1
|
Wang SS, Yuan J, Tang XT, Yin X, Fang K, Chen LV, Ren Z, Zhou BO. Periductal fibroblasts participate in liver homeostasis, fibrosis, and tumorigenesis. J Exp Med 2025; 222:e20232123. [PMID: 39888328 PMCID: PMC11784584 DOI: 10.1084/jem.20232123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Hepatic fibroblasts comprise groups of stromal cells in the liver that are phenotypically distinct from hepatic stellate cells. However, their physiology is poorly understood. By single-cell RNA sequencing, we identified Cd34 and Dpt as hepatic fibroblast-specific genes. Cd34-CreER labeled periportal-venous and periductal fibroblasts, but few pericentral-venous fibroblasts. Cd34+ fibroblasts generated ∼25% of myofibroblasts in periportal fibrosis and ∼40% of cancer-associated fibroblasts (CAFs) in intrahepatic cholangiocarcinoma (ICC). Myofibroblast formation by Cd34+ fibroblasts required Tgfbr2. Depletion of Cd34+ fibroblasts increased the frequency of the ductal epithelial cells under homeostasis and accelerated the progression of ICC. Dpt-CreER labeled periportal- and pericentral-venous fibroblasts, but much less periductal fibroblasts. Dpt+ cells generated ∼15% of myofibroblasts in periportal fibrosis, but few myofibroblasts in pericentral fibrosis or CAFs in ICC. Thus, an orthogonal combination of Cd34-CreER and Dpt-CreER dissected the fates of periductal, periportal-venous, and pericentral-venous fibroblasts. Both periductal and periportal-venous fibroblasts contribute to liver fibrosis. Periductal fibroblasts also contribute to ductal homeostasis and ICC progression.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Yuan
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xinyu Thomas Tang
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiujuan Yin
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ke Fang
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lin Veronica Chen
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenggang Ren
- Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Bo O. Zhou
- Key Laboratory of Multi-Cell System, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Wang T, Xia G, Li X, Gong M, Lv X. Endoplasmic reticulum stress in liver fibrosis: Mechanisms and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167695. [PMID: 39864668 DOI: 10.1016/j.bbadis.2025.167695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
This paper reviews the important role of endoplasmic reticulum stress in the patho mechanism of liver fibrosis and its potential as a potential target for the treatment of liver fibrosis. Liver fibrosis is the result of sustained inflammation and injury to the liver due to a variety of factors, triggering excessive deposition of extracellular matrix and fibrous scar formation, which in turn leads to loss of liver function and a variety of related complications. Endoplasmic reticulum stress is one of the characteristics of chronic liver disease and is closely related to the pathological process of chronic liver disease, including alcohol-related liver disease, viral hepatitis, and liver fibrosis. The unfolded protein response is one of the important response mechanisms to endoplasmic reticulum stress. It is associated with several pathological aspects of liver fibrosis and the maintenance of endoplasmic reticulum homeostasis. Interventions targeting endoplasmic reticulum stress for the treatment of liver fibrosis have potential research and application value. An in-depth understanding of the biological basis of endoplasmic reticulum stress is also needed in the treatment of liver fibrosis, as well as the development of more effective drugs and interventions to accurately regulate the endoplasmic reticulum signaling network, to achieve the restoration and maintenance of endoplasmic reticulum homeostasis at the cellular and organ levels, and to further promote the reversal of the pathological process of liver fibrosis.
Collapse
Affiliation(s)
- Tiantian Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Guoqing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xue Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Mingxu Gong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China; School of Pharmacy, Anhui Medical University, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Gibert-Ramos A, Andrés-Rozas M, Pastó R, Alfaro-Retamero P, Guixé-Muntet S, Gracia-Sancho J. Sinusoidal communication in chronic liver disease. Clin Mol Hepatol 2025; 31:32-55. [PMID: 39355871 PMCID: PMC11791556 DOI: 10.3350/cmh.2024.0734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/03/2024] Open
Abstract
The liver sinusoid, mainly composed of liver sinusoidal endothelial cells, hepatic macrophages and hepatic stellate cells, shapes the hepatic vasculature and is key to maintaining liver homeostasis and function. During chronic liver disease (CLD), the function of sinusoidal cells is impaired, being directly involved in the progression of liver fibrosis, cirrhosis, and main clinical complications including portal hypertension and hepatocellular carcinoma. In addition to their roles in liver diseases pathobiology, sinusoidal cells' paracrine communication or cross-talk is being studied as a mechanism of disease but also as a remarkable target for treatment. The aim of this review is to gather current knowledge of intercellular signalling in the hepatic sinusoid during the progression of liver disease. We summarise studies developed in pre-clinical models of CLD, especially emphasizing those pathways characterized in human-based clinically relevant models. Finally, we describe pharmacological treatments targeting sinusoidal communication as promising options to treat CLD and its clinical complications.
Collapse
Affiliation(s)
- Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Andrés-Rozas
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pablo Alfaro-Retamero
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Mangoura SA, Ahmed MA, Hamad N, Zaka AZ, Khalaf KA. Hepatoprotective effects of vildagliptin mitigates lung biochemical and histopathological changes in experimental hepatopulmonary syndrome model in rat. Int Immunopharmacol 2024; 143:113254. [PMID: 39353392 DOI: 10.1016/j.intimp.2024.113254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Hepatopulmonary syndrome (HPS) is a liver disease-induced pulmonary complication manifested with arterial hypoxemia. Hepatic cholestasis, encountered in several clinical situations, leads to biliary cirrhosis and HPS, both of which are best reproduced by rat common bile duct ligation (CBDL). Experience from liver transplantation suggests hepatoprotective-based therapy would be most effective in HPS treatment Dipeptidyl peptidase-4 (DPP-4) enzyme is involved in different pathogenic mechanisms of liver diseases. Vildagliptin (Vild) is a DPP-4 inhibitor which possesses favorable anti-inflammatory, anti-oxidant and anti-fibrotic effects. The present work explored hepatoprotective mechanisms of Vild and their participation in its prophylactic effectiveness in HPS induced by CBDL in rats. Male Wistar rats weighing 220-280 g were allocated into 4 groups: normal control, sham, CBDL and CBDL + Vild groups. i.p. saline was administered to the first 3 groups and i.p. Vild (10 mg/kg/day) was given to the fourth group for 6 weeks starting 2 week before CBDL. CBDL produced liver fibrosis, arterial hypoxemia and decreased survivability of rats. It altered liver functions and induced oxidative stress, pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6)], vasodilatory molecules [endothelin-1 (ET-1), and inducible and endothelial nitric oxide synthases] and angiogenesis-associated protein [vascular endothelial growth factor-A (VEGF-A)] in liver and lung. Vild ameliorated liver fibrosis, and improved hypoxemia and survivability of CBDL rats and reversed these biochemical alterations. Prophylactic Vild administration attenuated CBDL-induced HPS in rats via direct hepatoprotective effects in the form of anti-oxidant, anti-inflammatory, anti-angiogenic and anti-fibrotic effects beside inhibition of pathological intrahepatic vasodilatation.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt.
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Khaled A Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| |
Collapse
|
5
|
Galasso L, Cerrito L, Termite F, Mignini I, Esposto G, Borriello R, Ainora ME, Gasbarrini A, Zocco MA. The Molecular Mechanisms of Portal Vein Thrombosis in Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3247. [PMID: 39409869 PMCID: PMC11482560 DOI: 10.3390/cancers16193247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents the sixth most diagnosed cancer worldwide and is the second leading cause of cancer-related death in the world. The association of HCC and portal vein thrombosis (PVT) represents an advanced stage of the tumor. PVT has a prevalence of about 25-50% in HCC, determining poor prognosis and a remarkable reduction in therapeutic perspectives in these patients, leading to severe complications such as ascites, metastasis, an increase in portal hypertension and potentially fatal gastrointestinal bleeding. The aim of this review is to evaluate the molecular mechanisms that are at the basis of PVT development, trying to evaluate possible strategies in the early detection of patients at high risk of PVT.
Collapse
Affiliation(s)
- Linda Galasso
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Lucia Cerrito
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Fabrizio Termite
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
| | - Irene Mignini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Giorgio Esposto
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Raffaele Borriello
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Elena Ainora
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy; (L.G.); (M.E.A.)
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Rome, 00168 Rome, Italy
| |
Collapse
|
6
|
Zhu L, Jiang Q, Meng J, Zhao H, Lin J. Pan-cancer analysis of COL15A1: an immunological and prognostic biomarker. Discov Oncol 2024; 15:325. [PMID: 39088036 PMCID: PMC11294514 DOI: 10.1007/s12672-024-01200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Collagen, type XV, alpha 1 (COL15A1) belongs to the collagen superfamily, which can influence disease progression by modulating immune pathways. Although the growing number of investigations demonstrating the indispensable role of COL15A1 in the progression of certain tumors, no pan-cancer assessment of COL15A1 is accessible to date. Therefore, the available data was used to explore the role of COL15A1 in 33 types of tumors and to investigate their potential immune function. Numerous bioinformatics approaches were used to research the potential oncogenic role of COL15A1, including analysis of tumor prognosis, microsatellite instability (MSI), tumor mutational burden (TMB), single nucleotide polymorphism (SNP), drug sensitivity, immune cell infiltration, and the correlation between cancer stem cells (CSCs) and COL15A1 expression. The outcome implies that most tumors had a high expression of COL15A1, and COL15A1 manifested different relationships with prognosis in different tumors, including both positive and negative correlations. COL15A1 was also found to have a significant correlation with MSI, TMB, and immune infiltrating cells. Our study suggests that COL15A1 may serve as a prognostic marker for malignancy because of its differential expression in tissues and their function in tumor immunity.
Collapse
Affiliation(s)
- Lei Zhu
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, Panjin Liao-Oil Field Gem Flower Hospital, Panjin, Liaoning, China
| | - Qianheng Jiang
- School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Jun Meng
- Department of General Surgery, Panjin Liao-Oil Field Gem Flower Hospital, Panjin, Liaoning, China
| | - Haichun Zhao
- Department of General Surgery, Panjin Liao-Oil Field Gem Flower Hospital, Panjin, Liaoning, China
| | - Jie Lin
- Department of General Surgery, Liaoning Provincial Cancer Hospital, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Huyan Y, Chen X, Chang Y, Hua X, Fan X, Shan D, Xu Z, Tao M, Zhang H, Liu S, Song J. Single-Cell Transcriptomic Analysis Reveals Myocardial Fibrosis Mechanism of Doxorubicin-Induced Cardiotoxicity. Int Heart J 2024; 65:487-497. [PMID: 38749755 DOI: 10.1536/ihj.23-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Myocardial fibrosis is a pathological feature of doxorubicin-induced chronic cardiotoxicity that severely affects the prognosis of oncology patients. However, the specific cellular and molecular mediators driving doxorubicin-induced cardiac fibrosis, and the relative impact of different cell populations on cardiac fibrosis, remain unclear.This study aimed to explore the mechanism of doxorubicin-induced cardiotoxicity and myocardial fibrosis and to find potential therapeutic targets. Single-cell RNA sequencing was used to analyze the transcriptome of non-cardiomyocytes from normal and doxorubicin-induced chronic cardiotoxicity in mouse model heart tissue.We established a mouse model of doxorubicin-induced cardiotoxicity with a well-defined fibrotic phenotype. Analysis of single-cell sequencing results showed that fibroblasts were the major origin of extracellular matrix in doxorubicin-induced myocardial fibrosis. Further resolution of fibroblast subclusters showed that resting fibroblasts were converted to matrifibrocytes and then to myofibroblasts to participate in the myocardial remodeling process in response to doxorubicin treatment. Ctsb expression was significantly upregulated in fibroblasts after doxorubicin-induced.This study provides a comprehensive map of the non-cardiomyocyte landscape at high resolution, reveals multiple cell populations contributing to pathological remodeling of the cardiac extracellular matrix, and identifies major cellular sources of myofibroblasts and dynamic gene-expression changes in fibroblast activation. Finally, we used this strategy to detect potential therapeutic targets and identified Ctsb as a specific target for fibroblasts in doxorubicin-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Yige Huyan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xuexin Fan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Dan Shan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhenyu Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Hang Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Sheng Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
8
|
Zhang Q, Yu T, Tan H, Shi H. Hepatic recruitment of myeloid-derived suppressor cells upon liver injury promotes both liver regeneration and fibrosis. BMC Gastroenterol 2024; 24:163. [PMID: 38745150 PMCID: PMC11092103 DOI: 10.1186/s12876-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-β were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-β. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huaicheng Tan
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huashan Shi
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
9
|
Wang JL, Li J, Wang WQ, Lv X, Zhu RH, Yuan T, Zhang ZW, Zhang EL, Huang ZY. Portal vein velocity predicts portal vein system thrombosis after splenectomy with esophagogastric devascularization. Surg Endosc 2024; 38:648-658. [PMID: 38012440 DOI: 10.1007/s00464-023-10566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Portal vein system thrombosis (PVST) is a potentially fatal complication after splenectomy with esophagogastric devascularization (SED) in cirrhotic patients with portal hypertension. However, the impact of portal vein velocity (PVV) on PVST after SED remains unclear. Therefore, this study aims to explore this issue. METHODS Consecutive cirrhotic patients with portal hypertension who underwent SED at Tongji Hospital between January 2010 and June 2022 were enrolled. The patients were divided into two groups based on the presence or absence of PVST, which was assessed using ultrasound or computed tomography after the operation. PVV was measured by duplex Doppler ultrasound within one week before surgery. The independent risk factors for PVST were analyzed using univariate and multivariate logistic regression analysis. A nomogram based on these variables was developed and internally validated using 1000 bootstrap resamples. RESULTS A total of 562 cirrhotic patients with portal hypertension who underwent SED were included, and PVST occurred in 185 patients (32.9%). Multivariate logistic regression analysis showed that PVV was the strongest independent risk factor for PVST. The incidence of PVST was significantly higher in patients with PVV ≤ 16.5 cm/s than in those with PVV > 16.5 cm/s (76.2% vs. 8.5%, p < 0.0001). The PVV-based nomogram was internally validated and showed good performance (optimism-corrected c-statistic = 0.907). Decision curve and clinical impact curve analyses indicated that the nomogram provided a high clinical benefit. CONCLUSION A nomogram based on PVV provided an excellent preoperative prediction of PVST after splenectomy with esophagogastric devascularization.
Collapse
Affiliation(s)
- Jin-Lin Wang
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Jian Li
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Wen-Qiang Wang
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Xing Lv
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Rong-Hua Zhu
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Tong Yuan
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China
| | - Zhi-Wei Zhang
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China.
| | - Er-Lei Zhang
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China.
| | - Zhi-Yong Huang
- Hepatic Surgical Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
10
|
Ceci L, Gaudio E, Kennedy L. Cellular Interactions and Crosstalk Facilitating Biliary Fibrosis in Cholestasis. Cell Mol Gastroenterol Hepatol 2024; 17:553-565. [PMID: 38216052 PMCID: PMC10883986 DOI: 10.1016/j.jcmgh.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Biliary fibrosis is seen in cholangiopathies, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In PBC and PSC, biliary fibrosis is associated with worse outcomes and histologic scores. Within the liver, both hepatic stellate cells (HSCs) and portal fibroblasts (PFs) contribute to biliary fibrosis, but their roles can differ. PFs reside near the bile ducts and may be the first responders to biliary damage, whereas HSCs may be recruited later and initiate bridging fibrosis. Indeed, different models of biliary fibrosis can activate PFs and HSCs to varying degrees. The portal niche can be composed of cholangiocytes, HSCs, PFs, endothelial cells, and various immune cells, and interactions between these cell types drive biliary fibrosis. In this review, we discuss the mechanisms of biliary fibrosis and the roles of PFs and HSCs in this process. We will also evaluate cellular interactions and mechanisms that contribute to biliary fibrosis in different models and highlight future perspectives and potential therapeutics.
Collapse
Affiliation(s)
- Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza, University of Rome, Italy
| | - Lindsey Kennedy
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana; Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
11
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Pratim Das P, Medhi S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine 2023; 170:156347. [PMID: 37639845 DOI: 10.1016/j.cyto.2023.156347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Liver cirrhosis develops as a result of persistent inflammation and liver injury. The prolonged inflammation triggers the buildup of fibrous tissue and regenerative nodules within the liver, leading to the distortion of the hepatic vascular structure and impaired liver function. Cirrhosis disrupts the ability of liver function to maintain homeostasis and hepatic immunosurveillance which causes immunological dysfunction in the body. In pathological conditions, the production of cytokines in the liver is carefully regulated by various cells in response to tissue stimulation. Cytokines and inflammasomes are the key regulators and systematically contribute to the development of cirrhosis which involves an inflammatory response. However, the crosstalk role of different cytokines in the cirrhosis progression is poorly understood. Tumour necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interferon-gamma (IFN-γ), among others, are proinflammatory cytokines that contribute to liver cell necrosis, which in turn causes the development of fibrosis. While IL-10 exhibits a potent anti-inflammatory effect on the liver by inhibiting immune cell activation and neutralizing pro-inflammatory cytokine activity. Inflammasomes have also been implicated in the profibrotic processes of liver cirrhosis, as well as the production of chemokines such as CCL2/MCP-1. It is evident that inflammasomes have a role in the proinflammatory response seen in chronic liver illnesses. In conclusion, cirrhosis significantly impacts the immune system, leading to immunological dysfunction and alterations in both innate and acquired immunity. Proinflammatory cytokines like TNF-α, IL-1β, IL-6, and IFNγ are upregulated in cirrhosis, contributing to liver cell necrosis and fibrosis development. Managing cytokine-mediated inflammation and fibrosis is a key therapeutic approach to alleviate portal hypertension and its associated liver complications. This review attempted to focus largely on the role of immune dysfunction mediated by different cytokines and inflammasomes involved in the progression, regulation and development of liver cirrhosis.
Collapse
Affiliation(s)
- Partha Pratim Das
- Dept. of Bioengineering & Technology, Gauhati University, Assam 781014, India
| | - Subhash Medhi
- Dept. of Bioengineering & Technology, Gauhati University, Assam 781014, India.
| |
Collapse
|
13
|
Li ZW, Ruan B, Yang PJ, Liu JJ, Song P, Duan JL, Wang L. Oit3, a promising hallmark gene for targeting liver sinusoidal endothelial cells. Signal Transduct Target Ther 2023; 8:344. [PMID: 37696816 PMCID: PMC10495338 DOI: 10.1038/s41392-023-01621-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play a pivotal role in maintaining liver homeostasis and influencing the pathological processes of various liver diseases. However, neither LSEC-specific hallmark genes nor a LSEC promoter-driven Cre mouse line has been introduced before, which largely restricts the study of liver diseases with vascular disorders. To explore LSEC-specific hallmark genes, we compared the top 50 marker genes between liver endothelial cells (ECs) and liver capillary ECs and identified 18 overlapping genes. After excluding globally expressed genes and those with low expression percentages, we narrowed our focus to two final candidates: Oit3 and Dnase1l3. Through single-cell RNA sequencing (scRNA-seq) and analysis of the NCBI database, we confirmed the extrahepatic expression of Dnase1l3. The paired-cell sequencing data further demonstrated that Oit3 was predominantly expressed in the midlobular liver ECs. Subsequently, we constructed inducible Oit3-CreERT2 transgenic mice, which were further crossed with ROSA26-tdTomato mice. Microscopy validated that the established Oit3-CreERT2-tdTomato mice exhibited significant fluorescence in the liver rather than in other organs. The staining analysis confirmed the colocalization of tdTomato and EC markers. Ex-vivo experiments further confirmed that isolated tdTomato+ cells exhibited well-differentiated fenestrae and highly expressed EC markers, confirming their identity as LSECs. Overall, Oit3 is a promising hallmark gene for tracing LSECs. The establishment of Oit3-CreERT2-tdTomato mice provides a valuable model for studying the complexities of LSECs in liver diseases.
Collapse
Affiliation(s)
- Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
- Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Pei-Jun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
14
|
Jiang W, Xu Y, Chen JC, Lee YH, Hu Y, Liu CH, Chen E, Tang H, Zhang H, Wu D. Role of extracellular vesicles in nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1196831. [PMID: 37534206 PMCID: PMC10392952 DOI: 10.3389/fendo.2023.1196831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that affects approximately one-quarter of the global population and is becoming increasingly prevalent worldwide. The lack of current noninvasive tools and efficient treatment is recognized as a significant barrier to the clinical management of these conditions. Extracellular vesicles (EVs) are nanoscale vesicles released by various cells and deliver bioactive molecules to target cells, thereby mediating various processes, including the development of NAFLD. SCOPE OF REVIEW There is still a long way to actualize the application of EVs in NAFLD diagnosis and treatment. Herein, we summarize the roles of EVs in NAFLD and highlight their prospects for clinical application as a novel noninvasive diagnostic tool as well as a promising therapy for NAFLD, owing to their unique physiochemical characteristics. We summarize the literatures on the mechanisms by which EVs act as mediators of intercellular communication by regulating metabolism, insulin resistance, inflammation, immune response, intestinal microecology, and fibrosis in NAFLD. We also discuss future challenges that must be resolved to improve the therapeutic potential of EVs. MAJOR CONCLUSIONS The levels and contents of EVs change dynamically at different stages of diseases and this phenomenon may be exploited for establishing sensitive stage-specific markers. EVs also have high application potential as drug delivery systems with low immunogenicity and high biocompatibility and can be easily engineered. Research on the mechanisms and clinical applications of EVs in NAFLD is in its initial phase and the applicability of EVs in NAFLD diagnosis and treatment is expected to grow with technological progress.
Collapse
Affiliation(s)
- Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Youhui Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jou-Chen Chen
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi-Hung Lee
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yushin Hu
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Enqiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Musso G, Saba F, Cassader M, Gambino R. Lipidomics in pathogenesis, progression and treatment of nonalcoholic steatohepatitis (NASH): Recent advances. Prog Lipid Res 2023; 91:101238. [PMID: 37244504 DOI: 10.1016/j.plipres.2023.101238] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease affecting up to 30% of the general adult population. NAFLD encompasses a histological spectrum ranging from pure steatosis to non-alcoholic steatohepatitis (NASH). NASH can progress to cirrhosis and is becoming the most common indication for liver transplantation, as a result of increasing disease prevalence and of the absence of approved treatments. Lipidomic readouts of liver blood and urine samples from experimental models and from NASH patients disclosed an abnormal lipid composition and metabolism. Collectively, these changes impair organelle function and promote cell damage, necro-inflammation and fibrosis, a condition termed lipotoxicity. We will discuss the lipid species and metabolic pathways leading to NASH development and progression to cirrhosis, as well as and those species that can contribute to inflammation resolution and fibrosis regression. We will also focus on emerging lipid-based therapeutic opportunities, including specialized proresolving lipid molecules and macrovesicles contributing to cell-to-cell communication and NASH pathophysiology.
Collapse
Affiliation(s)
- Giovanni Musso
- Dept of Emergency Medicine, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy.
| | - Francesca Saba
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Maurizio Cassader
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Dept. of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| |
Collapse
|
16
|
Owen T, Carpino G, Chen L, Kundu D, Wills P, Ekser B, Onori P, Gaudio E, Alpini G, Francis H, Kennedy L. Endothelin Receptor-A Inhibition Decreases Ductular Reaction, Liver Fibrosis, and Angiogenesis in a Model of Cholangitis. Cell Mol Gastroenterol Hepatol 2023; 16:513-540. [PMID: 37336290 PMCID: PMC10462792 DOI: 10.1016/j.jcmgh.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC) leads to ductular reaction and fibrosis and is complicated by vascular dysfunction. Cholangiocyte and endothelial cell crosstalk modulates their proliferation in cholestatic models. Endothelin (ET)-1 and ET-2 bind to their receptor, ET-A, and cholangiocytes are a key source of ET-1 after bile duct ligation. We aimed to evaluate the therapeutic potential of ET-A inhibition in PSC and biliary-endothelial crosstalk mediated by this pathway. METHODS Wild-type and multidrug resistance 2 knockout (Mdr2-/-) mice at 12 weeks of age were treated with vehicle or Ambrisentan (ET-A antagonist) for 1 week by daily intraperitoneal injections. Human control and PSC samples were used. RESULTS Mdr2-/- mice at 4, 8, and 12 weeks displayed angiogenesis that peaked at 12 weeks. Mdr2-/- mice at 12 weeks had enhanced biliary ET-1/ET-2/ET-A expression and secretion, whereas human PSC had enhanced ET-1/ET-A expression and secretion. Ambrisentan reduced biliary damage, immune cell infiltration, and fibrosis in Mdr2-/- mice. Mdr2-/- mice had squamous cholangiocytes with blunted microvilli and dilated arterioles lacking cilia; however, Ambrisentan reversed these alterations. Ambrisentan decreased cholangiocyte expression of pro-angiogenic factors, specifically midkine, through the regulation of cFOS. In vitro, ET-1/ET-A caused cholangiocyte senescence, endothelial cell angiogenesis, and macrophage inflammation. In vitro, human PSC cholangiocyte supernatants increased endothelial cell migration, which was blocked with Ambrisentan treatment. CONCLUSIONS ET-A inhibition reduced biliary and liver damage in Mdr2-/- mice. ET-A promotes biliary angiocrine signaling that may, in turn, enhance angiogenesis. Targeting ET-A may prove therapeutic for PSC, specifically patients displaying vascular dysfunction.
Collapse
Affiliation(s)
- Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Payton Wills
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
17
|
Vp V, Kannan A, Perumal MK. Role of adipocyte-derived extracellular vesicles during the progression of liver inflammation to hepatocellular carcinoma. J Cell Physiol 2023; 238:1125-1140. [PMID: 36960683 DOI: 10.1002/jcp.31008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Extracellular vesicles are membrane-bound cargos that vary in size and are stably transported through various bodily fluids. Extracellular vesicles communicate information between the cells and organs. Extracellular vesicles from the diseased cells alter cellular responses of the recipient cells contributing to disease progression. In obesity, adipocytes become hypertrophic and the extracellular vesicles from these dysfunctional adipocytes showed altered cargo contents instigating pathophysiological response leading to chronic liver diseases. In this review, the role of adipocyte-derived extracellular vesicles on the progression of liver inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma are extensively discussed. Newer approaches are crucial to take advantage of extracellular vesicles and their content as biomarkers to diagnose initial liver inflammation before reaching to an irreversible liver failure stage.
Collapse
Affiliation(s)
- Venkateish Vp
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
18
|
Yin KL, Li M, Song PP, Duan YX, Ye WT, Tang W, Kokudo N, Gao Q, Liao R. Unraveling the Emerging Niche Role of Hepatic Stellate Cell-derived Exosomes in Liver Diseases. J Clin Transl Hepatol 2023; 11:441-451. [PMID: 36643031 PMCID: PMC9817040 DOI: 10.14218/jcth.2022.00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells (HSCs) play an essential role in various liver diseases, and exosomes are critical mediators of intercellular communication in local and distant microenvironments. Cellular crosstalk between HSCs and surrounding multiple tissue-resident cells promotes or inhibits the activation of HSCs. Substantial evidence has revealed that HSC-derived exosomes are involved in the occurrence and development of liver diseases through the regulation of retinoid metabolism, lipid metabolism, glucose metabolism, protein metabolism, and mitochondrial metabolism. HSC-derived exosomes are underpinned by vehicle molecules, such as mRNAs and microRNAs, that function in, and significantly affect, the processes of various liver diseases, such as acute liver injury, alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, fibrosis, and cancer. As such, numerous exosomes derived from HSCs or HSC-associated exosomes have attracted attention because of their biological roles and translational applications as potential targets for therapeutic targets. Herein, we review the pathophysiological and metabolic processes associated with HSC-derived exosomes, their roles in various liver diseases and their potential clinical application.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Pei Song
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Rui Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Eguchi A, Iwasa M, Nakagawa H. Extracellular vesicles in fatty liver disease and steatohepatitis: Role as biomarkers and therapeutic targets. Liver Int 2023; 43:292-298. [PMID: 36462157 DOI: 10.1111/liv.15490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/01/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) are characterized by lipid deposition in hepatocytes in the absence or presence of excessive alcohol consumption, respectively, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) or alcoholic hepatitis (AH) and from mild fibrosis to cirrhosis. Fatty liver disease and steatohepatitis similarly occur in individuals who have both metabolic syndrome and excessive alcohol intake; therefore, the single overarching term metabolic associated fatty liver disease (MAFLD) has been proposed to better reflect these risk factors and the continuity of disease progression. Extracellular vesicles (EVs) are membrane-bound endogenous nanoparticles released into the extracellular space by a majority of cell types. Liver disease-related EVs contain a variety of cellular cargo and are internalized into target cells resulting in the transfer of bioinformation reflecting the state of the donor cell to the recipient. Furthermore, EV composition can be used to identify the degree and type of liver disease, suggesting that EV composition may be a useful biomarker. With regard to MAFLD, the presence of metabolic risk factors, such as insulin resistance, will be indicated by adipose tissue-derived EVs and with that comes the potential to use as a clinical monitor of overall metabolic status. However, the inhibition of specific EV composition may be difficult to implement as a real-world therapeutic approach. Current global evidence shows that mesenchymal stem cell (MSCs)-derived EVs (MSC-EVs) play an important role in regulating the immune response, which has spawned a clinical trial to treat liver disease.
Collapse
Affiliation(s)
- Akiko Eguchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
20
|
Fang J, Ji Q, Gao S, Xiao Z, Liu W, Hu Y, Lv Y, Chen G, Mu Y, Cai H, Chen J, Liu P. PDGF-BB is involved in HIF-1α/CXCR4/CXCR7 axis promoting capillarization of hepatic sinusoidal endothelial cells. Heliyon 2023; 9:e12715. [PMID: 36685431 PMCID: PMC9852936 DOI: 10.1016/j.heliyon.2022.e12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The activation of HIF-1α/CXCR4 pathway in liver sinusoidal endothelial cells (LSECs) could downregulate CXCR7, leading to the capillarization of LSECs to promote hepatic fibrosis. However, the mechanism between CXCR4 and CXCR7 is still undefined. The aim is to investigate the role of PDGF-BB in the dedifferentiation of LSECs and hepatic stellate cells (HSCs) activation. METHODS The activation of HIF-1α/CXCR4 pathway in two kinds of liver fibrosis models were observed. The effects of HIF-1α, CXCR4, PDGF-BB on the dedifferentiation of LSECs were investigated by using the inhibitors of HIF-1α, CXCR4 or PDGFR-β separately or transfecting with a CXCR4 knockdown lentiviral vector. In addition, the relationship between LSECs and HSCs was demonstrated by co-culture of LSECs and HSCs using the transwell chamber. RESULTS CXCR4 upregulation and CXCR7 downregulation were accompanied by LSECs capillarization and HSCs activation both in CCl4-induced and BDL-induced fibrotic liver. In vitro, downregulation of HIF-1α significantly descreased CXCR4 and CD31 expression, and enhanced the expressions of CXCR7, CD44 and LYVE1. Downregulation of CXCR4 in LSECs significantly downregulated PDGF-BB, PDGFR-β and CD31, and enhanced CXCR7, CD44 and LYVE1 expression, while the expression of HIF-1α did not change significantly. STI571, a PDGF receptor inhibitor, could significantly downregulate PDGFR-β and increase the expression of CXCR7 to inhibit the dedifferentiation of LSECs. In addition, alleviateion the dedifferentiation of LSECs could decrease the expression of PDGFR-β of HSCs, then inhibiting the activation of HSCs. CONCLUSIONS This study revealed that HIF-1α/CXCR4/PDGF-BB/CXCR7 axis promoted the dedifferentiation of LSECs, consequently triggering HSCs activation and liver fibrosis.
Collapse
Affiliation(s)
- Jing Fang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Qiang Ji
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Siqi Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhun Xiao
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Yonghong Hu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Ying Lv
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Gaofeng Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Yongping Mu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Hong Cai
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361015, China
| | - Jiamei Chen
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
| | - Ping Liu
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
21
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
Mohawk impedes angiofibrosis by preventing the differentiation of tendon stem/progenitor cells into myofibroblasts. Sci Rep 2022; 12:20003. [PMID: 36411329 PMCID: PMC9678895 DOI: 10.1038/s41598-022-24195-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Adult tendons heal via fibrovascular scarring with inferior biomechanical properties. Mohawk (Mkx) emerged as a pivotal actor in tenolineage commitment. However, its precise function in tendinopathy remains poorly understood. This study investigates the cellular and molecular mechanisms underlying Mkx' role in fibrovascular healing. Human samples were collected to test fibrovascular markers. We then performed RNAseq on Mkx-/- mice compared to their wild type littermates to decipher Mkx regulome. We therefore sought to reproduce TSPCs transition to myofibroblasts in-vitro by over-expressing MyoD and followed by phenotypic and experimental cells' characterization using microscopy, qRT-PCR, flow cytometry sorting, presto-blue cell viability assay and immunofluorescence. Two different in vivo models were used to assess the effect of the MyoD-expressing myofibroblasts: transplantation in the dorsal area of immunodeficient mice and in an adult Achilles tendon injury model. To prevent angiofibrosis, we tested the molecule Xav939 and proceeded with histological stainings, q-RT PCR transcriptional quantification of angifibrotic markers, mechanical tests, and immunofluorescence. Tendinopathy samples showed fibrovascular healing with decreased tenolineage phenotype. Transcriptomic analysis of Mkx-/- tendons revealed myofibroblast-associated biological processes. Over-expression of MyoD in WT tendon stem progenitor cells (TSPCs) gave rise to myofibroblasts reprogramming in-vitro and fibrovascular scarring in-vivo. MKX directly binds to MyoD promoter and underlies global regulative processes related to angiogenesis and Wnt signaling pathway. Blocking Wnt signaling with the small molecule Xav393 resulted in higher histological and biomechanical properties. Taken together, our data provide the first in vivo and in-vitro evidence of tendon stem progenitor cells to myofibroblasts transition and show improved tendon healing via angiofibrosis modulation, thus opening potential therapeutic avenues to treat tendinopathy patients.
Collapse
|
23
|
Lei L, Bruneau A, El Mourabit H, Guégan J, Folseraas T, Lemoinne S, Karlsen TH, Hoareau B, Morichon R, Gonzalez-Sanchez E, Goumard C, Ratziu V, Charbord P, Gautheron J, Tacke F, Jaffredo T, Cadoret A, Housset C. Portal fibroblasts with mesenchymal stem cell features form a reservoir of proliferative myofibroblasts in liver fibrosis. Hepatology 2022; 76:1360-1375. [PMID: 35278227 DOI: 10.1002/hep.32456] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.
Collapse
Affiliation(s)
- Lin Lei
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Haquima El Mourabit
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Justine Guégan
- Institut du Cerveau (ICM), Bioinformatics/Biostatistics iCONICS Facility, Sorbonne Université, INSERM, Paris, France
| | - Trine Folseraas
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Sara Lemoinne
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| | - Tom Hemming Karlsen
- Division of Surgery, Inflammatory Medicine and Transplantation, Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Norwegian PSC Research Center, Oslo, Norway
| | - Bénédicte Hoareau
- Sorbonne Université, INSERM, UMS Production et Analyse de Données en Sciences de la Vie et en Santé (PASS), Cytométrie Pitié-Salpêtrière (CyPS), Paris, France
| | - Romain Morichon
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Ester Gonzalez-Sanchez
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Claire Goumard
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Vlad Ratziu
- Departments of Hepatology, Hepatobiliary Surgery and Liver Transplantation, AP-HP, Sorbonne Université, ICAN, Pitié-Salpêtrière Hospital, Paris, France
| | - Pierre Charbord
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | - Axelle Cadoret
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France
| | - Chantal Housset
- Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, INSERM, Paris, France.,Department of Hepatology, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis (CRMR MIVB-H, ERN RARE-LIVER), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Paris, France
| |
Collapse
|
24
|
Sun Y, Chen ZY, Gan X, Dai H, Cai D, Liu RH, Zhou JM, Zhang HL, Li ZH, Luo QQ, Jiang S, Wang T, Zhang KH. A novel four-gene signature for predicting the prognosis of hepatocellular carcinoma. Scand J Gastroenterol 2022; 57:1227-1237. [PMID: 35512233 DOI: 10.1080/00365521.2022.2069476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To identify and utilize gene signatures for the prognostic evaluation of postoperative patients with hepatocellular carcinoma (HCC). METHODS The gene mRNA expression profiles and corresponding clinicopathological data of postoperative patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) database. Highly differentially expressed genes (DEGs) in tumor tissues compared to adjacent tissues were identified, and their associations with the overall survival (OS) of HCC patients were analyzed. The strongly associated genes were used to develop a prognostic score for the survival stratification of HCC, and the underlying mechanisms were analyzed using bioinformatics. RESULTS A total of 376 DEGs were identified and four DEGs (ADH4, COL15A1, RET and KCNJ16) were independently associated with OS. A prognostic score derived from the four genes could effectively stratify HCC patients with different OS outcomes, independent of clinical parameters. Patients with high scores exhibited poorer OS than patients with low scores (HR 5.526, 95% CI: 2.451-12.461, p < .001). The four genes were involved in cancer-related biological processes and were independent of each other in bioinformatics analyses. CONCLUSION Four genes strongly associated with the prognosis of postoperative patients with HCC were identified, and the derived prognostic score was simple and valuable for overall survival prediction.
Collapse
Affiliation(s)
- Ying Sun
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Zhi-Yong Chen
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China.,Department of Gastroenterology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Xia Gan
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Hua Dai
- Department of Pathology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Cai
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Rong-Hua Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Jian-Ming Zhou
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Hong-Li Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Zi-Hua Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Qing-Qing Luo
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Song Jiang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Ting Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| | - Kun-He Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Jiangxi Institute of Gastroenterology & Hepatology, Nanchang, China
| |
Collapse
|
25
|
Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, Lee MS, Kim HS, Suk KT, Kim DJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022; 10:1288. [PMID: 35740310 PMCID: PMC9220082 DOI: 10.3390/biomedicines10061288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiopathies encompass various biliary diseases affecting the biliary epithelium, resulting in cholestasis, inflammation, fibrosis, and ultimately liver cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the most important progressive cholangiopathies in adults. Much research has broadened the scope of disease biology to genetic risk, epigenetic changes, dysregulated mucosal immunity, altered biliary epithelial cell function, and dysbiosis, all of which interact and arise in the context of ill-defined environmental triggers. An in-depth understanding of the molecular pathogenesis of these cholestatic diseases will help clinicians better prevent and treat diseases. In this review, we focus on the main underlying mechanisms of disease initiation and progression, and novel targeted therapeutics beyond currently approved treatments.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jung-Hee Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jang Han Jung
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sang-Hoon Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Myung-Seok Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Hyoung-Su Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| |
Collapse
|
26
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
27
|
Orlandi P, Solini A, Banchi M, Brunetto MR, Cioni D, Ghiadoni L, Bocci G. Antiangiogenic Drugs in NASH: Evidence of a Possible New Therapeutic Approach. Pharmaceuticals (Basel) 2021; 14:ph14100995. [PMID: 34681219 PMCID: PMC8539163 DOI: 10.3390/ph14100995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is the most common liver disorder worldwide, and its progressive form non-alcoholic steatohepatitis (NASH) is a growing cause of liver cirrhosis and hepatocellular carcinoma (HCC). Lifestyle changes, which are capable of improving the prognosis, are hard to achieve, whereas a pharmacologic therapy able to combine efficacy and safety is still lacking. Looking at the pathophysiology of various liver diseases, such as NASH, fibrosis, cirrhosis, and HCC, the process of angiogenesis is a key mechanism influencing the disease progression. The relationship between the worsening of chronic liver disease and angiogenesis may suggest a possible use of drugs with antiangiogenic activity as a tool to stop or slow the progression of the disorder. In this review, we highlight the available preclinical data supporting a role of known antiangiogenic drugs (e.g., sorafenib), or phytotherapeutic compounds with multiple mechanism of actions, including also antiangiogenic activities (e.g., berberine), in the treatment of NASH.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Anna Solini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Maurizia Rossana Brunetto
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Dania Cioni
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università di Pisa, 56126 Pisa, Italy; (A.S.); (D.C.)
| | - Lorenzo Ghiadoni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126 Pisa, Italy; (P.O.); (M.B.); (M.R.B.); (L.G.)
- Correspondence: ; Tel.: +39-0502218756
| |
Collapse
|
28
|
Collagen XV Promotes ER Stress-Induced Inflammation through Activating Integrin β1/FAK Signaling Pathway and M1 Macrophage Polarization in Adipose Tissue. Int J Mol Sci 2021; 22:ijms22189997. [PMID: 34576160 PMCID: PMC8465275 DOI: 10.3390/ijms22189997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.
Collapse
|
29
|
Kostallari E, Valainathan S, Biquard L, Shah VH, Rautou PE. Role of extracellular vesicles in liver diseases and their therapeutic potential. Adv Drug Deliv Rev 2021; 175:113816. [PMID: 34087329 PMCID: PMC10798367 DOI: 10.1016/j.addr.2021.05.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
More than eight hundred million people worldwide have chronic liver disease, with two million deaths per year. Recurring liver injury results in fibrogenesis, progressing towards cirrhosis, for which there doesn't exists any cure except liver transplantation. Better understanding of the mechanisms leading to cirrhosis and its complications is needed to develop effective therapies. Extracellular vesicles (EVs) are released by cells and are important for cell-to-cell communication. EVs have been reported to be involved in homeostasis maintenance, as well as in liver diseases. In this review, we present current knowledge on the role of EVs in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, alcohol-associated liver disease, chronic viral hepatitis, primary liver cancers, acute liver injury and liver regeneration. Moreover, therapeutic strategies involving EVs as targets or as tools to treat liver diseases are summarized.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Shantha Valainathan
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France
| | - Louise Biquard
- Université de Paris, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de recherche sur l'inflammation, Inserm, UMR 1149, Paris, France.
| |
Collapse
|
30
|
Jiao Y, Lu W, Xu P, Shi H, Chen D, Chen Y, Shi H, Ma Y. Hepatocyte-derived exosome may be as a biomarker of liver regeneration and prognostic valuation in patients with acute-on-chronic liver failure. Hepatol Int 2021; 15:957-969. [PMID: 34232468 DOI: 10.1007/s12072-021-10217-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/31/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND The assessment of liver regeneration is particularly critical for patients with acute-on-chronic liver failure (ACLF). Exosome has both the advantages of specificity of liver biopsy and noninvasion of peripheral blood, which may be the potential biomarker of liver disease. METHODS The patients with chronic hepatitis B (CHB) and ACLF were enrolled from outpatients and inpatients in Beijing Youan Hospital, Capital Medical University. The exosomes in plasma were extracted by ultracentrifuge using Optima XPN-100 Ultracentrifuge. Exosomes were dyed with fluorescent direct-labeled antibody and the expression profile was assayed using ImageStream® X MKII Imaging Flow Cytometer. RESULTS The percentage of exosomes with ALB and CD63 was significant higher in ACLF than that in CHB. The percentage of exosomes with ALB and CD63 and VEGF increased in CHB, but decreased in ACLF. The exosomes with ALB, CD63, and VEGF were significant more in survival group than that in dead group in patients with ACLF. The sensitivity and specificity of exosomes with CD63, ALB, and VEGF were significantly higher than the other markers of liver regeneration and prognostic valuation in patients with ACLF including AFP. The hepatocyte-derived exosomes expression profile had no difference in different stages and different AFP levels of patients with ACLF. CONCLUSION The exosomes profile with ALB and VEGF may be a more accurate and specific biomarker of liver regeneration and prognostic valuation than AFP in patients with ACLF. In addition, the exosomes profile with CD63 and ALB may be an early-warning marker in patients with ACLF.
Collapse
Affiliation(s)
- Yan Jiao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Wang Lu
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, 100069, China
| | - Ping Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Honglin Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, 100069, China.
| | - Hongbo Shi
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China.
| | - Yingmin Ma
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing, 100069, China.
| |
Collapse
|
31
|
Allaire M, Rudler M, Thabut D. Portal hypertension and hepatocellular carcinoma: Des liaisons dangereuses…. Liver Int 2021; 41:1734-1743. [PMID: 34051060 DOI: 10.1111/liv.14977] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Portal hypertension (PHT) and hepatocellular carcinoma (HCC) are major complication of cirrhosis which significantly contribute to morbidity and mortality. In this review, we aim to describe the consequences of both angiogenesis and inflammation in the pathogenesis of PHT and HCC, but also the difficulty to propose adapted treatment when PHT and HCC coexist in the same patients. METHODS Studies for review in this article were retrieved from the PubMed database using literature published in English until March 2021. RESULTS Portal hypertension occurs secondary to an increase of intrahepatic vascular resistances, the opening of portosystemic collateral vessels and the formation of neovessels, related to vascular endothelial growth factor (VEGF). Recently, bacterial translocation-mediated inflammation was also identified as a major contributor to PHT. Interestingly, VEGF and chronic inflammation also contribute to HCC occurrence. As PHT and HCC often coexist in the same patient, management of PHT and its related complications as well as HCC treatment appear more complex. Indeed, PHT-related complications such as significant ascites may hamper the access to HCC treatment and the presence of HCC is also independently associated with poor prognosis in patients with acute variceal bleeding related to PHT. Due to their respective mechanism of action, the combination of Atezolizumab and Bevacizumab for advanced HCC may impact the level of PHT and its related complications and to date, no real-life data are available. CONSLUSIONS Appropriate evaluation and treatment of PHT remains a major issue in order to improve the outcome of HCC patients.
Collapse
Affiliation(s)
- Manon Allaire
- Service d'Hépatolo-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université, Paris, France.,Inserm U1149, Centre de Recherche sur l'Inflammation, France Faculté de Médecine Xavier Bichat, Université Paris Diderot, Paris, France
| | - Marika Rudler
- Service d'Hépatolo-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université, Paris, France.,INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Dominique Thabut
- Service d'Hépatolo-gastroentérologie, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, AP-HP, Sorbonne Université, Paris, France.,INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| |
Collapse
|
32
|
Kanikarla Marie P, Fowlkes NW, Afshar-Kharghan V, Martch SL, Sorokin A, Shen JP, Morris VK, Dasari A, You N, Sood AK, Overman MJ, Kopetz S, Menter DG. The Provocative Roles of Platelets in Liver Disease and Cancer. Front Oncol 2021; 11:643815. [PMID: 34367949 PMCID: PMC8335590 DOI: 10.3389/fonc.2021.643815] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Both platelets and the liver play important roles in the processes of coagulation and innate immunity. Platelet responses at the site of an injury are rapid; their immediate activation and structural changes minimize the loss of blood. The majority of coagulation proteins are produced by the liver—a multifunctional organ that also plays a critical role in many processes: removal of toxins and metabolism of fats, proteins, carbohydrates, and drugs. Chronic inflammation, trauma, or other causes of irreversible damage to the liver can dysregulate these pathways leading to organ and systemic abnormalities. In some cases, platelet-to-lymphocyte ratios can also be a predictor of disease outcome. An example is cirrhosis, which increases the risk of bleeding and prothrombotic events followed by activation of platelets. Along with a triggered coagulation cascade, the platelets increase the risk of pro-thrombotic events and contribute to cancer progression and metastasis. This progression and the resulting tissue destruction is physiologically comparable to a persistent, chronic wound. Various cancers, including colorectal cancer, have been associated with increased thrombocytosis, platelet activation, platelet-storage granule release, and thrombosis; anti-platelet agents can reduce cancer risk and progression. However, in cancer patients with pre-existing liver disease who are undergoing chemotherapy, the risk of thrombotic events becomes challenging to manage due to their inherent risk for bleeding. Chemotherapy, also known to induce damage to the liver, further increases the frequency of thrombotic events. Depending on individual patient risks, these factors acting together can disrupt the fragile balance between pro- and anti-coagulant processes, heightening liver thrombogenesis, and possibly providing a niche for circulating tumor cells to adhere to—thus promoting both liver metastasis and cancer-cell survival following treatment (that is, with minimal residual disease in the liver).
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vahid Afshar-Kharghan
- Division of Internal Medicine, Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie L Martch
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy You
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David George Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
33
|
Extracellular Vesicles in Organ Fibrosis: Mechanisms, Therapies, and Diagnostics. Cells 2021; 10:cells10071596. [PMID: 34202136 PMCID: PMC8305303 DOI: 10.3390/cells10071596] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the unrelenting deposition of excessively large amounts of insoluble interstitial collagen due to profound matrigenic activities of wound-associated myofibroblasts during chronic injury in diverse tissues and organs. It is a highly debilitating pathology that affects millions of people globally and leads to decreased function of vital organs and increased risk of cancer and end-stage organ disease. Extracellular vesicles (EVs) produced within the chronic wound environment have emerged as important vehicles for conveying pro-fibrotic signals between many of the cell types involved in driving the fibrotic response. On the other hand, EVs from sources such as stem cells, uninjured parenchymal cells, and circulation have in vitro and in vivo anti-fibrotic activities that have provided novel and much-needed therapeutic options. Finally, EVs in body fluids of fibrotic individuals contain cargo components that may have utility as fibrosis biomarkers, which could circumvent current obstacles to fibrosis measurement in the clinic, allowing fibrosis stage, progression, or regression to be determined in a manner that is accurate, safe, minimally-invasive, and conducive to repetitive testing. This review highlights the rapid and recent progress in our understanding of EV-mediated fibrotic pathogenesis, anti-fibrotic therapy, and fibrosis staging in the lung, kidney, heart, liver, pancreas, and skin.
Collapse
|
34
|
Abstract
Liver sinusoidal endothelial cells (LSECs) form the wall of the hepatic sinusoids. Unlike other capillaries, they lack an organized basement membrane and have cytoplasm that is penetrated by open fenestrae, making the hepatic microvascular endothelium discontinuous. LSECs have essential roles in the maintenance of hepatic homeostasis, including regulation of the vascular tone, inflammation and thrombosis, and they are essential for control of the hepatic immune response. On a background of acute or chronic liver injury, LSECs modify their phenotype and negatively affect neighbouring cells and liver disease pathophysiology. This Review describes the main functions and phenotypic dysregulations of LSECs in liver diseases, specifically in the context of acute injury (ischaemia-reperfusion injury, drug-induced liver injury and bacterial and viral infection), chronic liver disease (metabolism-associated liver disease, alcoholic steatohepatitis and chronic hepatotoxic injury) and hepatocellular carcinoma, and provides a comprehensive update of the role of LSECs as therapeutic targets for liver disease. Finally, we discuss the open questions in the field of LSEC pathobiology and future avenues of research.
Collapse
|
35
|
Kyrönlahti A, Godbole N, Akinrinade O, Soini T, Nyholm I, Andersson N, Hukkinen M, Lohi J, Wilson DB, Pihlajoki M, Pakarinen MP, Heikinheimo M. Evolving Up-regulation of Biliary Fibrosis-Related Extracellular Matrix Molecules After Successful Portoenterostomy. Hepatol Commun 2021; 5:1036-1050. [PMID: 34141988 PMCID: PMC8183171 DOI: 10.1002/hep4.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Successful portoenterostomy (SPE) improves the short-term outcome of patients with biliary atresia (BA) by relieving cholestasis and extending survival with native liver. Despite SPE, hepatic fibrosis progresses in most patients, leading to cirrhosis and a deterioration of liver function. The goal of this study was to characterize the effects of SPE on the BA liver transcriptome. We used messenger RNA sequencing to analyze global gene-expression patterns in liver biopsies obtained at the time of portoenterostomy (n = 13) and 1 year after SPE (n = 8). Biopsies from pediatric (n = 2) and adult (n = 2) organ donors and other neonatal cholestatic conditions (n = 5) served as controls. SPE was accompanied by attenuation of inflammation and concomitant up-regulation of key extracellular matrix (ECM) genes. Highly overexpressed genes promoting biliary fibrosis and bile duct integrity, such as integrin subunit beta 6 and previously unreported laminin subunit alpha 3, emerged as candidates to control liver fibrosis after SPE. At a cellular level, the relative abundance of activated hepatic stellate cells and liver macrophages decreased following SPE, whereas portal fibroblasts (PFs) and cholangiocytes persisted. Conclusion: The attenuation of inflammation following SPE coincides with emergence of an ECM molecular fingerprint, a set of profibrotic molecules mechanistically connected to biliary fibrosis. The persistence of activated PFs and cholangiocytes after SPE suggests a central role for these cell types in the progression of biliary fibrosis.
Collapse
Affiliation(s)
- Antti Kyrönlahti
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Nimish Godbole
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Oyediran Akinrinade
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Tea Soini
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Center for Infectious MedicineDepartment of MedicineKarolinska InstitutetStockholmSweden
| | - Iiris Nyholm
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Pediatric SurgeryPediatric Liver and Gut Research GroupChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Noora Andersson
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Maria Hukkinen
- Pediatric SurgeryPediatric Liver and Gut Research GroupChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Jouko Lohi
- Department of PathologyHelsinki University HospitalHelsinkiFinland
| | - David B Wilson
- Department of PediatricsSt. Louis Children's HospitalWashington University School of MedicineSt. LouisMOUSA
| | - Marjut Pihlajoki
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Center for Infectious MedicineDepartment of MedicineKarolinska InstitutetStockholmSweden
| | - Mikko P Pakarinen
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Pediatric SurgeryPediatric Liver and Gut Research GroupChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Markku Heikinheimo
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Department of PediatricsSt. Louis Children's HospitalWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
36
|
Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, Gandini S, Lizier M, Braga D, Asnicar F, Segata N, Klaver C, Brescia P, Rossi E, Anselmo A, Guglietta S, Maroli A, Spaggiari P, Tarazona N, Cervantes A, Marsoni S, Lazzari L, Jodice MG, Luise C, Erreni M, Pece S, Di Fiore PP, Viale G, Spinelli A, Pozzi C, Penna G, Rescigno M. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell 2021; 39:708-724.e11. [PMID: 33798472 DOI: 10.1016/j.ccell.2021.03.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Metastasis is facilitated by the formation of a "premetastatic niche," which is fostered by primary tumor-derived factors. Colorectal cancer (CRC) metastasizes mainly to the liver. We show that the premetastatic niche in the liver is induced by bacteria dissemination from primary CRC. We report that tumor-resident bacteria Escherichia coli disrupt the gut vascular barrier (GVB), an anatomical structure controlling bacterial dissemination along the gut-liver axis, depending on the virulence regulator VirF. Upon GVB impairment, bacteria disseminate to the liver, boost the formation of a premetastatic niche, and favor the recruitment of metastatic cells. In training and validation cohorts of CRC patients, we find that the increased levels of PV-1, a marker of impaired GVB, is associated with liver bacteria dissemination and metachronous distant metastases. Thus, PV-1 is a prognostic marker for CRC distant recurrence and vascular impairment, leading to liver metastases.
Collapse
Affiliation(s)
- Alice Bertocchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Sara Carloni
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, MI 20072, Italy
| | | | | | - Ilaria Spadoni
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, MI 20072, Italy
| | - Antonino Lo Cascio
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, MI 20072, Italy
| | - Sara Gandini
- IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | | | - Nicola Segata
- CIBIO Department, University of Trento, Trento, Italy
| | - Chris Klaver
- IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Paola Brescia
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elio Rossi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, Milan 20133, Italy
| | - Achille Anselmo
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | | | - Annalisa Maroli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Paola Spaggiari
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Noelia Tarazona
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain
| | - Andres Cervantes
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario, Department Medical Oncology, University of Valencia, Valencia, Spain
| | - Silvia Marsoni
- IFOM - the FIRC Institute of Molecular Oncology, via Adamello 16, Milano, MI 20139, Italy
| | - Luca Lazzari
- IFOM - the FIRC Institute of Molecular Oncology, via Adamello 16, Milano, MI 20139, Italy
| | | | - Chiara Luise
- IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Marco Erreni
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Salvatore Pece
- IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20142, Italy
| | - Pier Paolo Di Fiore
- IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20142, Italy
| | - Giuseppe Viale
- IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20142, Italy
| | - Antonino Spinelli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, MI 20072, Italy
| | - Chiara Pozzi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, Pieve Emanuele, MI 20072, Italy.
| |
Collapse
|
37
|
Rabiee A, Silveira MG. Primary sclerosing cholangitis. Transl Gastroenterol Hepatol 2021; 6:29. [PMID: 33824933 DOI: 10.21037/tgh-20-266] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a rare chronic cholestatic liver disease characterized by inflammatory destruction of the intrahepatic and/or extrahepatic bile ducts, leading to bile stasis, fibrosis, and ultimately to cirrhosis, and often requires liver transplantation (LT). PSC occurs more commonly in men, and is typically diagnosed between the ages of 30 and 40. Most cases occur in association with inflammatory bowel disease (IBD), which often precedes the development of PSC. PSC is usually diagnosed after detection of cholestasis during health evaluation or screening of patients with IBD. When symptomatic, the most common presenting symptoms are abdominal pain, pruritus, jaundice or fatigue. The etiology of PSC is poorly understood, but an increasing body of evidence supports the concept of cholangiocyte injury as a result of environmental exposure and an abnormal immune response in genetically susceptible individuals. PSC is a progressive disease, yet no effective medical therapy for halting disease progression has been identified. Management of PSC is mainly focused on treatment of symptoms and addressing complications. PSC can be complicated by bacterial cholangitis, dominant strictures (DSs), gallbladder polyps and adenocarcinoma, cholangiocarcinoma (CCA) and, in patients with IBD, colorectal malignancy. CCA is the most common malignancy in PSC with a cumulative lifetime risk of 10-20%, and accounts for a large proportion of mortality in PSC. LT is currently the only life-extending therapeutic approach for eligible patients with end-stage PSC, ultimately required in approximately 40% of patients. LT secondary to PSC has an excellent outcome compared to other LT indications, although the disease can recur and result in morbidity post-transplant.
Collapse
Affiliation(s)
- Anahita Rabiee
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Marina G Silveira
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Wen M, Liu Y, Chen R, He P, Wu F, Li R, Lin Y. Geniposide suppresses liver injury in a mouse model of DDC-induced sclerosing cholangitis. Phytother Res 2021; 35:3799-3811. [PMID: 33763888 DOI: 10.1002/ptr.7086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Sclerosing cholangitis, characterized by biliary inflammation, fibrosis, and stricturing, remains one of the most challenging conditions of clinical hepatology. Geniposide (GE) has anti-inflammatory, hepatoprotective, and cholagogic effects. Whether GE provides inhibition on the development of sclerosing cholangitis is unknown. Here, we investigated the role of GE in a mouse model in which mice were fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 4 weeks to induce sclerosing cholangitis. The results demonstrated that the increased hepatic gene expressions of pro-inflammatory (IL-6, VCAM-1, MCP-1, and F4/80) and profibrogenic markers (Col1α1, Col1α2, TGF-β, and α-SMA) in DDC feeding mice were reversed after treatment with GE. GE also suppressed expressions of CK19 and Ki67 in DDC-fed mice, suggesting that GE could ameliorate DDC-induced hepatocytes and cholangiocytes proliferation. In addition, GE significantly increased bile acids (BAs) secretion in bile, which correlated with induced expressions of hepatic FXR, BAs secretion transporters (BSEP, MRP2, MDR1, and MDR2), and reduced CYP7A1 mRNA expression. Furthermore, higher expressions of ileal FXR-FGF15 signaling and reduced ASBT were also observed after GE treatment. Taken together, these data showed that GE could modulate inflammation, fibrosis, and BAs homeostasis in DDC-fed mice, which lead to efficiently delay the progression of sclerosing cholangitis.
Collapse
Affiliation(s)
- Min Wen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yubei Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruiying Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ping He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Rui Li
- School of Pharmacy, Nanjing Medical University, Nanjing, P.R. China
| | - Yining Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
39
|
Role of Angiogenesis in the Pathogenesis of NAFLD. J Clin Med 2021; 10:jcm10071338. [PMID: 33804956 PMCID: PMC8037441 DOI: 10.3390/jcm10071338] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the leading cause of chronic liver disease, exposing to the risk of liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Angio-genesis is a complex process leading to the development of new vessels from pre-existing vessels. Angiogenesis is triggered by hypoxia and inflammation and is driven by the action of proangiogenic cytokines, mainly vascular endothelial growth factor (VEGF). In this review, we focus on liver angiogenesis associated with NAFLD and analyze the evidence of liver angiogenesis in animal models of NAFLD and in NAFLD patients. We also report the data explaining the role of angiogenesis in the progression of NAFLD and discuss the potential of targeting angiogenesis, notably VEGF, to treat NAFLD.
Collapse
|
40
|
Mariotti V, Fiorotto R, Cadamuro M, Fabris L, Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep 2021; 3:100251. [PMID: 34151244 PMCID: PMC8189933 DOI: 10.1016/j.jhepr.2021.100251] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
The family of vascular endothelial growth factors (VEGFs) includes 5 members (VEGF-A to -D, and placenta growth factor), which regulate several critical biological processes. VEGF-A exerts a variety of biological effects through high-affinity binding to tyrosine kinase receptors (VEGFR-1, -2 and -3), co-receptors and accessory proteins. In addition to its fundamental function in angiogenesis and endothelial cell biology, VEGF/VEGFR signalling also plays a role in other cell types including epithelial cells. This review provides an overview of VEGF signalling in biliary epithelial cell biology in both normal and pathologic conditions. VEGF/VEGFR-2 signalling stimulates bile duct proliferation in an autocrine and paracrine fashion. VEGF/VEGFR-1/VEGFR-2 and angiopoietins are involved at different stages of biliary development. In certain conditions, cholangiocytes maintain the ability to secrete VEGF-A, and to express a functional VEGFR-2 receptor. For example, in polycystic liver disease, VEGF secreted by cystic cells stimulates cyst growth and vascular remodelling through a PKA/RAS/ERK/HIF1α-dependent mechanism, unveiling a new level of complexity in VEFG/VEGFR-2 regulation in epithelial cells. VEGF/VEGFR-2 signalling is also reactivated during the liver repair process. In this context, pro-angiogenic factors mediate the interactions between epithelial, mesenchymal and inflammatory cells. This process takes place during the wound healing response, however, in chronic biliary diseases, it may lead to pathological neo-angiogenesis, a condition strictly linked with fibrosis progression, the development of cirrhosis and related complications, and cholangiocarcinoma. Novel observations indicate that in cholangiocarcinoma, VEGF is a determinant of lymphangiogenesis and of the immune response to the tumour. Better insights into the role of VEGF signalling in biliary pathophysiology might help in the search for effective therapeutic strategies.
Collapse
Key Words
- ADPKD, adult dominant polycystic kidney disease
- Anti-Angiogenic therapy
- BA, biliary atresia
- BDL, bile duct ligation
- CCA, cholangiocarcinoma
- CCl4, carbon tetrachloride
- CLDs, chronic liver diseases
- Cholangiocytes
- Cholangiopathies
- DP, ductal plate
- DPM, ductal plate malformation
- DRCs, ductular reactive cells
- Development
- HIF-1α, hypoxia-inducible factor type 1α
- HSCs, hepatic stellate cells
- IHBD, intrahepatic bile ducts
- IL-, interleukin-
- LECs, lymphatic endothelial cells
- LSECs, liver sinusoidal endothelial cells
- Liver repair
- MMPs, matrix metalloproteinases
- PBP, peribiliary plexus
- PC, polycystin
- PDGF, platelet-derived growth factor
- PIGF, placental growth factor
- PLD, polycystic liver diseases
- Polycystic liver diseases
- SASP, senescence-associated secretory phenotype
- TGF, transforming growth factor
- VEGF, vascular endothelial growth factors
- VEGF-A
- VEGF/VEGFR-2 signalling
- VEGFR-1/2, vascular endothelial growth factor receptor 1/2
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Valeria Mariotti
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Romina Fiorotto
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| | - Massimiliano Cadamuro
- Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Luca Fabris
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA.,Department of Molecular Medicine, University of Padua, School of Medicine, Padua, Italy
| | - Mario Strazzabosco
- Section of Digestive Diseases, Liver Center, Yale University, New Haven, CT, USA
| |
Collapse
|
41
|
Xu XH, Liu Y, Feng L, Yang YS, Liu SG, Guo W, Zhou HX, Li ZQ, Zhang L, Meng WX. Interleukin-6 released by oral lichen planus myofibroblasts promotes angiogenesis. Exp Ther Med 2021; 21:291. [PMID: 33717234 PMCID: PMC7885057 DOI: 10.3892/etm.2021.9722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Oral lichen planus (OLP), defined as a potential for malignant transformation, is a chronic inflammatory disease in which abnormal angiogenesis serves a role in the malignant changes of the disease. OLP-associated fibroblasts (OLP-MFs), derived from the stroma of OLP tissues, are characterized by the presence of myofibroblasts and contribute to the secretion of pro-inflammatory cytokines, which may be involved in the molecular pathogenesis of OLP. However, the associated mechanisms of angiogenesis in OLP remain unknown. The present study aimed to verify the expression of intercellular adhesion molecular 1, vascular cell adhesion molecule 1, VEGF and CD34 in OLP, and to investigate whether IL-6 secreted by OLP-MFs promoted OLP angiogenesis and the effect of its corresponding antibody inhibition. The results of the experiments demonstrated that inflammation was present and OLP upregulated the secretion of IL-6 by OLP stromal fibroblasts, thereby enhancing OLP angiogenesis. Anti-IL-6 receptor antibody inhibited OLP-stroma IL-6 signaling and suppressed OLP angiogenesis. The antibody inhibited the inflammatory response by inhibiting the secretion of inflammatory factors, including IL-6, to suppress angiogenesis and reduce disease progression, thus indicating that this could be a potential target to develop a treatment for OLP.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yang Liu
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Lu Feng
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yin-Shen Yang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shu-Guang Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei Guo
- Department of Oral Pathology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hui-Xi Zhou
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhi-Qiang Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Lin Zhang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wen-Xia Meng
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
42
|
Ipsen DH, Tveden-Nyborg P. Extracellular Vesicles as Drivers of Non-Alcoholic Fatty Liver Disease: Small Particles with Big Impact. Biomedicines 2021; 9:biomedicines9010093. [PMID: 33477873 PMCID: PMC7832840 DOI: 10.3390/biomedicines9010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the leading chronic liver disease, negatively affecting the lives of millions of patients worldwide. The complex pathogenesis involves crosstalk between multiple cellular networks, but how the intricate communication between these cells drives disease progression remains to be further elucidated. Furthermore, the disease is not limited to the liver and includes the reprogramming of distant cell populations in different organs. Extracellular vesicles (EVs) have gained increased attention as mediators of cellular communication. EVs carry specific cargos that can act as disease-specific signals both locally and systemically. Focusing on NAFLD advancing to steatohepatitis (NASH), this review provides an update on current experimental and clinical findings of the potential role of EVs in hepatic inflammation and fibrosis, the main contributors to progressive NASH. Particular attention is placed on the characteristics of EV cargos and potential specificity to disease stages, with putative value as disease markers and treatment targets for future investigations.
Collapse
|
43
|
Emerging Roles of Liver Sinusoidal Endothelial Cells in Nonalcoholic Steatohepatitis. BIOLOGY 2020; 9:biology9110395. [PMID: 33198153 PMCID: PMC7697091 DOI: 10.3390/biology9110395] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of the metabolic syndrome. With the prevalence of obesity and type 2 diabetes, NAFLD is becoming the most common liver disorder worldwide. More than 10% of NAFLD patients progress to an inflammatory and fibrotic form called nonalcoholic steatohepatitis (NASH), which can lead to end-stage liver disease. Liver sinusoidal endothelial cells (LSEC) are highly specialized cells located at the interface between the flowing blood in the liver and the other liver cells. The current review highlights the recent knowledge of the role of LSEC in the development of NASH, and how LSEC change their structure and function during NAFLD progression. Moreover, the review discusses the pathogenic role of nanometer-sized particles called extracellular vesicles that mediate intercellular communication in the NASH liver. The current manuscript has a special emphasis on the role of adhesion molecules expressed on the LSEC surface in the recruitment of circulating leukocytes to the liver, a critical step in liver inflammation in NASH. Furthermore, the review shed some lights on LSEC-targeted potential therapeutic strategies in NASH. Abstract Nonalcoholic steatohepatitis (NASH) has become a growing public health problem worldwide, yet its pathophysiology remains unclear. Liver sinusoidal endothelial cells (LSEC) have unique morphology and function, and play a critical role in liver homeostasis. Emerging literature implicates LSEC in many pathological processes in the liver, including metabolic dysregulation, inflammation, angiogenesis, and carcinogenesis. In this review, we highlight the current knowledge of the role of LSEC in each of the progressive phases of NASH pathophysiology (steatosis, inflammation, fibrosis, and the development of hepatocellular carcinoma). We discuss processes that have important roles in NASH progression including the detrimental transformation of LSEC called “capillarization”, production of inflammatory and profibrogenic mediators by LSEC as well as LSEC-mediated angiogenesis. The current review has a special emphasis on LSEC adhesion molecules, and their key role in the inflammatory response in NASH. Moreover, we discuss the pathogenic role of extracellular vesicles and their bioactive cargos in liver intercellular communication, inflammation, and fibrosis. Finally, we highlight LSEC-adhesion molecules and derived bioactive product as potential therapeutic targets for human NASH.
Collapse
|
44
|
Fabris L, Andersen JB, Fouassier L. Intrahepatic cholangiocarcinoma: A single-cell resolution unraveling the complexity of the tumor microenvironment. J Hepatol 2020; 73:1007-1009. [PMID: 32900521 DOI: 10.1016/j.jhep.2020.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, General Medicine Division, University-Hospital of Padua, Padua, Italy; Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), UMRS 928, F-75012 Paris, France.
| |
Collapse
|
45
|
Meurer SK, Karsdal MA, Weiskirchen R. Advances in the clinical use of collagen as biomarker of liver fibrosis. Expert Rev Mol Diagn 2020; 20:947-969. [PMID: 32865433 DOI: 10.1080/14737159.2020.1814746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hepatic fibrosis is the excessive synthesis and deposition of extracellular matrix including collagen in the tissue. Chronic liver insult leads to progressive parenchymal damage, portal hypertension, and cirrhosis. Determination of hepatic collagen by invasive liver biopsy is the gold standard to estimate severity and stage of fibrosis. However, this procedure is associated with pain, carries the risk of infection and bleeding, and is afflicted with a high degree of sampling error. Therefore, there is urgent need for serological collagen-derived markers to assess collagen synthesis/turnover. AREAS COVERED Biochemical properties of collagens, cellular sources of hepatic collagen synthesis, and regulatory aspects in collagen expression. Markers are discussed suitable to estimate hepatic collagen synthesis and/or turnover. Discussed studies were identified through a PubMed search done in May 2020 and the authors' topic knowledge. EXPERT OPINION Hepatic fibrosis is mainly characterized by accumulation of collagen-rich scar tissue. Although traditionally performed liver biopsy is still standard in estimating hepatic fibrosis, there is evidence that noninvasive diagnostic scores and collagen-derived neo-epitopes provide clinical useful information. These noninvasive tests are less expensive than liver biopsy, better tolerated, safer, and more acceptable to patients. Therefore, these tests will lead to dramatic changes in diagnosis.
Collapse
Affiliation(s)
- Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| | - Morten A Karsdal
- Nordic Bioscience, Fibrosis Biomarkers and Research , Herlev, Denmark
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen , Aachen, Germany
| |
Collapse
|
46
|
Yokoda RT, Rodriguez EA. Review: Pathogenesis of cholestatic liver diseases. World J Hepatol 2020; 12:423-435. [PMID: 32952871 PMCID: PMC7475774 DOI: 10.4254/wjh.v12.i8.423] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/07/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cholestatic liver diseases (CLD) begin to develop after an impairment of bile flow start to affect the biliary tree. Cholangiocytes actively participate in the liver response to injury and repair and the intensity of this reaction is a determinant factor for the development of CLD. Progressive cholangiopathies may ultimately lead to end-stage liver disease requiring at the end orthotopic liver transplantation. This narrative review will discuss cholangiocyte biology and pathogenesis mechanisms involved in four intrahepatic CLD: Primary biliary cholangitis, primary sclerosing cholangitis, cystic fibrosis involving the liver, and polycystic liver disease.
Collapse
Affiliation(s)
- Raquel T Yokoda
- Department of Anatomic and Clinical Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, United States
| | - Eduardo A Rodriguez
- Department of Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, UT 84132, United States
| |
Collapse
|
47
|
Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci 2020; 133:133/13/jcs227900. [DOI: 10.1242/jcs.227900] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
In 1971, Gabbiani and co-workers discovered and characterized the “modification of fibroblasts into cells which are capable of an active spasm” (contraction) in rat wound granulation tissue and, accordingly, named these cells ‘myofibroblasts’. Now, myofibroblasts are not only recognized for their physiological role in tissue repair but also as cells that are key in promoting the development of fibrosis in all organs. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the current understanding of central aspects of myofibroblast biology, such as their definition, activation from different precursors, the involved signaling pathways and most widely used models to study their function. Myofibroblasts will be placed into context with their extracellular matrix and with other cell types communicating in the fibrotic environment. Furthermore, the challenges and strategies to target myofibroblasts in anti-fibrotic therapies are summarized to emphasize their crucial role in disease progression.
Collapse
Affiliation(s)
- Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Nina Noskovicova
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Amanda Goodwin
- Nottingham NIHR Respiratory Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH, UK
| | - Henna Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029 Oulu, Finland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
48
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
49
|
Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Sci Rep 2020; 10:3850. [PMID: 32123215 PMCID: PMC7052210 DOI: 10.1038/s41598-020-60615-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic fibrosis is a major consequence of chronic liver disease such as non-alcoholic steatohepatitis which is undergoing a dramatic evolution given the obesity progression worldwide, and has no treatment to date. Hepatic stellate cells (HSCs) play a key role in the fibrosis process, because in chronic liver damage, they transdifferentiate from a “quiescent” to an “activated” phenotype responsible for most the collagen deposition in liver tissue. Here, using a diet-induced liver fibrosis murine model (choline-deficient amino acid-defined, high fat diet), we characterized a specific population of HSCs organized as clusters presenting simultaneously hypertrophy of retinoid droplets, quiescent and activated HSC markers. We showed that hypertrophied HSCs co-localized with fibrosis areas in space and time. Importantly, we reported the existence of this phenotype and its association with collagen deposition in three other mouse fibrosis models, including CCl4-induced fibrosis model. Moreover, we have also shown its relevance in human liver fibrosis associated with different etiologies (obesity, non-alcoholic steatohepatitis, viral hepatitis C and alcoholism). In particular, we have demonstrated a significant positive correlation between the stage of liver fibrosis and HSC hypertrophy in a cohort of obese patients with hepatic fibrosis. These results lead us to conclude that hypertrophied HSCs are closely associated with hepatic fibrosis in a metabolic disease context and may represent a new marker of metabolic liver disease progression.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To give a state-of-art knowledge regarding cancer-associated fibroblasts (CAF) in cholangiocarcinoma (CCA) based both on direct evidence and studies on other desmoplastic cancers. High contingency of CAF characterizes CCA, a tumor with a biliary epithelial phenotype that can emerge anywhere in the biliary tree. Current treatments are very limited, the surgical resection being the only effective treatment but restricted to a minority of patients, whereas the remaining patients undergo palliative chemotherapy regimens. In cancer, CAF shape the tumor microenvironment, drive cancer growth and progression, and contribute to drug resistance. All these functions are accomplished through an interplay network between CAF and surrounding cells including tumor and other stromal cells, i.e. immune and endothelial cells. RECENT FINDINGS Several studies have pointed out the existence of CAF sub-populations carrying out several and opposite functions, cancer-promoting or cancer-restraining as shown in pancreatic cancer, another prototypic desmoplastic tumor in which heterogeneity of CAF is well demonstrated. SUMMARY New CAF functions are now emerging in pancreatic and breast cancers like the modulation of immune responses or tumor metabolism, opening new area for treatments.
Collapse
|