1
|
Cornet M, Brulle-Soumare L, Bisio V, Deas O, Mussini C, Guettier C, Fabre M, Pigazzi M, Judde JG, Tordjmann T, Branchereau S, Cairo S. Modelling the impact of liver regeneration on hepatoblastoma patient-derived-xenograft tumor growth. Pediatr Res 2024; 96:668-677. [PMID: 38263451 DOI: 10.1038/s41390-024-03020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Twenty percent of children with hepatoblastoma (HB) have lung metastasis at diagnosis. Treatment protocols recommend surgical removal of chemotherapy-refractory lung nodules, however no chronological order is established. As hepatectomy is followed by release of growth factors, it has been proposed that partial hepatectomy (PH) could boost local or distant residual tumor growth. METHODS To evaluate the impact of PH on distant tumor growth, PH was performed in mice subcutaneously implanted with a HB patient-derived xenograft (PDX). The influence of PH on tumor growth at primary site was assessed by performing PH concomitantly to HB PDXs orthotopic implantation. RESULTS Subcutaneously implanted HB PDX failed to show any influence of hepatectomy on tumor growth. Instead, intrahepatic tumor growth of one of the 4 HB PDXs implanted orthotopically was clearly enhanced. Cells derived from the hepatectomy-sensitive HB PDX exposed to hepatic growth factor (HGF) showed increased proliferation rate compared to cells derived from a hepatectomy-insensitive model, suggesting that the HGF/MET pathway could be one of the effectors of the crosstalk between liver regeneration and HB growth. CONCLUSION These results suggest that hepatectomy can contribute to HB growth in some patients, further studies will be necessary to identify biomarkers predictive of patient risk of PH-induced HB recurrence. IMPACT Key message: Cytokines and growth factors secreted following partial hepatectomy can contribute to intrahepatic tumor growth in some hepatoblastoma models. What does it add to the existing literature: It is the first article about the impact of liver regeneration induced by partial hepatectomy on hepatoblastoma local or distant tumoral growth in nude mice. What is the impact: It is important to identify the secreted factors that enhance tumor growth and to define biomarkers predictive of patient risk of partial hepatectomy-induced hepatoblastoma recurrence.
Collapse
Affiliation(s)
- Marianna Cornet
- Department of Paediatric Surgery, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France.
- XenTech, Evry-Courcouronnes, France.
| | | | - Valeria Bisio
- Institut de Recherche Saint Louis, Inserm U1160, Saint Louis Hospital, Paris, France
- Onco-Hematology Clinic and Lab, Women's and Children's Health department, University-Hospital of Padova, Padova, Italy
| | | | - Charlotte Mussini
- Department of Pathology, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Catherine Guettier
- Department of Pathology, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Monique Fabre
- Department of Pathology, Paris Cité University, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Hospital, Paris, France
| | - Martina Pigazzi
- Onco-Hematology Clinic and Lab, Women's and Children's Health department, University-Hospital of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Padova, Italy
| | | | - Thierry Tordjmann
- Université Paris Saclay, Faculté des Sciences d'Orsay, INSERM U.1193, Orsay, France
| | - Sophie Branchereau
- Department of Paediatric Surgery, Paris-Saclay University, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France.
- Fondazione Istituto di Ricerca Pediatrica (IRP), Padova, Italy.
- Champions Oncology, Hackensack, NJ, USA.
| |
Collapse
|
2
|
Failli M, Demir S, Del Río-Álvarez Á, Carrillo-Reixach J, Royo L, Domingo-Sàbat M, Childs M, Maibach R, Alaggio R, Czauderna P, Morland B, Branchereau S, Cairo S, Kappler R, Armengol C, di Bernardo D. Computational drug prediction in hepatoblastoma by integrating pan-cancer transcriptomics with pharmacological response. Hepatology 2024; 80:55-68. [PMID: 37729391 PMCID: PMC11185924 DOI: 10.1097/hep.0000000000000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the predominant form of pediatric liver cancer, though it remains exceptionally rare. While treatment outcomes for children with HB have improved, patients with advanced tumors face limited therapeutic choices. Additionally, survivors often suffer from long-term adverse effects due to treatment, including ototoxicity, cardiotoxicity, delayed growth, and secondary tumors. Consequently, there is a pressing need to identify new and effective therapeutic strategies for patients with HB. Computational methods to predict drug sensitivity from a tumor's transcriptome have been successfully applied for some common adult malignancies, but specific efforts in pediatric cancers are lacking because of the paucity of data. APPROACH AND RESULTS In this study, we used DrugSense to assess drug efficacy in patients with HB, particularly those with the aggressive C2 subtype associated with poor clinical outcomes. Our method relied on publicly available collections of pan-cancer transcriptional profiles and drug responses across 36 tumor types and 495 compounds. The drugs predicted to be most effective were experimentally validated using patient-derived xenograft models of HB grown in vitro and in vivo. We thus identified 2 cyclin-dependent kinase 9 inhibitors, alvocidib and dinaciclib as potent HB growth inhibitors for the high-risk C2 molecular subtype. We also found that in a cohort of 46 patients with HB, high cyclin-dependent kinase 9 tumor expression was significantly associated with poor prognosis. CONCLUSIONS Our work proves the usefulness of computational methods trained on pan-cancer data sets to reposition drugs in rare pediatric cancers such as HB, and to help clinicians in choosing the best treatment options for their patients.
Collapse
Affiliation(s)
- Mario Failli
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Naples, Italy
| | - Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Álvaro Del Río-Álvarez
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
- Nottingham Clinical Trials Unit, Nottingham, United Kingdom
| | - Laura Royo
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
| | | | - Rudolf Maibach
- International Breast Cancer Study Group Coordinating Center, Bern, Switzerland
| | - Rita Alaggio
- Pathology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Piotr Czauderna
- Department of Surgery and Urology for Children and Adolescents, Medical University of Gdansk, Gdansk, Poland
| | - Bruce Morland
- Department of Oncology, Birmingham Women’s and Children’s Hospital, Birmingham, United Kingdom
| | | | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Rockville, Maryland, USA
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Germany
| | - Carolina Armengol
- Childhood Liver Oncology Group (c-LOG), Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Catalonia, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Madrid, Spain
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Patel KR, Espinoza AF, Urbicain M, Patel RH, Major A, Sarabia SF, Lopez-Terrada D, Vasudevan SA, Woodfield SE. Histopathologic and immunophenotypic characterization of patient-derived pediatric malignant hepatocellular tumor xenografts (PDXs). Pathol Res Pract 2024; 255:155163. [PMID: 38394806 DOI: 10.1016/j.prp.2024.155163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024]
Abstract
Advances in targeted therapies for pediatric hepatocellular tumors have been limited due to a paucity of clinically relevant models. Establishment and validation of intrahepatic patient-derived xenograft (PDX) models would help bridging this gap. The aim of this study is to compare the histomorphologic and immunophenotypic fidelity of patient tumors and their corresponding intrahepatic PDX models. Murine PDX models were established by intrahepatic implantation of patient tumors. Pathology slides from both patients and their corresponding PDX models were reviewed and quantitatively assessed for various histologic components and immunophenotypic markers. Ten PDX models were successfully established from nine patients with pre- (n=3) and post- (n=6) chemotherapy samples; diagnosed of hepatoblastoma (n=8) and hepatocellular neoplasm, not otherwise specified (n=1). Two of nine (22.2%) patients showed ≥75% fetal component; however, the corresponding PDX models did not maintain this fetal differentiation. High grade histology was seen in three patients (33.3%) and overrepresented in six PDX models (60%). Within the subset of three PDXs that were further characterized, significant IHC concordance was seen in all 3 models for CK7, CK19, Ki-67, and p53; and 2 of 3 models for Sox9 and Beta-catenin. GPC-3 and GS showed variable to moderate concordance, while Hepar was the least concordant. Our study shows that in general, the PDX models appear to represent the higher-grade component of the original tumor and show significant concordance for Ki-67, making them appropriate tools for testing new therapies for the most aggressive, therapy-resistant tumors.
Collapse
Affiliation(s)
- Kalyani R Patel
- Department of Pathology and Immunology, Anatomic Pathology Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.
| | - Andres F Espinoza
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Martin Urbicain
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Roma H Patel
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Angela Major
- Department of Pathology and Immunology, Anatomic Pathology Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Genomic Medicine Division, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Sanjeev A Vasudevan
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Sarah E Woodfield
- Department of General Surgery, Division of Pediatric Surgery, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Demir S, Razizadeh N, Indersie E, Branchereau S, Cairo S, Kappler R. Targeting G9a/DNMT1 methyltransferase activity impedes IGF2-mediated survival in hepatoblastoma. Hepatol Commun 2024; 8:e0378. [PMID: 38285887 PMCID: PMC10830081 DOI: 10.1097/hc9.0000000000000378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/12/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND As the variable clinical outcome of patients with hepatoblastoma (HB) cannot be explained by genetics alone, the identification of drugs with the potential to effectively reverse epigenetic alterations is a promising approach to overcome poor therapy response. The gene ubiquitin like with PHD and ring finger domains 1 (UHRF1) represents an encouraging epigenetic target due to its regulatory function in both DNA methylation and histone modifications and its clinical relevance in HB. METHODS Patient-derived xenograft in vitro and in vivo models were used to study drug response. The mechanistic basis of CM-272 treatment was elucidated using RNA sequencing and western blot experiments. RESULTS We validated in comprehensive data sets that UHRF1 is highly expressed in HB and associated with poor outcomes. The simultaneous pharmacological targeting of UHRF1-dependent DNA methylation and histone H3 methylation by the dual inhibitor CM-272 identified a selective impact on HB patient-derived xenograft cell viability while leaving healthy fibroblasts unaffected. RNA sequencing revealed downregulation of the IGF2-activated survival pathway as the main mode of action of CM-272 treatment, subsequently leading to loss of proliferation, hindered colony formation capability, reduced spheroid growth, decreased migration potential, and ultimately, induction of apoptosis in HB cells. Importantly, drug response depended on the level of IGF2 expression, and combination assays showed a strong synergistic effect of CM-272 with cisplatin. Preclinical testing of CM-272 in a transplanted patient-derived xenograft model proved its efficacy but also uncovered side effects presumably caused by its strong antitumor effect in IGF2-driven tumors. CONCLUSIONS The inhibition of UHRF1-associated epigenetic traces, such as IGF2-mediated survival, is an attractive approach to treat high-risk HB, especially when combined with the standard-of-care therapeutic cisplatin.
Collapse
Affiliation(s)
- Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | - Negin Razizadeh
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| | | | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, AP-HP Paris Saclay University, France
| | - Stefano Cairo
- XenTech, Evry, France
- Champions Oncology, Inc., Rockville, Maryland, USA
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, LMU University Hospital, LMU Munich, Germany
| |
Collapse
|
5
|
He F, Bandyopadhyay AM, Klesse LJ, Rogojina A, Chun SH, Butler E, Hartshorne T, Holland T, Garcia D, Weldon K, Prado LNP, Langevin AM, Grimes AC, Sugalski A, Shah S, Assanasen C, Lai Z, Zou Y, Kurmashev D, Xu L, Xie Y, Chen Y, Wang X, Tomlinson GE, Skapek SX, Houghton PJ, Kurmasheva RT, Zheng S. Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer. Nat Commun 2023; 14:7600. [PMID: 37990009 PMCID: PMC10663468 DOI: 10.1038/s41467-023-43373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Subcutaneous patient-derived xenografts (PDXs) are an important tool for childhood cancer research. Here, we describe a resource of 68 early passage PDXs established from 65 pediatric solid tumor patients. Through genomic profiling of paired PDXs and patient tumors (PTs), we observe low mutational similarity in about 30% of the PT/PDX pairs. Clonal analysis in these pairs show an aggressive PT minor subclone seeds the major clone in the PDX. We show evidence that this subclone is more immunogenic and is likely suppressed by immune responses in the PT. These results suggest interplay between intratumoral heterogeneity and antitumor immunity may underlie the genetic disparity between PTs and PDXs. We further show that PDXs generally recapitulate PTs in copy number and transcriptomic profiles. Finally, we report a gene fusion LRPAP1-PDGFRA. In summary, we report a childhood cancer PDX resource and our study highlights the role of immune constraints on tumor evolution.
Collapse
Affiliation(s)
- Funan He
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Abhik M Bandyopadhyay
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Anna Rogojina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sang H Chun
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Trevor Holland
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luz-Nereida Perez Prado
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anne-Marie Langevin
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allison C Grimes
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Aaron Sugalski
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shafqat Shah
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Stephen X Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
6
|
Clavería-Cabello A, Herranz JM, Latasa MU, Arechederra M, Uriarte I, Pineda-Lucena A, Prosper F, Berraondo P, Alonso C, Sangro B, García Marin JJ, Martinez-Chantar ML, Ciordia S, Corrales FJ, Francalanci P, Alaggio R, Zucman-Rossi J, Indersie E, Cairo S, Domingo-Sàbat M, Zanatto L, Sancho-Bru P, Armengol C, Berasain C, Fernandez-Barrena MG, Avila MA. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol 2023; 79:989-1005. [PMID: 37302584 DOI: 10.1016/j.jhep.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of β-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Collapse
Affiliation(s)
| | - Jose Maria Herranz
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ujue Latasa
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Prosper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Oncohematology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, University of Navarra, Pamplona, Spain; CIBERonc, Madrid, Spain
| | | | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - Jose Juan García Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Luz Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Fernando José Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Paola Francalanci
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Sapienza University, Rome, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France; Champions Oncology, Rockville, MD, USA
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carolina Armengol
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite García Fernandez-Barrena
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| | - Matias Antonio Avila
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
7
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
8
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide reductase subunit switching in hepatoblastoma drug response and relapse. Commun Biol 2023; 6:249. [PMID: 36882565 PMCID: PMC9992519 DOI: 10.1038/s42003-023-04630-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
Affiliation(s)
- Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baranda S Hansen
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meifen Lu
- Center for Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Bi Y, Li S, Tang H, Wang Q, Wang Q, Yang Y, Zhang X, Shu Z, Duan Z, Chen Y, Hong F. A novel xenograft model of human hepatocellular carcinoma in immunocompetent mice based on the microcarrier-6. Transpl Immunol 2023; 76:101738. [PMID: 36368468 DOI: 10.1016/j.trim.2022.101738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/25/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that threaten human health; thus, the establishment of an animal model with clinical features similar to human hepatocellular carcinoma is of important practical significance. METHODS Taking advantage of the novel microcarrier-6, human HCC cells were injected into immunocompetent mice to establish a novel human HCC patient-derived xenograft (PDX) model. Primary HCC cells were isolated from fresh hepatocellular carcinoma tissues, which were subsequently co-cultured with microcarrier-6 to construct a three-dimensional tumor cell culture model in vitro. The HCC-microcarrier complex was implanted into mice by subcutaneous inoculation, and the tumor formation time, tumor formation rate, and pathological manifestation were recorded. Changes of immune parameters in mice were detected by flow cytometry. RESULTS The success rate was 60% (6/10) in the establishment of hepatocellular carcinoma PDX mouse model, and the total tumor formation rate of the tumor-forming model is 90-100%. H&E staining and immunohistochemical experiments indicate that the model well retained the characteristics of the primary tumor. Interestingly, M2 macrophages in tumor-bearing mice increased significantly, and the levels of CD4+ T cells were significantly reduced. CONCLUSIONS Through the application of the microcarrier-6 in immunocompetent mice, we successfully established a novel human HCC PDX model, which can be used to better study and further elucidate the occurrence and pathogenic mechanism of HCC, improve the predictability of toxicity and drug sensitivity in HCC.
Collapse
Affiliation(s)
- Yanzhen Bi
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, Shandong, PR China
| | - Shanshan Li
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Huixin Tang
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Quanquan Wang
- Department of Neurology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, PR China
| | - Quanyi Wang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Yonghong Yang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Xiaobei Zhang
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China
| | - Zhenfeng Shu
- Shanghai Meifeng Biotechnology Co., Ltd, Shanghai, PR China
| | - Zhongping Duan
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China
| | - Yu Chen
- The Fourth Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, PR China; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, PR China.
| | - Feng Hong
- Institute of Liver Diseases, Affiliated Hospital of Jining Medical University, Shandong, PR China.
| |
Collapse
|
10
|
Brown A, Pan Q, Fan L, Indersie E, Tian C, Timchenko N, Li L, Hansen BS, Tan H, Lu M, Peng J, Pruett-Miller SM, Yu J, Cairo S, Zhu L. Ribonucleotide Reductase Subunit Switching in Hepatoblastoma Drug Response and Relapse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36747774 PMCID: PMC9900781 DOI: 10.1101/2023.01.24.525404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 ( RRM2 ) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B . Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.
Collapse
|
11
|
Paillasse MR, Esquerré M, Bertrand FA, Poussereau-Pomié C, Pichery M, Visentin V, Gueguen-Dorbes G, Gaujarengues F, Barron P, Badet G, Briaux A, Ancey PB, Sibrac D, Erdociain E, Özcelik D, Meneyrol J, Martin V, Gomez-Brouchet A, Selves J, Rochaix P, Battistella M, Lebbé C, Delord JP, Dol-Gleizes F, Bono F, Blanc I, Alam A, Hunneyball I, Whittaker M, Fons P. Targeting Tumor Angiogenesis with the Selective VEGFR-3 Inhibitor EVT801 in Combination with Cancer Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1504-1519. [PMID: 36970050 PMCID: PMC10035370 DOI: 10.1158/2767-9764.crc-22-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
The receptor tyrosine kinase VEGFR-3 plays a crucial role in cancer-induced angiogenesis and lymphangiogenesis, promoting tumor development and metastasis. Here, we report the novel VEGFR-3 inhibitor EVT801 that presents a more selective and less toxic profile than two major inhibitors of VEGFRs (i.e., sorafenib and pazopanib). As monotherapy, EVT801 showed a potent antitumor effect in VEGFR-3–positive tumors, and in tumors with VEGFR-3–positive microenvironments. EVT801 suppressed VEGF-C–induced human endothelial cell proliferation in vitro and tumor (lymph)angiogenesis in different tumor mouse models. In addition to reduced tumor growth, EVT801 decreased tumor hypoxia, favored sustained tumor blood vessel homogenization (i.e., leaving fewer and overall larger vessels), and reduced important immunosuppressive cytokines (CCL4, CCL5) and myeloid-derived suppressor cells (MDSC) in circulation. Furthermore, in carcinoma mouse models, the combination of EVT801 with immune checkpoint therapy (ICT) yielded superior outcomes to either single treatment. Moreover, tumor growth inhibition was inversely correlated with levels of CCL4, CCL5, and MDSCs after treatment with EVT801, either alone or combined with ICT. Taken together, EVT801 represents a promising anti(lymph)angiogenic drug for improving ICT response rates in patients with VEGFR-3 positive tumors.
Significance:
The VEGFR-3 inhibitor EVT801 demonstrates superior selectivity and toxicity profile than other VEGFR-3 tyrosine kinase inhibitors. EVT801 showed potent antitumor effects in VEGFR-3–positive tumors, and tumors with VEGFR-3–positive microenvironments through blood vessel homogenization, and reduction of tumor hypoxia and limited immunosuppression. EVT801 increases immune checkpoint inhibitors’ antitumor effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gaelle Badet
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | - Anne Briaux
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | | | - David Sibrac
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| | | | | | | | | | - Anne Gomez-Brouchet
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Janik Selves
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Philippe Rochaix
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | - Maxime Battistella
- 5Université de Paris, Department of Pathology, AP-HP Hôpital Saint Louis, INSERM U976, Paris, France
| | - Céleste Lebbé
- 6Université de Paris, Department of Dermatology, AP-HP Hôpital Saint Louis, INSERM U976, Paris, France
| | - Jean-Pierre Delord
- 4Institut Universitaire du Cancer Toulouse Oncopole (IUCT-O), Toulouse, Occitanie, France
| | | | | | | | | | | | | | - Pierre Fons
- 1Evotec France, Campus Curie, Toulouse CEDEX, France
| |
Collapse
|
12
|
Fan L, Pan Q, Yang W, Koo SC, Tian C, Li L, Lu M, Brown A, Ju B, Easton J, Ranganathan S, Shin S, Bondoc A, Yang JJ, Yu J, Zhu L. A developmentally prometastatic niche to hepatoblastoma in neonatal liver mediated by the Cxcl1/Cxcr2 axis. Hepatology 2022; 76:1275-1290. [PMID: 35179799 PMCID: PMC9385889 DOI: 10.1002/hep.32412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the most common pediatric liver cancer. Its predominant occurrence in very young children led us to investigate whether the neonatal liver provides a protumorigenic niche to HB development. APPROACH AND RESULTS HB development was compared between orthotopic transplantation models established in postnatal day 5 (P5) and 60 (P60) mice (P5Tx and P60Tx models). Single-cell RNA-sequencing (sc-RNAseq) was performed using tumor and liver tissues from both models and the top candidate cell types and genes identified are investigated for their roles in HB cell growth, migration, and survival. CONCLUSIONS We found that various HB cell lines including HepG2 cells were consistently and considerably more tumorigenic and metastatic in the P5Tx model than in the P60Tx models. Sc-RNAseq of the P5Tx and P60Tx HepG2 models revealed that the P5Tx tumor was more hypoxic and had a larger number of activated hepatic stellate cells (aHSCs) in the tumor-surrounding liver that express significantly higher levels of Cxcl1 than those from the P60Tx model. We found these differences were developmentally present in normal P5 and P60 liver. We showed that the Cxcl1/Cxcr2 axis mediated HB cell migration and was critical to HB cell survival under hypoxia. Treating HepG2 P60Tx model with recombinant CXCL1 protein induced intrahepatic and pulmonary metastasis and CXCR2 knockout (KO) in HepG2 cells abolished their metastatic potential in the P5Tx model. Lastly, we showed that in tumors from patients with metastatic HB, there was a similar larger population of aHSCs in the tumor-surrounding liver than in localized tumors, and tumor hypoxia was uniquely associated with prognosis of patients with HB among pediatric cancers. We demonstrated that the neonatal liver provides a prometastatic niche to HB development through the Cxcl1/Cxcr2 axis.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Cheng Tian
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Liyuan Li
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Meifen Lu
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Anthony Brown
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Sarangarajan Ranganathan
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, United States
| | - Soona Shin
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Jun J. Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| | - Liqin Zhu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
| |
Collapse
|
13
|
Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Construction and application of liver cancer models in vitro. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Li Q, Demir S, Del Río-Álvarez Á, Maxwell R, Wagner A, Carrillo-Reixach J, Armengol C, Vokuhl C, Häberle B, von Schweinitz D, Schmid I, Cairo S, Kappler R. Targeting the Unwindosome by Mebendazole Is a Vulnerability of Chemoresistant Hepatoblastoma. Cancers (Basel) 2022; 14:cancers14174196. [PMID: 36077733 PMCID: PMC9454988 DOI: 10.3390/cancers14174196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance to conventional chemotherapy remains a huge challenge in the clinical management of hepatoblastoma, the most common liver tumor in childhood. By integrating the gene expression data of hepatoblastoma patients into the perturbation prediction tool Connectivity Map, we identified the clinical widely used anthelmintic mebendazole as a drug to circumvent chemoresistance in permanent and patient-derived xenograft cell lines that are resistant to cisplatin, the therapeutic backbone of hepatoblastoma treatment. Viability assays clearly indicated a potent reduction of tumor cell growth upon mebendazole treatment in a dose-dependent manner. The combination of mebendazole and cisplatin revealed a strong synergistic effect, which was comparable to the one seen with cisplatin and doxorubicin, the current treatment for high-risk hepatoblastoma patients. Moreover, mebendazole treatment resulted in reduced colony and tumor spheroid formation capabilities, cell cycle arrest, and induction of apoptosis of hepatoblastoma cells. Mechanistically, mebendazole causes blockage of microtubule formation and transcriptional downregulation of genes encoding the unwindosome, which are highly expressed in chemoresistant tumors. Most importantly, mebendazole significantly reduced tumor growth in a subcutaneous xenograft transplantation mouse model without side effects. In conclusion, our results strongly support the clinical use of mebendazole in the treatment of chemoresistant hepatoblastoma and highlight the potential theranostic value of unwindosome-associated genes.
Collapse
Affiliation(s)
- Qian Li
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Salih Demir
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Álvaro Del Río-Álvarez
- Childhood Liver Oncology Group, Health Sciences Research Institute Germans Trias i Pujol IGTP, 08916 Badalona, Spain
| | - Rebecca Maxwell
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Alexandra Wagner
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Juan Carrillo-Reixach
- Childhood Liver Oncology Group, Health Sciences Research Institute Germans Trias i Pujol IGTP, 08916 Badalona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), 28029 Madrid, Spain
| | - Carolina Armengol
- Childhood Liver Oncology Group, Health Sciences Research Institute Germans Trias i Pujol IGTP, 08916 Badalona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), 28029 Madrid, Spain
| | - Christian Vokuhl
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Irene Schmid
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | | | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
- Correspondence: ; Tel.: +49-89-4400-57810
| |
Collapse
|
15
|
Marayati R, Julson JR, Bownes LV, Quinn CH, Hutchins SC, Williams AP, Markert HR, Beierle AM, Stewart JE, Hjelmeland AB, Mroczek-Musulman E, Beierle EA. Metastatic human hepatoblastoma cells exhibit enhanced tumorigenicity, invasiveness and a stem cell-like phenotype. J Pediatr Surg 2022; 57:1018-1025. [PMID: 35300860 PMCID: PMC9119922 DOI: 10.1016/j.jpedsurg.2022.01.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND/PURPOSE Metastatic hepatoblastoma continues to pose a significant treatment challenge, primarily because the precise mechanisms involved in metastasis are not fully understood, making cell lines and preclinical models that depict the progression of disease and metastasis-related biology paramount. We aimed to generate and characterize a metastatic hepatoblastoma cell line to create a model for investigation of the molecular mechanisms associated with metastasis. MATERIALS/METHODS Using a murine model of serial tail vein injections of the human hepatoblastoma HuH6 cell line, non-invasive bioluminescence imaging, and dissociation of metastatic pulmonary lesions, we successfully established and characterized the metastatic human hepatoblastoma cell line, HLM_3. RESULTS The HLM_3 cells exhibited enhanced tumorigenicity and invasiveness, both in vitro and in vivo compared to the parent HuH6 cell line. Moreover, HLM_3 metastatic hepatoblastoma cells exhibited a stem cell-like phenotype and were more resistant to the standard chemotherapeutic cisplatin. CONCLUSION This newly described metastatic hepatoblastoma cell line offers a novel tool to study mechanisms of tumor metastasis and evaluate new therapeutic strategies for metastatic hepatoblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Sara C Hutchins
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America
| | - Elizabeth Mroczek-Musulman
- Department of Pathology, The Children's Hospital of Alabama, Birmingham, AL 35233, United States of America
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, United States of America.
| |
Collapse
|
16
|
Woodfield SE, Mistretta BJ, Patel RH, Ibarra AM, Fisher KE, Sarabia SF, Gandhi I, Reuther J, Starosolski Z, Badachhape A, Epps J, Zorman B, Shah AP, Larson SR, Srivastava RK, Shi Y, Espinoza AF, Govindu SR, Whitlock RS, Holloway K, Roy A, Sumazin P, Ghaghada KB, Lopez-Terrada D, Gunaratne PH, Vasudevan SA. HepT1-derived murine models of high-risk hepatoblastoma display vascular invasion, metastasis, and circulating tumor cells. Biol Open 2022; 11:276557. [PMID: 35451474 PMCID: PMC9493725 DOI: 10.1242/bio.058973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric primary liver malignancy, and survival for high-risk disease approaches 50%. Mouse models of HB fail to recapitulate hallmarks of high-risk disease. The aim of this work was to generate murine models that show high-risk features including multifocal tumors, vascular invasion, metastasis, and circulating tumor cells (CTCs). HepT1 cells were injected into the livers or tail veins of mice, and tumor growth was monitored with magnetic resonance and bioluminescent imaging. Blood was analyzed with fluorescence-activated cell sorting to identify CTCs. Intra- and extra-hepatic tumor samples were harvested for immunohistochemistry and RNA and DNA sequencing. Cell lines were grown from tumor samples and profiled with RNA sequencing. With intrahepatic injection of HepT1 cells, 100% of animals grew liver tumors and showed vascular invasion, metastasis, and CTCs. Mutation profiling revealed genetic alterations in seven cancer-related genes, while transcriptomic analyses showed changes in gene expression with cells that invade vessels. Tail vein injection of HepT1 cells resulted in multifocal, metastatic disease. These unique models will facilitate further meaningful studies of high-risk HB. This article has an associated First Person interview with the first author of the paper. Summary: In this work, we developed and thoroughly characterized several unique models of hepatoblastoma derived from the HepT1 cell line that show high-risk features.
Collapse
Affiliation(s)
- Sarah E Woodfield
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon J Mistretta
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Roma H Patel
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aryana M Ibarra
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin E Fisher
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Stephen F Sarabia
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Ilavarasi Gandhi
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Jacquelyn Reuther
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Zbigniew Starosolski
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Andrew Badachhape
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jessica Epps
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aayushi P Shah
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel R Larson
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rohit K Srivastava
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yan Shi
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres F Espinoza
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Saiabhiroop R Govindu
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard S Whitlock
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly Holloway
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Angshumoy Roy
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ketan B Ghaghada
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital Department of Pathology, Houston, TX 77030, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sanjeev A Vasudevan
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children's Surgical Oncology Program, Texas Children's Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Wu PV, Rangaswami A. Current Approaches in Hepatoblastoma-New Biological Insights to Inform Therapy. Curr Oncol Rep 2022; 24:1209-1218. [PMID: 35438389 DOI: 10.1007/s11912-022-01230-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW As the most common pediatric primary liver cancer with rising incidence, hepatoblastoma remains challenging to treat. Here, we review the current understanding of the biology of hepatoblastoma and discuss how recent advances may lead to new treatment modalities. RECENT FINDINGS Standard chemotherapy regimens including cisplatin, in addition to surgery, have led to high cure rates among patients with low stage hepatoblastoma; however, metastatic and relapsed disease continue to have poor outcomes. Recent genomics and functional studies in cell lines and mouse models have established a central role for the Wnt/β-catenin pathway in tumorigenesis. Targeted agents and immunotherapy approaches are emerging as potential treatment avenues. With recent gains in knowledge of the genomic and transcriptomic landscape of hepatoblastoma, new therapeutic mechanisms can now be explored to improve outcomes for metastatic and relapsed hepatoblastoma and to reduce the toxicity of current treatments.
Collapse
Affiliation(s)
- Peng V Wu
- Division of Hematology/Oncology/Stem Cell Transplantation & Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Rd. Suite 300, Palo Alto, CA, 94304, USA
| | - Arun Rangaswami
- Division of Hematology/Oncology, Department of Pediatrics, University of California San Francisco, 550 16th St., 3rd Floor, San Francisco, CA, 94158, USA.
| |
Collapse
|
18
|
Protocol for chronic hepatitis B virus infection mouse model development by patient-derived orthotopic xenografts. PLoS One 2022; 17:e0264266. [PMID: 35196351 PMCID: PMC8865695 DOI: 10.1371/journal.pone.0264266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Background According to the World Health Organization, more than 250 million people worldwide are chronically infected with the hepatitis B virus, and almost 800.000 patients die annually of mediated liver disorders. Therefore, adequate biological test systems are needed that could fully simulate the course of chronic hepatitis B virus infection, including in patients with hepatocellular carcinoma. Methods In this study, we will assess the effectiveness of existing protocols for isolation and cultivation of primary cells derived from patients with hepatocellular carcinoma in terms of the yield of viable cells and their ability to replicate the hepatitis B virus using isolation and cultivation methods for adhesive primary cells, flow cytometry and quantitative polymerase chain reaction. Another part of our study will be devoted to evaluating the effectiveness of hepatocellular carcinoma grafting methods to obtain patient-derived heterotopic and orthotopic xenograft mouse avatars using animal X-ray irradiation and surgery procedures and in vivo fluorescent signals visualization and measurements. Our study will be completed by histological methods. Discussion This will be the first extensive comparative study of the main modern methods and protocols for isolation and cultivation primary hepatocellular carcinoma cells and tumor engraftment to the mice. All protocols will be optimized and characterized using the: (1) efficiency of the method for isolation cells from removed hepatocellular carcinoma in terms of their quantity and viability; (2) efficiency of the primary cell cultivation protocol in terms of the rate of monolayer formation and hepatitis B virus replication; (3) efficiency of the grafting method in terms of the growth rate and the possibility of hepatitis B virus persistence and replication in mice. The most effective methods will be recommended for use in translational biomedical research.
Collapse
|
19
|
Zhu X, Zhu Y, Chen N, Tang C, Shi J. The drugs screened by OncoVeeTM-Mini-PDX have significantly benefited the patient with HER2-positive advanced gastric cancer. J Oncol Pharm Pract 2022; 28:1435-1440. [PMID: 35068264 DOI: 10.1177/10781552221074973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction At present, the prognosis of HER2-positive advanced gastric cancer is extremely poor, and some patients fail to benefit from first-line Herceptin treatment, thus facing difficulties in choosing second-line drugs. Case Report Here, we report a 61-year-old male patient with HER2-positive advanced gastric cancer who is primarily resistant to Herceptin and has poor therapeutic effect. Management & Outcome Afterwards, the OncoVeeTM-MiniPDX-guided anticancer method was used to screen drugs for second-line treatment, which resulted in liquefaction and necrosis of the patient's lesions and improved liver function indicators, as well as rapid relief of the patient's clinical symptoms. Discussion In the treatment of the Herceptin-resistant patient with advanced gastric cancer, OncoVeeTM-MiniPDX method screened drugs and brought clinical benefits.
Collapse
Affiliation(s)
- Xuedan Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yinxing Zhu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nan Chen
- Department of Outpatient, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Cuiju Tang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Deciphering tumour tissue organization by 3D electron microscopy and machine learning. Commun Biol 2021; 4:1390. [PMID: 34903822 PMCID: PMC8668903 DOI: 10.1038/s42003-021-02919-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Despite recent progress in the characterization of tumour components, the tri-dimensional (3D) organization of this pathological tissue and the parameters determining its internal architecture remain elusive. Here, we analysed the spatial organization of patient-derived xenograft tissues generated from hepatoblastoma, the most frequent childhood liver tumour, by serial block-face scanning electron microscopy using an integrated workflow combining 3D imaging, manual and machine learning-based semi-automatic segmentations, mathematics and infographics. By digitally reconstituting an entire hepatoblastoma sample with a blood capillary, a bile canaliculus-like structure, hundreds of tumour cells and their main organelles (e.g. cytoplasm, nucleus, mitochondria), we report unique 3D ultrastructural data about the organization of tumour tissue. We found that the size of hepatoblastoma cells correlates with the size of their nucleus, cytoplasm and mitochondrial mass. We also found anatomical connections between the blood capillary and the planar alignment and size of tumour cells in their 3D milieu. Finally, a set of tumour cells polarized in the direction of a hot spot corresponding to a bile canaliculus-like structure. In conclusion, this pilot study allowed the identification of bioarchitectural parameters that shape the internal and spatial organization of tumours, thus paving the way for future investigations in the emerging onconanotomy field. de Senneville et al. demonstrate an integrated workflow combining 3D imaging, manual and machine learning-based semi-automatic segmentation, mathematics and infographics to study the spatial organization of patient-derived hepatoblastoma xenograft tissues. Their approach potentially assists investigations of this childhood liver tumour and other types of tumour tissues.
Collapse
|
21
|
Johnston ME, Rivas MP, Nicolle D, Gorse A, Gulati R, Kumbaji M, Weirauch MT, Bondoc A, Cairo S, Geller J, Tiao G, Timchenko N. Olaparib Inhibits Tumor Growth of Hepatoblastoma in Patient-Derived Xenograft Models. Hepatology 2021; 74:2201-2215. [PMID: 34037269 PMCID: PMC8463483 DOI: 10.1002/hep.31919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HBL) is a devastating pediatric liver cancer with multiple treatment options, but it ultimately requires surgery for a cure. The most malicious form of HBL is a chemo-resistant aggressive tumor that is characterized by rapid growth, metastases, and poor response to treatment. Very little is known of the mechanisms of aggressive HBL, and recent focuses have been on developing alternative treatment strategies. In this study, we examined the role of human chromosomal regions, called aggressive liver cancer domains (ALCDs), in liver cancer and evaluated the mechanisms that activate ALCDs in aggressive HBL. RESULTS We found that ALCDs are critical regions of the human genome that are located on all human chromosomes, preferentially in intronic regions of the oncogenes and other cancer-associated genes. In aggressive HBL and in patients with Hepatocellular (HCC), JNK1/2 phosphorylates p53 at Ser6, which leads to the ph-S6-p53 interacting with and delivering the poly(adenosine diphosphate ribose) polymerase 1 (PARP1)/Ku70 complexes on the oncogenes containing ALCDs. The ph-S6-p53-PARP1 complexes open chromatin around ALCDs and activate multiple oncogenic pathways. We found that the inhibition of PARP1 in patient-derived xenografts (PDXs) from aggressive HBL by the Food and Drug Administration (FDA)-approved inhibitor olaparib (Ola) significantly inhibits tumor growth. Additionally, this is associated with the reduction of the ph-S6-p53/PARP1 complexes and subsequent inhibition of ALCD-dependent oncogenes. Studies in cultured cancer cells confirmed that the Ola-mediated inhibition of the ph-S6-p53-PARP1-ALCD axis inhibits proliferation of cancer cells. CONCLUSIONS In this study, we showed that aggressive HBL is moderated by ALCDs, which are activated by the ph-S6-p53/PARP1 pathway. By using the PARP1 inhibitor Ola, we suppressed tumor growth in HBL-PDX models, which demonstrated its utility in future clinical models.
Collapse
Affiliation(s)
- Michael Edward Johnston
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| | - Maria Prates Rivas
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | | | | | - Ruhi Gulati
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Meenasri Kumbaji
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and EtiologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Alexander Bondoc
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Stefano Cairo
- XenTech 4Évry‐CourcouronnesFrance,Istituto di Ricerca PediatricaPaduaItaly
| | - James Geller
- Department of OncologyCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Gregory Tiao
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH
| | - Nikolai Timchenko
- Division of General and Thoracic SurgeryCincinnati Children’s Hospital Medical CenterCincinnatiOH,Department of SurgeryUniversity of CincinnatiCincinnatiOH
| |
Collapse
|
22
|
Bondoc A, Glaser K, Jin K, Lake C, Cairo S, Geller J, Tiao G, Aronow B. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun Biol 2021; 4:1049. [PMID: 34497364 PMCID: PMC8426487 DOI: 10.1038/s42003-021-02562-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatoblastoma (HB) is the most common primary liver malignancy of childhood, and molecular investigations are limited and effective treatment options for chemoresistant disease are lacking. There is a knowledge gap in the investigation of key driver cells of HB in tumor. Here we show single cell ribonucleic acid sequencing (scRNAseq) analysis of human tumor, background liver, and patient derived xenograft (PDX) to demonstrate gene expression patterns within tumor and to identify intratumor cell subtype heterogeneity to define differing roles in pathogenesis based on intracellular signaling in pediatric HB. We have identified a driver tumor cell cluster in HB by genetic expression which can be examined to define disease mechanism and treatments. Identification of both critical mechanistic pathways combined with unique cell populations provide the basis for discovery and investigation of novel treatment strategies in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Bondoc
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA.
| | - Kathryn Glaser
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Charissa Lake
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Stefano Cairo
- Research and Development Unit, XenTech, Genopole-Campus 3, Fontaine, France
- Istituto di Ricerca Pediatrica (IRP), Corso Stati Uniti, Padua, Italy
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory Tiao
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital, Medical Center, Cincinnati, OH, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Developmental Biology, and Pediatrics, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
23
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
24
|
Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem 2021; 224:113690. [PMID: 34256124 DOI: 10.1016/j.ejmech.2021.113690] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, dietary carcinogens, and so forth. The current treatment modalities, including surgical resection and liver transplantation, have been found far from effective. Hence, there is an obvious critical need to develop alternative strategies for the treatment of it. In this review, we discuss the formation process and therapeutic targets of liver cancer. Currently, targeted therapy is limited to sorafenib, lenvatinib, regorafenib, ramucirumab and cabozantinib which leads to a survival benefit in patients, but on the other hand is hampered by the occurrence of drug resistance. Pleasingly and importantly, there are multiple natural products undergoing clinical evaluation in liver cancer, such as polyphenols like icaritin, resveratrol, and silybin, saponins including ginsenoside Rg3 and glycyrrhizinate, alkaloid containing irinotecan and berberine and inorganic compound arsenic trioxide at present. Preclinical and clinical studies have shown that these compounds inhibit liver cancer formation owing to the influence on the anti-viral, anti-inflammation, anti-oxidant, anti-angiogenesis and anti-metastasis activity. Furthermore, a series of small molecule derivatives inspired by the aforementioned compounds are designed and synthesized according to structure-activity relationship studies. Drug combination and novel type of drug-targeted delivery system thereof have been well developed. This article is ended by a perspective remark of futuristic development of natural product-based therapeutic regimen for liver cancer treatment. We expect that this review is an account for current status of natural products as promising anti-liver cancer treatments and should contribute to its understanding.
Collapse
|
25
|
Castillo‐Ecija H, Pascual‐Pasto G, Perez‐Jaume S, Resa‐Pares C, Vila‐Ubach M, Monterrubio C, Jimenez‐Cabaco A, Baulenas‐Farres M, Muñoz‐Aznar O, Salvador N, Cuadrado‐Vilanova M, Olaciregui NG, Balaguer‐Lluna L, Burgueño V, Vicario FJ, Manzanares A, Castañeda A, Santa‐Maria V, Cruz O, Celis V, Morales La Madrid A, Garraus M, Gorostegui M, Vancells M, Carrasco R, Krauel L, Torner F, Suñol M, Lavarino C, Mora J, Carcaboso AM. Prognostic value of patient-derived xenograft engraftment in pediatric sarcomas. J Pathol Clin Res 2021; 7:338-349. [PMID: 33837665 PMCID: PMC8185364 DOI: 10.1002/cjp2.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
The goals of this work were to identify factors favoring patient-derived xenograft (PDX) engraftment and study the association between PDX engraftment and prognosis in pediatric patients with Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma. We used immunodeficient mice to establish 30 subcutaneous PDX from patient tumor biopsies, with a successful engraftment rate of 44%. Age greater than 12 years and relapsed disease were patient factors associated with higher engraftment rate. Tumor type and biopsy location did not associate with engraftment. PDX models retained histology markers and most chromosomal aberrations of patient samples during successive passages in mice. Model treatment with irinotecan resulted in significant activity in 20 of the PDXs and replicated the response of rhabdomyosarcoma patients. Successive generations of PDXs responded similarly to irinotecan, demonstrating functional stability of these models. Importantly, out of 68 tumor samples from 51 patients with a median follow-up of 21.2 months, PDX engraftment from newly diagnosed patients was a prognostic factor significantly associated with poor outcome (p = 0.040). This association was not significant for relapsed patients. In the subgroup of patients with newly diagnosed Ewing sarcoma classified as standard risk, we found higher risk of relapse or refractory disease associated with those samples that produced stable PDX models (p = 0.0357). Overall, our study shows that PDX engraftment predicts worse outcome in newly diagnosed pediatric sarcoma patients.
Collapse
|
26
|
Wang X, Sun Y, Xu Y, Wen D, An N, Leng X, Fu G, Lu S, Chen Z. Mini-patient-derived xenograft assay based on microfluidic technology promises to be an effective tool for screening individualized chemotherapy regimens for advanced non-small cell lung cancer. Cell Biol Int 2021; 45:1887-1896. [PMID: 33945662 DOI: 10.1002/cbin.11622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 12/18/2022]
Abstract
Patient-derived xenograft (PDX) assay has been widely used in preclinical research in patients with multidrug-resistant lung cancer. One hundred patients with non-small cell lung cancer (NSCLC) were divided into MiniPDX group and conventional group, with 50 cases in each group. The MiniPDX assay was established by enriching high-purity tumor cells using microfluidic technology to detect the drug sensitivity of NSCLC cells. All patients underwent conventional computed tomography (CT) scans of lung and mediastinum at baseline and during follow-up. Kaplan-Meier method was used to compare the overall survival and progression-free survival of two groups. The sensitivity of the same drug in different tumor xenograft varied greatly. The overall survival, progression-free survival, and clinical benefit rate of patients in the MiniPDX-guided chemotherapy group were significantly longer than those in the conventional chemotherapy group. MiniPDX assay may be an effective tool for screening chemotherapy regimens in NSCLC patients.
Collapse
Affiliation(s)
- Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Sun
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yunhua Xu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Danyi Wen
- Shanghai LIDE Biotech Co., LTD, 3F, Shanghai, China
| | - Na An
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejiao Leng
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guolong Fu
- Shanghai LIDE Biotech Co., LTD, 3F, Shanghai, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Chen
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Yang G, Guan W, Cao Z, Guo W, Xiong G, Zhao F, Feng M, Qiu J, Liu Y, Zhang MQ, You L, Zhang T, Zhao Y, Gu J. Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models. Clin Cancer Res 2021; 27:3383-3396. [PMID: 33674273 DOI: 10.1158/1078-0432.ccr-19-3975] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment. EXPERIMENTAL DESIGN In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes. RESULTS The comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance. CONCLUSIONS This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.
Collapse
Affiliation(s)
- Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenfang Guan
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China
| | - Zhe Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Wenbo Guo
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China
| | - Guangbing Xiong
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Fangyu Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Mengyu Feng
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, P.R. China
- Department of Biological Sciences, Center for Systems Biology, the University of Texas at Dallas, Richardson, Texas
| | - Lei You
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and, Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China.
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics, Division of BNRist Bioinformatics, Department of Automation, Tsinghua University, Beijing, P.R. China.
| |
Collapse
|
28
|
Saltsman JA, Hammond WJ, Narayan NJC, Requena D, Gehart H, Lalazar G, LaQuaglia MP, Clevers H, Simon S. A Human Organoid Model of Aggressive Hepatoblastoma for Disease Modeling and Drug Testing. Cancers (Basel) 2020; 12:E2668. [PMID: 32962010 PMCID: PMC7563272 DOI: 10.3390/cancers12092668] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatoblastoma is the most common childhood liver cancer. Although survival has improved significantly over the past few decades, there remains a group of children with aggressive disease who do not respond to current treatment regimens. There is a critical need for novel models to study aggressive hepatoblastoma as research to find new treatments is hampered by the small number of laboratory models of the disease. Organoids have emerged as robust models for many diseases, including cancer. We have generated and characterized a novel organoid model of aggressive hepatoblastoma directly from freshly resected patient tumors as a proof of concept for this approach. Hepatoblastoma tumor organoids recapitulate the key elements of patient tumors, including tumor architecture, mutational profile, gene expression patterns, and features of Wnt/β-catenin signaling that are hallmarks of hepatoblastoma pathophysiology. Tumor organoids were successfully used alongside non-tumor liver organoids from the same patient to perform a drug screen using twelve candidate compounds. One drug, JQ1, demonstrated increased destruction of liver organoids from hepatoblastoma tumor tissue relative to organoids from the adjacent non-tumor liver. Our findings suggest that hepatoblastoma organoids could be used for a variety of applications and have the potential to improve treatment options for the subset of hepatoblastoma patients who do not respond to existing treatments.
Collapse
Affiliation(s)
- James A. Saltsman
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - William J. Hammond
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Nicole J. C. Narayan
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
| | - Helmuth Gehart
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands; (H.G.); (H.C.)
| | - Gadi Lalazar
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
| | - Michael P. LaQuaglia
- Pediatric Surgery Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands; (H.G.); (H.C.)
- The Princess Maxima Center for Pediatric Oncology, 3584CT Utrecht, The Netherlands
| | - Sanford Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; (J.A.S.); (W.J.H.); (N.J.C.N.); (D.R.); (G.L.)
| |
Collapse
|
29
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
30
|
Wu Y, Wang J, Zheng X, Chen Y, Huang M, Huang Q, Xiao W, Wei H, Tian Z, Sun R, Sun C. Establishment and Preclinical Therapy of Patient-derived Hepatocellular Carcinoma Xenograft Model. Immunol Lett 2020; 223:33-43. [PMID: 32335145 DOI: 10.1016/j.imlet.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/06/2019] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a world-wide health problem. Poor and delayed diagnoses as well as high recurrence rate resulting in high mortality rate. In this study, we established a patient-derived xenograft (PDX) model from HCC patient, and continuously maintained with subcutaneous passage more than 20 times. This HCC PDX tumor exhibited the same histological characteristics with the HCC patient and could be used to verify therapeutic effect of liver cancer. We further evaluated this PDX model by experimental chemotherapy, demonstrating that this HCC PDX model was sensitive to sorafenib treatment. Further, the potential of natural killer cell-based immunotherapy for HCC was tested using this model. We found that NK92 cells effectively suppressed the tumor growth in vivo and prolonged the survival time of HCC-bearing PDX mice. This study indicates that HCC PDX model is a good platform to testify the efficacy of preclinical chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuwei Wu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Jinyu Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Xiaodong Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Yongyan Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Mei Huang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science & Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China.
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China; Transplant & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
31
|
Feng F, Huang C, Xiao M, Wang H, Gao Q, Chen Z, Xu X, Zhou J, Li F, Li Y, Zhang D, Chang Y, Jiang X. Establishment and characterization of patient-derived primary cell lines as preclinical models for gallbladder carcinoma. Transl Cancer Res 2020; 9:1698-1710. [PMID: 35117518 PMCID: PMC8798768 DOI: 10.21037/tcr.2020.02.04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/18/2020] [Indexed: 01/18/2023]
Abstract
Background Gallbladder carcinoma (GBC) is one of the most lethal malignancies which do not have a targeted drug in the clinic. Patient-derived primary cell lines (PDCs) are useful in assessment of cancer complexity and heterogeneity, drug-sensitivity tests, and personalized-drug-selection guidance. The aim of this study is to establish GBC PDCs and characterize their biological features. Methods The characterization of PDCs was defined by morphology, growth kinetics, chromosomal analysis, short tandem repeat (STR) analysis, RNA-seq and tumorigenicity. Glycosylation of PDCs derived from GBC was first studied, and the PDC model’s performance were also tested and evaluated using seven molecular target inhibitors. Results Three novel GBC cell lines from three GBC patients were successfully established and denoted as JXQ-3D-902R4, JXQ-3D-4494R, and JXQ-3D-4786R. These cell lines demonstrated the heterogeneous characteristics of tumor morphology and phenotypes which are consistent with primary GBC, such as irregular cell shape, varied chromosomal numbers, and different STR patterns. Moreover, the growth activity and tumorigenicity ability varied among the cell lines, of which JXQ-3D-4494R exhibited the best growth rate. Furthermore, glycan profiling of whole proteins were detected and characterized. Unique N-glycans of each PDC were identified, JXQ-3D-902R4, JXQ-3D-4494R and JXQ-3D-4786R contained ten, four and seven unique glycans, respectively. The epithelial origins of three PDCs were confirmed using RNA-seq based on the highly expressed typical epithelial marker genes. Moreover, the drug-sensitivity results demonstrated that the three PDCs exhibited different responses to the seven-most commonly used targeted medicines belonging to three groups: cell-cycle inhibitors, PI3K/AKT/mTOR signaling-pathway inhibitors, and ErbB inhibitors. JXQ-3D-4494R was sensitive to most of the inhibitors, JXQ-3D-4786R was sensitive to ErbB inhibitors, and JXQ-3D-902R4 was sensitive to PI3K/AKT/mTOR inhibitors. Conclusions These results indicate that PDCs may be efficient preclinical models for further investigation of the biological behaviors and potential targeted therapies of human GBC.
Collapse
Affiliation(s)
- Feiling Feng
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingjia Xiao
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Huizhen Wang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Qingxiang Gao
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Zishuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Xiaoya Xu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Jun Zhou
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Fugen Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Yan Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dadong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, China
| | - Yanxin Chang
- Biliary Tract Surgery Department, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| | - Xiaoqing Jiang
- Department of Biliary I, Shanghai Eastern Hepatobiliary Surgery Hospital, Navy Military Medical University, Shanghai 200438, China
| |
Collapse
|
32
|
Novel patient-derived preclinical models of liver cancer. J Hepatol 2020; 72:239-249. [PMID: 31954489 DOI: 10.1016/j.jhep.2019.09.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 12/25/2022]
Abstract
Preclinical models of cancer based on the use of human cancer cell lines and mouse models have enabled discoveries that have been successfully translated into patients. And yet the majority of clinical trials fail, emphasising the urgent need to improve preclinical research to better interrogate the potential efficacy of each therapy and the patient population most likely to benefit. This is particularly important for liver malignancies, which lack highly efficient treatments and account for hundreds of thousands of deaths around the globe. Given the intricate network of genetic and environmental factors that contribute to liver cancer development and progression, the identification of new druggable targets will mainly depend on establishing preclinical models that mirror the complexity of features observed in patients. The development of new 3D cell culture systems, originating from cells/tissues isolated from patients, might create new opportunities for the generation of more specific and personalised therapies. However, these systems are unable to recapitulate the tumour microenvironment and interactions with the immune system, both proven to be critical influences on therapeutic outcomes. Patient-derived xenografts, in particular with humanised mouse models, more faithfully mimic the physiology of human liver cancer but are costly and time-consuming, which can be prohibitive for personalising therapies in the setting of an aggressive malignancy. In this review, we discuss the latest advances in the development of more accurate preclinical models to better understand liver cancer biology and identify paradigm-changing therapies, stressing the importance of a bi-directional communicative flow between clinicians and researchers to establish reliable model systems and determine how best to apply them to expanding our current knowledge.
Collapse
|
33
|
Whitlock RS, Yang T, Vasudevan SA, Woodfield SE. Animal Modeling of Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12020273. [PMID: 31979130 PMCID: PMC7072332 DOI: 10.3390/cancers12020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/09/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. Management of HB requires multidisciplinary efforts. The 5-year overall survival of this disease is about 80% in developed countries. Despite advances in the care of these patients, survival in recurrent or treatment-refractory disease is lower than 50%. This is due to more complex tumor biology, including hepatocellular carcinoma (HCC)-like mutations and expression of aggressive gene signatures leading to chemoresistance, vascular invasion, and metastatic spread. The current treatment protocols for pediatric liver cancer do not incorporate targeted therapies, and the ability to test these therapies is limited due to the inaccessibility of cell lines and mouse models. In this review, we discuss the current status of preclinical animal modeling in pediatric liver cancer, primarily HB. Although HB is a rare cancer, the research community has worked together to develop a range of interesting and relevant mouse models for diverse preclinical studies.
Collapse
Affiliation(s)
- Richard S. Whitlock
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Sanjeev A. Vasudevan
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Sarah E. Woodfield
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
- Correspondence: ; Tel.: +1-832-824-4591
| |
Collapse
|
34
|
Wang W, Hu B, Qin JJ, Cheng JW, Li X, Rajaei M, Fan J, Yang XR, Zhang R. A novel inhibitor of MDM2 oncogene blocks metastasis of hepatocellular carcinoma and overcomes chemoresistance. Genes Dis 2019; 6:419-430. [PMID: 31832522 PMCID: PMC6889017 DOI: 10.1016/j.gendis.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Overexpression of the MDM2 oncogene and mutations in the p53 tumor suppressor commonly occur in hepatocellular carcinoma (HCC) and are associated with increased mortality due to this disease. Inhibiting MDM2 has been demonstrated to be a valid approach for the treatment of HCC. However, most of the MDM2 inhibitors evaluated to date have been designed to block the MDM2 and p53 binding, and have limited efficacy against tumors with mutant or deficient p53. In the present study, we developed a novel MDM2 inhibitor (termed SP141) that has direct effects on MDM2 and exerts anti-HCC activity independent of the p53 status of the cancer cells. We demonstrate that SP141 inhibits cell growth and prevents cell migration and invasion, independent of p53. Mechanistically, SP141 directly binds the MDM2 protein and promotes MDM2 degradation. The inhibition of MDM2 by SP141 also increases the sensitivity of HCC cells to sorafenib. In addition, in orthotopic and patient-derived xenograft models, SP141 inhibits MDM2 expression and suppresses tumor growth and metastasis, without any host toxicity. Furthermore, the inhibition of MDM2 by SP141 is essential for its anti-HCC activities. These results provide support for the further development of SP141 as a lead candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX, 77204, USA
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Jian-Wen Cheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Mehrdad Rajaei
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
35
|
Volasertib preclinical activity in high-risk hepatoblastoma. Oncotarget 2019; 10:6403-6417. [PMID: 31741706 PMCID: PMC6849653 DOI: 10.18632/oncotarget.27237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Relapsed and metastatic hepatoblastoma represents an unmet clinical need with limited chemotherapy treatment options. In a chemical screen, we identified volasertib as an agent with in vitro activity, inhibiting hepatoblastoma cell growth while sparing normal hepatocytes. Volasertib targets PLK1 and prevents the progression of mitosis, resulting in eventual cell death. PLK1 is overexpressed in hepatoblastoma biopsies relative to normal liver tissue. As a potential therapeutic strategy, we tested the combination of volasertib and the relapse-related hepatoblastoma chemotherapeutic irinotecan. We found both in vitro and in vivo efficacy of this combination, which may merit further preclinical investigation and exploration for a clinical trial concept.
Collapse
|
36
|
Models for Understanding Resistance to Chemotherapy in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111677. [PMID: 31671735 PMCID: PMC6896032 DOI: 10.3390/cancers11111677] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.
Collapse
|
37
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
38
|
Wang W, Cheng JW, Qin JJ, Hu B, Li X, Nijampatnam B, Velu SE, Fan J, Yang XR, Zhang R. MDM2-NFAT1 dual inhibitor, MA242: Effective against hepatocellular carcinoma, independent of p53. Cancer Lett 2019; 459:156-167. [PMID: 31181320 PMCID: PMC6650270 DOI: 10.1016/j.canlet.2019.114429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The overexpression of the MDM2 oncoprotein frequently occurs in hepatocellular carcinoma (HCC). Small molecules that inhibit MDM2-p53 binding show efficacy against p53 wild-type HCC, but most patients have p53-mutant tumors and intrinsic resistance to such MDM2 inhibitors. We have recently discovered that the NFAT1 transcription factor upregulates MDM2 expression, but the role of NFAT1 in HCC is not fully understood. The present study was designed to develop a dual-targeting (MDM2 and NFAT1) strategy for the treatment of HCC. We herein demonstrate that high expression levels of NFAT1 and MDM2 are independent predictors of a poor prognosis in patients with HCC. We have also identified a MDM2 and NFAT1 dual inhibitor (termed MA242) that induces MDM2 auto-ubiquitination and degradation and represses NFAT1-mediated MDM2 transcription. MA242 profoundly inhibits the growth and metastasis of HCC cells in vitro and in vivo, independent of p53. The present efficacy and mechanistic studies provide proof-of-principle data to support the therapeutic value of this dual targeting strategy in future drug discovery.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; Drug Discovery Institute, University of Houston, Houston, TX, 77204, USA.
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiang-Jiang Qin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Bhavitavya Nijampatnam
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA; Drug Discovery Institute, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
39
|
Koga Y, Ochiai A. Systematic Review of Patient-Derived Xenograft Models for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors. Cells 2019; 8:cells8050418. [PMID: 31064068 PMCID: PMC6562882 DOI: 10.3390/cells8050418] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 01/06/2023] Open
Abstract
Patient-derived xenograft (PDX) models are used as powerful tools for understanding cancer biology in PDX clinical trials and co-clinical trials. In this systematic review, we focus on PDX clinical trials or co-clinical trials for drug development in solid tumors and summarize the utility of PDX models in the development of anti-cancer drugs, as well as the challenges involved in this approach, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Recently, the assessment of drug efficacy by PDX clinical and co-clinical trials has become an important method. PDX clinical trials can be used for the development of anti-cancer drugs before clinical trials, with their efficacy assessed by the modified response evaluation criteria in solid tumors (mRECIST). A few dozen cases of PDX models have completed enrollment, and the efficacy of the drugs is assessed by 1 × 1 × 1 or 3 × 1 × 1 approaches in the PDX clinical trials. Furthermore, co-clinical trials can be used for personalized care or precision medicine with the evaluation of a new drug or a novel combination. Several PDX models from patients in clinical trials have been used to assess the efficacy of individual drugs or drug combinations in co-clinical trials.
Collapse
Affiliation(s)
- Yoshikatsu Koga
- Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan.
| |
Collapse
|
40
|
Eberherr C, Beck A, Vokuhl C, Becker K, Häberle B, Von Schweinitz D, Kappler R. Targeting excessive MYCN expression using MLN8237 and JQ1 impairs the growth of hepatoblastoma cells. Int J Oncol 2019; 54:1853-1863. [PMID: 30864675 DOI: 10.3892/ijo.2019.4741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/23/2019] [Indexed: 11/06/2022] Open
Abstract
Hepatoblastoma (HB) is the most common liver tumor in children under the age of 3 years worldwide. While many patients achieve good outcomes with surgical resection and conventional chemotherapy, there is still a high‑risk population that exhibits a poor treatment response and unfavorable prognosis, which warrants the search for novel treatment options. In recent years, it has become clear that genetic events alone are not sufficient to explain the aggressive phenotype of this embryonal malignancy. Instead, epigenetic modifications and aberrant gene expression seem to be key drivers of HB. In the present study, expression analyses such as reverse transcription‑quantitative polymerase chain reaction revealed that the oncogene, MYCN proto‑oncogene basic‑helix‑loop‑helix transcription factor (MYCN) was upregulated in HB and other pediatric liver tumors, due to the transcriptional activity of its antisense transcript MYCN opposite strand (MYCNOS). Pyrosequencing demonstrated the hypomethylated regions in the promoter of MYCN and MYCNOS, suggesting that an epigenetic mechanism may underlie the induction of aberrant expression. Transient MYCN knockdown in HB cells resulted in growth inhibition over time. In addition, treating HB cells with the MYCN inhibitors JQ1 and MLN8237 led to the significant downregulation of MYCN either at the mRNA or protein levels, respectively. The underlying mechanism of action of the two inhibitors was revealed to be associated with the induction of dose‑dependent growth arrest, by arresting cells at either the G1/G0 or G2 phase. Furthermore, MLN8237 and JQ1 were able to cause spindle disturbances and/or apoptosis in HB cells. The present results suggest that MYCN may be a promising biomarker for HB and a potential therapeutic target in patients with tumors overexpressing MYCN.
Collapse
Affiliation(s)
- Corinna Eberherr
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, D‑80337 Munich, Germany
| | - Alexander Beck
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, D‑80337 Munich, Germany
| | - Christian Vokuhl
- Institute of Paidopathology, Pediatric Tumor Registry, Christian‑Albrecht's‑University Kiel, D‑24105 Kiel, Germany
| | - Kristina Becker
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, D‑80337 Munich, Germany
| | - Beate Häberle
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, D‑80337 Munich, Germany
| | - Dietrich Von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, D‑80337 Munich, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, D‑80337 Munich, Germany
| |
Collapse
|
41
|
Castven D, Becker D, Czauderna C, Wilhelm D, Andersen JB, Strand S, Hartmann M, Heilmann‐Heimbach S, Roth W, Hartmann N, Straub BK, Mahn FL, Franck S, Pereira S, Haupts A, Vogel A, Wörns MA, Weinmann A, Heinrich S, Lang H, Thorgeirsson SS, Galle PR, Marquardt JU. Application of patient‐derived liver cancer cells for phenotypic characterization and therapeutic target identification. Int J Cancer 2018; 144:2782-2794. [DOI: 10.1002/ijc.32026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Darko Castven
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Diana Becker
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Carolin Czauderna
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Diana Wilhelm
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Jesper B. Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical ScienceUniversity of Copenhagen Copenhagen Denmark
| | - Susanne Strand
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Monika Hartmann
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Stefanie Heilmann‐Heimbach
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital of Bonn Department of Genomics, Life & Brain CenterUniversity of Bonn Bonn Germany
- Department of Genomics, Life & Brain CenterUniversity of Bonn Bonn Germany
| | - Wilfried Roth
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Nils Hartmann
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Beate K. Straub
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Friederike L. Mahn
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Sophia Franck
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Sharon Pereira
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Anna Haupts
- Institute of PathologyJohannes Gutenberg University Mainz Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical School Hannover Germany
| | - Marcus A. Wörns
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Arndt Weinmann
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Stefan Heinrich
- Department of SurgeryJohannes Gutenberg University Mainz Germany
| | - Hauke Lang
- Department of SurgeryJohannes Gutenberg University Mainz Germany
| | - Snorri S. Thorgeirsson
- Laboratory of Human Carcinogenesis (LHC), Center for Cancer ResearchNational Cancer Institute, NIH Bethesda MD USA
| | - Peter R. Galle
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| | - Jens U. Marquardt
- Department of Medicine I, Lichtenberg Research GroupJohannes Gutenberg University Mainz Germany
| |
Collapse
|
42
|
Zhan M, Yang RM, Wang H, He M, Chen W, Xu SW, Yang LH, Liu Q, Long MM, Wang J. Guided chemotherapy based on patient-derived mini-xenograft models improves survival of gallbladder carcinoma patients. Cancer Commun (Lond) 2018; 38:48. [PMID: 30016995 PMCID: PMC6050666 DOI: 10.1186/s40880-018-0318-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gallbladder carcinoma is highly aggressive and resistant to chemotherapy, with no consistent strategy to guide first line chemotherapy. However, patient-derived xenograft (PDX) model has been increasingly used as an effective model for in preclinical study of chemosensitivity. METHODS Mini-PDX model was established using freshly resected primary lesions from 12 patients with gallbladder to examine the sensitivity with five of the most commonly used chemotherapeutic agents, namely gemcitabine, oxaliplatin, 5-fluorouracil, nanoparticle albumin-bound (nab)-paclitaxel, and irinotecan. The results were used to guide the selection of chemotherapeutic agents for adjunctive treatment after the surgery. Kaplan-Meier method was used to compare overall survival (OS) and disease free survival (DFS) with 45 patients who received conventional chemotherapy with gemcitabine and oxaliplatin. RESULTS Cell viability assays based on mini-PDX model revealed significant heterogeneities in drug responsiveness. Kaplan-Meier analysis showed that patients in the PDX-guided chemotherapy group had significantly longer median OS (18.6 months; 95% CI 15.9-21.3 months) than patients in the conventional chemotherapy group (13.9 months; 95% CI 11.7-16.2 months) (P = 0.030; HR 3.18; 95% CI 1.47-6.91). Patients in the PDX-guided chemotherapy group also had significantly longer median DFS (17.6 months; 95% CI 14.5-20.6 months) than patients in the conventional chemotherapy group (12.0 months; 95% CI 9.7-14.4 months) (P = 0.014; HR 3.37; 95% CI 1.67-6.79). CONCLUSION The use of mini-PDX model to guide selection of chemotherapeutic regimens could improve the outcome in patients with gallbladder carcinoma.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Rui-meng Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Min He
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Sun-wang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Lin-hua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 P. R. China
| | - Man-mei Long
- Department of Pathology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011 P. R. China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127 P. R. China
| |
Collapse
|
43
|
Armengol C, Cairo S. Identification of theranostic biomarkers to improve the stratification of patients with pediatric liver cancer: Opportunities and challenges. Hepatology 2018; 68:10-12. [PMID: 29328497 DOI: 10.1002/hep.29779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Carolina Armengol
- Childhood Liver Oncology Group (c-LOG)-CIBEREHD, Program for Predictive and Personalized Medicine of Cancer (PMPPC), Germans Trias i Pujol Research Institute (IGTP) I Campus Can Ruti, Badalona, Spain
| | | |
Collapse
|
44
|
Chauvin C, Leruste A, Tauziede-Espariat A, Andrianteranagna M, Surdez D, Lescure A, Han ZY, Anthony E, Richer W, Baulande S, Bohec M, Zaidi S, Aynaud MM, Maillot L, Masliah-Planchon J, Cairo S, Roman-Roman S, Delattre O, Del Nery E, Bourdeaut F. High-Throughput Drug Screening Identifies Pazopanib and Clofilium Tosylate as Promising Treatments for Malignant Rhabdoid Tumors. Cell Rep 2018; 21:1737-1745. [PMID: 29141209 DOI: 10.1016/j.celrep.2017.10.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 01/25/2023] Open
Abstract
Rhabdoid tumors (RTs) are aggressive tumors of early childhood characterized by SMARCB1 inactivation. Their poor prognosis highlights an urgent need to develop new therapies. Here, we performed a high-throughput screening of approved drugs and identified broad inhibitors of tyrosine kinase receptors (RTKs), including pazopanib, and the potassium channel inhibitor clofilium tosylate (CfT), as SMARCB1-dependent candidates. Pazopanib targets were identified as PDGFRα/β and FGFR2, which were the most highly expressed RTKs in a set of primary tumors. Combined genetic inhibition of both these RTKs only partially recapitulated the effect of pazopanib, emphasizing the requirement for broad inhibition. CfT perturbed protein metabolism and endoplasmic reticulum stress and, in combination with pazopanib, induced apoptosis of RT cells in vitro. In vivo, reduction of tumor growth by pazopanib was enhanced in combination with CfT, matching the efficiency of conventional chemotherapy. These results strongly support testing pazopanib/CfT combination therapy in future clinical trials for RTs.
Collapse
Affiliation(s)
- Céline Chauvin
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Amaury Leruste
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | | | - Mamy Andrianteranagna
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Didier Surdez
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Aurianne Lescure
- Paris-Sciences-Lettres Research University, Institut Curie, Department of Translational Research, the Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris 75005, France
| | - Zhi-Yan Han
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Elodie Anthony
- Paris-Sciences-Lettres Research University, Institut Curie, Department of Translational Research, the Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris 75005, France
| | - Wilfrid Richer
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Sylvain Baulande
- Paris-Sciences-Lettres Research University, Institut Curie, Next Generation Sequencing Platform, Paris 75005, France
| | - Mylène Bohec
- Paris-Sciences-Lettres Research University, Institut Curie, Next Generation Sequencing Platform, Paris 75005, France
| | - Sakina Zaidi
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Marie-Ming Aynaud
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Laetitia Maillot
- Paris-Sciences-Lettres Research University, Institut Curie, Laboratory of Somatic Genetics, Paris 75005, France
| | - Julien Masliah-Planchon
- Paris-Sciences-Lettres Research University, Institut Curie, Laboratory of Somatic Genetics, Paris 75005, France
| | - Stefano Cairo
- LTTA Center, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy; XenTech, Evry 91000, France
| | - Sergio Roman-Roman
- Paris-Sciences-Lettres Research University, Institut Curie, Department of Translational Research, the Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris 75005, France
| | - Olivier Delattre
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie, Laboratory of Somatic Genetics, Paris 75005, France
| | - Elaine Del Nery
- Paris-Sciences-Lettres Research University, Institut Curie, Department of Translational Research, the Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris 75005, France
| | - Franck Bourdeaut
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Hospital, Department of Pediatric Oncology- Adolescents and Young Adults, Paris 75005, France.
| |
Collapse
|
45
|
A Novel Cell Line Based Orthotopic Xenograft Mouse Model That Recapitulates Human Hepatoblastoma. Sci Rep 2017; 7:17751. [PMID: 29259231 PMCID: PMC5736579 DOI: 10.1038/s41598-017-17665-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
Currently, preclinical testing of therapies for hepatoblastoma (HB) is limited to subcutaneous and intrasplenic xenograft models that do not recapitulate the hepatic tumors seen in patients. We hypothesized that injection of HB cell lines into the livers of mice would result in liver tumors that resemble their clinical counterparts. HepG2 and Huh-6 HB cell lines were injected, and tumor growth was monitored with bioluminescence imaging (BLI) and magnetic resonance imaging (MRI). Levels of human α-fetoprotein (AFP) were monitored in the serum of animals. Immunohistochemical and gene expression analyses were also completed on xenograft tumor samples. BLI signal indicative of tumor growth was seen in 55% of HepG2- and Huh-6-injected animals after a period of four to seven weeks. Increased AFP levels correlated with tumor growth. MRI showed large intrahepatic tumors with active neovascularization. HepG2 and Huh-6 xenografts showed expression of β-catenin, AFP, and Glypican-3 (GPC3). HepG2 samples displayed a consistent gene expression profile most similar to human HB tumors. Intrahepatic injection of HB cell lines leads to liver tumors in mice with growth patterns and biologic, histologic, and genetic features similar to human HB tumors. This orthotopic xenograft mouse model will enable clinically relevant testing of novel agents for HB.
Collapse
|
46
|
Moro M, Casanova M, Roz L. Patient-derived xenografts, a multi-faceted in vivo model enlightening research on rare liver cancer biology. Hepatobiliary Surg Nutr 2017; 6:344-346. [PMID: 29152485 DOI: 10.21037/hbsn.2017.06.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Massimo Moro
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
47
|
Castelli G, Pelosi E, Testa U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers (Basel) 2017; 9:cancers9090127. [PMID: 28930164 PMCID: PMC5615342 DOI: 10.3390/cancers9090127] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is the second most common cause of cancer-related death. The major forms of primary liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Both these tumors develop against a background of cirrhotic liver, non-alcoholic fatty liver disease, chronic liver damage and fibrosis. HCC is a heterogeneous disease which usually develops within liver cirrhosis related to various etiologies: hepatitis B virus (HBV) infection (frequent in Asia and Africa), hepatitis C virus (HCV), chronic alcohol abuse, or metabolic syndrome (frequent in Western countries). In cirrhosis, hepatocarcinogenesis is a multi-step process where pre-cancerous dysplastic macronodules transform progressively into HCC. The patterns of genomic alterations observed in these tumors were recently identified and were instrumental for the identification of potential targeted therapies that could improve patient care. Liver cancer stem cells are a small subset of undifferentiated liver tumor cells, responsible for cancer initiation, metastasis, relapse and chemoresistance, enriched and isolated according to immunophenotypic and functional properties: cell surface proteins (CD133, CD90, CD44, EpCAM, OV-6, CD13, CD24, DLK1, α2δ1, ICAM-1 and CD47); the functional markers corresponding to side population, high aldehyde dehydrogenase (ALDH) activity and autofluorescence. The identification and definition of liver cancer stem cells requires both immunophenotypic and functional properties.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| | - Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00141, Italy.
| |
Collapse
|
48
|
Sia D, Villanueva A, Friedman SL, Llovet JM. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017; 152:745-761. [PMID: 28043904 DOI: 10.1053/j.gastro.2016.11.048] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 11/26/2016] [Indexed: 12/11/2022]
Abstract
Primary liver cancer is the second leading cause of cancer-related death worldwide and therefore a major public health challenge. We review hypotheses of the cell of origin of liver tumorigenesis and clarify the classes of liver cancer based on molecular features and how they affect patient prognosis. Primary liver cancer comprises hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (iCCA), and other rare tumors, notably fibrolamellar carcinoma and hepatoblastoma. The molecular and clinical features of HCC versus iCCA are distinct, but these conditions have overlapping risk factors and pathways of oncogenesis. A better understanding of the cell types originating liver cancer can aid in exploring molecular mechanisms of carcinogenesis and therapeutic options. Molecular studies have identified adult hepatocytes as the cell of origin. These cells have been proposed to transform directly into HCC cells (via a sequence of genetic alterations), to dedifferentiate into hepatocyte precursor cells (which then become HCC cells that express progenitor cell markers), or to transdifferentiate into biliary-like cells (which give rise to iCCA). Alternatively, progenitor cells also give rise to HCCs and iCCAs with markers of progenitor cells. Advances in genome profiling and next-generation sequencing have led to the classification of HCCs based on molecular features and assigned them to categories such as proliferation-progenitor, proliferation-transforming growth factor β, and Wnt-catenin β1. iCCAs have been assigned to categories of proliferation and inflammation. Overall, proliferation subclasses are associated with a more aggressive phenotype and poor outcome of patients, although more specific signatures have refined our prognostic abilities. Analyses of genetic alterations have identified those that might be targeted therapeutically, such as fusions in the FGFR2 gene and mutations in genes encoding isocitrate dehydrogenases (in approximately 60% of iCCAs) or amplifications at 11q13 and 6p21 (in approximately 15% of HCCs). Further studies of these alterations are needed before they can be used as biomarkers in clinical decision making.
Collapse
Affiliation(s)
- Daniela Sia
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott L Friedman
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Divisions of Liver Diseases, Hematology, and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Liver Cancer Translational Research Laboratory, BCLC, Liver Unit, CIBEREHD, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.
| |
Collapse
|
49
|
Zarzosa P, Navarro N, Giralt I, Molist C, Almazán-Moga A, Vidal I, Soriano A, Segura MF, Hladun R, Villanueva A, Gallego S, Roma J. Patient-derived xenografts for childhood solid tumors: a valuable tool to test new drugs and personalize treatments. Clin Transl Oncol 2016; 19:44-50. [PMID: 27718156 DOI: 10.1007/s12094-016-1557-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/23/2022]
Abstract
The use of preclinical models is essential in translational cancer research and especially important in pediatric cancer given the low incidence of each particular type of cancer. Cell line cultures have led to significant advances in cancer biology. However, cell lines have adapted to growth in artificial culture conditions, thereby undergoing genetic and phenotypic changes which may hinder the translational application. Tumor grafts developed in mice from patient tumor tissues, generally known as patient-derived xenografts (PDXs), are interesting alternative approaches to reproducing the biology of the original tumor. This review is focused on highlighting the interest of PDX models in pediatric cancer research and supporting strategies of personalized medicine. This review provides: (1) a description of the background of PDX in cancer, (2) the particular case of PDX in pediatric cancer, (3) how PDX can improve personalized medicine strategies, (4) new methods to increase engraftment, and, finally, (5) concluding remarks.
Collapse
Affiliation(s)
- P Zarzosa
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - N Navarro
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Giralt
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Molist
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Almazán-Moga
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - I Vidal
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Villanueva
- Chemoresistance and Predicitive Factors Laboratory, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Xenopat S.L. Business Bioincubator Bellvitge Health Science Campus, L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - S Gallego
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Roma
- Laboratory of Translational Research in Childhood and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute. Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
50
|
Tiao G, Geller J, Timchenko NA. Generation of pediatric liver cancer patient-derived xenograft platforms for pediatric liver cancer: A critical stage in the development of anticancer treatments. Hepatology 2016; 64:1017-9. [PMID: 27359258 DOI: 10.1002/hep.28711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Gregory Tiao
- Division of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - James Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Nikolai A Timchenko
- Division of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|