1
|
Cui Y, Qu Z, Li L, Hu W. Gender difference in the association between serum uric acid and metabolic dysfunction-associated steatotic liver disease in patients with newly diagnosed type 2 diabetes. BMC Gastroenterol 2025; 25:322. [PMID: 40307757 PMCID: PMC12042553 DOI: 10.1186/s12876-025-03917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
PURPOSE To investigate the relationship between serum uric acid (SUA) levels and metabolic dysfunction-associated steatotic liver disease (MASLD) in newly diagnosed type 2 diabetic patients. METHODS We performed this retrospective research among 1087 inpatients with new-onset type 2 diabetes millitus (T2DM). Data were analyzed according to gender. Then, the populations were stratified according to their body mass index (BMI) levels in men and women, respectively. The physical and biochemical indicators were measured and recorded. The relationship between SUA and MASLD was estimated using logistic regression analysis, and the unadjusted and adjusted odds ratios (ORs) were calculated. RESULTS After adjusting for age, BMI, and other components of the metabolic syndrome, SUA was independently associated with MASLD only in men, but not in women. In addition, for men, the SUA levels were independently associated with MASLD in both non-overweight/obesity and overweight/obesity group. However, for women, the SUA levels were independently related to MASLD in non-overweight/obesity group. There was no association between SUA and MASLD in women with overweight/obesity. CONCLUSION In newly diagnosed type 2 diabetic patients, elevated SUA is an independent predictor for the risk of MASLD in males. In females, the relationship between SUA and MASLD may depend on BMI, with significance only in non-overweight/obese individuals.
Collapse
Affiliation(s)
- Yuliang Cui
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Zhenzhen Qu
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Lingling Li
- Department of Health Management, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China
| | - Wenmei Hu
- Department of Endocrinology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China.
| |
Collapse
|
2
|
Hosseini MS, Barjesteh F, Azedi F, Alipourfard I, Rezaei Z, Bahreini E. Comparative analysis of β-Estradiol and testosterone on lipid droplet accumulation, and regulatory protein expression in palmitate/oleate-induced fatty HepG2 cells. BMC Gastroenterol 2025; 25:263. [PMID: 40240962 PMCID: PMC12004869 DOI: 10.1186/s12876-025-03863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
INTRODUCTION The higher prevalence of non-alcoholic fatty liver disease (NAFLD) in men than women before menopause and the reduced difference post-menopause suggest that sex hormones may influence liver lipid accumulation. This study compared the effects of sex hormones on lipid droplet (LD) accumulation in palmitate/ oleate-treated HepG2 cells. METHODS The MTT method was used to determine effective doses of palmitic and oleic acids in HepG2 cells, followed by a combined dose for inducing LD formation. Changes in LD content after treatment with various doses of β-estradiol and testosterone were evaluated qualitatively and semi-quantitatively using Oil Red O staining and light microscopy. The effects of these hormones on gene expression related to LD formation and lipogenesis, including PLIN2, ATGL, CGI-58, and CIDEB, were assessed using quantitative PCR. RESULTS Treatment of HepG2 cells with palmitate and oleate increased LD accumulation and the expression of PLIN2 and CIDE while elevating ATGL expression without affecting CGI-58. With no significant difference, both β-estradiol and testosterone significantly reduced LD accumulation in steatotic HepG2 cells. Gene analysis indicated that both hormones decreased PLIN2 and increased CGI-58 expression. Testosterone did not affect CIDE, while β-estradiol reduced it at low doses. Combined treatment showed no significant changes in gene expression compared to individual hormone effects, but LD accumulation was synergistically reduced. CONCLUSION This study demonstrates that β-estradiol and testosterone significantly modulate LD content and the expression of key regulatory genes in HepG2 cells, with β-estradiol showing a somewhat dominant role in enhancing lipid turnover and mitigating lipid accumulation.
Collapse
Affiliation(s)
- Motahare-Sadat Hosseini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Barjesteh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Rezaei
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Saberian A, Dehghan A, Homayounfar R, Kaffashan S, Zarei F, Niknejad S, Farjam M. Determining the sensitivity and specificity of the calculated fatty liver index in comparison with ultrasound. BMC Gastroenterol 2024; 24:443. [PMID: 39623301 PMCID: PMC11610269 DOI: 10.1186/s12876-024-03535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease in human history and it is expected to surpass other causes of liver disease mortality by 2030. Therefore, finding an alternative way to diagnose steatosis in the early stage when imaging modalities are not available is crucial. This study decided to validate the optimal cut-off points and the sensitivity and specificity of the Fatty Liver Index (FLI) based on the Iranian population compared to ultrasonography. METHODS The data of 367 individuals, 108 males and 259 females over 35, were analyzed. Hepatic steatosis was identified by ultrasound. FLI was determined from waist circumference, gamma-glutamyl transferase, triglyceride, and body mass index data. The receiver operating characteristic curve (ROC) was used to determine the best FLI index cut point for diagnosing nonalcoholic fatty liver. The sensitivity and specificity indices were calculated for the determined cut point. RESULTS The AUC of the FLI index in diagnosing NAFLD in the total population was 0.733 (95% CI: 0.68-0.77, specificity = 0.6705, sensitivity = 0.7320) with the optimal COP of 40.6. There was a statistically significant association between non-alcoholic liver disease and FLI-based ultrasound (p < 0.0001). Furthermore, the sex-specific optimal COPs of FLI was 33.4, specificity = 0.6071, sensitivity = 0.8462 in men vs. 27.8, sensitivity = 0.8233, specificity = 0.7655 in women. CONCLUSION FLI is a reliable tool for identifying individuals with NAFLD. It has the potential to aid in detecting and managing this condition in large-scale populations while other methods are not available. We also determine an optimal COP of 40.6 with sensitivity and specificity of 73.20% and 67.05% in the general population, respectively.
Collapse
Affiliation(s)
- Arash Saberian
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizallah Dehghan
- Department of Epidemiology, Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Reza Homayounfar
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kaffashan
- Department of Radiology, School of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Fariba Zarei
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Niknejad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 7156685691, Iran.
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, 74616-86688, Iran.
| |
Collapse
|
4
|
Park ES, Won J, Ahn SH, Lee AR, Lee D, Moon JY, Choi MH, Kim KH. Gender-specific alteration of steroid metabolism and its impact on viral replication in a mouse model of hepatitis B virus infection. Anim Cells Syst (Seoul) 2024; 28:466-480. [PMID: 39296537 PMCID: PMC11409417 DOI: 10.1080/19768354.2024.2403569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Hepatitis B virus (HBV) is a sex-specific pathogen that is more severe in males than in females. Sex disparities in HBV infection have been attributed to hormonal differences between males and females. However, whether HBV infection affects the metabolic signatures of steroid hormones and how these influences viral replication remains unclear. In this study, we investigated whether HBV infection alters steroid metabolism and its effects on HBV replication. Serum samples from male and female mice obtained after the hydrodynamic injection of replication-competent HBV plasmids were subjected to quantitative steroid profiling. Serum steroid levels in mice were analyzed using an in vitro metabolism assay with the mouse liver S9 fraction. The alteration of steroids by HBV infection was observed only in male mice, particularly with significant changes in androgens, whereas no significant hormonal changes were observed in female mice. Among the altered steroids, dehydroepiandrosterone (DHEA) levels increased the most in male mice after HBV infection. An in vitro metabolism assay revealed that androgen levels were significantly reduced in HBV-infected male mice. Furthermore, the genes involved in DHEA biosynthesis were significantly upregulated in HBV-infected male mice. Interestingly, reduced dihydrotestosterone in male mice significantly inhibits viral replication by suppressing HBV promoter activity, suggesting a viral strategy to overcome the antiviral effects of steroid hormones in males. Our data demonstrated that HBV infection can cause sex-specific changes in steroid metabolism.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | - Juhee Won
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Sung Hyun Ahn
- Department of Pharmacology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Donghyo Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ju-Yeon Moon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Korea
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Araújo R, Fabris V, Lamb CA, Elía A, Lanari C, Helguero LA, Gil AM. Tumor Lipid Signatures Are Descriptive of Acquisition of Therapy Resistance in an Endocrine-Related Breast Cancer Mouse Model. J Proteome Res 2024; 23:2815-2829. [PMID: 37497607 PMCID: PMC11301694 DOI: 10.1021/acs.jproteome.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 07/28/2023]
Abstract
The lipid metabolism adaptations of estrogen and progesterone receptor-positive breast cancer tumors from a mouse syngeneic model are investigated in relation to differences across the transition from hormone-dependent (HD) to hormone-independent (HI) tumor growth and the acquisition of endocrine therapy (ET) resistance (HIR tumors). Results are articulated with reported polar metabolome results to complete a metabolic picture of the above transitions and suggest markers of tumor progression and aggressiveness. Untargeted nuclear magnetic resonance metabolomics was used to analyze tumor and mammary tissue lipid extracts. Tumor progression (HD-HI-HIR) was accompanied by increased nonesterified cholesterol forms and phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens) and decreased relative contents of triglycerides and fatty acids. Predominating fatty acids became shorter and more saturated on average. These results were consistent with gradually more activated cholesterol synthesis, β-oxidation, and phospholipid biosynthesis to sustain tumor growth, as well as an increase in cholesterol (possibly oxysterol) forms. Particular compound levels and ratios were identified as potential endocrine tumor HD-HI-HIR progression markers, supporting new hypotheses to explain acquired ET resistance.
Collapse
Affiliation(s)
- Rita Araújo
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Victoria Fabris
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Caroline A. Lamb
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Andrés Elía
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Claudia Lanari
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Luisa A. Helguero
- iBIMED
- Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
He Q, Chen B, Liang F, Zhang Z. Association between the atherogenic index of plasma and bone mineral density among adult women: NHANES (2011-2018). Front Endocrinol (Lausanne) 2024; 15:1363889. [PMID: 38836228 PMCID: PMC11148244 DOI: 10.3389/fendo.2024.1363889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Background Studies on the relationship between the atherogenic index of plasma (AIP) and bone mineral density (BMD) among adult women in the United States are limited. The purpose of this study was to explore this association using a sizable, nationally representative sample. Methods Data from the 2011 to 2018 National Health and Nutrition Examination Survey (NHANES) were used in this observational study. The AIP was computed as log10 (triglycerides/high-density lipoprotein cholesterol). Total BMD was measured via dual-energy X-ray densitometry. We constructed multiple linear regression models to evaluate the correlation between the AIP and BMD. The non-linear relationship was characterized by smooth curve fitting and generalized additive models. We also conducted subgroup and interaction analyses. Results In this study, we included 2,362 adult women with a mean age of 38.13 ± 12.42 years. The results of multiple linear regression analysis, the AIP and total BMD showed a negative association (β = -0.021, 95%CI: -0.037, -0.006). The curve fitting analysis and threshold effect analysis showed a non-linear relationship between the two variables, and the inflection point of the AIP was found to be -0.61. The total BMD decreased significantly when the AIP reached this value (β = -0.03, 95%CI: -0.04, -0.01). The results of the subgroup analysis showed that AIP and total BMD had a strong negative relationship in participants who were below 45 years old (β = -0.023; 95% CI: -0.041, -0.004), overweight (BMI ≥ 25 kg/m2) (β = -0.022; 95% CI: -0.041, -0.002), had a higher education level (β = -0.025; 95% CI: -0.044, -0.006), and had no partners (β = -0.014; 95% CI: -0.06, -0.009). Conclusions We found a negative correlation between the AIP and total BMD. Clinicians should pay attention to patients with high AIP, which might indicate a low BMD and has reference significance in preventing osteoporosis.
Collapse
Affiliation(s)
- Qiwang He
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Department of Orthopedics, Hubei University Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Bo Chen
- Department of Endocrinology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Center for Clinical Evidence-Based and Translational Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fuchao Liang
- Department of Urology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Zhiwen Zhang
- Department of Orthopedics, Hubei University Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
7
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
8
|
Xue Y, Gong Y, Li X, Peng F, Ding G, Zhang Z, Shi J, Savul IS, Xu Y, Chen Q, Han L, Mao S, Sun Z. Sex differences in paternal arsenic-induced intergenerational metabolic effects are mediated by estrogen. Cell Biosci 2023; 13:165. [PMID: 37691128 PMCID: PMC10493026 DOI: 10.1186/s13578-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences. METHODS After weaning, C57BL/6 WT male mice were treated with 250 ppb iAs in drinking water (iAsF0) or normal water (conF0) for 6 weeks and then bred with 15-week-old, non-exposed females for 3 days in cages with only normal water (without iAs), to generate iAsF1 or conF1 mice, respectively. F0 females and all F1 mice drank normal water without iAs all the time. RESULTS We find that exposure of male mice to 250 ppb iAs leads to glucose intolerance and insulin resistance in F1 female offspring (iAsF1-F), with almost no change in blood lipid profiles. In contrast, F1 males (iAsF1-M) show lower liver and blood triglyceride levels than non-exposed control, with improved glucose tolerance and insulin sensitivity. The liver of F1 offspring shows sex-specific transcriptomic changes, with hepatocyte-autonomous alternations of metabolic fluxes in line with the sex-specific phenotypes. The iAsF1-F mice show altered levels of circulating estrogen and follicle-stimulating hormone. Ovariectomy or liver-specific knockout of estrogen receptor α/β made F1 females resemble F1 males in their metabolic responses to paternal iAs exposure. CONCLUSIONS These results demonstrate that disrupted reproductive hormone secretion in alliance with hepatic estrogen signaling accounts for the sex-specific intergenerational effects of paternal iAs exposure, which shed light on the sex disparities in long-term gene-environment interactions.
Collapse
Affiliation(s)
- Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yingyun Gong
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Li
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Fei Peng
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Guolian Ding
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junchao Shi
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ilma Saleh Savul
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Qi Chen
- Molecular Medicine Program, Department of Human Genetics, and Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shengyong Mao
- National Center for International Research on Animal Gut Nutrition, Center for Ruminant Nutrition and Feed Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Zheng Sun
- Division of Endocrinology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Jing Y, Hu T, Yuan J, Liu Z, Tao M, Ou M, Cheng X, Cheng W, Yi Y, Xiong Q. Resveratrol protects against postmenopausal atherosclerosis progression through reducing PCSK9 expression via the regulation of the ERα-mediated signaling pathway. Biochem Pharmacol 2023; 211:115541. [PMID: 37030661 DOI: 10.1016/j.bcp.2023.115541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
Elevated circulating proprotein convertase subtilisin/kexin 9 (PCSK9) levels are an important contributor to postmenopausal atherosclerosis (AS). We have previously reported that resveratrol (RSV), as a phytoestrogen, reduces hepatocyte steatosis and PCSK9 expression in L02 cells. This study aimed to investigate how RSV reduces PCSK9 expression to inhibit postmenopausal AS progression. Here, we found that treatment of Ovx/ApoE -/- mice with RSV significantly reduced dyslipidemia, plasma PCSK9 concentration and aortic plaque area. In addition, RSV significantly inhibited liver fat accumulation and improved the hepatocyte ultrastructure. Further studies showed that RSV upregulated estrogen receptor α (ERα) expression, while reduced the liver X receptor α (LXRα) expression and sterol regulatory-element-binding protein-1c (SREBP-1c) transcriptional activity. In vitro, RSV inhibited insulin-induced elevated intracellular/extracellular PCSK9 levels, enhanced receptor-mediated uptake of low-density lipoproteins in HepG2 cells. Furthermore, RSV attenuated the activity of the SRE-dependent PCSK9 promoter. However, these effects can be partially reversed by the antiestrogen ICI 182,780. Attenuation of these changes with ERα inhibition suggest that RSV may prevent the progression of postmenopausal AS by reducing PCSK9 expression in hepatocytes through ERα-mediated signaling.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Tianhui Hu
- Traditional Chinese Medicine Department, Huai'an Maternal and Child Health-Care Center, Huai'an 2230003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhikun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mingtao Tao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Mingyu Ou
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xinru Cheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wei Cheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuanyuan Yi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
10
|
Li M, Lu Q, Zhu Y, Fan X, Zhao W, Zhang L, Jiang Z, Yu Q. Fatostatin inhibits SREBP2-mediated cholesterol uptake via LDLR against selective estrogen receptor α modulator-induced hepatic lipid accumulation. Chem Biol Interact 2022; 365:110091. [DOI: 10.1016/j.cbi.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022]
|
11
|
Stokar J, Gurt I, Cohen-Kfir E, Yakubovsky O, Hallak N, Benyamini H, Lishinsky N, Offir N, Tam J, Dresner-Pollak R. Hepatic adropin is regulated by estrogen and contributes to adverse metabolic phenotypes in ovariectomized mice. Mol Metab 2022; 60:101482. [PMID: 35364299 PMCID: PMC9044006 DOI: 10.1016/j.molmet.2022.101482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE Menopause is associated with visceral adiposity, hepatic steatosis and increased risk for cardiovascular disease. As estrogen replacement therapy is not suitable for all postmenopausal women, a need for alternative therapeutics and biomarkers has emerged. METHODS 9-week-old C57BL/6 J female mice were subjected to ovariectomy (OVX) or SHAM surgery (n = 10 per group), fed a standard diet and sacrificed 6- & 12 weeks post-surgery. RESULTS Increased weight gain, hepatic triglyceride content and changes in hepatic gene expression of Cyp17a1, Rgs16, Fitm1 as well as Il18, Rares2, Retn, Rbp4 in mesenteric visceral adipose tissue (VAT) were observed in OVX vs. SHAM. Liver RNA-sequencing 6-weeks post-surgery revealed changes in genes and microRNAs involved in fat metabolism in OVX vs. SHAM mice. Energy Homeostasis Associated gene (Enho) coding for the hepatokine adropin was significantly reduced in OVX mice livers and strongly inversely correlated with weight gain (r = -0.7 p < 0.001) and liver triglyceride content (r = -0.4, p = 0.04), with a similar trend for serum adropin. In vitro, Enho expression was tripled by 17β-estradiol in BNL 1 ME liver cells with increased adropin in supernatant. Analysis of open-access datasets revealed increased hepatic Enho expression in estrogen treated OVX mice and estrogen dependent ERα binding to Enho. Treatment of 5-month-old OVX mice with Adropin (i.p. 450 nmol/kg/twice daily, n = 4,5 per group) for 6-weeks reversed adverse adipokine gene expression signature in VAT, with a trended increase in lean body mass and decreased liver TG content with upregulation of Rgs16. CONCLUSIONS OVX is sufficient to induce deranged metabolism in adult female mice. Hepatic adropin is regulated by estrogen, negatively correlated with adverse OVX-induced metabolic phenotypes, which were partially reversed with adropin treatment. Adropin should be further explored as a potential therapeutic target and biomarker for menopause-related metabolic derangement.
Collapse
Affiliation(s)
- Joshua Stokar
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Irina Gurt
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Einav Cohen-Kfir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Oran Yakubovsky
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Noa Hallak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Natan Lishinsky
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Neta Offir
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Rivka Dresner-Pollak
- Department of Endocrinology and Metabolism, Division of Medicine, Hadassah Medical Organization, Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
12
|
Calhoun S, Duan L, Maki CG. Acetyl-CoA synthetases ACSS1 and ACSS2 are 4-hydroxytamoxifen responsive factors that promote survival in tamoxifen treated and estrogen deprived cells. Transl Oncol 2022; 19:101386. [PMID: 35263700 PMCID: PMC8904238 DOI: 10.1016/j.tranon.2022.101386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sarah Calhoun
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac Suite 507, Chicago, IL 60612, USA
| | - Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac Suite 507, Chicago, IL 60612, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Ave, AcFac Suite 507, Chicago, IL 60612, USA.
| |
Collapse
|
13
|
No Evidence for a Causal Link between Serum Uric Acid and Nonalcoholic Fatty Liver Disease from the Dongfeng-Tongji Cohort Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6687626. [PMID: 35340212 PMCID: PMC8941576 DOI: 10.1155/2022/6687626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/27/2021] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
Background and Aims Elevated serum uric acid (SUA) is associated with an increased risk of nonalcoholic fatty liver disease (NAFLD); however, whether this association is causal is undetermined. Methods Each participant from the Dongfeng-Tongji cohort study based on 27,009 retirees was interviewed face-to-face following a clinical examination. Covariance, logistic regression analysis, and instrumental variables were used to assess associations between SUA and (severity of) NAFLD and the causal link. Results Among 8,429 subjects free of NAFLD at baseline, 2,007 participants developed NAFLD after 5 years of follow-up. The multivariable-adjusted odds ratio (OR) for NAFLD for individuals in the fourth quartile of SUA level versus those in the first was 1.71 (95% CI: 1.45-2.01, P for trend <0.001) and was more dramatic in women or normal-weight persons. Furthermore, SUA was materially associated with greater mean markers of hepatic necroinflammation and greater probabilities of fibrosis. In genetic analyses, both single nucleotide polymorphisms (rs11722228 to SLC2A9 and rs2231142 to ABCG2) were pronouncedly associated with increased SUA concentrations, ranging from 0.19 to 0.22 mg/dl. No significant associations were observed between SNPs and potential confounders. No association was observed between the SUA-increasing allele and NAFLD, with an OR of 0.98 (95% CI: 0.90-1.08) per genetic score. This was not significantly different (P = 0.25) from what was expected (1.03, 95% CI: 1.03-1.03). Conclusions SUA was positively associated with NAFLD incidence especially in female and normal-weight individuals and the suspected progression risk of newly developed NAFLD. However, the Mendelian randomization analyses lend no causal evidence, suggesting high SUA as a marker and not a cause of NAFLD.
Collapse
|
14
|
Hu T, Wei M, Hong G, Qi T, Xiang Y, Yang Y, Yi Y. Xiaoyao San attenuates hepatic steatosis through estrogen receptor α pathway in ovariectomized ApoE-/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114612. [PMID: 34496266 DOI: 10.1016/j.jep.2021.114612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyao San (XYS) is a famous prescription in traditional Chinese medicine, which is used in the treatment of "liver depression and spleen deficiency" syndrome. It is often used clinically to treat chronic hepatitis, liver cirrhosis, various symptoms of postmenopausal women, especially mental disorders and digestive system diseases. However, the effect of XYS on hepatic steatosis in postmenopausal women remains unclear. In this research, we investigated the effects of XYS on hepatic steatosis in ovariectomized (OVX) apolipoprotein E knockout (ApoE-/-) mice, as well as the molecular mechanisms in vitro and in vivo. MATERIALS AND METHODS Fifty female ApoE-/- mice were divided into 5 groups: control group (Sham), model group (OVX), OVX + β-estradiol (E2, 0.4 mg/kg) group, OVX + XYS (13.0 g/kg) group, and OVX + XYS (6.5 g/kg) group. The control group received a standard diet, while the other groups received a high-fat diet (HFD). The hepatic pathologies of the mice were examined with Oil red O staining and HE staining after 12 week treatment. Blood and liver variables were determined enzymatically. Transmission electron microscopy was used to examine the ultrastructure of hepatocytes. The expression of estrogen receptor α (ERα) and lipid metabolism genes was analyzed by real-time PCR and/or Western blot. In in vitro studies, we investigated the effect of XYS-medicated serum on the expression and activity of ERα in L02 cells by immunofluorescence and luciferase reporter assays, and examined the protection of XYS-medicated serum against free fatty acid (FFA)-induced steatosis of L02 cells. Intracellular lipid accumulation were measured by Oil red O staining and Nile red staining assay. Finally, the influence of ICI 182,780, a specific antagonist of ERα, on the protective effect of XYS-medicated serum on FFA-induced steatosis of L02 cells was investigated. RESULTS Treatment of Ovx/ApoE-/- mice with XYS significantly decreased HFD-induced increases in hepatic steatosis and triglyceride (TG) content, accompanied by inhibition of liver X receptor α (LXRα), sterol regulatory element binding protein (SREBP)-1c and its target lipogenic genes transcription. Similarly, XYS-medicated serum reduced the size and number of lipid droplets and the cellular TG content in FFA-induced L02 cells. In addition, XYS significantly increased the ERα expression in hepatocytes in vivo and in vitro and enhanced the transcriptional activity of ERα promoter in L02 cells. And these effects could be partly reversed by the antiestrogen ICI 182,780. CONCLUSIONS These findings suggest that XYS has an estrogen-like effect and inhibits steatosis in postmenopausal animal models by reducing the expression of genes related to TG synthesis through ERα pathway.
Collapse
Affiliation(s)
- Tianhui Hu
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Mian Wei
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Guoping Hong
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingting Qi
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Yuanyuan Xiang
- Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Yunjie Yang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Huai'an Maternal and Child Health-Care Center, Huai'an, 223000, China
| | - Yuanyuan Yi
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
15
|
Gao X, Liu S, Tan L, Ding C, Fan W, Gao Z, Li M, Tang Z, Wu Y, Xu L, Yan L, Luo Y, Song S. Estrogen Receptor α Regulates Metabolic-Associated Fatty Liver Disease by Targeting NLRP3-GSDMD Axis-Mediated Hepatocyte Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14544-14556. [PMID: 34817168 DOI: 10.1021/acs.jafc.1c05400] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is currently one of the main causes of chronic liver disease, but its potential mechanism remains unclear. This study proved that estrogen receptor α (ERα) could negatively control hepatocyte pyroptosis by inhibiting NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation, gasdermin D (GSDMD)-N generation, propidium iodide (PI) uptake, lactate dehydrogenase (LDH) release, and pro-inflammatory cytokine (IL-1β and IL-18) release. Furthermore, inhibition of pyroptosis ameliorated ERα deletion-induced metabolic dysfunction, insulin resistance, and liver injury. Mechanistically, ERα was confirmed to inhibit pyroptosis by directly interacting with GSDMD, and GSDMD blockade reversed the ERα inhibition-induced pyroptosis and improved lipid accumulation in hepatocytes. Notably, the treatment of wild-type (WT) mice with genistein, a phytoestrogen, could attenuate high-fat diet (HFD)-induced liver lipid steatosis and inhibit NLRP3-GSDMD-mediated pyroptosis. Results provide new insights into the underlying mechanism of pyroptosis regulation and uncover the potential treatment target of MAFLD.
Collapse
Affiliation(s)
- Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330000, People's Republic of China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, Guangdong 518000, People's Republic of China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Lei Xu
- Fujian Agricultural Vocational Technical College, Fuzhou, Fujian 350119, People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, Guangdong 518000, People's Republic of China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
16
|
Gao X, Liu S, Ding C, Miao Y, Gao Z, Li M, Fan W, Tang Z, Mhlambi NH, Yan L, Song S. Comparative effects of genistein and bisphenol A on non-alcoholic fatty liver disease in laying hens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117795. [PMID: 34274649 DOI: 10.1016/j.envpol.2021.117795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) and genistein (GEN) are selective estrogen receptor modulators, which are involved in the occurrence and development of metabolic syndrome. However, their roles in non-alcoholic fatty liver disease (NAFLD) of laying hens have not been reported. Here, we investigated the effects of different concentrations of GEN and BPA on the NAFLD of laying hens. Results showed that GEN ameliorated the high-energy and low-protein diet (HELP)-induced NAFLD by improving pathological damage, hepatic steatosis, and insulin resistance and blocking the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-related factors. By contrast, high dose of BPA could aggravate these changes with serious symptom of NAFLD and suppress the level of ERα in the liver considerably, while GEN could reverse this phenomenon in a dose-dependent manner. In general, our research shows that the protective effect of GEN on NAFLD aims to improve the metabolic disorders and inflammation closely connected to ERα, while BPA can inhibit the expression of ERα and exacerbate the symptom of NAFLD. In conclusion, we elucidate the opposing effects of GEN and BPA in NAFLD of laying hens, thus providing a potential mechanism related to ERα and inflammation.
Collapse
Affiliation(s)
- Xiaona Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yufan Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Nobuhle Hyacinth Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Jiangsu Engineering Laboratory of Animal Immunology, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
17
|
Deng Y, Yuan J, Qiu J, Tang B, Chen X, Hu S, He H, Liu H, Li L, Han C, Hu J, Wang J. Oestrogen promotes lipids transportation through oestrogen receptor α in hepatic steatosis of geese in vitro. J Anim Physiol Anim Nutr (Berl) 2021; 106:552-560. [PMID: 34111322 DOI: 10.1111/jpn.13590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
Evidence has shown that oestrogen suppresses lipids deposition in the liver of mammals. However, the molecular mechanism of oestrogen action in hepatic steatosis of geese liver has yet to be determined. This study aimed to investigate the effect of oestrogen on lipid homeostasis at different states of geese hepatocytes in vitro. The results showed that an in vitro model of hepatic steatosis was induced by 1.5 mM sodium oleate via detecting the viability of hepatocytes and content of lipids. When the normal hepatocytes were administrated with different concentrations of oestrogen (E2 ), the expression levels of diacylglycerol acyltransferase 2 (DGAT2), microsomal triglyceride transfer protein (MTTP) and oestrogen receptors (ERs, alpha and beta) were up-regulated only at high concentrations of E2 , whereas the lipid content was not a significant difference. In goose hepatocytes of hepatic steatosis, however, the expression levels of MTTP, apolipoprotein B (apoB) and ERα/β significantly increased at 10-7 or 10-6 M E2 . Meanwhile, the lipids content significantly increased at 10-9 and 10-8 M E2 and decreased at 80 µM E2 . Further heatmap analysis showed that ERα was clustered with apoB and MTTP in either normal hepatocytes or that of hepatic steatosis. Taken together, E2 might bind to ERα to up-regulate the expression levels of apoB and MTTP, promoting the transportation of lipids and alleviating lipids overload in hepatic steatosis of geese in vitro.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junsong Yuan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiamin Qiu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuefei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Emamian Rostami M, Fathi R, Nasiri K. The impacts of an eight-week moderate aerobic exercise training on some gene expression involved in cholesterol metabolism in ovariectomized rats. SPORT SCIENCES FOR HEALTH 2021. [DOI: 10.1007/s11332-020-00701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
20
|
Wang K, Mu D, Zhang X, Lin Y. Lactation History Affects Postoperative Fat Volume Retention Rate in Autologous Fat Grafting Breast Augmentation. Aesthetic Plast Surg 2021; 45:118-126. [PMID: 32215697 DOI: 10.1007/s00266-020-01683-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autologous fat grafting has been widely used in the field of plastic surgery, especially breast aesthetic augmentation. However, postoperative fat volume retention rate is still difficult to predict. OBJECTIVE The authors conducted a retrospective study to compare the fat volume retention rate in patients with varying lactation histories. METHODS A retrospective study was performed of patients who underwent autologous fat grafting breast augmentation in our center from 2012 to 2018. Individuals were separated into two groups according to their lactation history: Group A without a history of lactation and Group B with a history of lactation. RESULTS A total of 70 cases (137 breasts) were included (Group A, n = 40; Group B, n = 30). Patients without lactation history were younger (Group A, 25.88 years; Group B, 36.03 years, p < 0.05) and had a significantly lower mean body mass index (Group A,19.72 kg/m2; Group B, 20.83 kg/m2, p = 0.010). The proportion of donor sites varied (Group A, abdomen 25%, thigh 70%; Group B, abdomen 53.33%, thigh 46.67%, p < 0.05). The percentage of tissue volume retained of patients with a history of lactation was significantly higher (Group A, 30.42%; Group B, 41.03%, p = 0.028). CONCLUSION Significant differences in postoperative volume retention rate in different patients based on lactation history were observed. The volume retention rate after breast augmentation with autologous fat is higher in patients with a history of lactation. The physiological process of lactation may influence the response to autologous fat grafting, but further studies of the mechanism are needed. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Keke Wang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33# Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Dali Mu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33# Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| | - Xiaoyu Zhang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33# Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yan Lin
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 33# Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| |
Collapse
|
21
|
Buscato M, Davezac M, Zahreddine R, Adlanmerini M, Métivier R, Fillet M, Cobraiville G, Moro C, Foidart JM, Lenfant F, Gourdy P, Arnal JF, Fontaine C. Estetrol prevents Western diet-induced obesity and atheroma independently of hepatic estrogen receptor α. Am J Physiol Endocrinol Metab 2021; 320:E19-E29. [PMID: 33135461 DOI: 10.1152/ajpendo.00211.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events. To fully delineate its clinical potential, the aim of this study was to assess the effect of E4 on metabolic disorders. Here, we studied the pathophysiological consequences of a Western diet (42% kcal fat, 0.2% cholesterol) in ovariectomized female mice under chronic E4 treatment. We showed that E4 reduces body weight gain and improves glucose tolerance in both C57Bl/6 and LDLR-/- mice. To evaluate the role of hepatic estrogen receptor (ER) α in the preventive effect of E4 against obesity and associated disorders such as atherosclerosis and steatosis, mice harboring a hepatocyte-specific ERα deletion (LERKO) were crossed with LDLR-/- mice. Our results demonstrated that, whereas liver ERα is dispensable for the E4 beneficial actions on obesity and atheroma, it is necessary to prevent steatosis in mice. Overall, these findings suggest that E4 could prevent metabolic, hepatic, and vascular disorders occurring at menopause, extending the potential medical interest of this natural estrogen as a new hormonal treatment.NEW & NOTEWORTHY Estetrol prevents obesity, steatosis, and atherosclerosis in mice fed a Western diet. Hepatic ERα is necessary for the prevention of steatosis, but not of obesity and atherosclerosis.
Collapse
Affiliation(s)
- Mélissa Buscato
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Morgane Davezac
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Rana Zahreddine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Raphaël Métivier
- CNRS, Univ Rennes, IGDR (Institut de Génétique De Rennes), Rennes, France
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Liege, Belgium
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Liege, Belgium
| | - Cedric Moro
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgique
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
- Département de Diabétologie, Maladies Métaboliques et Nutrition, CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM), University of Toulouse, Toulouse, France
| |
Collapse
|
22
|
Sun S, Xu B, Tan W, Xiang X, Zhou Y, Dan Y, Guo Y, Tan Z, Deng G. Testosterone and Estradiol as Novel Prognostic Indicators for HBV-Related Acute-on-Chronic Liver Failure. Front Med (Lausanne) 2021; 8:729030. [PMID: 34568387 PMCID: PMC8455926 DOI: 10.3389/fmed.2021.729030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background: HBV-related acute-on-chronic liver failure (HBV-ACLF) has a high short-term mortality and urgently needs an early warning system with simplicity and high accuracy. Previous studies show that sex hormones play potential roles in the progression of HBV-related liver diseases. Aims: To explore the effect of testosterone and estradiol on the occurrence and prognosis of HBV-ACLF. Methods: A prospective cohort of 300 chronic hepatitis B (CHB) patients was enrolled among which 108 were diagnosed with HBV-ACLF at admission and 20 developed to HBV-ACLF during hospitalization. We compared the level of serum testosterone and estradiol of patients with varied ACLF background, disease severity and cirrhosis conditions and analyzed the predictive ability of short-term prognosis. A novel prognostic model involving testosterone was developed and further validated in the HBV-ACLF group. Results: The baseline estradiol level of HBV-ACLF group was significantly higher while testosterone was lower than that of non-ACLF group. The estradiol level increased while the testosterone level decreased as the number of organ failures increased. Testosterone had high accuracy in predicting the short-term mortality in HBV-ACLF (AUROC = 0.726) and estradiol did better in predicting the occurrence of ACLF during hospitalization (AUROC = 0.695). The novel prognostic model involving testosterone (TATIM model) was proved to have considerable prediction efficiency in HBV-ACLF cohort with or without cirrhosis. Conclusion: Testosterone could be utilized as short-term prognostic indicator for HBV-related ACLF and estradiol can help to predict its occurrence. TATIM model is a novel prognostic model for HBV-related ACLF with simplicity and good performance irrespectively of liver cirrhosis. Clinical Trial Registration Number: This study was based on a sub-cohort from the prospective multicenter cohort (NCT02457637).
Collapse
|
23
|
Wang K, Mu D, Zhang X, Lin Y. Is Volume Retention of the Breast Affected by Menstrual Cycle Phase at the Time of Autologous Fat Grafting? Aesthet Surg J 2020; 40:1301-1308. [PMID: 31930298 DOI: 10.1093/asj/sjaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Autologous fat grafts are commonly employed in plastic surgery, especially for aesthetic breast augmentation. However, it is difficult to predict the postoperative fat volume retention rate. OBJECTIVES The authors conducted a retrospective study comparing the fat volume retention rates of breast lipoaugmentation performed during different phases of the menstrual cycle. METHODS The study included patients who underwent autologous fat grafting (AFG) breast augmentation from January 2012 to December 2018. Forty-eight individuals (94 breasts) were separated into 3 groups according to their menstrual stage: Group A: 10 patients (18 breasts); follicular group (end of menstruation to approximately 10 days); Group B: 15 patients (30 breasts); ovulatory group (11-17 days); Group C: 23 patients (46 breasts); luteal group (approximately 18 days to the next menstrual cramps). RESULTS Mean age, menarche age, menstrual cycle, menstruation, and body mass index were comparable among the groups (P > 0.05). Patients with a history of lactation were comparable among the groups (Group A, 50%; Group B, 53.33%; Group C, 43.48%, P > 0.05). The overall volume retention rate of patients who underwent AFG during ovulation was significantly higher (Group A, 26.94%; Group B, 49.06%, Group C, 35.73%, P = 0.023), with no significant difference in volume retention rates between the follicular and luteal phases (P > 0.05). CONCLUSIONS Fat volume retention rates were higher when AFG breast augmentation was performed during ovulation, providing a new direction to improve long-term retention rates of autologous fat grafts. However, due to the small sample size, incomplete medical records, and lack of test data, further research is needed. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Keke Wang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Dali Mu
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoyu Zhang
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yan Lin
- Department of Aesthetic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Shehata WA, Maraee A, Mehesin M, Tayel N, Azmy R. Genetic polymorphism of liver X receptor gene in vitiligo: Does it have an association? J Cosmet Dermatol 2020; 20:1906-1914. [PMID: 33031595 DOI: 10.1111/jocd.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Vitiligo is an acquired depigmentation of the skin and the mucous membranes, exhibited as white macules and patches due to selective loss of melanocytes. Etiological theories of vitiligo include genetic, immunological, neurohormonal, cytotoxic, biochemical, oxidative stress, and newer theories of melanocytorrhagy and diminished melanocytes survival. It has been revealed that liver X receptor alpha gene is expressed in skin tissue such as sebaceous glands, hair follicle, keratinocytes, and fibroblasts and is linked to various skin disorders as acne vulgaris and psoriasis. AIM OF THE STUDY To evaluate the association between liver X receptor-α gene polymorphism (rs11039155 and rs2279238) and vitiligo and whether they are related to disease activity and severity or not. SUBJECTS AND METHODS 50 vitiligo patients and 20 age- and sex-matched apparently healthy controls were enrolled. All the included subjects were genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis technique for (-6G/A) and (+1257C/T) SNPs. RESULTS Significant statistical difference between cases and controls regarding genotype and allele frequencies for -6G/A polymorphism with predominance of AA genotype (OR: 5.1, 95% CI: 1.6-15.9) and A allele (OR: 5.3, 95% CI: 1.6-15.9) in cases and also for +1257C/T polymorphism with predominance of TT genotype OR: 9.2 (95% CI: 1.4-82.9) and T allele OR: 3.4 (95% CI: 1.4-8.1) in vitiligo cases. No significant relationship between -6G/A genotypes nor +1257C/T genotypes and disease activity and severity. CONCLUSION The study showed significant association between Liver X receptor gene polymorphisms (-6G/A, +1257 C/T) and development of vitiligo in Egyptian patients. However, it failed to show any relation with disease activity nor severity.
Collapse
Affiliation(s)
- Wafaa A Shehata
- Dermatology, Andrology and STDs Department, Menoufia University, Shebin El-Kom, Egypt
| | - Alaa Maraee
- Dermatology, Andrology and STDs Department, Menoufia University, Shebin El-Kom, Egypt
| | - Marwa Mehesin
- General Practitioner in Health Sector, Shebin El-Kom, Egypt
| | - Nermin Tayel
- Lecturer of Molecular Diagnostics & Therapeutics, Molecular Diagnostics & Therapeutics Department, Genetic Engineering and Biotechnology Research Institute, Sadat City University, Sadat, Egypt
| | - Rania Azmy
- Medical Biochemistry and Molecular Biology Department, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
25
|
Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Fuller KNZ, McCoin CS, Allen J, Bell-Glenn S, Koestler DC, Dorn GW, Thyfault JP. Sex and BNIP3 genotype, rather than acute lipid injection, modulate hepatic mitochondrial function and steatosis risk in mice. J Appl Physiol (1985) 2020; 128:1251-1261. [PMID: 32240015 PMCID: PMC7272752 DOI: 10.1152/japplphysiol.00035.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Both lipid oversupply and poor mitochondrial function (low respiration and elevated H2O2 emission) have been implicated in the development of hepatic steatosis and liver injury. Mitophagy, the targeted degradation of low-functioning mitochondria, is critical for maintaining mitochondrial quality control. Here, we used intralipid injection combined with acute (4 day) and chronic (4-7wk) high-fat diets (HFD) to examine whether hepatic mitochondrial respiration would decrease and H2O2 emission would increase with lipid overload. We tested these effects in male and female wild type (WT) mice and mice null for a critical mediator of mitophagy, BCL-2/adenovirus EIB 19-kDa interacting protein knockout (BNIP3 KO) housed at thermoneutral temperatures. Intralipid injection was successful in elevating serum triglycerides and nonesterified fatty acids but had no impact on hepatic mitochondrial respiratory function or H2O2 emission. However, female mice had greater mitochondrial respiration on the acute HFD and lower H2O2 emission across both HFD durations and were protected against hepatic steatosis. Unexpectedly, BNIP3 KO animals had greater hepatic mitochondrial respiration, better coupled respiration, and increased electron chain protein content after the 4-day HFD, compared with WT animals. Altogether, these data suggest that acute lipid overload delivered by a single intralipid bolus does not alter hepatic mitochondrial outcomes, but rather sex and genotype profoundly impact hepatic mitochondrial respiration and H2O2 emission.NEW & NOTEWORTHY This is the first study focusing on hepatic mitochondrial respiratory outcomes in response to lipid overload via a high-fat diet (HFD) combined with intralipid injection. Novel findings include no effect of intralipid injection on mitochondrial outcomes of interest despite increased circulating lipid concentrations. However, we report pronounced differences in hepatic mitochondrial respiration, complex protein expression, and H2O2 production by sex and BCL-2/adenovirus EIB 19-kDa interacting protein (BNIP3) genotype. Specifically, female mice had lower H2O2 emission globally and on an acute HFD, females had greater hepatic mitochondrial respiration than males while BNIP3 knockout (KO) animals had greater mitochondrial coupling and complex protein expression than wild-type (WT) animals.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Colin S McCoin
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri
| | - Julie Allen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Devin C Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University, School of Medicine, St. Louis, Missouri
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, Kansas
- Center for Children's Healthy Lifestyles and Nutrition, Kansas City, Missouri
| |
Collapse
|
28
|
Meda C, Barone M, Mitro N, Lolli F, Pedretti S, Caruso D, Maggi A, Della Torre S. Hepatic ERα accounts for sex differences in the ability to cope with an excess of dietary lipids. Mol Metab 2019; 32:97-108. [PMID: 32029233 PMCID: PMC6957843 DOI: 10.1016/j.molmet.2019.12.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Among obesity-associated metabolic diseases, non-alcoholic fatty liver disease (NAFLD) represents an increasing public health issue due to its emerging association with atherogenic dyslipidemia and cardiovascular diseases (CVDs). The lower prevalence of NAFLD in pre-menopausal women compared with men or post-menopausal women led us to hypothesize that the female-inherent ability to counteract this pathology might strongly rely on estrogen signaling. In female mammals, estrogen receptor alpha (ERα) is highly expressed in the liver, where it acts as a sensor of the nutritional status and adapts the metabolism to the reproductive needs. As in the male liver this receptor is little expressed, we here hypothesize that hepatic ERα might account for sex differences in the ability of males and females to cope with an excess of dietary lipids and counteract the accumulation of lipids in the liver. Methods Through liver metabolomics and transcriptomics we analyzed the relevance of hepatic ERα in the metabolic response of males and females to a diet highly enriched in fats (HFD) as a model of diet-induced obesity. Results The study shows that the hepatic ERα strongly contributes to the sex-specific response to an HFD and its action accounts for opposite consequences for hepatic health in males and females. Conclusion This study identified hepatic ERα as a novel target for the design of sex-specific therapies against fatty liver and its cardio-metabolic consequences. Hepatic ERα contributes to sex-specific response to a fat-enriched diet. Hepatic ERα action accounts for contrasting consequences in males and females. In males, hepatic ERα action does not prevent liver lipid accumulation. The lack of ERα is responsible for an altered plasma lipid profile in males. In females, liver ERα controls lipid catabolism and counteracts NAFLD development.
Collapse
Affiliation(s)
- Clara Meda
- Department of Health Sciences, University of Milan, Italy
| | - Mara Barone
- Department of Pharmaceutical Sciences, University of Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Federica Lolli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Adriana Maggi
- Department of Pharmaceutical Sciences, University of Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Italy; Center of Excellence on Neurodegenerative Diseases, University of Milan, Italy.
| |
Collapse
|
29
|
Khristi V, Ratri A, Ghosh S, Pathak D, Borosha S, Dai E, Roy R, Chakravarthi VP, Wolfe MW, Karim Rumi MA. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol Cell Endocrinol 2019; 490:47-56. [PMID: 30974146 DOI: 10.1016/j.mce.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
The liver helps maintain energy homeostasis by synthesizing and storing glucose and lipids. Gonadal steroids, particularly estrogens, play an important role in regulating metabolism. As estrogens are considered female hormones, metabolic disorders related to the disruption of estrogen signaling have mostly been studied in females. Estrogen receptor alpha (ESR1) is the predominant receptor in both the male and female liver, and it mediates the hepatic response to estrogens. Loss of ESR1 increases weight gain and obesity in female rats, while reducing the normal growth in males. Although Esr1-/- male rats have a reduced body weight, they exhibit increased adipose deposition and impaired glucose tolerance. We further investigated whether these metabolic disorders in Esr1-/- male rats were linked with the loss of transcriptional regulation by ESR1 in the liver. To identify the ESR-regulated genes, RNA-sequencing was performed on liver mRNAs from wildtype and Esr1-/- male rats. Based on an absolute fold change of ≥2 with a p-value ≤ 0.05, a total of 706 differentially expressed genes were identified in the Esr1-/- male liver: 478 downregulated, and 228 upregulated. Pathway analyses demonstrate that the differentially expressed genes include transcriptional regulators (Cry1, Nr1d1, Nr0b2), transporters (Slc1a2), and regulators of biosynthesis (Cyp7b1, Cyp8b1), and hormone metabolism (Hsd17b2, Sult1e1). Many of these genes are also integral parts of the lipid and carbohydrate metabolism pathways in the liver. Interestingly, certain critical regulators of the metabolic pathways displayed a sexual dimorphism in expression, which may explain the divergent weight gain in Esr1-/- male and female rats despite common metabolic dysfunctions.
Collapse
Affiliation(s)
- Vincentaben Khristi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Devansh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shaon Borosha
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eddie Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Richita Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
30
|
Jing Y, Hu T, Lin C, Xiong Q, Liu F, Yuan J, Zhao X, Wang R. Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells. Eur J Pharmacol 2019; 855:216-226. [PMID: 31085239 DOI: 10.1016/j.ejphar.2019.05.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a promising target for treating dyslipidemia and atherosclerosis. Circulating PCSK9 levels are closely related to hepatic steatosis severity and endogenous estrogen levels. Resveratrol (RSV) is a phytoestrogens that protects against atherosclerosis and hepatic steatosis. Thus, we sought to determine whether RSV had the activities to inhibit PCSK9 expression and to attenuate lipid accumulation in free fatty acid (FFA)-induced L02 cells via ERα pathway. In this study, RSV (10, 20 μM) were cultured with L02 cells in the presence of FFA (oleate:palmitate = 2:1). RSV significantly reduced the number of lipid droplets and intracellular TG in steatotic L02 cells, and Oil red O staining and Nile red staining had the same results. Western blot analysis showed that RSV significantly reduced apoB secretion and intracellular microsomal triglyceride transporter (MTP) expression under lipid-rich conditions. Treatment with RSV reduced expression of PCSK9 while maintaining LDL receptor (LDLR) expression and LDL uptake. RSV decreased SREBP-1c expression at both mRNA and protein levels. In addition, RSV significantly reduced the expression of liver X receptor α (LXRα) mRNA in L02 cells, but did not affect the expression of liver X receptor β (LXRβ) mRNA. The luciferase reporter assays suggested that RSV inhibited SREBP-mediated transcription of PCSK9. Finally, these results could be partly reversed by Estrogen receptor α (ERα) gene silencing. These results suggest that RSV attenuates steatosis and PCSK9 expression through down-regulation of SREBP-1c expression, at least in part through ERα-mediated pathway.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Tianhui Hu
- Department of Gynaecology and Health, Huai'an Maternal and Child Health-Care Center, Huai'an, 2230003, China
| | - Chao Lin
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Fei Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xiaojuan Zhao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rong Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
31
|
Zhou X, Yang H, Yan Q, Ren A, Kong Z, Tang S, Han X, Tan Z, Salem AZM. Evidence for liver energy metabolism programming in offspring subjected to intrauterine undernutrition during midgestation. Nutr Metab (Lond) 2019; 16:20. [PMID: 30923555 PMCID: PMC6423887 DOI: 10.1186/s12986-019-0346-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Maternal undernutrition programs fetal energy homeostasis and increases the risk of metabolic disorders later in life. This study aimed to identify the signs of hepatic metabolic programming in utero and during the juvenile phase after intrauterine undernutrition during midgestation. Methods Fifty-three pregnant goats were assigned to the control (100% of the maintenance requirement) or restricted (60% of the maintenance requirement from day 45 to day 100 of midgestation and realimentation thereafter) group to compare hepatic energy metabolism in the fetuses (day 100 of gestation) and kids (postnatal day 90). Results Undernutrition increased the glucagon concentration and hepatic hexokinase activity, decreased the body weight, liver weight and hepatic expression of G6PC, G6PD, and PGC1α mRNAs, and tended to decrease the hepatic glycogen content and ACOX1 mRNA level in the dams. Maternal undernutrition decreased the growth hormone (GH) and triglyceride concentrations, tended to decrease the body weight and hepatic hexokinase activity, increased the hepatic PCK1, PCK2 and PRKAA2 mRNAs levels and glucose-6-phosphatase activity, and tended to increase the hepatic PRKAB1 and CPT1α mRNAs levels in the male fetuses. In the restricted female fetuses, the hepatic hexokinase activity and G6PC mRNA level tended to be increased, but PKB1 mRNA expression was decreased and the ACACA, CPT1α, NR1H3 and STK11 mRNA levels tended to be decreased. Maternal undernutrition changed the hepatic metabolic profile and affected the metabolic pathway involved in amino acid, glycerophospholipid, bile acid, purine, and saccharide metabolism in the fetuses, but not the kids. Additionally, maternal undernutrition increased the concentrations of GH and cortisol, elevated the hepatic glucose-6-phosphate dehydrogenase activity, and tended to decrease the hepatic glycogen content in the male kids. No alterations in these variables were observed in the female kids. Conclusions Maternal undernutrition affects the metabolic status in a sex- and stage-specific manner by changing the metabolic profile, expression of genes involved in glucose homeostasis and enzyme activities in the liver of the fetuses. The changes in the hormone levels in the male fetuses and kids, but not the female offspring, represent a potential sign of metabolic programming.
Collapse
Affiliation(s)
- Xiaoling Zhou
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 China.,3College of Animal Science, Tarim University, Alaer, 843300 China
| | - Hong Yang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 China
| | - Qiongxian Yan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Ao Ren
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128 China
| | - Zhiwei Kong
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,2University of Chinese Academy of Science, Beijing, 100049 China
| | - Shaoxun Tang
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128 China
| | - Xuefeng Han
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128 China
| | - Zhiliang Tan
- 1CAS Key Laboratory for Agro-Ecological Processes in Subtropical Regions, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Yuanda 2nd Road 644#, Furong District, Changsha, P.O. Box 10#, Hunan 410125 People's Republic of China.,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128 China
| | - Abdelfattah Z M Salem
- 6Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Tlaphan, Mexico
| |
Collapse
|
32
|
Shi W, Hou T, Liu W, Guo D, He H. The hypolipidemic effects of peptides prepared from Cicer arietinum in ovariectomized rats and HepG2 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:576-586. [PMID: 29934949 DOI: 10.1002/jsfa.9218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The lack of estrogen in postmenopausal women is a key risk factor for disorders of lipid metabolism and for obesity. Except in cases where estrogen replacement therapy (ERT) is being used, chickpea peptides (ChPs) may be a potential candidate for treating hyperlipidemia. RESULTS In ovariectomized rats model, ChPs were found to decrease body weight, adipose tissue size, total cholesterol (TC), total triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and the atherogenic index (AI) in serum and liver TC and TG. Serum high-density lipoprotein cholesterol (HDL-C), bile acids in liver and feces, fecal TC and TG were observed to increase significantly (P < 0.05). ChPs play a role in inhibiting the activities of fatty acid synthetase (FAS) and HMG-CoA reductase (HMGR). The expression of peroxisome proliferator-activated receptors (PPAR)γ and sterol regulatory element-binding protein (SREBP)-1c were downregulated and the expression of liver X receptor (LXR) α, estrogen receptor(ER)α and ERβ were upregulated by ChPs. In HepG2 cell experiments, the cellular TC levels decreased and the uptake of NBD-cholesterol increased significantly after treatment with Mw < 1 kDa and Mw < 5 kDa ChPs fractions. Val-Phe-Val-Arg-Asn (VFVRN) could inhibit TC biosynthesis by decreasing the expression of HMGR. CONCLUSION We demonstrated that ChPs could effectively regulate lipid metabolism disorders and restrain obesity caused by estrogen deficiency. Val-Phe-Val-Arg-Asn identified from ChPs could reduce the expression of HMGR to inhibit cholesterol biosynthesis. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Weiwei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
33
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 784] [Impact Index Per Article: 130.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
34
|
Dallel S, Tauveron I, Brugnon F, Baron S, Lobaccaro JMA, Maqdasy S. Liver X Receptors: A Possible Link between Lipid Disorders and Female Infertility. Int J Mol Sci 2018; 19:ijms19082177. [PMID: 30044452 PMCID: PMC6121373 DOI: 10.3390/ijms19082177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
A close relationship exists between cholesterol and female reproductive physiology. Indeed, cholesterol is crucial for steroid synthesis by ovary and placenta, and primordial for cell structure during folliculogenesis. Furthermore, oxysterols, cholesterol-derived ligands, play a potential role in oocyte maturation. Anomalies of cholesterol metabolism are frequently linked to infertility. However, little is known about the molecular mechanisms. In parallel, increasing evidence describing the biological roles of liver X receptors (LXRs) in the regulation of steroid synthesis and inflammation, two processes necessary for follicle maturation and ovulation. Both of the isoforms of LXRs and their bona fide ligands are present in the ovary. LXR-deficient mice develop late sterility due to abnormal oocyte maturation and increased oocyte atresia. These mice also have an ovarian hyper stimulation syndrome in response to gonadotropin stimulation. Hence, further studies are necessary to explore their specific roles in oocyte, granulosa, and theca cells. LXRs also modulate estrogen signaling and this could explain the putative protective role of the LXRs in breast cancer growth. Altogether, clinical studies would be important for determining the physiological relevance of LXRs in reproductive disorders in women.
Collapse
Affiliation(s)
- Sarah Dallel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France.
| | - Igor Tauveron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France.
| | - Florence Brugnon
- Université Clermont Auvergne, ImoST, INSERM U1240, 58, rue Montalembert, BP184, F63005 Clermont-Ferrand, France.
- CHU Clermont Ferrand, Assistance Médicale à la Procréation-CECOS, Hôpital Estaing, Place Lucie et Raymond Aubrac, F-63003 Clermont-Ferrand CEDEX 1, France.
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Salwan Maqdasy
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France.
| |
Collapse
|
35
|
Sutjarit N, Sueajai J, Boonmuen N, Sornkaew N, Suksamrarn A, Tuchinda P, Zhu W, Weerachayaphorn J, Piyachaturawat P. Curcuma comosa reduces visceral adipose tissue and improves dyslipidemia in ovariectomized rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:167-175. [PMID: 29273438 DOI: 10.1016/j.jep.2017.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Curcuma comosa Roxb. (C. comosa) or Wan chak motluk Zingiberaceae family, is widely used in Thai traditional medicine for treatment of gynecological problems as well as relief of postmenopausal symptoms. Since C. comosa contains phytoestrogen and causes lipid lowering effect by an unknown mechanism, we investigated its effect on adiposity and lipid metabolism in estrogen-deprived rats. MATERIALS AND METHODS Adult female rats were ovariectomized (OVX) and received daily doses of either a phytoestrogen from C. comosa [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol; DPHD], C. comosa extract, or estrogen (17β-estradiol; E2) for 12 weeks. Adipose tissue mass, serum levels of lipids and adipokines were determined. In addition, genes and proteins involved in lipid synthesis and fatty acid oxidation in visceral adipose tissue were analyzed. RESULTS Ovariectomy for 12 weeks elevated level of serum lipids and increased visceral fat mass and adipocyte size. These alterations were accompanied with the up-regulation of lipogenic mRNA and protein expressions including LXR-α, SREBP1c and their downstream targets. OVX rats showed decrease in proteins involved in fatty acid oxidation including AMPK-α and PPAR-α in adipose tissue, as well as alteration of adipokines; leptin and adiponectin. Treatments with E2, DPHD or C. comosa extract in OVX rats prevented an increase in adiposity, down-regulated lipogenic genes and proteins with marked increases in the protein levels of AMPK-α and PPAR-α. These findings indicated that their lipid lowering effects were mediated via the suppression of lipid synthesis in concert with an increase in fatty acid oxidation. CONCLUSIONS C. comosa exerts a lipid lowering effect in the estrogen deficient rats through the modulations of lipid synthesis and AMPK-α activity in adipose tissues, supporting the use of this plant for health promotion in the post-menopausal women.
Collapse
Affiliation(s)
- Nareerat Sutjarit
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jetjamnong Sueajai
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Patoomratana Tuchinda
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | | | - Pawinee Piyachaturawat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
36
|
Wang S, Wang Y, Pan MH, Ho CT. Anti-obesity molecular mechanism of soy isoflavones: weaving the way to new therapeutic routes. Food Funct 2017; 8:3831-3846. [PMID: 29043346 DOI: 10.1039/c7fo01094j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is ringing alarm bells globally. Advances in food science and nutrition research have been devoted to identifying food components that exert anti-obesity effects, as well as investigating the molecular mechanisms by which they modulate the progression of obesity. Soy foods have attracted much interest as high-protein components of the human diet and as unique sources of isoflavones. As they have similar chemical structures to endogenous estrogens, isoflavones are believed to interact with intracellular estrogen receptors, which results in reductions in the accumulation of lipids and the distribution of adipose tissue. Both in vitro and in vivo studies have revealed other signaling pathways in which isoflavones are involved in the inhibition of adipogenesis and lipogenesis by interacting with various transcription factors and upstream signaling molecules. Although the biological mechanisms that cause the biphasic effects of isoflavones and various controversial results remain unknown, it is noteworthy that isoflavones exhibit pleiotropic effects in the human body to regulate metabolism and balance, which may potentially prevent and treat obesity.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
37
|
Kim SJ, Kim JE, Kim YW, Kim JY, Park SY. Nutritional regulation of renal lipogenic factor expression in mice: comparison to regulation in the liver and skeletal muscle. Am J Physiol Renal Physiol 2017; 313:F887-F898. [DOI: 10.1152/ajprenal.00594.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
Regulation of lipogenesis by pathophysiological factors in the liver and skeletal muscle is well understood; however, regulation in the kidney is still unclear. To elucidate nutritional regulation of lipogenic factors in the kidney, we measured the renal expression of lipogenic transcriptional factors and enzymes during fasting and refeeding in chow-fed and high-fat-fed mice. We also examined the regulatory effect of the liver X receptor (LXR) on the expression of lipogenic factors. The renal gene expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS) was reduced by fasting for 48 h and restored by refeeding, whereas the mRNA levels of forkhead box O (FOXO)1/3 were increased by fasting and restored by refeeding. Accordingly, protein levels of SREBP-1, FAS, and phosphorylated FOXO1/3 were reduced by fasting and restored by refeeding. The patterns of lipogenic factors expression in the kidney were similar to those in the liver and skeletal muscle. However, this phasic regulation of renal lipogenic gene expression was blunted in diet-induced obese mice. LXR agonist TO901317 increased the lipogenic gene expression and the protein levels of SREBP-1 precursor and FAS but not nuclear SREBP-1. Moreover, increases in insulin-induced gene mRNA and nuclear carbohydrate-responsive element binding protein (ChREBP) levels were observed in the TO901317-treated mice. These results suggest that the kidney shows flexible suppression and restoration of lipogenic factors following fasting and refeeding in lean mice, but this is blunted in obese mice. LXR is involved in the renal expression of lipogenic enzymes, and ChREBP may mediate the response.
Collapse
Affiliation(s)
- Suk-Jeong Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Ji-Eun Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Woon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
| | - Jong-Yeon Kim
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; and
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Luo F, Huang WY, Guo Y, Ruan GY, Peng R, Li XP. 17β-estradiol lowers triglycerides in adipocytes via estrogen receptor α and it may be attenuated by inflammation. Lipids Health Dis 2017; 16:182. [PMID: 28946914 PMCID: PMC5613454 DOI: 10.1186/s12944-017-0575-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Estrogen was reported to protect against obesity, however the mechanism remains unclear. We aimed to investigate the impact of 17β-estradiol (17β-E2) on triglyceride metabolism in adipocytes with or without lipopolysacchride (LPS) stimulating, providing novel potential mechanism for estrogen action. METHODS 3T3-L1 adipocytes were cultured and differentiated into mature adipocytes in vitro. The differentiated 3T3-L1 cells were divided into six groups: (i) control group, treated with 0.1% DMSO alone; (ii) 17β-E2 group, treated with 1, 0.1, or 0.001 μM 17β-E2 for 48 h; (iii) 17β-E2 plus MPP group, pre-treated with 10 μM MPP (a selective ERα receptor inhibitor) for 1 h, then incubated with 1 μM 17β-E2 for 48 h; (iv) 17β-E2 plus PHTPP group, pre-treated with 10 μM PHTPP (a selective ERβ receptor inhibitor), then incubated with 1 μM 17β-E2 for 48 h; (v) LPS group, pre-treated with 100 ng/mL LPS for 24 h, then cells were washed by PBS for 3 times and incubated with 0.1% DMSO alone for 48 h; (vi) 17β-E2 plus LPS group, pre-treated with 100 ng/mL LPS for 24 h, then cells were washed by PBS for 3 times and incubated with 1 μM 17β-E2 for 48 h. The levels of triglyceride and adipose triglyceride lipase (ATGL) in differentiated 3T3-L1 cells and the concentrations of interleukin-6 (IL-6) in culture medium were measured. RESULTS Comparing with control group, 1 μM and 0.1 μM 17β-E2 decreased the intracellular TG levels by about 20% and 10% respectively (all P < 0.05). The triglyceride-lowing effect of 17β-E2 in differentiated 3T3-L1 cells was abolished by ERα antagonist MPP but not ERβ antagonist PHTPP. Comparing with control group, the IL-6 levels were significantly higher in the culture medium of the cultured differentiated 3T3-L1 cells in LPS group and 17β-E2 + LPS group (all P < 0.05). And, the IL-6 levels were similar in LPS group and 17β-E2 + LPS group (P > 0.05). There was no significant difference in the triglyceride contents of differentiated 3T3-L1 cells among control group, LPS group and 17β-E2 + LPS group (all P > 0.05). ATGL expression in 17β-E2 group was significantly higher than control group (P < 0.05), which was abolished by ERα antagonist MPP or LPS. CONCLUSIONS 17β-E2 increased ATGL expression and lowered triglycerides in adipocytes but not in LPS stimulated adipocytes via estrogen ERα.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011 Hunan People’s Republic of China
| | - Wen-yu Huang
- Department of Emergency Medicine, Yantai Yuhuangding Hospital, Qingdao University Medical College, Yantai, Shangdong 264000 People’s Republic of China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011 Hunan People’s Republic of China
| | - Gui-yun Ruan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011 Hunan People’s Republic of China
| | - Ran Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011 Hunan People’s Republic of China
| | - Xiang-ping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, No.139 Renmin Middle Road, Changsha, 410011 Hunan People’s Republic of China
| |
Collapse
|
39
|
Jin B, Wang W, Bai W, Zhang J, Wang K, Qin L. The effects of estradiol valerate and remifemin on liver lipid metabolism. Acta Histochem 2017; 119:610-619. [PMID: 28705489 DOI: 10.1016/j.acthis.2017.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 12/16/2022]
Abstract
To investigate the lipid metabolism dysregulation in the liver of ovariectomized (OVX) rats and effects of estradiol valerate (E) and remifemin (ICR) thereon, forty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX, OVX+E, and OVX+ICR group. After 4 weeks' E or ICR treatment, serum estrogen, cholesterol, and triglyceride levels; lipid droplets in hepatocytes; hepatocyte morphology; and the expression of estrogen receptor α (ERα), liver X receptor (LXR), and sterol regulatory element binding proteins (SREBPs) in the liver of the rats were assessed. OVX rats had significantly decreased serum estrogen levels, which significantly increased after treatment with E but not with ICR. Serum triglyceride levels and the amount of lipid droplets in hepatocytes increased after ovariectomy, and significantly decreased after E treatment. In addition, ICR treatment markedly increased serum triglyceride levels and lipid droplet size. No significant differences in the serum cholesterol levels were observed among the four groups. After ovariectomy, hepatocyte mitochondria became hypertrophic and misformed, which were reversed with E or ICR treatment. ICR-treated rats also showed endoplasmic reticulum disorganization. After ovariectomy, ERα and LXR levels significantly decreased while SREBP expression increased. E treatment increased ERα and LXR levels while ICR treatment only increased LXR expression. E treatment decreased SREBP-1c levels, whereas SREBP-1c levels increased with ICR treatment. Treatment with E significantly reversed the ovariectomy-induced dysregulation of hepatocyte lipid metabolism, which was, however, exacerbated with ICR treatment. The effects of E and ICR on hepatocyte lipid metabolism may involve the regulation of LXR and SREBP-1c.
Collapse
|
40
|
Luo F, Guo Y, Ruan GY, Peng R, Li XP. Estrogen lowers triglyceride via regulating hepatic APOA5 expression. Lipids Health Dis 2017; 16:72. [PMID: 28376804 PMCID: PMC5381129 DOI: 10.1186/s12944-017-0463-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen had been found to be negatively associated with serum triglyceride (TG) levels. Apolipoprotein A5 (APOA5), a novel member of apolipoprotein family, was reported to have a strong ability to decrease serum concentrations of TG. Clinical data found concentrations of APOA5 were higher in woman than that in men, and the negative relationship between APOA5 and TG levels was more significant in woman. These suggests APOA5 may involve in estrogen actions. Therefore, we hypothesize estrogen up-regulates serum concentrations of APOA5 and subsequently decreases serum TG levels. We will design the following experiments to test this hypothesis. (1) We will treat wild and APOA5-defeted ovariectomized hamster with or without estrogen to examine if estrogen could up-regulate concentrations of APOA5 and decrease TG levels. (2) We will treat HepG2 cells with estrogen and investigate the possible mechanisms.
Collapse
Affiliation(s)
- Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| | - Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| | - Gui-yun Ruan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| | - Ran Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| | - Xiang-ping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| |
Collapse
|
41
|
Wang P, Zhu BT. Unique effect of 4-hydroxyestradiol and its methylation metabolites on lipid and cholesterol profiles in ovariectomized female rats. Eur J Pharmacol 2017; 800:107-117. [PMID: 28219710 DOI: 10.1016/j.ejphar.2017.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 10/20/2022]
Abstract
Animal studies have shown that endogenous estrogens such as 17β-estradiol (E2) can modulate lipid profiles in vivo, and this effect is generally thought to be mediated by the estrogen receptors (ERs). The present study sought to test a hypothesis that some of the endogenous estrogen metabolites that have very weak estrogenic activity may exert some of their modulating effects on lipid metabolism in an ER-independent manner. Using ovariectomized female rats as an in vivo model, we found that 4-hydroxyestradiol (4-OH-E2) has a markedly stronger effect in reducing the adipocyte size and serum cholesterol level in rats compared to E2, despite the weaker estrogenic activity of 4-OH-E2. Moreover, when E2 or 4-OH-E2 is used in combination with ICI-182,780 (an ER antagonist), some of their lipid-modulating effects are not blocked by this antiestrogen. Interestingly, two of the O-methylation metabolites of 4-OH-E2, namely, 4-methoxyestradiol and 4-methoxyestrone, which have much weaker estrogenic activity, were also found to have similar lipid-modulating effects compared to 4-OH-E2. Mechanistically, up-regulation of the expression of leptin, cytochrome P450 7A1 and LXRα genes is observed in the liver of animals treated with E2 or 4-OH-E2, and the up-regulation is essentially not inhibited by co-treatment with ICI-182,780. These results demonstrate that some of the endogenous E2 metabolites are functionally important modulators of lipid metabolic profiles in vivo. In addition, our findings indicate that an ER-independent pathway likely mediates some of the lipid-modulating effects of endogenous estrogens and their metabolic derivatives.
Collapse
Affiliation(s)
- Pan Wang
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao-Ting Zhu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA; School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
42
|
Chambliss KL, Barrera J, Umetani M, Umetani J, Kim SH, Madak-Erdogan Z, Huang L, Katzenellenbogen BS, Katzenellenbogen JA, Mineo C, Shaul PW. Nonnuclear Estrogen Receptor Activation Improves Hepatic Steatosis in Female Mice. Endocrinology 2016; 157:3731-3741. [PMID: 27552247 PMCID: PMC5045504 DOI: 10.1210/en.2015-1629] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogens have the potential to afford atheroprotection, to prevent excess adiposity and its metabolic complications including insulin resistance, and to lessen hepatic steatosis. Cellular responses to estrogens occur through gene regulation by nuclear estrogen receptors (ERs), and through signal initiation by plasma membrane-associated ER. Leveraging the potentially favorable cardiometabolic actions of estrogens has been challenging, because their reproductive tract and cancer-promoting effects adversely impact the risk to benefit ratio of the therapy. In previous works, we discovered that an estrogen dendrimer conjugate (EDC) comprised of ethinyl-estradiol (E2) molecules linked to a poly(amido)amine dendrimer selectively activates nonnuclear ER, and in mice, EDC does not invoke a uterotrophic response or support ER-positive breast cancer growth. In the present investigation, we employed EDC to determine how selective nonnuclear ER activation impacts atherosclerosis, adiposity, glucose homeostasis, and hepatic steatosis in female mice. In contrast to E2, EDC did not blunt atherosclerosis in hypercholesterolemic apoE-/- mice. Also in contrast to E2, EDC did not prevent the increase in adiposity caused by Western diet feeding in wild-type mice, and it did not affect Western diet-induced glucose intolerance. However, E2 and EDC had comparable favorable effect on diet-induced hepatic steatosis, and this was related to down-regulation of fatty acid and triglyceride synthesis genes in the liver. Predictably, only E2 caused a uterotrophic response. Thus, although nonnuclear ER activation does not prevent atherosclerosis or diet-induced obesity or glucose intolerance, it may provide a potential new strategy to combat hepatic steatosis without impacting the female reproductive tract or increasing cancer risk.
Collapse
Affiliation(s)
- Ken L Chambliss
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Jose Barrera
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Michihisa Umetani
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Junko Umetani
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Sung Hoon Kim
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Zeynep Madak-Erdogan
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Benita S Katzenellenbogen
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - John A Katzenellenbogen
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology (K.L.C., J.B., M.U., J.U., L.H., C.M., P.W.S.), Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, 75390; and Departments of Chemistry (S.H.K., J.A.K.), Food Science and Human Nutrition (Z.M.-E.), and Molecular and Integrative Physiology (B.S.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
43
|
Association between bilirubin and risk of Non-Alcoholic Fatty Liver Disease based on a prospective cohort study. Sci Rep 2016; 6:31006. [PMID: 27484402 PMCID: PMC4975069 DOI: 10.1038/srep31006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
The study aimed to assess the association between total, direct, and indirect bilirubin and nonalcoholic fatty live disease (NAFLD) risk given its high prevalence and serious clinical prognosis. Among 27,009 subjects who participated in a healthy screening program from the Dongfeng-Tongji cohort study in 2008, 8189 eligible subjects (aged 35-86 years; males, 43.95%) were ultimately enrolled. The incidence rates of NAFLD in 2013 were compared with respect to baseline bilirubin levels among subjects free of NAFLD, and the effect sizes were estimated by logistic regression analysis. During 5 years follow-up, we observed 1956 cases of newly developed NAFLD with the overall incidence of 23.88%. Direct bilirubin was presented to inversely associate with NAFLD risk. Compared with quartile 1 of direct bilirubin, the multivariable-adjusted ORs (95% CIs) for NAFLD of quartile 2 to 4 were 1.104 (0.867-1.187), 0.843 (0.719-0.989), and 0.768 (0.652-0.905), respectively, P for trend 0.002). Similarly, inverse effects of direct bilirubin on NAFLD incidence were also observed when stratified by sex and BMI. However, no significant associations were found between total, and indirect bilirubin and NAFLD risk. Direct bilirubin reduced NAFLD risk independent of possible confounders among middle-aged and elderly Chinese population, probably based on the endogenous antioxidation of bilirubin.
Collapse
|
44
|
Rui W, Zou Y, Lee J, Nambiar SM, Lin J, Zhang L, Yang Y, Dai G. Nuclear Factor Erythroid 2-Related Factor 2 Deficiency Results in Amplification of the Liver Fat-Lowering Effect of Estrogen. J Pharmacol Exp Ther 2016; 358:14-21. [PMID: 27189962 PMCID: PMC4931875 DOI: 10.1124/jpet.115.231316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple biologic processes, including hepatic lipid metabolism. Estrogen exerts actions affecting energy homeostasis, including a liver fat-lowering effect. Increasing evidence indicates the crosstalk between these two molecules. The aim of this study was to evaluate whether Nrf2 modulates estrogen signaling in hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) was induced in wild-type and Nrf2-null mice fed a high-fat diet and the liver fat-lowering effect of exogenous estrogen was subsequently assessed. We found that exogenous estrogen eliminated 49% and 90% of hepatic triglycerides in wild-type and Nrf2-null mice with NAFLD, respectively. This observation demonstrates that Nrf2 signaling is antagonistic to estrogen signaling in hepatic fat metabolism; thus, Nrf2 absence results in striking amplification of the liver fat-lowering effect of estrogen. In addition, we found the association of trefoil factor 3 and fatty acid binding protein 5 with the liver fat-lowering effect of estrogen. In summary, we identified Nrf2 as a novel and potent inhibitor of estrogen signaling in hepatic lipid metabolism. Our finding may provide a potential strategy to treat NAFLD by dually targeting Nrf2 and estrogen signaling.
Collapse
Affiliation(s)
- Wenjuan Rui
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Yuhong Zou
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Joonyong Lee
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Shashank Manohar Nambiar
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Jingmei Lin
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Linjie Zhang
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Yan Yang
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| | - Guoli Dai
- Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana (J.L.)
| |
Collapse
|
45
|
Palmisano BT, Le TD, Zhu L, Lee YK, Stafford JM. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J Lipid Res 2016; 57:1541-51. [PMID: 27354419 DOI: 10.1194/jlr.m069013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism.
Collapse
Affiliation(s)
- Brian T Palmisano
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Thao D Le
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN
| | - Lin Zhu
- Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yoon Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - John M Stafford
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN Department of Molecular Physiology and Biophysics Vanderbilt University Medical Center, Nashville, TN Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
46
|
Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system. Mol Aspects Med 2016; 49:31-46. [DOI: 10.1016/j.mam.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/08/2016] [Accepted: 04/10/2016] [Indexed: 01/08/2023]
|
47
|
Palierne G, Fabre A, Solinhac R, Le Péron C, Avner S, Lenfant F, Fontaine C, Salbert G, Flouriot G, Arnal JF, Métivier R. Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment. Mol Endocrinol 2016; 30:709-32. [PMID: 27164166 DOI: 10.1210/me.2015-1311] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue.
Collapse
Affiliation(s)
- Gaëlle Palierne
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Aurélie Fabre
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Romain Solinhac
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Christine Le Péron
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Stéphane Avner
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Françoise Lenfant
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Coralie Fontaine
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Gilles Salbert
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Gilles Flouriot
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Jean-François Arnal
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| | - Raphaël Métivier
- Equipe Spatio-Temporal Regulation of Transcription in Eukaryotes (SP@RTE) (G.P., C.L.P., S.A., G.S., R.M.), Unité Mixte de Recherche 6290 Centre National de la Recherche Scientifique (Institut de Genétique et Développement de Rennes), Université de Rennes 1, Campus de Beaulieu, and Equipe Transcription, Environment and Cancer (TREC) (G.F.), Inserm U1085-Institut de Recherche en Santé, Environnement et Travail, Rennes 35042 Cedex, France; and Equipe 9 "Estrogen Receptor: In Vivo Dissection and Modulation" (A.F., R.S., F.L., C.F., J.-F.A.), Inserm Unité 1048 (Institut des Maladies Métaboliques et Cardiovasculaires), Toulouse 31432 Cedex 4, France
| |
Collapse
|
48
|
Della Torre S, Mitro N, Fontana R, Gomaraschi M, Favari E, Recordati C, Lolli F, Quagliarini F, Meda C, Ohlsson C, Crestani M, Uhlenhaut NH, Calabresi L, Maggi A. An Essential Role for Liver ERα in Coupling Hepatic Metabolism to the Reproductive Cycle. Cell Rep 2016; 15:360-71. [PMID: 27050513 PMCID: PMC4835581 DOI: 10.1016/j.celrep.2016.03.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/21/2015] [Accepted: 03/02/2016] [Indexed: 12/27/2022] Open
Abstract
Lipoprotein synthesis is controlled by estrogens, but the exact mechanisms underpinning this regulation and the role of the hepatic estrogen receptor α (ERα) in cholesterol physiology are unclear. Utilizing a mouse model involving selective ablation of ERα in the liver, we demonstrate that hepatic ERα couples lipid metabolism to the reproductive cycle. We show that this receptor regulates the synthesis of cholesterol transport proteins, enzymes for lipoprotein remodeling, and receptors for cholesterol uptake. Additionally, ERα is indispensable during proestrus for the generation of high-density lipoproteins efficient in eliciting cholesterol efflux from macrophages. We propose that a specific interaction with liver X receptor α (LXRα) mediates the broad effects of ERα on the hepatic lipid metabolism.
Collapse
Affiliation(s)
- Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Roberta Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; Department of Drug Discovery and Development, Italian Institute of Technology, 16163 Genova, Italy
| | - Monica Gomaraschi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Elda Favari
- Department of Pharmacy, University of Parma, 43121 Parma, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Laboratory, Fondazione Filarete, 20139 Milan, Italy
| | - Federica Lolli
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Fabiana Quagliarini
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum Muenchen, 85764 Munich-Neuherberg, Germany
| | - Clara Meda
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research and Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Nina Henriette Uhlenhaut
- Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD), Helmholtz Zentrum Muenchen, 85764 Munich-Neuherberg, Germany
| | - Laura Calabresi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
49
|
Silaghi CA, Silaghi H, Colosi HA, Craciun AE, Farcas A, Cosma DT, Hancu N, Pais R, Georgescu CE. Prevalence and predictors of non-alcoholic fatty liver disease as defined by the fatty liver index in a type 2 diabetes population. ACTA ACUST UNITED AC 2016; 89:82-8. [PMID: 27004029 PMCID: PMC4777473 DOI: 10.15386/cjmed-544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/09/2015] [Indexed: 02/06/2023]
Abstract
Background and aims We aimed to study the prevalence and the predictive factors of non-alcoholic fatty liver disease (NAFLD) defined by the fatty liver index (FLI) in type 2 diabetic patients (T2DM). Methods Three hundred and eighty-one T2DM outpatients who regularly attended a Consulting Clinic in Cluj were retrospectivelly included. FLI, a surrogate steatosis biomarker based on body mass index (BMI), waist circumference (WC), triglycerides (TGL) and gammaglutamyl-transferase (GGT) was used to assess NAFLD in all patients. Anthropometric and biochemical parameters were measured. Hepatic steatosis (HS) was evaluated by ultrasonography. Results NAFLD-FLI (defined as FLI>60) was correlated with HS evaluated by ultrasound (r=0.28; p<0.001). NAFLD-FLI was detected in 79% of T2DM. The prevalence of obesity in NAFLD-FLI patients was 80%. Of the patients with normal alanine aminotransferase (ALAT), 73.8 % had NAFLD. At univariate analysis, NAFLD-FLI was correlated with age (r= −0.14; p=0.007), sex (r=0.20; p<0.001), LDL cholesterol (r=0.12; p=0.032), HDL cholesterol (r = −0.13; p=0.015), ALAT (r=0.20; p<0.001) and ASAT (r=0.19; p<0.001). At multiple regression analysis, sex, ALAT and LDL-cholesterol were independent predictors of NAFLD-FLI. After logistic regression model, ALAT, LDL-cholesterol, HOMA-IR were good independent predictors of NAFLD-FLI. Conclusions NAFLD-FLI could be useful to identify NAFLD in T2DM patients. Subjects with T2DM had a high prevalence of NADLD-FLI even with normal ALAT levels. Our findings showed that sex, ALAT, LDL cholesterol and IR were significant and independent factors associated with the presence of NAFLD in T2DM subjects.
Collapse
Affiliation(s)
- Cristina Alina Silaghi
- County Emergency Hospital, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Endocrinology Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horatiu Silaghi
- 5th Surgery Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horatiu Alexandru Colosi
- Medical Informatics and Biostatistics Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Elena Craciun
- Diabetes, Nutrition and Metabolic Diseases Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Diabetes, Nutrition and Metabolic Diseases Department, Regina Maria Clinic, Cluj-Napoca, Romania
| | - Anca Farcas
- 1st Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Tudor Cosma
- Diabetes, Nutrition and Metabolic Diseases Department, County Clinic Emergency Hospital, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nicolae Hancu
- Diabetes, Nutrition and Metabolic Diseases Department, Regina Maria Clinic, Cluj-Napoca, Romania
| | - Raluca Pais
- Service Hépatogastroentérologie, Hôpital Pitié - Salpêtrière, Université Pierre et Marie Curie, INSERM UMRS 938, Paris, France
| | | |
Collapse
|
50
|
Fernández-Pérez L, de Mirecki-Garrido M, Guerra B, Díaz M, Díaz-Chico JC. Sex steroids and growth hormone interactions. ACTA ACUST UNITED AC 2016; 63:171-80. [PMID: 26775014 DOI: 10.1016/j.endonu.2015.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 01/17/2023]
Abstract
GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders.
Collapse
Affiliation(s)
- Leandro Fernández-Pérez
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain.
| | - Mercedes de Mirecki-Garrido
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain
| | - Borja Guerra
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain
| | - Mario Díaz
- Department of Animal Biology, University of La Laguna, Laboratory of Membrane Physiology and Biophysics, La Laguna, Spain
| | - Juan Carlos Díaz-Chico
- Institute for Research in Biomedicine and Health (IUIBS), University of Las Palmas de Gran Canaria, Molecular and Translational Pharmacology - BioPharm Group, Las Palmas de G.C., Spain
| |
Collapse
|