitors that are able to address the differences in adamantane sensitivity among the various genotypes of HCV.
Collapse
Affiliation(s)
| | - Ulrike Breitinger
- Department of Biochemistry, The German University in Cairo, Cairo, Egypt
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Frank M Boeckler
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, German University in Cairo
| |
Collapse
|
18
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
19
|
Chen W, Dev J, Mezhyrova J, Pan L, Piai A, Chou JJ. The Unusual Transmembrane Partition of the Hexameric Channel of the Hepatitis C Virus. Structure 2018; 26:627-634.e4. [PMID: 29551287 PMCID: PMC5884736 DOI: 10.1016/j.str.2018.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
Abstract
The p7 protein of the hepatitis C virus (HCV) can oligomerize in membrane to form cation channels. Previous studies showed that the channel assembly in detergent micelles adopts a unique flower-shaped oligomer, but the unusual architecture also presented problems for understanding how this viroporin resides in the membrane. Moreover, the oligomeric state of p7 remains controversial, as both hexamer and heptamer have been proposed. Here we address the above issues using p7 reconstituted in bicelles that mimic a lipid bilayer. We found, using a recently developed oligomer-labeling method, that p7 forms hexamers in the bicelles. Solvent paramagnetic relaxation enhancement analyses showed that the bilayer thickness around the HCV ion channel is substantially smaller than expected, and thus a significant portion of the previously assigned membrane-embedded region is solvent exposed. Our study provides an effective approach for characterizing the transmembrane partition of small ion channels in near lipid bilayer environment.
Collapse
Affiliation(s)
- Wen Chen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Jyoti Dev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Liqiang Pan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
20
|
Dahl SL, Kalita MM, Fischer WB. Interaction of antivirals with a heptameric bundle model of the p7 protein of hepatitis C virus. Chem Biol Drug Des 2018; 91:942-950. [DOI: 10.1111/cbdd.13162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Sophie L. Dahl
- Institute of Pharmacy and Molecular Biotechnology; Heidelberg University; Heidelberg Germany
| | - Monoj Mon Kalita
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC); School of Biomedical Science and Engineering; National Yang-Ming University; Taipei Taiwan
| | - Wolfgang B. Fischer
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC); School of Biomedical Science and Engineering; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
21
|
Denolly S, Mialon C, Bourlet T, Amirache F, Penin F, Lindenbach B, Boson B, Cosset FL. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types. PLoS Pathog 2017; 13:e1006774. [PMID: 29253880 PMCID: PMC5749900 DOI: 10.1371/journal.ppat.1006774] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/02/2018] [Accepted: 11/27/2017] [Indexed: 12/18/2022] Open
Abstract
Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus.
Collapse
Affiliation(s)
- Solène Denolly
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Chloé Mialon
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Thomas Bourlet
- GIMAP, EA 3064, Faculté de Médecine, Université de Saint-Etienne, Univ Lyon, Saint Etienne, France
| | - Fouzia Amirache
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François Penin
- IBCP—Institut de Biologie et Chimie des Protéines, MMSB, UMR 5086, CNRS, Univ Lyon, Lyon, France
| | - Brett Lindenbach
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States of America
| | - Bertrand Boson
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - François-Loïc Cosset
- CIRI–International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
22
|
Soranzo T, Martin DK, Lenormand JL, Watkins EB. Coupling neutron reflectivity with cell-free protein synthesis to probe membrane protein structure in supported bilayers. Sci Rep 2017; 7:3399. [PMID: 28611396 PMCID: PMC5469739 DOI: 10.1038/s41598-017-03472-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
The structure of the p7 viroporin, an oligomeric membrane protein ion channel involved in the assembly and release of the hepatitis C virus, was determined from proteins expressed and inserted directly into supported model lipid membranes using cell-free protein expression. Cell-free protein expression allowed (i ) high protein concentration in the membrane, (ii ) control of the protein's isotopic constitution, and (iii ) control over the lipid environment available to the protein. Here, we used cell-free protein synthesis to directly incorporate the hepatitis C virus (HCV) p7 protein into supported lipid bilayers formed from physiologically relevant lipids (POPC or asolectin) for both direct structural measurements using neutron reflectivity (NR) and conductance measurements using electrical impedance spectroscopy (EIS). We report that HCV p7 from genotype 1a strain H77 adopts a conical shape within lipid bilayers and forms a viroporin upon oligomerization, confirmed by EIS conductance measurements. This combination of techniques represents a novel approach to the study of membrane proteins and, through the use of selective deuteration of particular amino acids to enhance neutron scattering contrast, has the promise to become a powerful tool for characterizing the protein conformation in physiologically relevant environments and for the development of biosensor applications.
Collapse
Affiliation(s)
- Thomas Soranzo
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France
- University Grenoble Alpes, TheREx, TIMC IMAG/CNRS, UMR 5525, F-38000, Grenoble, France
| | - Donald K Martin
- University Grenoble Alpes, SyNaBi, TIMC IMAG/CNRS, UMR 5525, F-38000, Grenoble, France
| | - Jean-Luc Lenormand
- University Grenoble Alpes, TheREx, TIMC IMAG/CNRS, UMR 5525, F-38000, Grenoble, France
| | - Erik B Watkins
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042, Grenoble, Cedex 9, France.
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
23
|
Current therapy for chronic hepatitis C: The role of direct-acting antivirals. Antiviral Res 2017; 142:83-122. [PMID: 28238877 PMCID: PMC7172984 DOI: 10.1016/j.antiviral.2017.02.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/07/2017] [Accepted: 02/22/2017] [Indexed: 12/12/2022]
Abstract
One of the most exciting developments in antiviral research has been the discovery of the direct-acting antivirals (DAAs) that effectively cure chronic hepatitis C virus (HCV) infections. Based on more than 100 clinical trials and real-world studies, we provide a comprehensive overview of FDA-approved therapies and newly discovered anti-HCV agents with a special focus on drug efficacy, mechanisms of action, and safety. We show that HCV drug development has advanced in multiple aspects: (i) interferon-based regimens were replaced by interferon-free regimens; (ii) genotype-specific drugs evolved to drugs for all HCV genotypes; (iii) therapies based upon multiple pills per day were simplified to a single pill per day; (iv) drug potency increased from moderate (∼60%) to high (>90%) levels of sustained virologic responses; (v) treatment durations were shortened from 48 to 12 or 8 weeks; and (vi) therapies could be administered orally regardless of prior treatment history and cirrhotic status. However, despite these remarkable achievements made in HCV drug discovery, challenges remain in the management of difficult-to-treat patients. HCV genotype-specific drugs evolve to pan-genotypic drugs. Drug potency increases from moderate (∼60%) to high (>90%) levels of sustained virologic response. Treatment durations are shortened from a 48-week to 12-week or 8-week period. HCV therapies based upon multiple pills per day are simplified to a single pill per day. HCV therapies are administered orally regardless of prior treatment history and cirrhotic status.
Collapse
|
24
|
Zhao L, Wang S, Du L, Dev J, Zhou L, Liu Z, Chou JJ, OuYang B. Structural basis of interaction between the hepatitis C virus p7 channel and its blocker hexamethylene amiloride. Protein Cell 2016; 7:300-304. [PMID: 26951497 PMCID: PMC4818843 DOI: 10.1007/s13238-016-0256-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- Linlin Zhao
- National Center for Protein Science, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuqing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Lingyu Du
- National Center for Protein Science, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jyoti Dev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Liujuan Zhou
- National Center for Protein Science, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhijun Liu
- National Center for Protein Science, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - James J Chou
- National Center for Protein Science, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Bo OuYang
- National Center for Protein Science, State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201204, China.
| |
Collapse
|
25
|
Holzmann N, Chipot C, Penin F, Dehez F. Assessing the physiological relevance of alternate architectures of the p7 protein of hepatitis C virus in different environments. Bioorg Med Chem 2016; 24:4920-4927. [PMID: 27501910 DOI: 10.1016/j.bmc.2016.07.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
The viroporin p7 of the hepatitis C virus forms multimeric channels eligible for ion transport across the endoplasmic reticulum membrane. Currently the subject of many studies and discussion, the molecular assembly of the ion channel and the structural characteristics of the p7 monomer are not yet fully understood. Structural investigation of p7 has been carried out only in detergent environments, making the interpretation of the experimental results somewhat questionable. Here, we analyze by means of molecular dynamics simulations the structure of the p7 monomer as a function of its sequence, initial conformation and environment. We investigate the conductance properties of three models of a hexameric p7 ion channel by examining ion translocation in a pure lipid bilayer. It is noteworthy that although none of the models reflects the experimentally observed trend to conduct preferentially cations, we were able to identify the position and orientation of titratable acidic or basic residues playing a crucial role in ion selectivity and in the overall conductance of the channel. In addition, too compact a packing of the monomers leads to channel collapse rather than formation of a reasonable pore, amenable to ion translocation. The present findings are envisioned to help assess the physiological relevance of p7 ion channel models consisting of multimeric structures obtained in non-native environments.
Collapse
Affiliation(s)
- Nicole Holzmann
- Unité Mixte de Recherche No. 7565, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France; Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, CNRS, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France
| | - Christophe Chipot
- Unité Mixte de Recherche No. 7565, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France; Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, CNRS, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France; Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Penin
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, UMR 5086, Université de Lyon, 69367 Lyon, France; Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, UMR 5086, CNRS, 69367 Lyon, France
| | - François Dehez
- Unité Mixte de Recherche No. 7565, Université de Lorraine, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France; Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, CNRS, B.P. 70239, 54506 Vandoeuvre-lès-Nancy cedex, France.
| |
Collapse
|
26
|
Laasch N, Kalita MM, Griffin S, Fischer WB. Small molecule ligand docking to genotype specific bundle structures of hepatitis C virus (HCV) p7 protein. Comput Biol Chem 2016; 64:56-63. [PMID: 27258799 DOI: 10.1016/j.compbiolchem.2016.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
The genome of hepatitis C virus encodes for an essential 63 amino acid polytopic protein p7 of most likely two transmembrane domains (TMDs). The protein is identified to self-assemble thereby rendering lipid membranes permeable to ions. A series of small molecules such as adamantanes, imino sugars and guanidinium compounds are known to interact with p7. A set of 9 of these small molecules is docked against hexameric bundles of genotypes 5a (bundle-5a) and 1b (bundle-1b) using LeadIT. Putative sites for bundle-5a are identified within the pore and at pockets on the outside of the bundle. For bundle-1b preferred sites are found at the site of the loops. Binding energies are in favour of the guanidinium compounds. Rescoring of the identified poses with HYDE reveals a dehydration penalty for the guanidinium compounds, leaving the adamantanes and imino sugar in a better position. Binding energies calculated by HYDE and those by LeadIT indicate that all compounds are moderate binders.
Collapse
Affiliation(s)
- Niklas Laasch
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Monoj Mon Kalita
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Stephen Griffin
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, and Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
27
|
Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. J Virol 2016; 90:5075-5089. [PMID: 26962224 DOI: 10.1128/jvi.00132-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Nonprimate hepacivirus (NPHV), the closest homolog of hepatitis C virus (HCV) described to date, has recently been discovered in horses. Even though the two viruses share a similar genomic organization, conservation of the encoded hepaciviral proteins remains undetermined. The HCV p7 protein is localized within endoplasmic reticulum (ER) membranes and is important for the production of infectious particles. In this study, we analyzed the structural and functional features of NPHV p7 in addition to its role during virus assembly. Three-dimensional homology models for NPHV p7 using various nuclear magnetic resonance spectroscopy (NMR) structures were generated, highlighting the conserved residues important for ion channel function. By applying a liposome permeability assay, we observed that NPHV p7 exhibited liposome permeability features similar to those of HCV p7, indicative of similar ion channel activity. Next, we characterized the viral protein using a p7-based trans-complementation approach. A similar subcellular localization pattern at the ER membrane was observed, although production of infectious particles was likely hindered by genetic incompatibilities with HCV proteins. To further characterize these cross-species constraints, chimeric viruses were constructed by substituting different regions of HCV p7 with NPHV p7. The N terminus and transmembrane domains were nonexchangeable and therefore constitute a cross-species barrier in hepaciviral assembly. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious trans-complemented viral particles. In conclusion, comparison of NPHV and HCV p7 revealed structural and functional homology of these proteins, including liposome permeability, and broadly acting determinants that modulate hepaciviral virion assembly and contribute to the host-species barrier were identified. IMPORTANCE The recent discovery of new relatives of hepatitis C virus (HCV) enables for the first time the study of cross-species determinants shaping hepaciviral pathogenesis. Nonprimate hepacivirus (NPHV) was described to infect horses and represents so far the closest homolog of HCV. Both viruses encode the same viral proteins; however, NPHV protein functions remain poorly understood. In this study, we aimed to dissect NPHV p7 on a structural and functional level. By using various NMR structures of HCV p7 as templates, three-dimensional homology models for NPHV p7 were generated, highlighting conserved residues that are important for ion channel function. A p7-based trans-complementation approach and the construction of NPHV/HCV p7 chimeric viruses showed that the N terminus and transmembrane domains were nonexchangeable. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious viral particles. These results identify species-specific constraints as well as exchangeable determinants in hepaciviral assembly.
Collapse
|
28
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
29
|
Kalita MM, Fischer WB. Asymmetric dynamics of ion channel forming proteins - Hepatitis C virus (HCV) p7 bundles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1462-70. [PMID: 27079148 DOI: 10.1016/j.bbamem.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/01/2023]
Abstract
Protein p7 of hepatitis C virus (HCV) is a short 63 amino acid membrane protein which homo-oligomerises in the lipid membrane to form ion and proton conducting bundles. Two different genotypes (GTs) of p7, 1a and 5a, are used to simulate hexameric bundles of the protein embedded in a fully hydrated lipid bilayer during 400 ns molecular dynamics (MD) simulations. Whilst the bundle of GT 1a is based on a fully computational derived structure, the bundle of GT 5a is based on NMR spectroscopic data. Results of a full correlation analysis (FCA) reveal that albeit structural differences both bundles screen local minima during the simulation. The collective motion of the protein domains is asymmetric. No 'breathing-mode'-like dynamics is observed. The presence of divalent ions, such as Ca-ions affects the dynamics of especially solvent exposed parts of the protein, but leaves the asymmetric domain motion unaffected.
Collapse
Affiliation(s)
- Monoj Mon Kalita
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Wolfgang B Fischer
- Institute of Biophotonics and Biophotonics and Molecular Imaging Research Center (BMIRC), School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan, ROC.
| |
Collapse
|
30
|
Zheng JS, He Y, Zuo C, Cai XY, Tang S, Wang ZA, Zhang LH, Tian CL, Liu L. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification. J Am Chem Soc 2016; 138:3553-61. [PMID: 26943264 DOI: 10.1021/jacs.6b00515] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Ji-Shen Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Yao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chao Zuo
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Ying Cai
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Zhipeng A Wang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Long-Hua Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
31
|
Fischer WB, Kalita MM, Heermann D. Viral channel forming proteins--How to assemble and depolarize lipid membranes in silico. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1710-21. [PMID: 26806161 PMCID: PMC7094687 DOI: 10.1016/j.bbamem.2016.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 01/23/2023]
Abstract
Viral channel forming proteins (VCPs) have been discovered in the late 70s and are found in many viruses to date. Usually they are small and have to assemble to form channels which depolarize the lipid membrane of the host cells. Structural information is just about to emerge for just some of them. Thus, computational methods play a pivotal role in generating plausible structures which can be used in the drug development process. In this review the accumulation of structural data is introduced from a historical perspective. Computational performances and their predictive power are reported guided by biological questions such as the assembly, mechanism of function and drug–protein interaction of VCPs. An outlook of how coarse grained simulations can contribute to yet unexplored issues of these proteins is given. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Early references about the discovery of viral channel forming proteins. Latest structural information about the class of proteins. Identification of structural motifs, assembly mechanism of function and drug action using computational methods. Outlook for the use of coarse grained techniques to address assembly and integration into cellular processes.
Collapse
Affiliation(s)
- Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| | - Monoj Mon Kalita
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| | - Dieter Heermann
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan; Biophotonics & Molecular Imaging Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
32
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
33
|
Lin MH, Chen CP, Fischer WB. Patch formation of a viral channel forming protein within a lipid membrane – Vpu of HIV-1. MOLECULAR BIOSYSTEMS 2016; 12:1118-27. [DOI: 10.1039/c5mb00798d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimer-first formation leads to larger assemblies with potentially relevant structures.
Collapse
Affiliation(s)
- Meng-Han Lin
- Institute of Biophotonics
- School of Biomedical Science and Engineering and Biophotonics & Molecular Imaging Research Center (BMIRC)
- National Yang-Ming University
- Taipei 112
- Taiwan
| | - Chin-Pei Chen
- Institute of Biophotonics
- School of Biomedical Science and Engineering and Biophotonics & Molecular Imaging Research Center (BMIRC)
- National Yang-Ming University
- Taipei 112
- Taiwan
| | - Wolfgang B. Fischer
- Institute of Biophotonics
- School of Biomedical Science and Engineering and Biophotonics & Molecular Imaging Research Center (BMIRC)
- National Yang-Ming University
- Taipei 112
- Taiwan
| |
Collapse
|
34
|
The N-terminal Helical Region of the Hepatitis C Virus p7 Ion Channel Protein Is Critical for Infectious Virus Production. PLoS Pathog 2015; 11:e1005297. [PMID: 26588073 PMCID: PMC4654572 DOI: 10.1371/journal.ppat.1005297] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 11/01/2015] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) p7 protein is required for infectious virus production via its role in assembly and ion channel activity. Although NMR structures of p7 have been reported, the location of secondary structural elements and orientation of the p7 transmembrane domains differ among models. Furthermore, the p7 structure-function relationship remains unclear. Here, extensive mutagenesis, coupled with infectious virus production phenotyping and molecular modeling, demonstrates that the N-terminal helical region plays a previously underappreciated yet critical functional role, especially with respect to E2/p7 cleavage efficiency. Interrogation of specific N-terminal helix residues identified as having p7-specific defects and predicted to point toward the channel pore, in a context of independent E2/p7 cleavage, further supports p7 as a structurally plastic, minimalist ion channel. Together, our findings indicate that the p7 N-terminal helical region is critical for E2/p7 processing, protein-protein interactions, ion channel activity, and infectious HCV production. Hepatitis C virus (HCV) infection can lead to significant liver disease and, without a vaccine, continues to pose a significant public health threat. The viral p7 protein is a multifunctional protein that is required for infectious virus production via its role in orchestrating virion assembly and its activity as an ion channel. However, while there is accumulating structural information on p7, there is no consensus on which conformation(s) exist during a natural infection or how structural elements relate to p7 functions. By comparing two prominent, yet highly divergent models of p7, we identified one region of structural similarity–the N-terminal helical region. While mutagenesis screening of other regions of the protein are in keeping with p7 conformational flexibility, mutations within the N-terminal helical region had a significant impact on infectious virus production, due in part to a loss of efficient E2/p7 cleavage. We further postulated the precise functional impact of mutations throughout p7 by homology modeling and demonstrated tolerance for diverse amino acid substitutions for specific N-terminal helix residues with putative ion channel defects. Together, these data not only support p7 as a structurally plastic, minimalistic ion channel, but also provide extensive insight into the p7 structure-function relationship and highlight the importance of the N-terminal helical region in E2/p7 processing, protein-protein interactions, ion channel activity, and infectious HCV production.
Collapse
|
35
|
Lakshminarayanan A, Reddy BU, Raghav N, Ravi VK, Kumar A, Maiti PK, Sood AK, Jayaraman N, Das S. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells. NANOSCALE 2015; 7:16921-16931. [PMID: 26411288 DOI: 10.1039/c5nr02898a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse 'off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting "out" in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the 'proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.
Collapse
|
36
|
Emerging Roles of Viroporins Encoded by DNA Viruses: Novel Targets for Antivirals? Viruses 2015; 7:5375-87. [PMID: 26501313 PMCID: PMC4632388 DOI: 10.3390/v7102880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Studies have highlighted the essential nature of a group of small, highly hydrophobic, membrane embedded, channel-forming proteins in the life cycles of a growing number of RNA viruses. These viroporins mediate the flow of ions and a range of solutes across cellular membranes and are necessary for manipulating a myriad of host processes. As such they contribute to all stages of the virus life cycle. Recent discoveries have identified proteins encoded by the small DNA tumor viruses that display a number of viroporin like properties. This review article summarizes the recent developments in our understanding of these novel viroporins; describes their roles in the virus life cycles and in pathogenesis and speculates on their potential as targets for anti-viral therapeutic intervention.
Collapse
|
37
|
"Too little, too late?" Will inhibitors of the hepatitis C virus p7 ion channel ever be used in the clinic? Future Med Chem 2015; 6:1893-907. [PMID: 25495983 DOI: 10.4155/fmc.14.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) p7 is a virus-coded ion channel, or 'viroporin'. p7 is an essential HCV protein, promoting infectious virion production, and this process can be blocked by prototypic p7 inhibitors. However, prototype potency is weak and effects in clinical trials are unsatisfactory. Nevertheless, recent structural studies render p7 amenable to modern drug discovery, with studies supporting that effective drug-like molecules should be achievable. However, burgeoning HCV therapies clear infection in the majority of treated patients. This perspective summarizes current understanding of p7 channel function and structure, pertaining to the development of improved p7 inhibitors. We ask, 'is this too little, too late', or could p7 inhibitors play a role in the long-term management of HCV disease?
Collapse
|
38
|
Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin. Viruses 2015; 7:4461-81. [PMID: 26258788 PMCID: PMC4576187 DOI: 10.3390/v7082826] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
The high prevalence of hepatitis C virus (HCV) infection in the human population has triggered intensive research efforts that have led to the development of curative antiviral therapy. Moreover, HCV has become a role model to study fundamental principles that govern the replication cycle of a positive strand RNA virus. In fact, for most HCV proteins high-resolution X-ray and NMR (Nuclear Magnetic Resonance)-based structures have been established and profound insights into their biochemical and biological properties have been gained. One example is p7, a small hydrophobic protein that is dispensable for RNA replication, but crucial for the production and release of infectious HCV particles from infected cells. Owing to its ability to insert into membranes and assemble into homo-oligomeric complexes that function as minimalistic ion channels, HCV p7 is a member of the viroporin family. This review compiles the most recent findings related to the structure and dual pore/ion channel activity of p7 of different HCV genotypes. The alternative conformations and topologies proposed for HCV p7 in its monomeric and oligomeric state are described and discussed in detail. We also summarize the different roles p7 might play in the HCV replication cycle and highlight both the ion channel/pore-like function and the additional roles of p7 unrelated to its channel activity. Finally, we discuss possibilities to utilize viroporin inhibitors for antagonizing p7 ion channel/pore-like activity.
Collapse
|
39
|
Viral Membrane Channels: Role and Function in the Virus Life Cycle. Viruses 2015; 7:3261-84. [PMID: 26110585 PMCID: PMC4488738 DOI: 10.3390/v7062771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/20/2015] [Accepted: 06/12/2015] [Indexed: 12/23/2022] Open
Abstract
Viroporins are small, hydrophobic trans-membrane viral proteins that oligomerize to form hydrophilic pores in the host cell membranes. These proteins are crucial for the pathogenicity and replication of viruses as they aid in various stages of the viral life cycle, from genome uncoating to viral release. In addition, the ion channel activity of viroporin causes disruption in the cellular ion homeostasis, in particular the calcium ion. Fluctuation in the calcium level triggers the activation of the host defensive programmed cell death pathways as well as the inflammasome, which in turn are being subverted for the viruses’ replication benefits. This review article summarizes recent developments in the functional investigation of viroporins from various viruses and their contributions to viral replication and virulence.
Collapse
|
40
|
Opella SJ. Relating structure and function of viral membrane-spanning miniproteins. Curr Opin Virol 2015; 12:121-5. [PMID: 26057606 DOI: 10.1016/j.coviro.2015.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
Many viruses express small hydrophobic membrane proteins. These proteins are often referred to as viroporins because they exhibit ion channel activity. However, the channel activity has not been definitively associated with a biological function in all cases. More generally, protein-protein and protein-phospholipid interactions have been associated with specific biological activities of these proteins. As research has progressed there is a decreased emphasis on potential roles of the channel activity, and increased research on multiple other biological functions. This being the case, it may be more appropriate to refer to them as 'viral membrane-spanning miniproteins'. Structural studies are illustrated with Vpu from HIV-1 and p7 from HCV.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0307, USA.
| |
Collapse
|
41
|
Mathew S, Fatima K, Fatmi MQ, Archunan G, Ilyas M, Begum N, Azhar E, Damanhouri G, Qadri I. Computational Docking Study of p7 Ion Channel from HCV Genotype 3 and Genotype 4 and Its Interaction with Natural Compounds. PLoS One 2015; 10:e0126510. [PMID: 26030803 PMCID: PMC4451521 DOI: 10.1371/journal.pone.0126510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/02/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The current standard care therapy for hepatitis C virus (HCV) infection consists of two regimes, namely interferon-based and interferon-free treatments. The treatment through the combination of ribavirin and pegylated interferon is expensive, only mildly effective, and is associated with severe side effects. In 2011, two direct-acting antiviral (DAA) drugs, boceprevir and telaprevir, were licensed that have shown enhanced sustained virologic response (SVR) in phase III clinical trial, however, these interferon-free treatments are more sensitive to HCV genotype 1 infection. The variable nature of HCV, and the limited number of inhibitors developed thus aim in expanding the repertoire of available drug targets, resulting in targeting the virus assembly therapeutically. AIM We conducted this study to predict the 3D structure of the p7 protein from the HCV genotypes 3 and 4. Approximately 63 amino acid residues encoded in HCV render this channel sensitive to inhibitors, making p7 a promising target for novel therapies. HCV p7 protein forms a small membrane known as viroporin, and is essential for effective self-assembly of large channels that conduct cation assembly and discharge infectious virion particles. METHOD In this study, we screened drugs and flavonoids known to disrupt translation and production of HCV proteins, targeted against the active site of p7 residues of HCV genotype 3 (GT3) (isolatek3a) and HCV genotype 4a (GT4) (isolateED43). Furthermore, we conducted a quantitative structure-activity relationship and docking interaction study. RESULTS The drug NB-DNJ formed the highest number of hydrogen bond interactions with both modeled p7 proteins with high interaction energy, followed by BIT225. A flavonoid screen demonstrated that Epigallocatechin gallate (EGCG), nobiletin, and quercetin, have more binding modes in GT3 than in GT4. Thus, the predicted p7 protein molecule of HCV from GT3 and GT4 provides a general avenue to target structure-based antiviral compounds. CONCLUSIONS We hypothesize that the inhibitors of viral p7 identified in this screen may be a new class of potent agents, but further confirmation in vitro and in vivo is essential. This structure-guided drug design for both GT3 and GT4 can lead to the identification of drug-like natural compounds, confirming p7 as a new target in the rapidly increasing era of HCV.
Collapse
Affiliation(s)
- Shilu Mathew
- Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - M. Qaiser Fatmi
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan
| | | | - Muhammad Ilyas
- Department of Botany, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu, India
| | - Nargis Begum
- Department of Biotechnology, Jamal Mohamed College, Tiruchirappalli, India
| | - Esam Azhar
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- King Fahd Medical Research Center, King Abdul Aziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Konijnenberg A, Bannwarth L, Yilmaz D, Koçer A, Venien-Bryan C, Sobott F. Top-down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Sci 2015; 24:1292-300. [PMID: 25970171 DOI: 10.1002/pro.2703] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
Here we study the intact stoichiometry and top-down fragmentation behavior of three integral membrane proteins which were natively reconstituted into detergent micelles: the mechano-sensitive ion channel of large conductance (MscL), the Kirbac potassium channel and the p7 viroporin from the hepatitis C virus. By releasing the proteins under nondenaturing conditions inside the mass spectrometer, we obtained their oligomeric sizes. Increasing the ion activation (collision energy) causes unfolding and subsequent ejection of a highly charged monomer from the membrane protein complexes. Further increase of the ion activation then causes collision-induced dissociation (CID) of the ejected monomers, with fragments observed which were predominantly found to stem from membrane-embedded regions. These experiments show how in a single experiment, we can probe the relation between higher-order structure and protein sequence, by combining the native MS data with fragmentation obtained from top-down MS.
Collapse
Affiliation(s)
- Albert Konijnenberg
- Department of Chemistry, Biomolecular & Analytical Mass Spectrometry group, University of Antwerp, Antwerp, Belgium
| | - Ludovic Bannwarth
- Bioinformatique et BioPhysique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Université Pierre et Marie Curie, Paris, France
| | - Duygu Yilmaz
- Department of Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Armağan Koçer
- Department of Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Catherine Venien-Bryan
- Bioinformatique et BioPhysique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Université Pierre et Marie Curie, Paris, France
| | - Frank Sobott
- Department of Chemistry, Biomolecular & Analytical Mass Spectrometry group, University of Antwerp, Antwerp, Belgium.,UA-VITO Centre for Proteomics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
43
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
44
|
Kalita MM, Griffin S, Chou JJ, Fischer WB. Genotype-specific differences in structural features of hepatitis C virus (HCV) p7 membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1383-92. [PMID: 25772504 PMCID: PMC7094707 DOI: 10.1016/j.bbamem.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
The 63 amino acid polytopic membrane protein, p7, encoded by hepatitis C virus (HCV) is involved in the modulation of electrochemical gradients across membranes within infected cells. Structural information relating to p7 from multiple genotypes has been generated in silico (e.g. genotype (GT) 1a), as well as obtained from experiments in form of monomeric and hexameric structures (GTs 1b and 5a, respectively). However, sequence diversity and structural differences mean that comparison of their channel gating behaviour has not thus far been simulated. Here, a molecular model of the monomeric GT 1a protein is optimized and assembled into a hexameric bundle for comparison with both the 5a hexamer structure and another hexameric bundle generated using the GT 1b monomer structure. All bundles tend to turn into a compact structure during molecular dynamics (MD) simulations (Gromos96 (ffG45a3)) in hydrated lipid bilayers, as well as when simulated at 'low pH', which may trigger channel opening according to some functional studies. Both GT 1a and 1b channel models are gated via movement of the parallel aligned helices, yet the scenario for the GT 5a protein is more complex, with a short N-terminal helix being involved. However, all bundles display pulsatile dynamics identified by monitoring water dynamics within the pore.
Collapse
Affiliation(s)
- Monoj Mon Kalita
- Institute of Biophotonics, School of Biomedical Science and Engineering, Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, TW
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology, Faculty of Medicine and Health, St James' University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, UK
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, TW.
| |
Collapse
|
45
|
Bichmann L, Wang YT, Fischer WB. Docking assay of small molecule antivirals to p7 of HCV. Comput Biol Chem 2014; 53PB:308-317. [PMID: 25462337 DOI: 10.1016/j.compbiolchem.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/31/2014] [Accepted: 11/08/2014] [Indexed: 01/14/2023]
Abstract
Protein p7 of HCV is a 63 amino acid channel forming membrane protein essential for the progression of viral infection. With this momentousness, p7 emerges as an important target for antiviral therapy. A series of small molecule drugs, such as amantadine, rimantadine, amiloride, hexamethylene amiloride, NN-DNJ and BIT225 have been found to affect the channel activity. These compounds are docked against monomeric and hexameric structures of p7 taken at various time steps from a molecular dynamics simulation of the protein embedded in a hydrated lipid bilayer. The energetics of binding identifies the guanidine based ligands as the most potent ligands. The adamantanes and NN-DNJ show weaker binding energies. The lowest energy poses are those at the site of the loop region for the monomer and hexamer. For the latter, the poses show a tendency of the ligand to face the lumen of the pore. The mode of binding is that of a balance between hydrophobic interactions and hydrogen bond formation with backbone atoms of the protein.
Collapse
Affiliation(s)
- Leon Bichmann
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Yi-Ting Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei 112, Taiwan, ROC.
| |
Collapse
|
46
|
Ion-dynamics in hepatitis C virus p7 helical transmembrane domains — a molecular dynamics simulation study. Biophys Chem 2014; 192:33-40. [DOI: 10.1016/j.bpc.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022]
|
47
|
Abstract
Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins, especially those accomplished with the proteins in phospholipid bilayer environments where they function.
Collapse
|
48
|
Atoom AM, Taylor NGA, Russell RS. The elusive function of the hepatitis C virus p7 protein. Virology 2014; 462-463:377-87. [PMID: 25001174 PMCID: PMC7112009 DOI: 10.1016/j.virol.2014.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) is a major global health burden with 2–3% of the world׳s population being chronically infected. Persistent infection can lead to cirrhosis and hepatocellular carcinoma. Recently available treatment options show enhanced efficacy of virus clearance, but are associated with resistance and significant side effects. This warrants further research into the basic understanding of viral proteins and their pathophysiology. The p7 protein of HCV is an integral membrane protein that forms an ion-channel. The role of p7 in the HCV life cycle is presently uncertain, but most of the research performed to date highlights its role in the virus assembly process. The aim of this review is to provide an overview of the literature investigating p7, its structural and functional details, and to summarize the developments to date regarding potential anti-p7 compounds. A better understanding of this protein may lead to development of a new and effective therapy. This review paper provides an overview of the literature investigating HCV. The content focuses on p7 structural and functional details. We summarize the developments to date regarding potential anti-p7 compounds.
Collapse
Affiliation(s)
- Ali M Atoom
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Nathan G A Taylor
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada
| | - Rodney S Russell
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, Newfoundland, St. John׳s, Canada.
| |
Collapse
|
49
|
Atkins E, Tatineni R, Li H, Gretch D, Harris M, Griffin S. The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences. Virology 2014; 448:117-24. [PMID: 24314642 PMCID: PMC7615703 DOI: 10.1016/j.virol.2013.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/05/2013] [Accepted: 10/03/2013] [Indexed: 12/17/2022]
Abstract
Secreted infectious particles generated by the genotype 2a JFH-1 hepatitis C virus infectious clone are resistant to acidic pH, whereas intracellular virions remain acid-labile. Thus, JFH-1 particles are thought to undergo pH maturation as they are secreted from the cell. Here, we demonstrate that both infectious intracellular and secreted genotype 1a (H77)/JFH-1 chimaeric particles display enhanced acid sensitivity compared with JFH-1, although pH maturation still occurs upon release. Introduction of p7 sequences from genotype 1a infected HCV patients into the H77/JFH-1 background yielded variable effects on infectious particle production and sensitivity to small molecule inhibitors. However, two selected patient p7 sequences increased the acid stability of secreted, but not intracellular H77/JFH-1 particles, suggesting that p7 directly influences particle pH maturation via an as yet undefined mechanism. We propose that HCV particles vary in acid stability, and that this may be dictated by variations in both canonical structural proteins and p7.
Collapse
Affiliation(s)
- Elizabeth Atkins
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Ranjitha Tatineni
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, United Kingdom
| | - Hui Li
- Department of Laboratory Medicine, University of Washington School of Medicine, Harborview Medical Centre, Ninth & Jefferson Building, 908 Jefferson Street, Seattle, WA 98104, USA
| | - David Gretch
- Department of Laboratory Medicine, University of Washington School of Medicine, Harborview Medical Centre, Ninth & Jefferson Building, 908 Jefferson Street, Seattle, WA 98104, USA
| | - Mark Harris
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
| | - Stephen Griffin
- School of Molecular & Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom
- Leeds Institute of Cancer & Pathology (LICAP) and Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James’ University Hospital, University of Leeds, Beckett St., Leeds, West Yorkshire LS9 7TF, United Kingdom
| |
Collapse
|