1
|
Wu N, Bayatpour S, Hylemon PB, Aseem SO, Brindley PJ, Zhou H. Gut Microbiome and Bile Acid Interactions: Mechanistic Implications for Cholangiocarcinoma Development, Immune Resistance, and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:397-408. [PMID: 39730075 PMCID: PMC11841492 DOI: 10.1016/j.ajpath.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024]
Abstract
Cholangiocarcinoma (CCA) is a rare but highly malignant carcinoma of bile duct epithelial cells with a poor prognosis. The major risk factors of CCA carcinogenesis and progression are cholestatic liver diseases. The key feature of primary sclerosing cholangitis and primary biliary cholangitis is chronic cholestasis. It indicates a slowdown of hepatocyte secretion of biliary lipids and metabolites into bile as well as a slowdown of enterohepatic circulation (bile acid recirculation) of bile acids with dysbiosis of the gut microbiome. This leads to enterohepatic recirculation and an increase of toxic secondary bile acids. Alterations of serum and liver bile acid compositions via the disturbed enterohepatic circulation of bile acids and the disturbance of the gut microbiome then activate a series of hepatic and cancer cell signaling pathways that promote CCA carcinogenesis and progression. This review focuses on the mechanistic roles of bile acids and the gut microbiome in the pathogenesis and progression of CCA. It also evaluates the therapeutic potential of targeting the gut microbiome and bile acid-mediated signaling pathways for the therapy and prophylaxis of CCA.
Collapse
Affiliation(s)
- Nan Wu
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Sareh Bayatpour
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sayed O Aseem
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia; Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, District of Columbia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, Virginia; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
2
|
Huang P, Wei G, Kirkpatrick JD, Lin Y, Tan L, Matta H, Nasser I, Huang M, Chen L, Petitjean M, Skelton-Badlani D, Gao W, Vaid K, Zhao S, Lugovskoy A, Alenzi M, Chen X, Gores GJ, Popov YV. Transposon-based oncogene integration in Abcb4(Mdr2) -/- mice recapitulates high susceptibility to cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2025; 82:84-96. [PMID: 39089631 PMCID: PMC11655257 DOI: 10.1016/j.jhep.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a dreaded complication of primary sclerosing cholangitis (PSC) that is difficult to diagnose and associated with high mortality. A lack of animal models of CCA recapitulating the hepatic microenvironment of sclerosing cholangitis has hindered the development of novel treatments. Herein, we sought to develop a mouse model of PSC-associated CCA. METHODS Ten-week-old Mdr2-/- mice with congenital PSC-like disease, and healthy wild-type littermates were subjected to either modified retrograde biliary instillation or hydrodynamic tail vein injection of a sleeping beauty transposon-transposase plasmid system with activated AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes (SB AKT/YAP1). The role of TGFβ was interrogated via ALK5 inhibitor (SB-525334) administration. Tumor phenotype, burden and desmoplastic reaction were analyzed histologically and via RNA sequencing. RESULTS While SB AKT/YAP1 plasmids administered via retrograde biliary injection caused tumors in Mdr2-/-, only 26.67% (4/15) of these tumors were CCA. Alternatively, hydrodynamic tail vein injection of SB AKT/YAP1 resulted in robust tumorigenesis in all fibrotic Mdr2-/- mice with high CCA burden compared to healthy mice. Tumors phenotypically resembled human CCA, expressed multiple CCA (but not hepatocellular carcinoma) markers, and exhibited a profound desmoplastic reaction. RNA sequencing analysis revealed profound transcriptional changes in CCA evolving in a PSC-like context, with specific alterations in multiple immune pathways. Pharmacological TGFβ inhibition led to enhanced immune cell tumor infiltration, reduced tumor burden and suppressed desmoplastic collagen accumulation compared to placebo. CONCLUSION We established a new high-fidelity cholangiocarcinoma model in mice, termed SB CCA.Mdr2-/-, which recapitulates the increased susceptibility to CCA in the setting of biliary injury and fibrosis observed in PSC. Through transcriptomics and pharmacological studies, we show dysregulation of multiple immune pathways and TGFβ signaling as potential drivers of CCA in a PSC-like microenvironment. IMPACT AND IMPLICATIONS Animal models for primary sclerosing cholangitis (PSC)-related cholangiocarcinoma (PSC-CCA) are lacking. Thus, we have developed and characterized a new mouse model of PSC-CCA, termed SB CCA.Mdr2-/-, which features reliable tumor induction on a PSC-like background of biliary injury and fibrosis. Global gene expression alterations were identified and standardized tools, including automated whole slide image analysis methodology for tumor burden and feature analysis, were established to enable systematic research into PSC-CCA biology and formal preclinical drug testing.
Collapse
Affiliation(s)
- Pinzhu Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yi Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Gastroenterology and Hepatology, Fujian Provincial Hospital, Fuzhou, China
| | - Li Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heansika Matta
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mingzhe Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Disha Skelton-Badlani
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wen Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kahini Vaid
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuangshuang Zhao
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alicia Lugovskoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maram Alenzi
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xin Chen
- University of Hawaii Cancer Center, Honolulu, HI USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Yan H, Deng Q, Meng Y, Zhang Y, Wu J, Liu W. IL-21 and IL-33 May Be Effective Biomarkers to Predict the Efficacy of PD-1 Monoclonal Antibody for Advanced Cholangiocarcinoma. Cancer Biother Radiopharm 2025; 40:78-88. [PMID: 39835991 DOI: 10.1089/cbr.2024.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background and Objective: Treatment options for patients with advanced biliary tract cancer (BTC) are limited. The programmed cell death protein-1 (PD-1) inhibitors may have synergistic effects with chemotherapy. Therefore, the aim of our study was to provide real-world data on treatment outcomes in BTC patients receiving chemotherapy alone versus a combination of chemotherapy and PD-1 inhibitors. Additionally, we explored potential markers predictive of PD-1 inhibitor efficacy in this combined therapy. Methods: We conducted a review of patients at Changzhou First People's Hospital who received PD-1 inhibitors in combination with chemotherapy or chemotherapy alone as first-line treatment for advanced BTC. The primary endpoints of the study were progression-free survival (PFS) and overall survival (OS). Kaplan-Meier survival curves and the log-rank test were used to analyze the data. Immunohistochemistry showed the expression of interleukin-21 (IL-21), interleukin-33 (IL-33), and Eomes in the tumor tissue of patients who received PD-1 inhibitors in combination with chemotherapy. Results: The study enrolled 61 patients receiving PD-1 inhibitors combined with chemotherapy and 65 receiving chemotherapy alone. The median OS and PFS for patients receiving PD-1 inhibitors in combination with chemotherapy were 11.7 and 6.7 months, respectively. These durations were significantly longer than those for chemotherapy alone: OS of 10.3 months (95% CI: 0.16-0.21, p = 0.031) and PFS of 5.3 months (95% Confidence interval (CI) 0.25-0.32, p = 0.018). High IL-21 expression or low IL-33 expression in tumor tissue correlated with better response rates to chemotherapy combined with PD-1 inhibitors. Conclusions: Combining PD-1 inhibitors with chemotherapy shows good antitumor activity, making it an effective way to treat BTC. The expression profiles of IL-21 and IL-33 hold promise as potential markers for guiding the chemotherapy combined with immunotherapy in BTC patients.
Collapse
Affiliation(s)
- Haijiao Yan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qian Deng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yu Meng
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ye Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wensong Liu
- Department of Hepatobiliary Surgery, Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Xu K, Kessler A, Nichetti F, Hoffmeister-Wittmann P, Scherr AL, Nader L, Kelmendi E, Schmitt N, Schwab M, García-Beccaria M, Sobol B, Nieto OA, Isele H, Gärtner U, Vaquero-Siguero N, Volk J, Korell F, Mock A, Heide D, Ramadori P, Lenoir B, Albrecht T, Hüllein J, Jäger D, Fröhling S, Springfeld C, Jackstadt R, Heikenwälder M, Dill MT, Roessler S, Goeppert B, Köhler BC. Lymphotoxin beta-activated LTBR/NIK/RELB axis drives proliferation in cholangiocarcinoma. Liver Int 2024; 44:2950-2963. [PMID: 39164890 DOI: 10.1111/liv.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is an aggressive malignancy arising from the intrahepatic (iCCA) or extrahepatic (eCCA) bile ducts with poor prognosis and limited treatment options. Prior evidence highlighted a significant contribution of the non-canonical NF-κB signalling pathway in initiation and aggressiveness of different tumour types. Lymphotoxin-β (LTβ) stimulates the NF-κB-inducing kinase (NIK), resulting in the activation of the transcription factor RelB. However, the functional contribution of the non-canonical NF-κB signalling pathway via the LTβ/NIK/RelB axis in CCA carcinogenesis and progression has not been established. METHODS Human CCA-derived cell lines and organoids were examined to determine the expression of NF-κB pathway components upon activation or inhibition. Proliferation and cell death were analysed using real-time impedance measurement and flow cytometry. Immunoblot, qRT-PCR, RNA sequencing and in situ hybridization were employed to analyse gene and protein expression. Four in vivo models of iCCA were used to probe the activation and regulation of the non-canonical NF-κB pathway. RESULTS Exposure to LTα1/β2 activates the LTβ/NIK/RelB axis and promotes proliferation in CCA. Inhibition of NIK with the small molecule inhibitor B022 efficiently suppresses RelB expression in patient-derived CCA organoids and nuclear co-translocation of RelB and p52 stimulated by LTα1/β2 in CCA cell lines. In murine CCA, RelB expression is significantly increased and LTβ is the predominant ligand of the non-canonical NF-κB signalling pathway. CONCLUSIONS Our study confirms that the non-canonical NF-κB axis LTβ/NIK/RelB drives cholangiocarcinogenesis and represents a candidate therapeutic target.
Collapse
Affiliation(s)
- Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of RadioOncology and Radiation Therapy, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Schwab
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - María García-Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- Madrid Institute for Advanced Study (MIAS), Madrid, Spain
| | - Benjamin Sobol
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Osama Azzam Nieto
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | - Hanna Isele
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ulrike Gärtner
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany
| | - Nuria Vaquero-Siguero
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Julia Volk
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Bénédicte Lenoir
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Albrecht
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
- The M3 Research Center, Medical Faculty, University Clinic Tübingen (UKT), Tübingen, Germany
| | - Michael T Dill
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases and Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Experimental Hepatology, Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Roessler
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Medical Faculty, Institute for Pathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Yin L, Duan A, Zhang W, Li B, Zhao T, Xu X, Yang L, Nian B, Lu K, Chen S, Li Z, Liu J, Duan Q, Liu D, Chen H, Cui L, Chang Y, Kuang Y, Zhang D, Wang X, Zhang Y. Identification of whole-genome mutations and structural variations of bile cell-free DNA in cholangiocarcinoma. Genomics 2024; 116:110916. [PMID: 39147332 DOI: 10.1016/j.ygeno.2024.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Bile cell-free DNA (cfDNA) has been reported as a promising liquid biopsy tool for cholangiocarcinoma (CCA), however, the whole-genome mutation landscape and structural variants (SVs) of bile cfDNA remains unknown. Here we performed whole-genome sequencing on bile cfDNA and analyzed the correlation between mutation characteristics of bile cfDNA and clinical prognosis. TP53 and KRAS were the most frequently mutated genes, and the RTK/RAS, homologous recombination (HR), and HIPPO were top three pathways containing most gene mutations. Ten overlapping putative driver genes were found in bile cfDNA and tumor tissue. SVs such as chromothripsis and kataegis were identified. Moreover, the hazard ratio of HR pathway mutations were 15.77 (95% CI: 1.571-158.4), patients with HR pathway mutations in bile cfDNA exhibited poorer overall survival (P = 0.0049). Our study suggests that bile cfDNA contains genome mutations and SVs, and HR pathway mutations in bile cfDNA can predict poor outcomes of CCA patients.
Collapse
Affiliation(s)
- Lei Yin
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Anqi Duan
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Bin Li
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Teng Zhao
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xiaoya Xu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Lixue Yang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Baoning Nian
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Kai Lu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Sheng Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Zhikuan Li
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Jian Liu
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiaonan Duan
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Dongyu Liu
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Hao Chen
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China
| | - Longjiu Cui
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yanxin Chang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yue Kuang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Dadong Zhang
- Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.
| | - Xiang Wang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| | - Yongjie Zhang
- Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
| |
Collapse
|
6
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
7
|
Tomlinson JL, Li B, Yang J, Loeuillard E, Stumpf HE, Kuipers H, Watkins R, Carlson DM, Willhite J, O'Brien DR, Graham RP, Chen X, Smoot RL, Dong H, Gores GJ, Ilyas SI. Syngeneic murine models with distinct immune microenvironments represent subsets of human intrahepatic cholangiocarcinoma. J Hepatol 2024; 80:892-903. [PMID: 38458319 PMCID: PMC11141161 DOI: 10.1016/j.jhep.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a poorly immunogenic malignancy associated with limited survival. Syngeneic immunocompetent mouse models of CCA are an essential tool to elucidate the tumor immune microenvironment (TIME), understand mechanisms of tumor immune evasion, and test novel immunotherapeutic strategies. The scope of this study was to develop and characterize immunocompetent CCA models with distinct genetic drivers, and correlate tumor genomics, immunobiology, and therapeutic response. METHODS A multifaceted approach including scRNA-seq, CITE-seq, whole exome and bulk RNA sequencing was employed. FDA-approved PD-1/PD-L1 antibodies were tested in humanized PD-1/PD-L1 mice (HuPD-H1). RESULTS A genetic mouse model of intrahepatic CCA (iCCA) driven by intrabiliary transduction of Fbxw7ΔF/Akt that mimics human iCCA was generated. From the Fbxw7ΔF/Akt tumors, a murine cell line (FAC) and syngeneic model with genetic and phenotypic characteristics of human iCCA were developed. Established SB1 (YAPS127A/Akt) and KPPC (KrasG12Dp53L/L) models were compared to the FAC model. Although the models had transcriptomic similarities, they had substantial differences as well. Mutation patterns of FAC, SB1, and KPPC cells matched different mutational signatures in Western and Japanese CCA patient cohorts. KPPC tumors had a high tumor mutation burden. FAC tumors had a T cell-infiltrated TIME, while SB1 tumors had a preponderance of suppressive myeloid cells. FAC, SB1, and KPPC tumors matched different immune signatures in human iCCA cohorts. Moreover, FAC, SB1, and KPPC tumor-bearing HuPD-H1 mice displayed differential responses to nivolumab or durvalumab. CONCLUSIONS Syngeneic iCCA models display a correlation between tumor genotype and TIME phenotype, with differential responses to FDA-approved immunotherapies. This study underscores the importance of leveraging multiple preclinical models to understand responses to immunotherapy in different genetic subsets of human CCA. IMPACT AND IMPLICATIONS Understanding the relationship between tumor genotype and the phenotype of the immune microenvironment is an unmet need in cholangiocarcinoma (CCA). Herein, we use syngeneic murine models of intrahepatic CCA with different genetic drivers to demonstrate a correlation between tumor genotype and immune microenvironment phenotype in murine models, which is associated with differential responses to FDA-approved immunotherapies. This information will help guide other preclinical studies. Additionally, it emphasizes that immune checkpoint inhibition in patients with CCA is not a "one-size-fits-all" approach. Our observations suggest that, as for targeted therapies, patients should be stratified and selected for treatment according to their tumor genetics.
Collapse
Affiliation(s)
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Emilien Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Ryan Watkins
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Jessica Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniel R O'Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Zhu X, Yang Y, Feng D, Wang O, Chen J, Wang J, Wang B, Liu Y, Edenfield BH, Haddock AN, Wang Y, Patel T, Bi Y, Ji B. Albumin promoter-driven FlpO expression induces efficient genetic recombination in mouse liver. Am J Physiol Gastrointest Liver Physiol 2024; 326:G495-G503. [PMID: 38469630 PMCID: PMC11376971 DOI: 10.1152/ajpgi.00263.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Tissue-specific gene manipulations are widely used in genetically engineered mouse models. A single recombinase system, such as the one using Alb-Cre, has been commonly used for liver-specific genetic manipulations. However, most diseases are complex, involving multiple genetic changes and various cell types. A dual recombinase system is required for conditionally modifying different genes sequentially in the same cell or inducing genetic changes in different cell types within the same organism. A FlpO cDNA was inserted between the last exon and 3'-UTR of the mouse albumin gene in a bacterial artificial chromosome (BAC-Alb-FlpO). The founders were crossed with various reporter mice to examine the efficiency of recombination. Liver cancer tumorigenesis was investigated by crossing the FlpO mice with FSF-KrasG12D mice and p53frt mice (KPF mice). BAC-Alb-FlpO mice exhibited highly efficient recombination capability in both hepatocytes and intrahepatic cholangiocytes. No recombination was observed in the duodenum and pancreatic cells. BAC-Alb-FlpO-mediated liver-specific expression of mutant KrasG12D and conditional deletion of p53 gene caused the development of liver cancer. Remarkably, liver cancer in these KPF mice manifested a distinctive mixed hepatocellular carcinoma and cholangiocarcinoma phenotype. A highly efficient and liver-specific BAC-Alb-FlpO mouse model was developed. In combination with other Cre lines, different genes can be manipulated sequentially in the same cell, or distinct genetic changes can be induced in different cell types of the same organism.NEW & NOTEWORTHY A liver-specific Alb-FlpO mouse line was generated. By coupling it with other existing CreERT or Cre lines, the dual recombinase approach can enable sequential gene modifications within the same cell or across various cell types in an organism for liver research through temporal and spatial gene manipulations.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Yang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Dongfeng Feng
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Oliver Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiaxiang Chen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Jiale Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Bin Wang
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Yang Liu
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ashley N Haddock
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| | - Ying Wang
- Departments of Cardiovascular Diseases and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, United States
| | - Yan Bi
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, United States
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States
| |
Collapse
|
9
|
Loeuillard EJ, Li B, Stumpf HE, Yang J, Willhite JR, Tomlinson JL, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Growth in Cholangiocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:853-876. [PMID: 38219900 PMCID: PMC10981132 DOI: 10.1016/j.jcmgh.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND & AIMS Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.
Collapse
Affiliation(s)
- Emilien J Loeuillard
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Binbin Li
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Hannah E Stumpf
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jessica R Willhite
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Jennifer L Tomlinson
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.
| |
Collapse
|
10
|
Zhang N, Shu L, Liu Z, Shi A, Zhao L, Huang S, Sheng G, Yan Z, Song Y, Huang F, Tang Y, Zhang Z. The role of extracellular vesicles in cholangiocarcinoma tumor microenvironment. Front Pharmacol 2024; 14:1336685. [PMID: 38269274 PMCID: PMC10805838 DOI: 10.3389/fphar.2023.1336685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.
Collapse
Affiliation(s)
- Nuoqi Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhuang Shu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Qilu Hospital, Shandong University, Qingdao, Shandong, China
| | - Anda Shi
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liming Zhao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohui Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guoli Sheng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhangdi Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Song
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Fan Huang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yongchang Tang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Sharma R, Majee C, Mazumder R, Mazumder A, Tyagi PK, Chaitanya MVNL. Insight Into the Role of Alkaloids in the Different Signalling Pathways of Cholangiocarcinoma. JOURNAL OF NATURAL REMEDIES 2024:43-58. [DOI: 10.18311/jnr/2024/34661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 01/04/2025]
Abstract
Throughout the biliary tree, a variety of cells give rise to cholangiocarcinomas, a broad group of malignancies. The fact that these tumours are silent and asymptomatic, especially in their early stages, seriously impairs the effectiveness of available therapeutic options and contributes to their poor prognosis. Over the past few years, increased efforts have been made to identify the aetiology and signalling pathways of these tumours and to create more potent therapies. Since alkaloids are more potent and effective against cholangiocarcinoma cell lines, they have gained importance in the treatment of cholangiocarcinoma. In cell lines with cholangiocarcinoma, they promote apoptosis. and restrict the spread of cells, departure, and development. This review highlights the recent developments in the study of CCA, primarily concentrating on the regulation of the signalling pathway and revealing alkaloids demonstrating strong anti-cholangiocarcinoma efficacy, providing researchers with a rapid approach for the future development of powerful and efficient pharmaceutical compounds.
Collapse
|
12
|
Yasen A, Yang Z, Feng J, Liang R, Dai T, Li K, Cai Y, Wang G. IL-33/ST2 Signaling and its Correlation with Macrophage Heterogeneity and Clinicopathologic Features in Human Intrahepatic Cholangiocarcinoma. Curr Cancer Drug Targets 2024; 24:1144-1156. [PMID: 38299398 DOI: 10.2174/0115680096276605240108112135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND IL-33/ST2 signaling plays crucial roles in the development and progression of various human malignancies. However, its significance in intrahepatic cholangiocarcinoma (ICC) still remains unclear. OBJECTIVE This study aimed to investigate the expression of IL-33/ST2 signaling and its correlations with macrophage heterogeneity and ICC patients' clinicopathologic features. METHODS The expression of different phenotype macrophage markers and IL-33/ST2 signalingrelated markers was detected. The correlation between L-33/ST2 signaling and different phenotype macrophage markers as well as ICC patients' clinicopathologic data was evaluated. RESULTS Massive heterogeneous cancer cells and PAS-positive cells were observed in tumor tissues. CD68-positive cells accumulated in tumor tissues and expression of both M1 phenotype markers and M2 phenotype macrophage markers was higher in tumor samples than para-carcinoma samples. However, M2 phenotype macrophages represented the dominant macrophage population in ICC tissues. Plasma levels of IL-33, ST2, and MIF were evidently enhanced in ICC patients compared to healthy controls. IL-33/ST2 signaling-related markers exhibited a massive increase in tumor samples than para-carcinoma samples. IL-33 and ST2 expression in ICC tissues was positively associated with M1 and M2 phenotype macrophages. Plasma levels of IL-33, ST2, and MIF were correlated with the diameter of tumor lesions, lymph node metastasis, TNM stage, and tumor differentiation degree. Multivariate analysis demonstrated IL-33 expression to exhibit a correlation with the diameter of tumor lesions, lymph node metastasis, and TNM stage. Additionally, there was a relationship observed between ST2, MIF expression, and diameter of tumor lesions plus TNM stage. CONCLUSION IL-33/ST2 signaling exhibited a positive relationship with macrophage heterogeneity in ICC tissues, and upregulated levels of IL-33, ST2, and MIF were associated with aggressive clinicopathologic characteristics. These findings may provide promising diagnostic biomarkers and potential therapeutic strategies for ICC patients targeting IL-33/ST2 signaling.
Collapse
Affiliation(s)
- Aimaiti Yasen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, No. 183 Xinqiao High Street, Shapingba District, Chongqing, 400037, China
| | - ZhanDong Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, Province, China
| | - Jun Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - RunBin Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - TianXing Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Kai Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - YuHong Cai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - GuoYing Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| |
Collapse
|
13
|
Zhang Y, Yan HJ, Wu J. The Tumor Immune Microenvironment plays a Key Role in Driving the Progression of Cholangiocarcinoma. Curr Cancer Drug Targets 2024; 24:681-700. [PMID: 38213139 DOI: 10.2174/0115680096267791231115101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/13/2024]
Abstract
Cholangiocarcinoma (CCA) is an epithelial cancer distinguished by bile duct cell differentiation and is also a fibroproliferative tumor. It is characterized by a dense mesenchyme and a complex tumor immune microenvironment (TME). The TME comprises both cellular and non-cellular components. The celluar component includes CCA cells, immune cells and mesenchymal cells represented by the cancer-associated fibroblasts (CAFs), while the non-cellular component is represented by mesenchymal elements such as the extracellular matrix (ECM). Recent studies have demonstrated the important role of the TME in the development, progression, and treatment resistance of CCA. These cell-associated prognostic markers as well as intercellular connections, may serve as potential therapeutic targets and could inspire new treatment approaches for CCA in the future. This paper aims to summarize the current understanding of CCA's immune microenvironment, focusing on immune cells, mesenchymal cells, ECM, intercellular interactions, and metabolism within the microenvironment.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian St, Changzhou, 213003, China
| | - Hai-Jiao Yan
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian St, Changzhou, 213003, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian St, Changzhou, 213003, China
| |
Collapse
|
14
|
Gehl V, O'Rourke CJ, Andersen JB. Immunogenomics of cholangiocarcinoma. Hepatology 2023:01515467-990000000-00649. [PMID: 37972940 DOI: 10.1097/hep.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The development of cholangiocarcinoma spans years, if not decades, during which the immune system becomes corrupted and permissive to primary tumor development and metastasis. This involves subversion of local immunity at tumor sites, as well as systemic immunity and the wider host response. While immune dysfunction is a hallmark of all cholangiocarcinoma, the specific steps of the cancer-immunity cycle that are perturbed differ between patients. Heterogeneous immune functionality impacts the evolutionary development, pathobiological behavior, and therapeutic response of these tumors. Integrative genomic analyses of thousands of primary tumors have supported a biological rationale for immune-based stratification of patients, encompassing immune cell composition and functionality. However, discerning immune alterations responsible for promoting tumor initiation, maintenance, and progression from those present as bystander events remains challenging. Functionally uncoupling the tumor-promoting or tumor-suppressing roles of immune profiles will be critical for identifying new immunomodulatory treatment strategies and associated biomarkers for patient stratification. This review will discuss the immunogenomics of cholangiocarcinoma, including the impact of genomic alterations on immune functionality, subversion of the cancer-immunity cycle, as well as clinical implications for existing and novel treatment strategies.
Collapse
Affiliation(s)
- Virag Gehl
- Department of Health and Medical Sciences, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
15
|
Catanzaro E, Gringeri E, Burra P, Gambato M. Primary Sclerosing Cholangitis-Associated Cholangiocarcinoma: From Pathogenesis to Diagnostic and Surveillance Strategies. Cancers (Basel) 2023; 15:4947. [PMID: 37894314 PMCID: PMC10604939 DOI: 10.3390/cancers15204947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most common malignancy in patients with primary sclerosing cholangitis (PSC), accounting for 2-8% of cases and being the leading cause of death in these patients. The majority of PSC-associated CCAs (PSC-CCA) develop within the first few years after PSC diagnosis. Older age and male sex, as well as concomitant inflammatory bowel disease (IBD) or high-grade biliary stenosis, are some of the most relevant risk factors. A complex combination of molecular mechanisms involving inflammatory pathways, direct cytopathic damage, and epigenetic and genetic alterations are involved in cholangiocytes carcinogenesis. The insidious clinical presentation makes early detection difficult, and the integration of biochemical, radiological, and histological features does not always lead to a definitive diagnosis of PSC-CCA. Surveillance is mandatory, but current guideline strategies failed to improve early detection and consequently a higher patient survival rate. MicroRNAs (miRNAs), gene methylation, proteomic and metabolomic profile, and extracellular vesicle components are some of the novel biomarkers recently applied in PSC-CCA detection with promising results. The integration of these new molecular approaches in PSC diagnosis and monitoring could contribute to new diagnostic and surveillance strategies.
Collapse
Affiliation(s)
- Elisa Catanzaro
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Center, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Patrizia Burra
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| | - Martina Gambato
- Gastroenterology, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
- Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
16
|
Russi AE, Shivakumar P, Luo Z, Bezerra J. Plasticity between type 2 innate lymphoid cell subsets and amphiregulin expression regulates epithelial repair in biliary atresia. Hepatology 2023; 78:1035-1049. [PMID: 37078450 PMCID: PMC10524120 DOI: 10.1097/hep.0000000000000418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND AND AIMS Although a dysregulated type 1 immune response is integral to the pathogenesis of biliary atresia, studies in both humans and mice have uncovered a type 2 response, primarily driven by type 2 innate lymphoid cells. In nonhepatic tissues, natural type 2 innate lymphoid cell (nILC2s) regulate epithelial proliferation and tissue repair, whereas inflammatory ILC2s (iIlC2s) drive tissue inflammation and injury. The aim of this study is to determine the mechanisms used by type 2 innate lymphoid cell (ILC2) subpopulations to regulate biliary epithelial response to an injury. APPROACH AND RESULTS Using Spearman correlation analysis, nILC2 transcripts, but not those of iILC2s, are positively associated with cholangiocyte abundance in biliary atresia patients at the time of diagnosis. nILC2s are identified in the mouse liver through flow cytometry. They undergo expansion and increase amphiregulin production after IL-33 administration. This drives epithelial proliferation dependent on the IL-13/IL-4Rα/STAT6 pathway as determined by decreased nILC2s and reduced epithelial proliferation in knockout strains. The addition of IL-2 promotes inter-lineage plasticity towards a nILC2 phenotype. In experimental biliary atresia induced by rotavirus, this pathway promotes epithelial repair and tissue regeneration. The genetic loss or molecular inhibition of any part of this circuit switches nILC2s to inflammatory type 2 innate lymphoid cell-like, resulting in decreased amphiregulin production, decreased epithelial proliferation, and the full phenotype of experimental biliary atresia. CONCLUSIONS These findings identify a key function of the IL-13/IL-4Rα/STAT6 pathway in ILC2 plasticity and an alternate circuit driven by IL-2 to promote nILC2 stability and amphiregulin expression. This pathway induces epithelial homeostasis and repair in experimental biliary atresia.
Collapse
Affiliation(s)
- Abigail E Russi
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center; Cincinnati OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine; Cincinnati OH, USA
| | - Zhenhua Luo
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, 510080
| | - Jorge Bezerra
- Department of Pediatrics, University of Texas Southwestern Medical Center and Children’s Health of Dallas, TX, USA
| |
Collapse
|
17
|
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y, Zheng T. The present roles and future perspectives of Interleukin-6 in biliary tract cancer. Cytokine 2023; 169:156271. [PMID: 37331095 DOI: 10.1016/j.cyto.2023.156271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
Biliary tract cancer (BTC) is a highly malignant tumor that originates from bile duct epithelium and is categorized into intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA), distal cholangiocarcinoma (dCCA) and gallbladder cancer (GBC) according to the anatomic location. Inflammatory cytokines generated by chronic infection led to an inflammatory microenvironment which influences the carcinogenesis of BTC. Interleukin-6 (IL-6), a multifunctional cytokine secreted by kupffer cells, tumor-associated macrophages, cancer-associated fibroblasts (CAFs) and cancer cells, plays a central role in tumorigenesis, angiogenesis, proliferation, and metastasis in BTC. Besides, IL-6 serves as a clinical biomarker for diagnosis, prognosis, and monitoring for BTC. Moreover, preclinical evidence indicates that IL-6 antibodies could sensitize tumor immune checkpoint inhibitors (ICIs) by altering the number of infiltrating immune cells and regulating the expression of immune checkpoints in the tumor microenvironment (TME). Recently, IL-6 has been shown to induce programmed death ligand 1 (PD-L1) expression through the mTOR pathway in iCCA. However, the evidence is insufficient to conclude that IL-6 antibodies could boost the immune responses and potentially overcome the resistance to ICIs for BTC. Here, we systematically review the central role of IL-6 in BTC and summarize the potential mechanisms underlying the improved efficacy of treatments combining IL-6 antibodies with ICIs in tumors. Given this, a future direction is proposed for BTC to increase ICIs sensitivity by blocking IL-6 pathways.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ruisi Na
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shihui Lai
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Ying Guo
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Jianhua Nie
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Shuyuan Zhang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Yuan Wang
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China
| | - Tongsen Zheng
- Key Laboratory of Molecular Oncology of Heilongjiang Province, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang, China.
| |
Collapse
|
18
|
Chatterjee A, Azevedo-Martins JM, Stachler MD. Interleukin-33 as a Potential Therapeutic Target in Gastric Cancer Patients: Current Insights. Onco Targets Ther 2023; 16:675-687. [PMID: 37583706 PMCID: PMC10424681 DOI: 10.2147/ott.s389120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
Gastric cancer is a significant global health problem as it is the fifth most prevalent cancer worldwide and the fourth leading cause of cancer-related mortality. While cytotoxic chemotherapy remains the primary treatment for advanced GC, response rates are limited. Recent progresses, focused on molecular signalling within gastric cancer, have ignited new hope for potential therapeutic targets that may improve survival and/or reduce the toxic effects of traditional therapies. Carcinomas are generally initiated when critical regulatory genes get mutated, but the progression to malignancy is usually supported by the non-neoplastic cells that create a conducive environment for transformation and progression to occur. Interleukin 33 (IL-33) functions as a dual activity cytokine as it is also a nuclear factor. IL-33 is usually present in the nuclei of the cells. Upon tissue damage, it is released into the extracellular space and binds to its receptor, suppression of tumorigenicity 2 (ST2) L, which is expressed on the membranes of the target cells. IL-33 signalling activates the T Helper 2 (Th2) immune response among other responses. Although the studies on the role of IL-33 in gastric cancer are still in the early stages, they have revealed potentially important (though sometimes conflicting) functions or roles in cancer development and progression. The pro-tumorigenic roles include induction and the recruitment of tumor-associated immune cells, promoting metaplasia progression, and inducing stem cell like and EMT properties in gastric cancer cells. Therapeutic interventions to disrupt these functions may provide a unique strategy for gastric cancer prevention and treatment. This review aims to provide a summary of the role of IL-33 in GC, state its multiple functions in relation to GC, and show potential avenues for promising therapeutic investigation.
Collapse
Affiliation(s)
- Annesha Chatterjee
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| | | | - Matthew D Stachler
- University of California San Francisco, Department of Pathology, San Francisco, CA, USA
| |
Collapse
|
19
|
Loeuillard E, Li B, Stumpf HE, Yang J, Willhite J, Tomlinson JL, Wang J, Rohakhtar FR, Simon VA, Graham RP, Smoot RL, Dong H, Ilyas SI. Noncanonical TRAIL Signaling Promotes Myeloid-Derived Suppressor Cell Abundance and Tumor Progression in Cholangiocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541931. [PMID: 37293061 PMCID: PMC10245899 DOI: 10.1101/2023.05.24.541931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in humans, challenging the concept of TRAIL as a potent anticancer agent. Herein, we demonstrate that TRAIL + cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). In multiple immunocompetent syngeneic, orthotopic murine models of CCA, implantation of TRAIL + murine cancer cells into Trail-r -/- mice resulted in a significant reduction in tumor volumes compared to wild type mice. Tumor bearing Trail-r -/- mice had a significant decrease in the abundance of MDSCs due to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent NF-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) of CD45 + cells in murine tumors from three distinct immunocompetent CCA models demonstrated a significant enrichment of an NF-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis due to enhanced expression of cellular FLICE inhibitory protein (cFLIP), an inhibitor of proapoptotic TRAIL signaling. Accordingly, cFLIP knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. In summary, our findings define a noncanonical TRAIL signal in MDSCs and highlight the therapeutic potential of targeting TRAIL + cancer cells for the treatment of a poorly immunogenic cancer.
Collapse
|
20
|
Lu X, Green BL, Xie C, Liu C, Chen X. Preclinical and clinical studies of immunotherapy for the treatment of cholangiocarcinoma. JHEP Rep 2023; 5:100723. [PMID: 37229173 PMCID: PMC10205436 DOI: 10.1016/j.jhepr.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 05/27/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare primary liver cancer associated with high mortality and few systemic treatment options. The behaviour of the immune system has come into focus as a potential treatment modality for many cancer types, but immunotherapy has yet to dramatically alter the treatment paradigm for CCA as it has for other diseases. Herein, we review recent studies describing the relevance of the tumour immune microenvironment (TIME) in CCA. Various non-parenchymal cell types are critically important in controlling CCA progression, prognosis, and response to systemic therapy. Knowledge of the behaviour of these leukocytes could help generate hypotheses to guide the development of potential immune-directed therapies. Recently, an immunotherapy-containing combination was approved for the treatment of advanced-stage CCA. However, despite level 1 evidence demonstrating the improved efficacy of this therapy, survival remained suboptimal. In the current manuscript, we provide a comprehensive review of the TIME in CCA, preclinical studies of immunotherapies against CCA, as well as ongoing clinical trials applying immunotherapies for the treatment of CCA. Particular emphasis is placed on microsatellite unstable tumours, a rare CCA subtype that demonstrates heightened sensitivity to approved immune checkpoint inhibitors. We also discuss the challenges involved in applying immunotherapies to the treatment of CCA and the importance of understanding the TIME.
Collapse
Affiliation(s)
- Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Benjamin L. Green
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chao Liu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
21
|
Calvisi DF, Boulter L, Vaquero J, Saborowski A, Fabris L, Rodrigues PM, Coulouarn C, Castro RE, Segatto O, Raggi C, van der Laan LJW, Carpino G, Goeppert B, Roessler S, Kendall TJ, Evert M, Gonzalez-Sanchez E, Valle JW, Vogel A, Bridgewater J, Borad MJ, Gores GJ, Roberts LR, Marin JJG, Andersen JB, Alvaro D, Forner A, Banales JM, Cardinale V, Macias RIR, Vicent S, Chen X, Braconi C, Verstegen MMA, Fouassier L. Criteria for preclinical models of cholangiocarcinoma: scientific and medical relevance. Nat Rev Gastroenterol Hepatol 2023; 20:462-480. [PMID: 36755084 DOI: 10.1038/s41575-022-00739-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/10/2023]
Abstract
Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scottish Centre, Institute of Genetics and Cancer, Edinburgh, UK
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro M Rodrigues
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes 1, OSS (Oncogenesis Stress Signalling), UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Oreste Segatto
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Benjamin Goeppert
- Institute of Pathology and Neuropathology, Ludwigsburg, Germany
- Institute of Pathology, Kantonsspital Baselland, Liestal, Switzerland
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Mitesh J Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jose J G Marin
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alejandro Forner
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocio I R Macias
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Experimental Hepatology and Drug Targeting (HEVEPHARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Silve Vicent
- University of Navarra, Centre for Applied Medical Research, Program in Solid Tumours, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC, Instituto de Salud Carlos III), Madrid, Spain
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC Transplantation Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Laura Fouassier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Paris, France.
| |
Collapse
|
22
|
Nagalo BM, Zhou Y, Loeuillard EJ, Dumbauld C, Barro O, Elliott NM, Baker AT, Arora M, Bogenberger JM, Meurice N, Petit J, Uson PLS, Aslam F, Raupach E, Gabere M, Basnakian A, Simoes CC, Cannon MJ, Post SR, Buetow K, Chamcheu JC, Barrett MT, Duda DG, Jacobs B, Vile R, Barry MA, Roberts LR, Ilyas S, Borad MJ. Characterization of Morreton virus as an oncolytic virotherapy platform for liver cancers. Hepatology 2023; 77:1943-1957. [PMID: 36052732 DOI: 10.1002/hep.32769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.
Collapse
Affiliation(s)
- Bolni Marius Nagalo
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Yumei Zhou
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Emilien J Loeuillard
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Chelsae Dumbauld
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Oumar Barro
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Natalie M Elliott
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexander T Baker
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Mansi Arora
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - James M Bogenberger
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Nathalie Meurice
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Joachim Petit
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Pedro Luiz Serrano Uson
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Center for Personalized Medicine , Hospital Israelita Albert Einstein , São Paulo , Brazil
| | - Faaiq Aslam
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Elizabeth Raupach
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Musa Gabere
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Alexei Basnakian
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Camila C Simoes
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Martin J Cannon
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- Department of Microbiology and Immunology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Steven R Post
- Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Kenneth Buetow
- Computational Sciences and Informatics Program for Complex Adaptive System Arizona State University , Tempe , Arizona , USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences , College of Pharmacy, University of Louisiana , Monroe , Louisiana , USA
| | - Michael T Barrett
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Department of Radiation Oncology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Bertram Jacobs
- Center for Infectious Diseases and Vaccinology , the Biodesign Institute, Arizona State University , Tempe , Arizona , USA
| | - Richard Vile
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
| | - Michael A Barry
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Division of Infectious Diseases, Department of Internal Medicine , Mayo Clinic Rochester , Rochester , Minnesota , USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Sumera Ilyas
- Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , Minnesota , USA
| | - Mitesh J Borad
- Department of Molecular Medicine , Mayo Clinic , Rochester , Minnesota , USA
- Division of Hematology and Medical Oncology , Mayo Clinic , Phoenix , Arizona , USA
- Mayo Clinic Comprehensive Cancer Center , Phoenix , Minnesota , USA
- Mayo Clinic Center for Individualized Medicine , Rochester , Minnesota , USA
| |
Collapse
|
23
|
Golino JL, Wang X, Bian J, Ruf B, Kelly M, Karim BO, Cam MC, Xie C. Anti-Cancer Activity of Verteporfin in Cholangiocarcinoma. Cancers (Basel) 2023; 15:2454. [PMID: 37173920 PMCID: PMC10177077 DOI: 10.3390/cancers15092454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogenous malignancy that arises from the biliary epithelium and has a poor clinical prognosis. The Hippo/yes-associated protein (YAP) pathway has been reported to affect various aspects of tumorigenesis, with high expression of YAP1 being negatively associated with survival in CCA patients. Thus, we investigated the antitumoral effect of verteporfin, a YAP1 pathway inhibitor, in YAP1/AKT hydrodynamic tail vein injected murine models. We also used flow cytometry and single-cell RNA sequencing (scRNA-seq) to analyze the change in the immune cell profile and malignant cell stemness following verteporfin treatment. Our results demonstrated reduced liver weight and tumor formation in verteporfin-treated groups compared to that of a vehicle-treated group. Immune cell profiling through flow cytometry showed that relative to the vehicle, verteporfin induced a higher ratio of tumor-associated macrophage (TAM) M1/M2 and increased the percentage of activated CD8 T cell population (CD8+CD25+ and CD8+CD69+). scRNA-seq analysis showed significantly increased TAM M1 populations following verteporfin treatment and decreased proportions of stem-like cells within the malignant cell population. In summary, this study indicates that in CCA YAP/AKT murine models, verteporfin reduces tumorigenesis by polarizing anti-tumoral TAM and activating CD8 T cells and decreasing stem-like malignant cell proportions in the tumor microenvironment.
Collapse
Affiliation(s)
- Jihye L. Golino
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jing Bian
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Ruf
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Kelly
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Baktiar O. Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Maggie C. Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Conboy CB, Yonkus JA, Buckarma EH, Mun DG, Werneburg NW, Watkins RD, Alva-Ruiz R, Tomlinson JL, Guo Y, Wang J, O'Brien D, McCabe CE, Jessen E, Graham RP, Buijsman RC, Vu D, de Man J, Ilyas SI, Truty MJ, Borad M, Pandey A, Gores GJ, Smoot RL. LCK inhibition downregulates YAP activity and is therapeutic in patient-derived models of cholangiocarcinoma. J Hepatol 2023; 78:142-152. [PMID: 36162702 PMCID: PMC11410293 DOI: 10.1016/j.jhep.2022.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS There is an unmet need to develop novel, effective medical therapies for cholangiocarcinoma (CCA). The Hippo pathway effector, Yes-associated protein (YAP), is oncogenic in CCA, but has historically been difficult to target therapeutically. Recently, we described a novel role for the LCK proto-oncogene, Src family tyrosine kinase (LCK) in activating YAP through tyrosine phosphorylation. This led to the hypothesis that LCK is a viable therapeutic target in CCA via regulation of YAP activity. METHODS A novel tyrosine kinase inhibitor with relative selectivity for LCK, NTRC 0652-0, was pharmacodynamically profiled in vitro and in CCA cells. A panel of eight CCA patient-derived organoids were characterized and tested for sensitivity to NTRC 0652-0. Two patient-derived xenograft models bearing fibroblast growth factor receptor 2 (FGFR2)-rearrangements were utilized for in vivo assessment of pharmacokinetics, toxicity, and efficacy. RESULTS NTRC 0652-0 demonstrated selectivity for LCK inhibition in vitro and in CCA cells. LCK inhibition with NTRC 0652-0 led to decreased tyrosine phosphorylation, nuclear localization, and co-transcriptional activity of YAP, and resulted in apoptotic cell death in CCA cell lines. A subset of tested patient-derived organoids demonstrated sensitivity to NTRC 0652-0. CCAs with FGFR2 fusions were identified as a potentially susceptible and clinically relevant genetic subset. In patient-derived xenograft models of FGFR2 fusion-positive CCA, daily oral treatment with NTRC 0652-0 resulted in stable plasma and tumor drug levels, acceptable toxicity, decreased YAP tyrosine phosphorylation, and significantly decreased tumor growth. CONCLUSIONS A novel LCK inhibitor, NTRC 0652-0, inhibited YAP signaling and demonstrated preclinical efficacy in CCA cell lines, and patient-derived organoid and xenograft models. IMPACT AND IMPLICATIONS Although aberrant YAP activation is frequently seen in CCA, YAP targeted therapies are not yet clinically available. Herein we show that a novel LCK-selective tyrosine kinase inhibitor (NTRC 0652-0) effectively inhibits YAP tyrosine phosphorylation and cotranscriptional activity and is well tolerated and cytotoxic in multiple preclinical models. The data suggest this approach may be effective in CCA with YAP dependence or FGFR2 fusions, and these findings warrant further investigation in phase I clinical trials.
Collapse
Affiliation(s)
| | | | | | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Yi Guo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Juan Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Daniel O'Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Chantal E McCabe
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Diep Vu
- Netherlands Translational Research Center, Oss, Netherlands
| | - Jos de Man
- Netherlands Translational Research Center, Oss, Netherlands
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mitesh Borad
- Division of Hematology and Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
25
|
Mohamad Zaki NH, Shiota J, Calder AN, Keeley TM, Allen BL, Nakao K, Samuelson LC, Razumilava N. C-X-C motif chemokine ligand 1 induced by Hedgehog signaling promotes mouse extrahepatic bile duct repair after acute injury. Hepatology 2022; 76:936-950. [PMID: 35388502 PMCID: PMC9790600 DOI: 10.1002/hep.32492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS In extrahepatic bile duct (EHBD) cholangiopathies, including primary sclerosing cholangitis, a reactive cholangiocyte phenotype is associated with inflammation and epithelial hyperproliferation. The signaling pathways involved in EHBD injury response are poorly understood. In this study, we investigated the role of Hedgehog (HH) signaling and its downstream effectors in controlling biliary proliferation and inflammation after EHBD injury. APPROACH AND RESULTS Using mouse bile duct ligation as an acute EHBD injury model, we used inhibitory paradigms to uncover mechanisms promoting the proliferative response. HH signaling was inhibited genetically in Gli1-/- mice or by treating wild-type mice with LDE225. The role of neutrophils was tested using chemical (SB225002) and biological (lymphocyte antigen 6 complex locus G6D [Ly6G] antibodies) inhibitors of neutrophil recruitment. The cellular response was defined through morphometric quantification of proliferating cells and CD45+ and Ly6G+ immune cell populations. Key signaling component expression was measured and localized to specific EHBD cellular compartments by in situ hybridization, reporter strain analysis, and immunohistochemistry. Epithelial cell proliferation peaked 24 h after EHBD injury, preceded stromal cell proliferation, and was associated with neutrophil influx. Indian HH ligand expression in the biliary epithelium rapidly increased after injury. HH-responding cells and neutrophil chemoattractant C-X-C motif chemokine ligand 1 (CXCL1) expression mapped to EHBD stromal cells. Inhibition of HH signaling blocked CXCL1 induction, diminishing neutrophil recruitment and the biliary proliferative response to injury. Directly targeting neutrophils by inhibition of the CXCL1/C-X-C motif chemokine receptor 2/Ly6G signaling axis also decreased biliary proliferation. CONCLUSIONS HH-regulated CXCL1 orchestrates the early inflammatory response and biliary proliferation after EHBD injury through complex cellular crosstalk.
Collapse
Affiliation(s)
| | - Junya Shiota
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Gastroenterology and HepatologyNagasaki UniversityNagasakiJapan
| | - Ashley N. Calder
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Theresa M. Keeley
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Benjamin L. Allen
- Department of Cell and Developmental BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kazuhiko Nakao
- Department of Gastroenterology and HepatologyNagasaki UniversityNagasakiJapan
| | - Linda C. Samuelson
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | | |
Collapse
|
26
|
Caligiuri A, Gitto S, Lori G, Marra F, Parola M, Cannito S, Gentilini A. Oncostatin M: From Intracellular Signaling to Therapeutic Targets in Liver Cancer. Cancers (Basel) 2022; 14:4211. [PMID: 36077744 PMCID: PMC9454586 DOI: 10.3390/cancers14174211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancers represent the third-most-common cause of cancer-related mortality worldwide, with an incidence of 80-90% for hepatocellular carcinoma (HCC) and 10-15% for cholangiocarcinoma (CCA), and an increasing morbidity and mortality rate. Although HCC and CCA originate from independent cell populations (hepatocytes and biliary epithelial cells, respectively), they develop in chronically inflamed livers. Evidence obtained in the last decade has revealed a role for cytokines of the IL-6 family in the development of primary liver cancers. These cytokines operate through the receptor subunit gp130 and the downstream Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. Oncostatin M (OSM), a member of the IL-6 family, plays a significant role in inflammation, autoimmunity, and cancer, including liver tumors. Although, in recent years, therapeutic approaches for the treatment of HCC and CCA have been implemented, limited treatment options with marginal clinical benefits are available. We discuss how OSM-related pathways can be selectively inhibited and therapeutically exploited for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
27
|
Russell JO, Camargo FD. Hippo signalling in the liver: role in development, regeneration and disease. Nat Rev Gastroenterol Hepatol 2022; 19:297-312. [PMID: 35064256 PMCID: PMC9199961 DOI: 10.1038/s41575-021-00571-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
The Hippo signalling pathway has emerged as a major player in many aspects of liver biology, such as development, cell fate determination, homeostatic function and regeneration from injury. The regulation of Hippo signalling is complex, with activation of the pathway by diverse upstream inputs including signals from cellular adhesion, mechanotransduction and crosstalk with other signalling pathways. Pathological activation of the downstream transcriptional co-activators yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ, encoded by WWTR1), which are negatively regulated by Hippo signalling, has been implicated in multiple aspects of chronic liver disease, such as the development of liver fibrosis and tumorigenesis. Thus, development of pharmacological inhibitors of YAP-TAZ signalling has been an area of great interest. In this Review, we summarize the diverse roles of Hippo signalling in liver biology and highlight areas where outstanding questions remain to be investigated. Greater understanding of the mechanisms of Hippo signalling in liver function should help facilitate the development of novel therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
28
|
Lan T, Qian S, Tang C, Gao J. Role of Immune Cells in Biliary Repair. Front Immunol 2022; 13:866040. [PMID: 35432349 PMCID: PMC9005827 DOI: 10.3389/fimmu.2022.866040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
The biliary system is comprised of cholangiocytes and plays an important role in maintaining liver function. Under normal conditions, cholangiocytes remain in the stationary phase and maintain a very low turnover rate. However, the robust biliary repair is initiated in disease conditions, and different repair mechanisms can be activated depending on the pathological changes. During biliary disease, immune cells including monocytes, lymphocytes, neutrophils, and mast cells are recruited to the liver. The cellular interactions between cholangiocytes and these recruited immune cells as well as hepatic resident immune cells, including Kupffer cells, determine disease outcomes. However, the role of immune cells in the initiation, regulation, and suspension of biliary repair remains elusive. The cellular processes of cholangiocyte proliferation, progenitor cell differentiation, and hepatocyte-cholangiocyte transdifferentiation during biliary diseases are reviewed to manifest the underlying mechanism of biliary repair. Furthermore, the potential role of immune cells in crucial biliary repair mechanisms is highlighted. The mechanisms of biliary repair in immune-mediated cholangiopathies, inherited cholangiopathies, obstructive cholangiopathies, and cholangiocarcinoma are also summarized. Additionally, novel techniques that could clarify the underlying mechanisms of biliary repair are displayed. Collectively, this review aims to deepen the understanding of the mechanisms of biliary repair and contributes potential novel therapeutic methods for treating biliary diseases.
Collapse
Affiliation(s)
- Tian Lan
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Zheng Q, Zhang B, Li C, Zhang X. Overcome Drug Resistance in Cholangiocarcinoma: New Insight Into Mechanisms and Refining the Preclinical Experiment Models. Front Oncol 2022; 12:850732. [PMID: 35372014 PMCID: PMC8970309 DOI: 10.3389/fonc.2022.850732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor characterized by a poor prognosis. Therapeutic options are limited in patients with advanced stage of CCA, as a result of the intrinsic or acquired resistance to currently available chemotherapeutic agents, and the lack of new drugs entering into clinical application. The challenge in translating basic research to the clinical setting, caused by preclinical models not being able to recapitulate the tumor characteristics of the patient, seems to be an important reason for the lack of effective and specific therapies for CCA. So, there seems to be two ways to improve patient outcomes. The first one is developing the combination therapies based on a better understanding of the mechanisms contributing to the resistance to currently available chemotherapeutic agents. The second one is developing novel preclinical experimental models that better recapitulate the genetic and histopathological features of the primary tumor, facilitating the screening of new drugs for CCA patients. In this review, we discussed the evidence implicating the mechanisms underlying treatment resistance to currently investigated drugs, and the development of preclinical experiment models for CCA.
Collapse
Affiliation(s)
- Qingfan Zheng
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Ko S, Kim M, Molina L, Sirica AE, Monga SP. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:283-317. [PMID: 35961703 PMCID: PMC9972177 DOI: 10.1016/bs.acr.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, is a highly lethal epithelial cell malignancy exhibiting features of cholangiocyte differentiation. iCCAs can potentially develop from multiple cell types of origin within liver, including immature or mature cholangiocytes, hepatic stem cells/progenitor cells, and from transdifferentiation of hepatocytes. Understanding the molecular mechanisms and genetic drivers that diversely drive specific cell lineage pathways leading to iCCA has important biological and clinical implications. In this context, activation of the YAP1-TEAD dependent transcription, driven by Hippo-dependent or -independent diverse mechanisms that lead to the stabilization of YAP1 is crucially important to biliary fate commitment in hepatobiliary cancer. In preclinical models, YAP1 activation in hepatocytes or cholangiocytes is sufficient to drive their malignant transformation into iCCA. Moreover, nuclear YAP1/TAZ is highly prevalent in human iCCA irrespective of the varied etiology, and significantly correlates with poor prognosis in iCCA patients. Based on the ubiquitous expression and diverse physiologic roles for YAP1/TAZ in the liver, recent studies have further revealed distinct functions of active YAP1/TAZ in regulating tumor metabolism, as well as the tumor immune microenvironment. In the current review, we discuss our current understanding of the various roles of the Hippo-YAP1 signaling in iCCA pathogenesis, with a specific focus on the roles played by the Hippo-YAP1 pathway in modulating biliary commitment and oncogenicity, iCCA metabolism, and immune microenvironment. We also discuss the therapeutic potential of targeting the YAP1/TAZ-TEAD transcriptional machinery in iCCA, its current limitations, and what future studies are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| | - Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, PA, United States.
| |
Collapse
|
31
|
STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14051154. [PMID: 35267462 PMCID: PMC8909292 DOI: 10.3390/cancers14051154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Liver cancer is the fourth-leading cause of cancer-related mortality worldwide and lacks effective therapies. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of liver cancer and both are associated with underlying inflammatory diseases. Thereby, interleukin-6 (IL-6)-mediated STAT3 signaling is critically involved in early carcinogenesis and disease progression. Here, we assessed the interplay between STAT1 and STAT3 in IL-6 signaling in vitro and studied the activation of STAT1 and STAT3 in a cohort of 124 HCC and a cohort of 138 CCA patients by immunohistochemistry. We found that IL-6 induced STAT1 transcriptional activity upon STAT3 depletion, suggesting that HCC tumor cells may activate both STAT1 and STAT3 signaling under pro-inflammatory conditions. Furthermore, HCC patient tissues showed a strong positive correlation of STAT1 and STAT3 activation in distinct patient groups. These patients also exhibited a high degree of immune cell infiltration, suggesting that these tumors are immune “hot”. Abstract Liver cancers, which are mostly hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are very aggressive tumors with poor prognosis. Therapeutic options with curative intent are largely limited to surgery and available systemic therapies show limited benefit. Signal transducer and activator of transcription 1 (STAT1) and 3 (STAT3) are key transcription factors activated by pro-inflammatory cytokines such as interferon-γ (IFN-γ) and interleukin-6 (IL-6). In this study, we combined in vitro cell culture experiments and immunohistochemical analyses of human HCC (N = 124) and CCA (N = 138) specimens. We observed that in the absence of STAT3, IL-6 induced the activation of STAT1 and its target genes suggesting that IL-6 derived from the tumor microenvironment may activate both STAT1 and STAT3 target genes in HCC tumor cells. In addition, STAT1 and STAT3 were highly activated in a subset of HCC, which exhibited a high degree of infiltrating CD8- and FOXP3-positive immune cells and PD-L1 expression. Our results demonstrate that STAT1 and STAT3 are expressed and activated in HCC and tumor infiltrating immune cells. In addition, HCC cases with high STAT1 and STAT3 expression also exhibited a high degree of immune cell infiltration, suggesting increased immunological tolerance.
Collapse
|
32
|
Lin Y, Cai Q, Chen Y, Shi T, Liu W, Mao L, Deng B, Ying Z, Gao Y, Luo H, Yang X, Huang X, Shi Y, He R. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Hepatology 2022; 75:28-42. [PMID: 34387870 DOI: 10.1002/hep.32099] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS We previously demonstrated that cancer-associated fibroblasts (CAFs) promote tumor growth through recruitment of myeloid-derived suppressor cells (MDSCs). 5-lipoxygenase (5-LO) is highly expressed in myeloid cells and is critical for synthesizing leukotriene B4 (LTB4), which is involved in tumor progression by activating its receptor leukotriene B4 receptor type 2 (BLT2). In this study, we investigated whether and how CAFs regulate MDSC function to enhance cancer stemness, the driving force of the cancer aggressiveness and chemotherapy refractoriness, in highly desmoplastic intrahepatic cholangiocarcinoma (ICC). APPROACH AND RESULTS RNA-sequencing analysis revealed enriched metabolic pathways but decreased inflammatory pathways in cancer MDSCs compared with blood MDSCs from patients with ICC. Co-injection of ICC patient-derived CAFs promoted cancer stemness in an orthotopic ICC model, which was blunted by MDSC depletion. Conditioned media (CM) from CAF-educated MDSCs drastically promoted tumorsphere formation efficiency and stemness marker gene expression in ICC cells. CAF-CM stimulation increased expression and activity of 5-LO in MDSCs, while 5-LO inhibitor impaired the stemness-enhancing capacity of MDSCs in vitro and in vivo. Furthermore, IL-6 and IL-33 primarily expressed by CAFs mediated hyperactivated 5-LO metabolism in MDSCs. We identified the LTB4-BLT2 axis as the critical downstream metabolite signaling of 5-LO in promoting cancer stemness, as treatment with LTB4 was elevated in CAF-educated MDSCs, or blockade of BLT2 (which was preferentially expressed in stem-like ICC cells) significantly reduced stemness-enhancing effects of CAF-educated MDSCs. Finally, BLT2 blockade augmented chemotherapeutic efficacy in ICC patient-derived xenograft models. CONCLUSIONS Our study reveals a role for CAFs in orchestrating the optimal cancer stemness-enhancing microenvironment by educating MDSCs, and suggests the 5-LO/LTB4-BLT2 axis as promising therapeutic targets for ICC chemoresistance by targeting cancer stemness.
Collapse
Affiliation(s)
- Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Cai
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tiancong Shi
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weiren Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Li Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Bo Deng
- Division of Nephrology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Ying
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Gao
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haoyang Luo
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuguang Yang
- Department of Oncology, Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowu Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Yinghong Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Paillet J, Plantureux C, Lévesque S, Le Naour J, Stoll G, Sauvat A, Caudana P, Tosello Boari J, Bloy N, Lachkar S, Martins I, Opolon P, Checcoli A, Delaune A, Robil N, de la Grange P, Hamroune J, Letourneur F, Autret G, Leung PS, Gershwin ME, Zhu JS, Kurth MJ, Lekbaby B, Augustin J, Kim Y, Gujar S, Coulouarn C, Fouassier L, Zitvogel L, Piaggio E, Housset C, Soussan P, Maiuri MC, Kroemer G, Pol JG. Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J Exp Med 2021; 218:e20200853. [PMID: 34495298 PMCID: PMC8429038 DOI: 10.1084/jem.20200853] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.
Collapse
Affiliation(s)
- Juliette Paillet
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Céleste Plantureux
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sarah Lévesque
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Julie Le Naour
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Gautier Stoll
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pamela Caudana
- Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Jimena Tosello Boari
- Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sylvie Lachkar
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Martins
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Andrea Checcoli
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
- Institut National de la Santé et de la Recherche Médicale U900, Paris, France
| | | | | | | | - Juliette Hamroune
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Franck Letourneur
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Gwennhael Autret
- Université de Paris, Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale U970, Paris, France
| | - Patrick S.C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis School of Medicine, Davis, CA
| | - M. Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis School of Medicine, Davis, CA
| | - Jie S. Zhu
- Department of Chemistry, University of California, Davis, Davis, CA
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, Davis, CA
| | - Bouchra Lekbaby
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Jérémy Augustin
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Henri-Mondor, Département de Pathologie, Paris, France
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cédric Coulouarn
- Institut National de la Santé et de la Recherche Médicale, Université de Rennes 1, Chemistry, Oncogenesis Stress Signaling, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Laura Fouassier
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale U1015, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eliane Piaggio
- Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, Paris, France
| | - Chantal Housset
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Department of Hepatology, Saint-Antoine Hospital, Paris, France
| | - Patrick Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan G. Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
34
|
Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J 2021; 35:e21570. [PMID: 33831275 DOI: 10.1096/fj.202002284rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The liver is the only visceral organ in the body with a tremendous capacity to regenerate in response to insults that induce inflammation, cell death, and injury. Liver regeneration is a complicated process involving a well-orchestrated activation of non-parenchymal cells in the injured area and proliferation of undamaged hepatocytes. Furthermore, the liver has a Hepatostat, defined as adjustment of its volume to that required for homeostasis. Understanding the mechanisms that control different steps of liver regeneration is critical to informing therapies for liver repair, to help patients with liver disease. The Hippo signaling pathway is well known for playing an essential role in the control and regulation of liver size, regeneration, stem cell self-renewal, and liver cancer. Thus, the Hippo pathway regulates dynamic cell fates in liver, and in absence of its downstream effectors YAP and TAZ, liver regeneration is severely impaired, and the proliferative expansion of liver cells blocked. We will mainly review upstream mechanisms activating the Hippo signaling pathway following partial hepatectomy in mouse model and patients, its roles during different steps of liver regeneration, metabolism, and cancer. We will also discuss how targeting the Hippo signaling cascade might improve liver regeneration and suppress liver tumorigenesis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Nazia Selzner
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
35
|
The Janus Face of IL-33 Signaling in Tumor Development and Immune Escape. Cancers (Basel) 2021; 13:cancers13133281. [PMID: 34209038 PMCID: PMC8268428 DOI: 10.3390/cancers13133281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Interleukin-33 (IL-33) is often released from damaged cells, acting as a danger signal. IL-33 exerts its function by interacting with its receptor suppression of tumorigenicity 2 (ST2) that is constitutively expressed on most immune cells. Therefore, IL-33/ST2 signaling can modulate immune responses to participate actively in a variety of pathological conditions, such as cancer. Like a two-faced Janus, which faces opposite directions, IL-33/ST2 signaling may play contradictory roles on its impact on cancer progression through both immune and nonimmune cellular components. Accumulating evidence demonstrates both pro- and anti-tumorigenic properties of IL-33, depending on the complex nature of different tumor immune microenvironments. We summarize and discuss the most recent studies on the contradictory effects of IL-33 on cancer progression and treatment, with a goal to better understanding the various ways for IL-33 as a therapeutic target. Abstract Interleukin-33 (IL-33), a member of the IL-1 cytokine family, plays a critical role in maintaining tissue homeostasis as well as pathological conditions, such as allergy, infectious disease, and cancer, by promoting type 1 and 2 immune responses. Through its specific receptor ST2, IL-33 exerts multifaceted functions through the activation of diverse intracellular signaling pathways. ST2 is expressed in different types of immune cells, including Th2 cells, Th1 cells, CD8+ T cells, regulatory T cells (Treg), cytotoxic NK cells, group 2 innate lymphoid cells (ILC2s), and myeloid cells. During cancer initiation and progression, the aberrant regulation of the IL-33/ST2 axis in the tumor microenvironment (TME) extrinsically and intrinsically mediates immune editing via modulation of both innate and adaptive immune cell components. The summarized results in this review suggest that IL-33 exerts dual-functioning, pro- as well as anti-tumorigenic effects depending on the tumor type, expression levels, cellular context, and cytokine milieu. A better understanding of the distinct roles of IL-33 in epithelial, stromal, and immune cell compartments will benefit the development of a targeting strategy for this IL-33/ST2 axis for cancer immunotherapy.
Collapse
|
36
|
The Role of Microbiota in Primary Sclerosing Cholangitis and Related Biliary Malignancies. Int J Mol Sci 2021; 22:ijms22136975. [PMID: 34203536 PMCID: PMC8268159 DOI: 10.3390/ijms22136975] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is an immune-related cholangiopathy characterized by biliary inflammation, cholestasis, and multifocal bile duct strictures. It is associated with high rates of progression to end-stage liver disease as well as a significant risk of cholangiocarcinoma (CCA), gallbladder cancer, and colorectal carcinoma. Currently, no effective medical treatment with an impact on the overall survival is available, and liver transplantation is the only curative treatment option. Emerging evidence indicates that gut microbiota is associated with disease pathogenesis. Several studies analyzing fecal and mucosal samples demonstrate a distinct gut microbiome in individuals with PSC compared to healthy controls and individuals with inflammatory bowel disease (IBD) without PSC. Experimental mouse and observational human data suggest that a diverse set of microbial functions may be relevant, including microbial metabolites and bacterial processing of pharmacological agents, bile acids, or dietary compounds, altogether driving the intrahepatic inflammation. Despite critical progress in this field over the past years, further functional characterization of the role of the microbiota in PSC and related malignancies is needed. In this review, we discuss the available data on the role of the gut microbiome and elucidate important insights into underlying pathogenic mechanisms and possible microbe-altering interventions.
Collapse
|
37
|
Recent Advances in Implantation-Based Genetic Modeling of Biliary Carcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13102292. [PMID: 34064809 PMCID: PMC8151177 DOI: 10.3390/cancers13102292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Biliary tract cancer (BTC) is often refractory to conventional therapeutics and is difficult to diagnose in the early stages. In addition, the pathogenesis of BTC is not fully understood, despite recent advances in cancer genome analysis. To address these issues, the development of fine disease models is critical for BTC. Although still limited in number, there are various platforms for genetic models of BTC owing to newly emerging technology. Among these, implantation-based models have recently drawn attention for their convenience, flexibility, and scalability. To highlight the relevance of this approach, we comprehensively summarize the advantages and disadvantages of BTC models developed using diverse approaches. Currently available research data on intra- and extrahepatic cholangiocarcinoma and gallbladder carcinoma are presented in this review. This information will likely help in selecting the optimal models for various applications and develop novel innovative models based on these technologies. Abstract Epithelial cells in the biliary system can develop refractory types of cancers, which are often associated with inflammation caused by viruses, parasites, stones, and chemicals. Genomic studies have revealed recurrent genetic changes and deregulated signaling pathways in biliary tract cancer (BTC). The causal roles have been at least partly clarified using various genetically engineered mice. Technical advances in Cre-LoxP technology, together with hydrodynamic tail injection, CRISPR/Cas9 technology, in vivo electroporation, and organoid culture have enabled more precise modeling of BTC. Organoid-based genetic modeling, combined with implantation in mice, has recently drawn attention as a means to accelerate the development of BTC models. Although each model may not perfectly mimic the disease, they can complement one another, or two different approaches can be integrated to establish a novel model. In addition, a comparison of the outcomes among these models with the same genotype provides mechanistic insights into the interplay between genetic alterations and the microenvironment in the pathogenesis of BTCs. Here, we review the current status of genetic models of BTCs in mice to provide information that facilitates the wise selection of models and to inform the future development of ideal disease models.
Collapse
|
38
|
Wang J, Ilyas S. Targeting the tumor microenvironment in cholangiocarcinoma: implications for therapy. Expert Opin Investig Drugs 2021; 30:429-438. [PMID: 33322977 PMCID: PMC8096665 DOI: 10.1080/13543784.2021.1865308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Cholangiocarcinomas (CCAs) are biliary epithelial tumors with rising incidence over the past 3 decades. Early diagnosis of CCAs remains a significant challenge and the majority of patients present at an advanced stage. CCAs are heterogeneous tumors and currently available standard systemic therapy options are of limited effectiveness. Immune checkpoint inhibition (ICI) has transformed cancer therapy across a spectrum of malignancies. However, the response rate to ICI has been relatively disappointing in CCAs owing to its desmoplastic tumor microenvironment (TME).Areas covered: Tumor microenvironment of CCAs consists of innate and adaptive cells, stromal cells, and extracellular components (cytokines, chemokines, exosomes, etc.). This intricate microenvironment has multiple immunosuppressive elements that promote tumor cell survival and therapeutic resistance. Accordingly, there is a need for the development of effective therapeutic strategies that target the TME. Herein, we review the components of the CCA TME, and potential therapies targeting the CCA TME.Expert opinion: CCAs are desmoplastic tumors with a dense tumor microenvironment. An enhanced understanding of the various components of the CCA TME is essential in the effort to develop novel biomarkers for patient stratification as well as combination therapeutic strategies that target the tumor plus the TME.
Collapse
Affiliation(s)
- Juan Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sumera Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
40
|
Moeini A, Haber PK, Sia D. Cell of origin in biliary tract cancers and clinical implications. JHEP Rep 2021; 3:100226. [PMID: 33665585 PMCID: PMC7902553 DOI: 10.1016/j.jhepr.2021.100226] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancers (BTCs) are aggressive epithelial malignancies that can arise at any point of the biliary tree. Albeit rare, their incidence and mortality rates have been rising steadily over the past 40 years, highlighting the need to improve current diagnostic and therapeutic strategies. BTCs show high inter- and intra-tumour heterogeneity both at the morphological and molecular level. Such complex heterogeneity poses a substantial obstacle to effective interventions. It is widely accepted that the observed heterogeneity may be the result of a complex interplay of different elements, including risk factors, distinct molecular alterations and multiple potential cells of origin. The use of genetic lineage tracing systems in experimental models has identified cholangiocytes, hepatocytes and/or progenitor-like cells as the cells of origin of BTCs. Genomic evidence in support of the distinct cell of origin hypotheses is growing. In this review, we focus on recent advances in the histopathological subtyping of BTCs, discuss current genomic evidence and outline lineage tracing studies that have contributed to the current knowledge surrounding the cell of origin of these tumours.
Collapse
Key Words
- ARID1A, AT-rich interactive domain-containing protein 1A
- BAP1, BRCA1-associated protein 1
- BRAF, v-Raf murine sarcoma viral oncogene homolog B
- BTC, biliary tract cancer
- Biliary tract cancers
- CCA, cholangiocarcinoma
- CDKN2A/B, cyclin-dependent kinase inhibitor 2A/B
- CK, cytokeratin
- CLC, cholangiolocarcinoma
- Cell of origin
- Cholangiocarcinoma
- CoH, Canal of Hering
- DCR, disease control rate
- ER, estrogen receptor
- ERBB2/3, Erb-B2 Receptor Tyrosine Kinase 2/3
- FGFR, fibroblast growth factor receptor
- FGFR2, Fibroblast Growth Factor Receptor 2
- GBC, gallbladder cancer
- GEMM, genetically engineered mouse models
- Genomics
- HCC, hepatocellular carcinoma
- HPCs, hepatic progenitor cells
- IDH, isocitrate dehydrogenase
- KRAS, Kirsten Rat Sarcoma Viral Oncogene Homolog
- Lineage tracing
- MET, Hepatocyte Growth Factor Receptor
- MST1, Macrophage Stimulating 1
- NA, not applicable
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- NGS, next-generation sequencing
- NR, not reported
- NTRK, Neurotrophic Receptor Tyrosine Kinase 1
- ORR, objective response rate
- OS, overall survival
- PBG, peribiliary gland
- PFS, progression- free survival
- PIK3CA, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha
- PLC, primary liver cancer
- PRKACA/B, Protein Kinase CAMP-Activated Catalytic Subunit Alpha/Beta
- PROM1, Prominin 1
- PSC, primary sclerosing cholangitis
- Personalized therapy
- RNF43, Ring Finger Protein 43
- SMAD4, SMAD Family Member 4
- TBG, thyroid binding globulin
- TP53, Tumor Protein P53
- WHO, World Health Organization
- dCCA, distal cholangiocarcinoma
- eCCA, extrahepatic cholangiocarcinoma
- iCCA, intrahepatic cholangiocarcinoma
- mo, months
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
- Agrin Moeini
- Cancer Inflammation and Immunity Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK
| | - Philipp K Haber
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniela Sia
- Liver Cancer Program, Division of Liver Diseases, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
41
|
Brandi G, Tavolari S. In Vitro and In Vivo Model Systems of Cholangiocarcinoma. DIAGNOSIS AND MANAGEMENT OF CHOLANGIOCARCINOMA 2021:471-494. [DOI: 10.1007/978-3-030-70936-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Nagaoka S, Yamada D, Eguchi H, Yokota Y, Iwagami Y, Asaoka T, Noda T, Kawamoto K, Gotoh K, Kobayashi S, Miyoshi E, Doki Y, Mori M. The blockade of interleukin-33 released by hepatectomy would be a promising treatment option for cholangiocarcinoma. Cancer Sci 2021; 112:347-358. [PMID: 33098728 PMCID: PMC7780022 DOI: 10.1111/cas.14709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-33 (IL-33), an alarmin released during tissue injury, facilitates the development of cholangiocarcinoma (CCA) in a murine model. However, it is unclear whether IL-33 is associated with human CCA. The aim of this study was to support the following hypothesis: IL-33 is released during hepatectomy for CCA, subsequently facilitating the development of subclinical CCA and eventually leading to recurrent disease. IL-33 expression was assessed in various samples from both humans and mice including resected liver and paired plasma samples collected at hepatectomy and after surgery, and its influences on recurrent disease and patient prognosis were determined. Homogenized human liver samples with high or low IL-33 expression were added to the culture medium of human CCA cells, and the changes in proliferation and migration were evaluated. To examine the effects of inhibiting the IL-33 release induced by hepatectomy, syngraft transplantation of murine CCA cells was performed in C57BL/6J mice with or without IL-33 blockade. The amount of IL-33 released into the plasma during hepatectomy correlated with the background liver expression. High expression of IL-33 in the liver was an independent risk factor for recurrence. Homogenized liver tissue strongly expressing IL-33 increased both the proliferation and migration of tumor cells. Mice who underwent hepatectomy exhibited CCA progression in the remnant liver, whereas blockade of IL-33 during hepatectomy inhibited tumor progression. Thus, we concluded that surgery for CCA with curative intent paradoxically induced IL-33 release, which facilitated CCA recurrence, and anti-IL-33 therapy during hepatectomy might reduce the risk of CCA recurrence.
Collapse
Affiliation(s)
- Satoshi Nagaoka
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Daisaku Yamada
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuki Yokota
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Yoshifumi Iwagami
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Tadafumi Asaoka
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Takehiro Noda
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Koichi Kawamoto
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Kunihito Gotoh
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical InvestigationGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| | - Masaki Mori
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversityOsakaJapan
| |
Collapse
|
43
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
44
|
Buckarma EH, Werneburg NW, Conboy CB, Kabashima A, O'Brien DR, Wang C, Ilyas SI, Smoot RL. The YAP-Interacting Phosphatase SHP2 Can Regulate Transcriptional Coactivity and Modulate Sensitivity to Chemotherapy in Cholangiocarcinoma. Mol Cancer Res 2020; 18:1574-1588. [PMID: 32646966 PMCID: PMC7541657 DOI: 10.1158/1541-7786.mcr-20-0165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
The Hippo pathway effector Yes-associated protein (YAP) is localized to the nucleus and transcriptionally active in a number of tumor types, including a majority of human cholangiocarcinomas. YAP activity has been linked to chemotherapy resistance and has been shown to rescue KRAS and BRAF inhibition in RAS/RAF-driven cancers; however, the underlying mechanisms of YAP-mediated chemoresistance have yet to be elucidated. Herein, we report that the tyrosine phosphatase SHP2 directly regulates the activity of YAP by dephosphorylating pYAPY357 even in the setting of RAS/RAF mutations, and that diminished SHP2 phosphatase activity is associated with chemoresistance in cholangiocarcinomas. A screen for YAP-interacting tyrosine phosphatases identified SHP2, and characterization of cholangiocarcinomas cell lines demonstrated an inverse relationship between SHP2 levels and pYAPY357. Human sequencing data demonstrated lower SHP2 levels in cholangiocarcinomas tumors as compared with normal liver. Cell lines with low SHP2 expression and higher levels of pYAPY357 were resistant to gemcitabine and cisplatin. In cholangiocarcinomas cells with high levels of SHP2, pharmacologic inhibition or genetic deletion of SHP2 increased YAPY357 phosphorylation and expression of YAP target genes, including the antiapoptotic regulator MCL1, imparting resistance to gemcitabine and cisplatin. In vivo evaluation of chemotherapy sensitivity demonstrated significant resistance in xenografts with genetic deletion of SHP2, which could be overcome by utilizing an MCL1 inhibitor. IMPLICATIONS: These findings demonstrate a role for SHP2 in regulating YAP activity and chemosensitivity, and suggest that decreased phosphatase activity may be a mechanism of chemoresistance in cholangiocarcinoma via a MCL1-mediated mechanism.
Collapse
Affiliation(s)
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Ayano Kabashima
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
45
|
Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O’Brien D, Wang C, Graham RP, Smoot RL, Dong H, Ilyas S. Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Invest 2020; 130:5380-5396. [PMID: 32663198 PMCID: PMC7524481 DOI: 10.1172/jci137110] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer therapeutics. Desmoplastic malignancies, such as cholangiocarcinoma (CCA), have an abundant tumor immune microenvironment (TIME). However, to date, ICB monotherapy in such malignancies has been ineffective. Herein, we identify tumor-associated macrophages (TAMs) as the primary source of programmed death-ligand 1 (PD-L1) in human and murine CCA. In a murine model of CCA, recruited PD-L1+ TAMs facilitated CCA progression. However, TAM blockade failed to decrease tumor progression due to a compensatory emergence of granulocytic myeloid-derived suppressor cells (G-MDSCs) that mediated immune escape by impairing T cell response. Single-cell RNA sequencing (scRNA-Seq) of murine tumor G-MDSCs highlighted a unique ApoE G-MDSC subset enriched with TAM blockade; further analysis of a human scRNA-Seq data set demonstrated the presence of a similar G-MDSC subset in human CCA. Finally, dual inhibition of TAMs and G-MDSCs potentiated ICB. In summary, our findings highlight the therapeutic potential of coupling ICB with immunotherapies targeting immunosuppressive myeloid cells in CCA.
Collapse
Affiliation(s)
| | | | | | - Juan Wang
- Division of Gastroenterology and Hepatology
| | | | | | | | - Ying Li
- Department of Health Sciences Research
| | | | - Chen Wang
- Department of Health Sciences Research
| | | | | | - Haidong Dong
- Department of Immunology
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | | |
Collapse
|
46
|
Yangngam S, Thongchot S, Pongpaibul A, Vaeteewoottacharn K, Pinlaor S, Thuwajit P, Okada S, Hermoso MA, Thuwajit C. High level of interleukin-33 in cancer cells and cancer-associated fibroblasts correlates with good prognosis and suppressed migration in cholangiocarcinoma. J Cancer 2020; 11:6571-6581. [PMID: 33046978 PMCID: PMC7545672 DOI: 10.7150/jca.48327] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/06/2020] [Indexed: 12/19/2022] Open
Abstract
Interleukin 33 (IL-33) promotes cholangiocarcinoma (CCA) genesis in a mouse model, however, its function in human CCA has not been clearly understood. This study was aimed to investigate IL-33 level in CCA tissues and its clinicopathological correlations. The results revealed that IL-33 was found in both cancer cells and stromal cancer-associated fibroblast (CAFs) staining patterns which were divided into high (CH) and low level (CL) in cancer cells; and presence (FP) and absence (FA) in CAFs. Kaplan-Meier analysis showed that patients in the CL group were significantly correlated with a short 2-year survival time (P = 0.027). The CL/FP group had a shorter survival time compared to the other groups with statistical significance for 2-year (P = 0.030) and 5-year (P = 0.023) survivals. In contrast, CH/FP patients had significantly greater 2-year (P = 0.003) and 5-year (P = 0.003) survivals. Univariate and multivariate analysis confirmed that CL/FP was a significantly independent risk factor whereas CH/FP was a significant protective factor in CCA patients. High IL-33 expressing CCA cells had low migration, but they showed increased migration when IL-33 expression was knocked down. The low level of recombinant human IL-33 (rhIL-33) (0.002 - 2 ng/ml) could promote CCA cell migration, in contrast to the suppressive effect at a high dose (20 - 200 ng/ml). In conclusion, the combination of high IL-33 level in cancer cells and CAFs is a potentially good prognosis marker in CCA patients. The in vitro migration suppressive effect of IL-33 may be the potential mechanism supporting its role as a good prognostic marker in CCA patients. The obtained results strengthen IL-33 as a promising predictor and therapeutic target for CCA.
Collapse
Affiliation(s)
- Supaporn Yangngam
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Marcela A. Hermoso
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, CL 8380453 Chile
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
47
|
In Vivo Models for Cholangiocarcinoma-What Can We Learn for Human Disease? Int J Mol Sci 2020; 21:ijms21144993. [PMID: 32679791 PMCID: PMC7404171 DOI: 10.3390/ijms21144993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) comprises a heterogeneous group of primary liver tumors. They emerge from different hepatic (progenitor) cell populations, typically via sporadic mutations. Chronic biliary inflammation, as seen in primary sclerosing cholangitis (PSC), may trigger CCA development. Although several efforts were made in the last decade to better understand the complex processes of biliary carcinogenesis, it was only recently that new therapeutic advances have been achieved. Animal models are a crucial bridge between in vitro findings on molecular or genetic alterations, pathophysiological understanding, and new therapeutic strategies for the clinic. Nevertheless, it is inherently difficult to recapitulate simultaneously the stromal microenvironment (e.g., immune-competent cells, cholestasis, inflammation, PSC-like changes, fibrosis) and the tumor biology (e.g., mutational burden, local growth, and metastatic spread) in an animal model, so that it would reflect the full clinical reality of CCA. In this review, we highlight available data on animal models for CCA. We discuss if and how these models reflect human disease and whether they can serve as a tool for understanding the pathogenesis, or for predicting a treatment response in patients. In addition, open issues for future developments will be discussed.
Collapse
|
48
|
Adachi T, Adachi T, Nakagaki T, Ono S, Hidaka M, Ito S, Kanetaka K, Takatsuki M, Nishida N, Eguchi S. Difference in driver gene expression patterns between perihilar and peripheral intrahepatic cholangiocarcinoma in an experimental mouse model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 27:477-486. [PMID: 32463951 DOI: 10.1002/jhbp.772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prognosis of intrahepatic cholangiocarcinoma (ICC) is based on tumor localization; however, the mechanism remains unknown. Therefore, we investigated the biological characteristics of perihilar and peripheral ICC in a mouse model. METHODS The model was established by the administration of three oncogenic plasmids harboring myristoylated AKT, mutated human YAP, and pCMV-Sleeping Beauty into the mice. The perihilar and peripheral ICC tumors that developed in the same mouse were assessed for the expression of cell adhesion factors and driver genes with immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). RESULTS The perihilar ICC tumors were irregularly shaped, whereas the peripheral tumors were mostly circular, similar to the differences found in patients. Alpha-smooth muscle actin was strongly expressed in the perihilar tumors at 10 weeks, and vimentin expression was significantly up-regulated in the perihilar ICC at 14 weeks. Fgfr2 level significantly increased in peripheral ICC at 10 weeks, whereas Idh2 expression was up-regulated in perihilar ICC. CONCLUSIONS Despite diffuse injection of oncogenic plasmid, expression of driver genes and oncogenes in ICC tumor cells differs depending on the tumor localization, resulting in changes in epithelial-mesenchymal transition, which may explain the different outcomes of patients with peripheral and perihilar ICC.
Collapse
Affiliation(s)
- Toshiyuki Adachi
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinichiro Ono
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Ito
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
49
|
Eissmann MF, Buchert M, Ernst M. IL33 and Mast Cells-The Key Regulators of Immune Responses in Gastrointestinal Cancers? Front Immunol 2020; 11:1389. [PMID: 32719677 PMCID: PMC7350537 DOI: 10.3389/fimmu.2020.01389] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The Interleukin (IL-)1 family IL33 is best known for eliciting type 2 immune responses by stimulating mast cells (MCs), regulatory T-cells (Tregs), innate lymphoid cells (ILCs) and other immune cells. MCs and IL33 provide critical control of immunological and epithelial homeostasis in the gastrointestinal (GI) tract. Meanwhile, the role of MCs in solid malignancies appears tissue-specific with both pro and anti-tumorigenic activities. Likewise, IL33 signaling significantly shapes immune responses in the tumor microenvironment, but these effects remain often dichotomous when assessed in experimental models of cancer. Thus, the balance between tumor suppressing and tumor promoting activities of IL33 are highly context dependent, and most likely dictated by the mixture of cell types responding to IL33. Adding to this complexity is the promiscuous nature by which MCs respond to cytokines other than IL33 and release chemotactic factors that recruit immune cells into the tumor microenvironment. In this review, we integrate the outcomes of recent studies on the role of MCs and IL33 in cancer with our own observations in the GI tract. We propose a working model where the most abundant IL33 responsive immune cell type is likely to dictate an overall tumor-supporting or tumor suppressing outcome in vivo. We discuss how these opposing responses affect the therapeutic potential of targeting MC and IL33, and highlight the caveats and challenges facing our ability to effectively harness MCs and IL33 biology for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
50
|
Wang Y, Luo H, Wei M, Becker M, Hyde RK, Gong Q. IL-33/IL1RL1 axis regulates cell survival through the p38 MAPK pathway in acute myeloid leukemia. Leuk Res 2020; 96:106409. [PMID: 32652328 DOI: 10.1016/j.leukres.2020.106409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is often characterized by the presence of specific and recurrent chromosomal abnormalities. Current treatments have greatly increased remission rate, but relapse still occurs. Therefore, novel therapeutic approaches are required. Previously, using a conditional Cbfb-MYH11 knockin mouse model, we showed that Cbfb-MYH11 induces the expression of a cytokine receptor, IL1RL1. Treatment with IL-33, the only known ligand of IL1RL1, promotes leukemia cell survival in vitro. We further found that IL1RL1+ cells survive better with chemotherapy than IL1RL1- population. However, the mechanism is not clear. Here, we show that IL-33 treatment decreased drug sensitivity in the human inv(16) AML cell line ME-1. By RT-PCR, we found that IL-33 increased the expression of IL-4 and IL-6 and led to the activation of both p38 MAPK and NF-κB. We also showed that IL-33 decreased apoptosis with increased phosphorylation of p38 MAPK. Moreover, pre-treatment with MAPK inhibitor attenuated the phosphorylation of p38 enhanced by IL-33 and reversed the anti-apoptotic effect by IL-33. Taken together, our findings give news insights into the potential mechanism of the anti-apoptotic effect by IL-33/IL1RL1 axis in AML which will help in future drug development.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Huanmin Luo
- Third Clinical School, Guangzhou Medical University, Guangzhou, PR China
| | - Mengyi Wei
- Nanshan School, Guangzhou Medical University, Guangzhou, PR China
| | - Michelle Becker
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|